POLITECNICO DI TORINO Repository ISTITUZIONALE

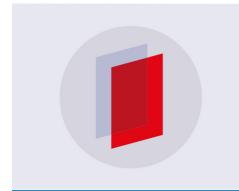
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

Original Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics / Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; Kjølbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M In: JOURNAL OF INSTRUMENTATION ISSN 1748-0221 ELETTRONICO 13:3(2018), pp. 1-22. [10.1088/1748-0221/13/03/P03012]
Availability: This version is available at: 11583/2727571 since: 2019-03-08T16:38:34Z
Publisher: Institute of Physics Publishing
Published DOI:10.1088/1748-0221/13/03/P03012
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright
(Article begins on next page)

OPEN ACCESS

Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

To cite this article: G. Saviano et al 2018 JINST 13 P03012


View the article online for updates and enhancements.

Related content

- A model for the formation of defects in RPC bakelite plates at high radiation levels T Greci, F Felli, G Saviano et al.
- <u>Negative Ion Time Projection Chamber</u> operation with SF₆ at nearly atmospheric pressure
- E. Baracchini, G. Cavoto, G. Mazzitelli et
- The upgrade of the Muon System of the CMS experiment M. Abbrescia

Recent citations

- Boron-10 lined RPCs for sub-millimeter resolution thermal neutron detectors: conceptual design and performance considerations L.M.S. Margato and A. Morozov

IOP ebooks™

Start exploring the collection - download the first chapter of every title for free.

RECEIVED: April 20, 2017 REVISED: September 23, 2017 ACCEPTED: February 9, 2018 PUBLISHED: March 19, 2018

Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

G. Saviano, a,1 M. Ferrini, a L. Benussi, b S. Bianco, b D. Piccolo, b S. Colafranceschi, c J. Kjølbro, c A. Sharma, c D. Yang, d G. Chen, d Y. Ban, d Q. Li, d S. Grassini e and M. Parvis e

E-mail: giovanna.saviano@uniroma1.it

ABSTRACT: Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

KEYWORDS: Materials for gaseous detectors; Muon spectrometers; Particle tracking detectors (Gaseous detectors); Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc)

^aLaboratori Nazionali di Frascati dell'INFN and Facoltà di Ingegneria, Università di Roma La Sapienza, Rome, Italy

^bLaboratori Nazionali di Frascati dell'INFN, Italy

^c CERN, Geneva, Switzerland

^dPeking University, Beijing, China

^ePolitecnico di Torino, Torino, Italy

¹Corresponding author.

C	ontents	
1	Introduction	1
2	Gas properties	2
3	Organofluorine gas compounds for particle physics detectors	7
4	Estimation of gas parameters	10
	4.1 Stopping power	10
	4.2 Radiation length	12
	4.3 Estimation of ionization pair production	12
5	Conclusions	13

1 Introduction

Many refrigerant gases currently used have a great impact on the environment since they either contribute largely to the greenhouse effect, or because they tear the ozone layer, or both. In an attempt to protect the environment, regulations preventing the production and use of certain refrigerant gases have been implemented [1].

Gas detectors are widespread for detection, tracking and triggering of charged particles such as muons in Nuclear and High Energy Physics (HEP). They are characterised by simple and reliable use, but utmost care must be taken to issues such as properties of gas interaction with materials, gas purification, gas mixture contaminants, etc. [2]–[8].

A large part of gas muon detectors used in HEP operates with mixtures containing the regulated refrigerants as quenching medium in applications where excellent time resolution and avalanche operation are necessary. Therefore, actions towards finding new mixtures must be undertaken. Gas Electron Multiplier (GEM) [9] detectors operate in experiments such as CMS (Compact Muon Solenoid) at the LHC (Large Hadron Collider) with an Ar/CO₂ mixture [10]. However, for high time resolution applications an Ar/CO₂/CF₄ mixture is used [11], where CF₄ has a Global-Warming Potential (GWP) of 7390 [12]. Resistive Plate Counters (RPC) [13] currently operate with a F-based R134a/Isobutane/SF₆ gas mixture, with typical GWP of 1430. Investigations into new gas mixtures have to be performed in order to keep the mixture properties while complying with the regulations. A few industrial refrigerant replacements were proposed [14] as alternatives to R134a. A study of transport properties of currently used gas mixtures in HEP, and evaluation of transport properties of freon-less gas mixtures, was recently published [15, 16]. Few recent results on candidate ecogases have been published [17].

The aim of this paper is to discuss some of the important properties of gases for particle gas detectors, to list and summarize basic properties of eco-friendly refrigerants from the literature,

to discuss their properties for materials compatibility and safe use, and to make a prediction on selected parameters crucial for the performance of gas detectors considered, by means of parametric formulas. While this study is aimed to GEM and RPC detectors, its findings can be considered for selection of ecogas replacement for other gas detectors.

2 Gas properties

For a gas mixture to be appropriate in an elementary particle gas detector, first of all it has to comply with the regulations. Furthermore, its properties must also be appropriate for the specific type of detectors. For example, a gas that is suitable for the RPC detectors may not be fully optimized for the GEM detectors. To better find the appropriate gas for a detector, an understanding of the influence of different parameters is required. This section aims to clarify the most essential parameters for gases. Parametric formulas used in literature have been used to compute parameter of candidate gas replacements such as stopping power, radiation length, ion pair production. Basic details on the interaction of elementary particles in matter are discussed in textbooks, or reviews such as [18]

The impact of a refrigerant on the environment is characterised in terms of contribution to the greenhouse effect and depletion of the ozone layer. The greenhouse effect is measured in Global-Warming Potential (GWP), the 100-year integrated potential of a chemical, or the weighted average of the GWPs of the chemicals in a blend, relative CO_2 (GWP $_{CO_2} \equiv 1$). The effect on the ozone layer is measured in Ozone Depletion Potential [19] (ODP), normalized to the effect of CCl_3F or CFC-11 (ODP $_{CCl_3F} \equiv 1$). Nomenclature, GWP and ODP of selected refrigerant candidates are listed in table 1.

When a particle passes through a medium, energy is transferred from the particle to the surrounding atoms. The energy lost is typically defined as the stopping power expressed as $\frac{1}{\rho} \left\langle \frac{dE}{dx} \right\rangle$, where ρ is the density of the medium, E is the particle energy, and x is length of medium crossed. The minimum mean ionization energies for the refrigerants under consideration are summarized (see section 4) in table 2.

The radiation length X_0 is a characteristic length of a medium which describe the energy loss of electrons and photons in a medium [20]. These quantities are estimated by means of parametric formulas (see section 4) and summarized in table 2.

When an incoming particle passes through a medium, it will eventually interact with the medium and transfer some of its energy to ionize atoms. In this process, a pair consisting of an ionized atom and a free electron is produced. The number of ionizations produced by an incoming particle per unit length is denoted by N_P , in units of cm⁻¹. Each produced ion pair will have an initial kinetic energy and can itself produce an ion pair, called secondary ion pair production. The sum of the primary and secondary ion pairs production per unit length is denoted N_T , and will be mainly depending on the material and the incoming particle energy and mass. This parameter is relevant in particle gas detectors as it determines both the number and the size of avalanches produced by a single incoming particle when the gas is under an amplifying electric field.

When electrons and ions in a gas are subject only to an electric field they move on average along the electric field. Individual electrons, however, deviate from the average due to scattering on the atoms of the gas. Scattering leads to variations in velocity, called longitudinal diffusion, and to lateral displacements, called transverse diffusion.

Table 1. Summary of various refrigerant candidates. Also shown is the Chemical Abstracts Service (CAS) Registry Number.

Molecular name	Chemical formula	CAS	Refrigerant identifier	GWP	ODP
Chloropentafluoroethane	C_2ClF_5	76-15-3	R115 [49]	7370	0.44
Hexafluoroethane	C_2F_6	76-16-4	R116 [47]	-	-
2,2-Dicloro-1,1,1- trifluoroethane	$C_2HCl_2F_3$	306-83-2	R123 [38]	120	0
1-Chloro-3,3,3- Trifluoropropene	$C_3H_2ClF_3$	2730-43-0	R1233zd [45]	4.7-7	0
2,3,3,3-Tetrafluoropropene	$C_3H_2F_4$	754-12-1	R1234yf [46]	4	0
1,3,3,3 Tetrafluoropropene	$C_3H_2F_4$	29118-24-9	R1234ze [43]	6	0
Trifluoroiodomethane	CF_3I	2314-97-8	R13I1 [44]	0.4	0.01-0.02
1,1,1,2-Tetrafluoroethane	CH_2FCF_3	811-97-2	R134a [35]	1430	0
Tetrafluoromethane	CF_4	75-73-0	R14 [31]	7390	0
1,1,1-trifluoroethane	CH_3CF_3	420-46-2	R143a [30]	4300	-
1,1-Difluoroethane	$C_2H_4F_2$	75-37-6	R152a [51]	124	0
Octafluoropropane	C_3F_8	76-19-7	R218 [40]	-	-
Propane	C_3H_8	74-98-6	R290 [39]	3	0
Difluoromethane	CH_2F_2	75-10-5	R32 [48]	650	0
Isobutane	C_4H_{10}	75-28-5	R600a [42]	3	0
Sulfur Hexafluoride	SF_6	2551-62-4	R7146 [32]	23000	0.04
Carbon Dioxide	CO_2	124-38-9	R744 [37]	1	0
Octafluorocyclobutane	C_4F_8	115-25-3	R318 [41]	-	-
Pentafluoroethane	HF_2CF_3	354-33-6	R125 [28]	3400	0
Trifluoromethane	CHF_3	75-46-7	R23 [29]	0	0
R409:	CHClF ₂	75-45-6 2837- 89-0 75-68-3	R22 (60%), R142b (25%), R124 (15%)	1700-620	0.5/0.065/0.02
R407c:	CH_2F_2 , CF_3CHF_2 , CH_2FCF_3	75-10-5, 354- 33-6, 811-97-2	R32 (21-25%), R125 (23-27%), R134a (50-54%)		0 0 0

The average distance an electron travels between ionizing collisions is called mean free path and its inverse is the number of ionizing collisions per centimeter α (the first Townsend coefficient). This parameter determines the gas gain. If n_0 is the number of primary electrons without amplification in uniform electric field, and n is the number of electrons after distance x under avalanche condition, then n is given by $n = n_0 e^{\alpha x}$ and the gas gain G is given by $G \equiv n_0/n = e^{\alpha x}$. The first Townsend coefficient depends on the nature of the gas, the electric field and pressure. To take into account the augmented emission of electrons by the cathode caused by impact of positive ions, it is customary to introduce η , Townsend's second ionisation coefficient or attachment parameter, i.e., the average

Table 2. Minimum ionization, radiation length and number of primary ion pair creation for the considered refrigerants, as well as the approximated mean ionization energy used. Values have been computed by means of the parametric formulas described in section 4. Uncertainty on values is determined by numerical propagation of errors on the experimentally known quantities.

Name	I	$-\left\langle \frac{dE}{dx}\right\rangle_{\min}$	X_0	N_P
	[eV]	$\left[MeV\frac{g}{cm^2}\right]$	$\left[\frac{g}{cm^2}\right]$	$\left[\mathrm{cm}^{-1}\right]$
R32	89.4	1.81	35.46	49.2
R7146	127.4	1.68	28.60	92.0
R600a	47.84	2.24	45.22	81.0
R1234yf	91.9	1.77	35.82	89.5
R152a	78.2	1.89	37.10	67.1
R1234ze	91.97	1.77	35.82	89.5
R115	116.7	1.69	29.22	98.4
R1233zd	106.7	1.74	29.76	105
R290	47.01	2.26	45.37	65.2
R13 1	201.7	1.42	11.54	172
R134a	95.0	1.77	35.15	81.6
R14	107.1	1.70	33.99	63.6
R123	125.3	1.70	25.54	98.4
R143a	87.8	1.81	35.89	74.8
R744	88.7	1.81	36.19	37.2
R23	99.9	1.74	34.52	56.9
R116	105.1	1.71	34.29	93.3
RC318	101.6	1.72	34.84	123
R218	104.1	1.71	34.43	117

number of electrons released from a surface by an incident positive ion, according to the formula

$$G \equiv \frac{e^{\alpha x}}{1 - \eta(e^{\alpha x} - 1)} \tag{2.1}$$

Many refrigerants may constitute danger for the user and its environment. The greatest dangers involved are the flammability and toxicity. In this work, two standards have been used in categorizing the refrigerants in tables 3 and 4. The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard [22] gives each refrigerant a number denoting flammability from 1 (not flammable) to 3 (highly flammable), as well as a letter A (non-toxic) or B (Toxic). The Health Material Hazardous Material Information System (HMIS), rates Health/ Flammability/ and Physical hazards from 0 (low) to 4 (high).

Some refrigerants are incompatible with certain materials, and can either react violently, or have long term effect, while others may even produce toxic decomposition and/or polymerisation. Known incompatibilities and toxic byproducts are summarized in tables 3 and 4.

 Table 3. Chemical, physical and compatibility information of the refrigerants (Part 1).

Refrigerant	Molecular weight	Density g/L	Boiling point °C	HMIS	Ashrae Safety Group		
Material incompa	tibility						
Hazardous decom	position products an	d polymerization					
R115 [49]	154.4	6.623	-39.1	1/0/2	A1		
Material is stable metals-powdered	. However, avoid op Al, Zn, Be, etc.	oen flames and high	temperatures. Inco	mpatible with alkal	li or alkaline earth		
Decomposition product are hazardous."FREON" 115 Fluorocarbon can be decomposed by high temperatures (open flames, glowing metal surfaces, etc.)forming hydrochloric and hydrofluoric acids, and possibly carbonyl halides. Thermal decomposition can yield toxic fumes of fluorides such as Hydrogen Fluoride, Hydrogen Chlo- ride, Carbon Monoxide and Chlorine.							
R116 [47]	138.01	5.734	-79	1/0/0	A1		
be corrosive in the produced by there	tly with alkaline-earning presence of moist mal decomposition: option products: halo	ture. If involved in Carbonyl fluoride, H	a fire the following Iydrogen fluoride, C	toxic and/or corros			
R1233zd [45]	130.5	6.10	-19	_	_		
	n polyacrylate, Viton			r elastomers.			
under thermal dec and Hydrogen Ch R1234yf [46]	ompose into pyrolysi loride can occur.	is products containin 4.82	g Hydrogen Fluoride	e, Carbon Monoxide	, Carbonyl halides,		
	alkali matala 7n N	Ig and other light m	netals.				
Incompatible with	i aikan metais, Zii, N	Incompatible with alkali metals, Zn, Mg and other light metals. If involved in a fire, production under thermal decompose into pyrolysis products containing Fluorine, Carbon Monoxide, Carbonyl halides, and Hydrogen halides can occur. No toxic decomposition should happen under normal conditions					
If involved in a	fire, production und	-		_			
If involved in a monoxide, Carbo	fire, production und	-		_			
If involved in a monoxide, Carbo conditions. R1234ze [43]	fire, production und nyl halides, and Hyd	rogen halides can oc	ccur. No toxic decon	nposition should hap			
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo conditions.	fire, production und nyl halides, and Hyd	4.82 materials and finely er thermal decomp	-29 divided Mg and Al. ose into pyrolysis p	nposition should hap 1/0/0 products containing	ppen under normal		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo	fire, production und nyl halides, and Hyd 114.0 1 strongly oxidizing in fire, production und	4.82 materials and finely er thermal decomp	-29 divided Mg and Al. ose into pyrolysis p	nposition should hap 1/0/0 products containing	ppen under normal		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo R13I1 [44]	fire, production und nyl halides, and Hyd 114.0 n strongly oxidizing the fire, production und nyl halides, and Hyd	4.82 materials and finely er thermal decomp trogen halides can or	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5	1/0/0 products containing may also occur.	ppen under normal		
If involved in a factorial Monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a factorial Monoxide, Carbo R13I1 [44] Incompatible with	fire, production und nyl halides, and Hyd 114.0 n strongly oxidizing the fire, production und nyl halides, and Hyd 195.9	4.82 materials and finely ler thermal decomp rogen halides can of the first of hydrides, and ma	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5 terials containing ox	1/0/0 products containing may also occur.	ppen under normal		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo R1311 [44] Incompatible with Can decompose to	114.0 n strongly oxidizing in fire, production und nyl halides, and Hyd 195.9 n active metals, fires	4.82 materials and finely ler thermal decomp rogen halides can of the first of hydrides, and ma	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5 terials containing ox	1/0/0 products containing may also occur.	ppen under normal		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo R13I1 [44] Incompatible with Can decompose to R134a [35]	114.0 n strongly oxidizing of fire, production und nyl halides, and Hyd 195.9 n active metals, fires o Iodine, Hydrogen I	4.82 materials and finely er thermal decomp lrogen halides can of of hydrides, and ma Fluoride, and Hydro 4.320	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5 deterials containing or gen Iodide.	1/0/0 products containing a may also occur tygen.	Fluorine, Carbon - A1		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo R13I1 [44] Incompatible with Can decompose to R134a [35] Chemically reactionsurfaces. Under special circumsurfaces.	fire, production und nyl halides, and Hyd 114.0 a strongly oxidizing in fire, production und nyl halides, and Hyd 195.9 a active metals, fires to Iodine, Hydrogen H 102.0	4.82 materials and finely ler thermal decomp rogen halides can or of hydrides, and ma Fluoride, and Hydro 4.320 dered Al, Mg, Zn. Unit temperature) Carbo	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5 terials containing ox gen Iodide. -26.5 Under high temperation monoxide, Carbo	1/0/0 products containing a may also occur. - tygen. 1/1/0 pure/ high pressure, nyl fluoride, Hydrog	Fluorine, Carbon - A1 may react with Al		
If involved in a monoxide, Carbo conditions. R1234ze [43] Incompatible with If involved in a monoxide, Carbo R13I1 [44] Incompatible with Can decompose to R134a [35] Chemically reactionsurfaces. Under special circumsurfaces.	114.0 n strongly oxidizing in fire, production und nyl halides, and Hyd 195.9 n active metals, fires to Iodine, Hydrogen H 102.0 ve with K, Ca, power to Iodine in the control of the	4.82 materials and finely ler thermal decomp rogen halides can or of hydrides, and ma Fluoride, and Hydro 4.320 dered Al, Mg, Zn. Unit temperature) Carbo	-29 divided Mg and Al. ose into pyrolysis pccur. Polymerization -22.5 terials containing ox gen Iodide. -26.5 Under high temperation monoxide, Carbo	1/0/0 products containing a may also occur. - tygen. 1/1/0 pure/ high pressure, nyl fluoride, Hydrog	Fluorine, Carbon - A1 may react with Al		

If involved in a fire, production under thermal decompose into pyrolysis products containing hydrogen fluorid and

carbon dioxide above 1000 °C.

carbonyl fluoride.

 Table 4. Chemical, physical and compatibility information of the refrigerants (Part 2).

Refrigerant	Molecular weight	Density g/L	Boiling point °C	HMIS	Ashrae Safety Group
Material incomp	atibility				
Hazardous decor	nposition products ar	nd polymerization			
R143a [30]	84.0	-	-47.6	-	A2
Can form explo	sive mixture with ai	r. May react viol	lently with oxidants.	Air, Oxidiser. N	Non recommended:
Hydrocarbon bas	sed lubricant, signifi	cant loss of mass l	by extraction or chen	nical reaction and F	Fluorocarbon based
lubricant, significant	cant loss of mass by	extraction or chemi	cal reaction.		
Thermal decomp	osition yields toxic p	products which can	be corrosive in the pr	resence of moisture	•
R125 [28]	120	1.24g/cm3	-48.5	1/1/0	A1
Under very high	temperature and/or		res freshly abraded a	luminum surfaces 1	may cause strongly
			m calcium powdered		
			ove atmospheric press		
-			nay yield toxic and/or	-	
R22 [50]	86.45	3	-40.1	1/0/0	
		-	dered aluminum, ma		nowdered metals
powdered metal	-	am, careram, powe	acroa arammam, ma	gnesiam, and zme,	powdered metals,
*		Halogens, haloger	n acids and possibly	carbonyl halides.	Carbon monoxide
	gen chloride, Hydro			caroony manaco.	careen menenac
			-	1/0/0	
R744 [37]	44	1.52	-78.5	1/0/0	A1
	able under regular co		. Hazardous decomp	osition products: It	n combustion emits
toxic fumes.	d. strong oxidising a	igents, strong actus	. Hazardous decomp	osition products. If	i combustion emits
	100.7	4.10	10	2440	
R142b [34]	100.5	4.18	-10	2/4/0	-
R142b [34] Materials to avoi	d: Light and/or alkali	ne metals, Alkaline	e earth metals, Powder		- ng agents, Chlorine
R142b [34] Materials to avoi Powdered alumin	d: Light and/or alkali num, magnesium, zin	ine metals, Alkaline	e earth metals, Powder neir alloys.	red metals, Oxidizir	
R142b [34] Materials to avoi Powdered alumin Hazardous decor	d: Light and/or alkalinum, magnesium, zin	ine metals, Alkaline	e earth metals, Powder	red metals, Oxidizir	
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho	d: Light and/or alkalinum, magnesium, zin	ine metals, Alkaline ic, beryllium and th Gaseous hydroger	e earth metals, Powder neir alloys.	red metals, Oxidizir	
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51]	d: Light and/or alkalinum, magnesium, zinmposition products: sgene 66.1	ine metals, Alkaline ac, beryllium and the Gaseous hydroger	e earth metals, Powder leir alloys. In fluoride (HF)., Gas	eous hydrogen chlo	oride (HCl)., Fluo-
R142b [34] Materials to avoi Powdered alumin Hazardous decorophosgene, Pho R152a [51] Extremely reacti	d: Light and/or alkalinum, magnesium, zinmposition products: sgene 66.1 we with oxiding mate	ine metals, Alkaline ic, beryllium and the Gaseous hydroger 2.738	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 ine, alkaline earth me	eous hydrogen chlo	oride (HCl)., Fluo-
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, J	d: Light and/or alkalinum, magnesium, zinmposition products: sgene 66.1 we with oxiding mate powdered Al, Zn), bra	c, beryllium and the Gaseous hydroger 2.738 rials , such as alkal ass, and steel . Income	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 ine, alkaline earth metals, Powder earth metals, Powder earth ear	eous hydrogen chlo	A2 tive chemicals, (i.e.
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, I Under normal c	d: Light and/or alkali num, magnesium, zin mposition products: sgene 66.1 we with oxiding mate bowdered Al, Zn), bra ondition, hazardous	c, beryllium and the Gaseous hydroger 2.738 rials , such as alkal ass, and steel . Incodecomposition and	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 ine, alkaline earth me	eous hydrogen chlo	A2 tive chemicals, (i.e.
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, I Under normal c	d: Light and/or alkalinum, magnesium, zinmposition products: sgene 66.1 we with oxiding mate powdered Al, Zn), bra	c, beryllium and the Gaseous hydroger 2.738 rials , such as alkal ass, and steel . Incodecomposition and	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 ine, alkaline earth metals, Powder earth metals, Powder earth ear	eous hydrogen chlo	A2 tive chemicals, (i.e.
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, b R218 [40]	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate bowdered Al, Zn), brach ondition, hazardous hazardous products magnetic magne	c, beryllium and the Gaseous hydroger 2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 Ine, alkaline earth metals, Powder alloys. -36.7	eous hydrogen chlo 1/4/2 tals, and other reac s, bases, and haloge products should no	A2 tive chemicals, (i.e. ens. at be produced. If
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, b R218 [40] Stable under normal	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate bowdered Al, Zn), brach ondition, hazardous products magnetic management of the second segment of the second second segment of the second se	2.738 rials , such as alkal ass, and steel . Incodecomposition and ay be produced. 8.17 g/l gas ials with which gas	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas ine, alkaline earth metals, Powder alkaline earth metals, Powder alkaline earth metals, Powder in alkaline earth metals in alkaline earth metals, Powder in alkaline earth ear	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should not ble: oxidizing mate	A2 tive chemicals, (i.e. ons. A1 A1 erials and alkali and
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, b R218 [40] Stable under nor alkali earth meta	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate wowdered Al, Zn), brace ondition, hazardous azardous products mal conditions materals. May react violet	2.738 rials , such as alkal ass, and steel . Incodecomposition and ay be produced. 8.17 g/l gas ials with which gas attly with chemical	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas -25 Ine, alkaline earth metals, Powder alloys. -36.7	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should not ble: oxidizing mate	A2 tive chemicals, (i.e. ons. A1 A1 erials and alkali and
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, h R218 [40] Stable under normal alkali earth meta magnesium, pow	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate wowdered Al, Zn), brace ondition, hazardous azardous products mal conditions materals. May react violendered aluminum and	2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas ials with which gas antly with chemical organometallics	e earth metals, Powder alloys. In fluoride (HF)., Gas leir alloys. In fluoride (HF)., Gas leir alkaline earth metals alkaline earth eart	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no - ble: oxidizing mate ium, potassium and	A2 tive chemicals, (i.e. ens. of be produced. If A1 erials and alkali and d barium powdered
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, F Under normal c exposed to fire, h R218 [40] Stable under nor alkali earth meta magnesium, pow Thermal decomp	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate cowdered Al, Zn), brace ondition, hazardous lazardous products mal conditions materials. May react violendered aluminum and osition yields toxical	2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas ials with which gas antly with chemical organometallics	e earth metals, Powder aleir alloys. In fluoride (HF)., Gas ine, alkaline earth metals, Powder alkaline earth metals, Powder alkaline earth metals, Powder in alkaline earth metals in alkaline earth metals, Powder in alkaline earth ear	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no - ble: oxidizing mate ium, potassium and	A2 tive chemicals, (i.e. ens. at be produced. If A1 erials and alkali a
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, h R218 [40] Stable under normal alkali earth meta magnesium, pow	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate cowdered Al, Zn), brace ondition, hazardous lazardous products mal conditions materials. May react violendered aluminum and osition yields toxical	2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas ials with which gas antly with chemical organometallics	e earth metals, Powder alloys. In fluoride (HF)., Gas leir alloys. In fluoride (HF)., Gas leir alkaline earth metals alkaline earth eart	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no - ble: oxidizing mate ium, potassium and	A2 tive chemicals, (i.e. ens. of be produced. If A1 erials and alkali and d barium powdered
R142b [34] Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, F Under normal c exposed to fire, h R218 [40] Stable under nor alkali earth meta magnesium, pow Thermal decomp	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate cowdered Al, Zn), brace ondition, hazardous lazardous products mal conditions materials. May react violendered aluminum and osition yields toxical	2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas ials with which gas antly with chemical organometallics	e earth metals, Powder alloys. In fluoride (HF)., Gas leir alloys. In fluoride (HF)., Gas leir alkaline earth metals alkaline earth eart	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no - ble: oxidizing mate ium, potassium and	A2 tive chemicals, (i.e. ens. of be produced. If A1 erials and alkali and d barium powdered
R142b [34] Materials to avoi Powdered alumin Hazardous decorrophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, b R218 [40] Stable under nor alkali earth meta magnesium, pow Thermal decomp sition products: R23 [29]	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate wowdered Al, Zn), brace ondition, hazardous azardous products mal conditions mater als. May react violendered aluminum and mosition yields toxical acid halides 70.0	2.738 rials , such as alkal ass, and steel . Incodecomposition and asy be produced. 8.17 g/l gas rials with which gas alkal as with which gas and steel are garden organometallics. I products which call -2.946 kg /m ³	e earth metals, Powder alloys. In fluoride (HF)., Gas in earth metals, Powder alloys. In fluoride (HF)., Gas in earth metals alkaline earth metals as sod in be corrosive in present active metals as sod in be corrosive in present active in prese	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no ble: oxidizing materium, potassium and sence of moisture haloge products and the control of the c	A2 tive chemicals, (i.e. ens. at be produced. If A1 crials and alkali and albarium powdered azardous decompo-
Materials to avoi Powdered alumin Hazardous decor rophosgene, Pho R152a [51] Extremely reacti Na, K, Ca, Mg, p Under normal c exposed to fire, h R218 [40] Stable under nor alkali earth meta magnesium, pow Thermal decomp sition products: a R23 [29] Incompatible ma	d: Light and/or alkalinum, magnesium, zin mposition products: segene 66.1 we with oxiding mate wowdered Al, Zn), brace ondition, hazardous azardous products mal conditions mater als. May react violendered aluminum and cosition yields toxical acid halides 70.0 terials: metals, polys	2.738 rials , such as alkal ass, and steel . Incodecomposition and any be produced. 8.17 g/l gas ials with which gas antly with chemical organometallics products which call -2.946 kg /m³ tyrene, natural rub	e earth metals, Powder alloys. In fluoride (HF)., Gas in earth metals, Powder alloys. In fluoride (HF)., Gas in earth metals alkaline earth metals are incompatible with amine addor polymerization in earth metals as sod in be corrosive in present the earth metals as sod in be corrosive in present earth metals as sod in be corrosive in present earth metals.	eous hydrogen chlo 1/4/2 etals, and other reacts, bases, and haloge products should no - ble: oxidizing mate ium, potassium and sence of moisture had a magnesium.	A2 tive chemicals, (i.e. ens. at be produced. I A1 erials and alkali and barium powdered azardous decompo

produce toxic fumes of fluorides. Decomposition products may include the following materials: carbon dioxide

carbon monoxide halogenated compounds carbonyl halides.

Table 5. Chemical, physical and compatibility information of the refrigerants (Part 3).

Refrigerant	Molecular weight	Density g/L	Boiling point °C	HMIS	Ashrae Safety Group			
Material incompatibility								
Hazardous decomposition products and polymerization								
R290 [39]	44.1	1.86	-42	1/4/0	A3			
Incompatible with	acids, oxygen, oxid	izing materials, cop	per, some plastics, C	Chlorine Dioxide.				
	Under normal condition, hazardous decomposition and/or polymerization products should not be produced. May produce carbon monoxide and other toxic gasses under thermal decomposition.							
R32 [48]	52.0	11.4	-51.7	1/4/1	A2			
incompatible with Incompatible with		ng materials as Na,	K, Ca, Zn, Mg, po	owdered Al, and ot	her active metals.			
No hazardous dec	omposition/polymer	rization should be pr	oduced under norma	al conditions.				
R600a [42]	58.1	8.93	-11.7	1/4/0	A3			
Incompatible with	oxiding materials, l	halogenated hydroca	arbons, halogens, and	d metal catalysts.				
	No hazardous decomposition/polymerization should be produced under normal conditions. May produce carbon monoxide and other toxic gasses under thermal decomposition.							
R7146 [32]	146.1	6.17	-63.7	1/0/0	-			
	Stable with most chemical, except metals other than aluminium, stainless steel, copper brass, silver, at elevated temperatures (> 204°C). Also reacts violently with disilane.							
Decomposes into	Sulfur oxides and hy	drogen fluorine.						

Aging is defined (following [23]) as the general deterioration of the detectors during their operation. The aging phenomenon is very complex and depends on several parameters. The commonly used variables include the cross-sections, electron/photon energies, electrostatic forces, dipole moments, chemical reactivity of atoms and molecules, etc. For a comprehensive (although non recent) collection see [24–26]. A more recent review of ageing effects in GEM detectors can be found in [27].

3 Organofluorine gas compounds for particle physics detectors

F-based compounds used by gaseous particle detectors for experiments at high interaction rates belong to the family of organofluorines, and their use is motivated by high drift velocities and excellent quenching power. The carbon-fluorine bond is one of the strongest in organic chemistry, thus resulting in high chemical and thermal stability. Fluorine has the highest electronegativity of all elements.

Fluorocarbons (FC) such as CF₄ have been used originally, and replaced in the 1990's by more ecofriendly hydrofluorocarbons (HFC) such as 1,1,1,2-Tetrafluoroethane or R134a. Hydrofluoro olefins (HFO) differ from HFC by being derivatives of alkenes rather than alkanes. A perfluorinated compound (PFC) is an organofluorine compound containing only carbon-fluorine bonds (no C-H bonds) and carbon-carbon bonds but also other etheroatoms, with an example being CF₃I, which

was proposed recently [14] as candidate substitute of 1,1,1,2-Tetrafluoroethane. CF₃I is a new substance neither restricted nor controlled, but subject to reporting, without limitations of use [19].

Hydrofluoro ethers (HFEs) are liquid at room temperature. The insertion of an ether oxygen atom into the molecule is exploited to modify the thermo-physical properties of a compound for specific end users. HFEs have significantly shorter atmospheric lifetime when compared to HFCs and PFCs, with their lifetime decreasing when the number of hydrogens in the molecule increases. The lifetime can be dramatically affected by the location of the hydrogen atoms relative to the ether oxygen [70–72]. HFEs show generally a boiling point higher than environmental temperature, thus making their application as gases rather problematic (table 6). For HEP detectors, namely, the use of high boiling point HFEs will require the design of a gas system which avoids the vapour condensation. Therefore, only a few HFEs have been taken in account which are characterised by low boiling point and acceptable GWP, while still showing high vapour pressure at STP conditions. Experimental use of HFE is still critical, and attention should be paid to both high vapour pressure values, and to avoid condensation of mixtures in order to guarantee availability of mixture in gaseous phase. The two HFEs candidates (HFE-143m and HFE-245mc) considered as substitutes of gas mixtures presently in use in gaseous particle detector at CERN belong to the family of segregated HFEs. Segregated HFEs are those in which all hydrogen atoms reside on carbons with no fluorine substitution and are separated from the fluorinated carbons by the etheric oxygen bridge (R-O-R). This segregated structure maximizes the effect of the ether oxygen in reducing the atmospheric lifetimes. The shorter lifetimes of these HFEs lead to lower GWPs. The two commercially available segregated HFEs have lifetimes and GWPs lower than any nonflammable, commercial HFC; they are nonflammable, low in toxicity and have both physical and chemical properties suitable to replace PFCs and HFCs in a number of applications [74, 75]. The wide range of structures and boiling points available from this class of compounds creates opportunities for replacement of HFCs and PFCs in solvent, cleaning, heat transfer and other applications [72, 76, 77]. Table 7 shows the comparison between some HFEs and HFCs with similar composition, lifetime and GWP values. In this family of molecules, two have been identified as candidate for high energy gas detectors: HFE-143m and HFE-245mc (table 8). Both have a low boiling point along with an acceptable GWP, even if they show an high vapor pressure at 25°C. Furthermore, these two compounds show a good compatibility (avoiding humidity and in normal operational conditions) with materials expected to be in contact during the experiment. The vapour pressures properties of HFC-143a and HFE-245mc have been measured in a wide range of temperatures and pressures [72, 76, 77].

Finally, fluorinated ketones (F-ketons) are a new class of materials that have been shown to be useful in substitution of non eco-friendly gases in some industrial applications. F-ketons are liquid at room temperature, but they are easily evaporated into a carrier gas stream by a number of methods [73]. F-ketons are an attractive potential replacements for SF₆ in many applications. F-ketons with short chain are expected to show lower boiling points and have been considered in this study; in fact, F-ketons with a longer chain are expected to have a higher boiling point, not suitable for the application in gas detectors. Table 9 shows some properties of F-ketons with a chain made by three carbon atoms. Compounds showed in table are all flammable and in particular the Hexafluoroacetone, the only one available as gas in the operational conditions for gas detectors is highly reactive and corrosive. CF₃CF₂C(O)CF(CF₃)₂ (CF₆-ketone), commercialized as 3M Novec 1230 [78, 81] and easily available on market, has high environmental compatibility but a boiling

Table 6. Physical properties of some HFEs actually available on market. The useful low temperature was defined as the higher of the freezing temperature and the temperature at which the fluid kinematic viscosity reached a 30 cSt viscosity.

	HFE-7000	HFE-7100	HFE-7200	HFE-7500
	[52, 53]	[52, 54]	[52, 55]	[52, 56]
	C ₃ F ₇ OCH ₃	C ₄ F ₉ OCH ₃	$C_4F_9OC_2H_5$	$C_7F_{15}OC_2H_5$
Atmospheric Lifetime [yrs]	4.7	4.1	0.8	2.5
GWP (100 year ITH)	400	320	55	210
Boiling Point [°C]	34	61	76	128
Pour Point [°C]	-122.5	-138	-135	-100
Useful low Temperature [°C]	-122.5	-106	-106	-75
Density [kg/m ³]	1400	1420	1510	1614
Coefficient of Expansion [1/°C]	0.00219	0.0016	0.0018	0.00129
Specific Heat [J/kg-K]	1300	1220	1180	1128
Thermal Conductivity [W/m-K]	0.075	0.068	0.069	0.065
Viscosity [cSt] at 25°C	0.32	0.37	0.44	0.77
Viscosity [cSt] at -40°C	0.78	1.1	1.26	3.55
Dielectric Strength [kV, 0.1 inch gap]	≈ 40	≈ 40	≈ 40	≈ 40
Dielectric Constant	7.4	7.3	7.4	5.8
Electrical Resistivity Ω m	1.00E+08	1.00E+08	1.00E+08	1.00E+08

Table 7. Comparison of selected HFEs and HFCs.

Compound	Halocarbon Number	Atm. Lifetime (yrs)	GWP (100 yr ITH)
CH ₃ CF ₃	HFC-143a [57]	53.5	5400
CH ₃ OCF ₃	HFE-143a [52]	5.7	970
CF ₂ HCF ₃	HFC-125 [58]	32.6	3800
CF ₂ HOCF ₃	HFE-125 [52]	165	15300
CF ₃ CFHCF ₃	HFC-227ea [59]	36.5	3800
CF ₃ CFHOCF ₃	HFE-227ea [60]	11	1500
CF ₃ CH ₂ CF ₃	HFC-236fa [61]	226	9400
CF ₃ CH ₂ OCF ₃	HFE-236fa [62]	3.7	470
CF ₃ CH ₂ CHF ₂	HFC-245fa [64]	7.4	820
CF ₃ CH ₂ OCHF ₂	HFE-245fa [63]	4.4	570
CF ₃ CF ₂ OCH ₃	HFE-245cb2 [52]	1.2	160
C ₄ F ₉ OCH ₃	HFE-449s1 (HFE7100) [54]	4	320
C ₄ F ₉ OC ₂ H ₅	HFE-569sf2 (HFE7200) [55]	1	55

Table 8. Comparison of HFE143m and HFE125mc properties.

Compound	Halocarbon Number	Boiling point [°C]	Vapour pressure (Bar at 25°C)	GWP
CF ₃ OCH ₃	HFE-143m [52]	-24	5.8	750
CF ₃ CF ₂ OCH ₃	HFE-245mc [52]	5.51	2.6	622

Table 9.	Properties	of fluorinated	l ketons	with a cl	nain made	by the	hree carb	on atoms.

Molecular	Compound	Boiling point	Vapour pressure	Notes
formula		[°C at 1 atm]	(atm at 20°C)	
CH ₃ COCH ₂ F	Fluoroacetone [65]	75		Highly toxic
				Flammable
				Corrosive
CH ₃ COCHF ₂	1,1-Difluoroacetone [66]	47		Flammable
CH ₃ COCF ₃	1,1,1-Trifluoroacetone [67]	21-24	1	Flammable
CF ₃ COCH ₂ F	1,1,1,3-Tetrafluoroacetone [68]	35 0.67		Flammable
F ₃ COCF ₃	Hexafluoroacetone [69]	-28	5.8	Highly reactive
				Corrosive

Table 10. Properties of Novec 1230 and more recent 4710 [79] and 5150 [78].

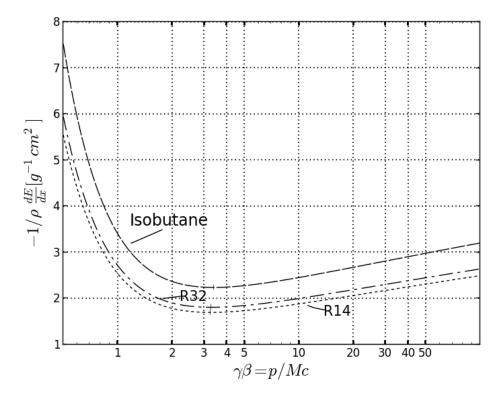
	1230 [78]	4710 [79]	5110 [80]
Ozone Depletion Potential (ODP)	0	0	0
Global Warming Potential IPCC2	1	2100	<1
Atmospheric Lifetime (Years)	0.014 (5 days)	30	0.04 (14 days)

point of 49°C at 1 atm. Table 10 shows properties of Novec 1230, along with more recent Novec 5110 [80] and Novec 4710.

4 Estimation of gas parameters

This section reviews the parametric formulas for the physics quantities of interest for elementary particle detectors with the aim of evaluating them for new candidate ecogases. Details of how the formulas are derived are omitted for brevity, the interested reader can find them in any elementary particle physics textbook, or reviews such as [18].

4.1 Stopping power


Quantities such as the minimum ionization energy can be computed if the stopping power is known. An approximate expression for moderately relativistic particles in the momentum region $0.1 \le \beta \gamma = p/Mc \le 1000$ can be found using the Bethe-Bloch equation, given by [18]

$$\frac{1}{\rho} \left\langle -\frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right] \tag{4.1}$$

where $\langle -\frac{dE}{dx} \rangle$ is the mean energy loss per length, ρ is the density of the medium, I is the mean excitation energy, and $\delta(\beta\gamma)$ is the density effect correction function to ionization energy loss. K is a constant given by $4\pi N_A r_e^2 m_e c^2$, and $T_{\rm max}$ is the maximum energy transfer in a single collision, given by

$$T_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2},$$
(4.2)

where M is the mass of the incoming particle.

Figure 1. Energy loss as a function of the relativistic time dilation factor $\gamma\beta$ as computed via eq. (4.1) for various refrigerants.

The mean excitation energy I for a composite medium can be approximated from the composite atoms by the relation [83].

$$I = \exp\left\{ \left[\sum_{j} w_{j} (Z_{j}/A_{j}) \ln I_{j} \right] / \langle Z/A \rangle \right\}$$
(4.3)

where w_j , Z_j , A_j and I_j is the fraction by weight, atomic number, atomic weight and mean ionization energy, respectively, of the j'th constituent. The shape of the $\delta(\gamma\delta)$ function for non-conducting materials can be approximated by

$$\delta(\gamma \delta) = \begin{cases} 2(\ln 10)X - \bar{C} & \text{if } X \ge X_1; \\ 2(\ln 10)X - \bar{C} & \text{if } X_0 \le X < X_1; \\ 0 & \text{if } X < X_0; \end{cases}$$
(4.4)

where $X = \log_{10}(\gamma \delta)$. To find an approximate expression for the parameters \bar{C} , X_0 and X_1 based on experimental fits, we refer to [84]. For gases with momenta below $\beta \gamma$, the density effect correlation function can be neglected. A plot of the calculated energy loss (eq. (4.1)) for various refrigerants is shown in figure 1.

Table 11. L_1 and L_2 expressions for various atom numbers from [20].

Z	L_1	L_2
1	5.31	6.144
2	4.79	5.621
3	4.74	5.805
4	4.71	5.924
5≥	$\ln(184.15Z^{-1/3})$	$\ln(1994Z^{-2/3})$

4.2 Radiation length

The radiation length of an atom is determined by [20]

$$X_0 = 716.405(\text{cm}^{-2}\text{mol})A/\left[Z^2(L_1 - f(z)) + ZL_2\right]$$
(4.5)

$$f(z) = z^2 \sum_{n=1}^{\infty} \frac{1}{n(n^2 + z^2)} \approx 1.202z - 1.0369z^2 + \frac{1.008z^3}{1+z}$$
 (4.6)

where L_1 and L_2 are given by table 11, f(z) is the one-photon exchange approximation, and $z = \alpha Z$, α being the fine-structure constant and Z is the atomic number. This formula, however, only holds for free atoms. The stopping power for a molecule is determined by taking into account the influence from molecular bindings, crystal structures and polarization of the medium. By neglecting these effects, however, one can find an approximate expression by weighting the radiation length of the single atoms

$$\frac{1}{X_0} = \frac{1}{A_{\text{molecule}}} \sum_{j} \frac{A_j}{X_{0j}},\tag{4.7}$$

where j refers to the j'th constituent of the atom.

4.3 Estimation of ionization pair production

In order to model the number of primary ionizations caused by a single particle, the cross section for all the particle-atom interactions should be calculated. The number of primary electrons per unit length would then be the integral over energy across all the energy transfer cross sections. This is problematic, since all electron orbital transfers have to be considered. An easier, but approximate, correlation between primary ionization and atom number has been found based on experimental data by [85]

$$N_P = 3.996 \frac{Z_m}{\bar{Z}^{0.4}} - 0.025 \left(\frac{Z_m}{\bar{Z}^{0.4}}\right) \text{cm}^{-1},$$
 (4.8)

which holds for normal pressure and temperature (NPT). For different pressure and temperature, the number scales with the density. This value should only be taken as a rough estimation though. This formula, whose result should be taken as an approximate estimate, has proven to work best for hydrocarbons and only partially for molecules consisting mainly of fluorine, differing as much as 30% from the experimental value for CF_4 .

The total number of ionizations has proven to be more difficult to estimate. Whereas no general formula has been derived, the most straightforward method will be to use the cross sections used to

calculate the primary ionization electrons, and use Monte Carlo simulations to track the production of secondary electrons from primary electrons. The total number of pair ionization turns out to be dependent on the incoming particle energy and mass, and a general expression can therefore be difficult to find. For an incoming particle, $W = \frac{\Delta E}{N}$ defines the average energy necessary to produce an ion pair. The energy W is a slowly varying function of the particle energy [86], and can therefore be taken to be a constant in an energy interval. The total ionization per unit length can then be found by

$$N_T = \rho \frac{dE}{dx} \frac{1}{W} \tag{4.9}$$

If the W values for specific gases are know, the average W value for a gas mixture can be found by [85]

$$\bar{W} = \sum_{m} [f(n_m)Z(n_m)W(n_m)] / \sum_{m} [f(n_m)Z(n_m)], \qquad (4.10)$$

where n_m denotes the index of the molecule, and $f(n_m)$ denotes the relative number of molecules of the given sort in the mixture.

The value of W is difficult to predict, and there is not a direct way to give a proper estimate based on experimental data alone. A montecarlo simulation is in preparation which uses the photoabsorption ionization and relaxation (PAIR) model [85] and it will be the subject of a forthcoming paper.

5 Conclusions

Fluorine-based gases today used in HEP gas detectors are being phased out by industry and replaced by eco-friendly substitute gases. This study has reported on a general survey of industrially available replacements for HEP gases, discussed their physical properties, materials compatibility and safety issues. Parameters of interest for their use in HEP detectors have been computed by means of parameterizations: ionisation energy, electronegativity, number of primary pairs. Promising candidates with lower GWP are identified for further experimental studies.

Acknowledgments

This work was funded by Istituto Nazionale di Fisica Nucleare and Ministero della Istruzione, Università e Ricerca of Italy, the Center for Research in Nuclear Physics, the Peking University of China. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168 (AIDA2020). Discussions with, and suggestions from, Marcello Abbrescia (Università di Bari and INFN) are gratefully acknowledged.

References

- [1] United States Environmental Protection Agency, http://www.epa.gov/ozone/snap/subsgwps.html.
- [2] M. Abbrescia et al., Gas analysis and monitoring systems for the RPC detector of CMS at LHC, physics/0701014.
- [3] S. Colafranceschi et al., Operational experience of the gas gain monitoring system of the CMS RPC muon detectors, Nucl. Instrum. Meth. A 617 (2010) 146.

- [4] L. Benussi et al., The CMS RPC gas gain monitoring system: An Overview and preliminary results, Nucl. Instrum. Meth. A 602 (2009) 805 [arXiv:0812.1108].
- [5] L. Benussi et al., Sensitivity and environmental response of the CMS RPC gas gain monitoring system, 2009 JINST 4 P08006 [arXiv:0812.1710].
- [6] S. Colafranceschi et al., *Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning*, 2012 *JINST* 7 P12004 [arXiv:1209.3893].
- [7] S. Colafranceschi et al., A study of gas contaminants and interaction with materials in RPC closed loop systems, PoS RPC2012 (2012) 056 [arXiv:1210.1819].
- [8] L. Benussi et al., Study of gas purifiers for the CMS RPC detector, Nucl. Instrum. Meth. A 661 (2012) S241 [arXiv:1012.5511].
- [9] F. Sauli and A. Sharma, Micropattern gaseous detectors, Ann. Rev. Nucl. Part. Sci. 49 (1999) 341.
- [10] A. Sharma, Muon tracking and triggering with gaseous detectors and some applications, Nucl. Instrum. Meth. A 666 (2012) 98.
- [11] M. Alfonsi et al., Aging measurements on triple-GEM detectors operated with CF-4 based gas mixtures, Nucl. Phys. Proc. Suppl. 150 (2006) 159.
- [12] International Panel on climate changes, http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html.
- [13] R. Santonico and R. Cardarelli, *Development of Resistive Plate Counters*, *Nucl. Instrum. Meth.* **187** (1981) 377.
- [14] M. Abbrescia, *Updates from the DESY upgrade meeting*, presented at *ECFA meeting*, Hamburg Germany (2013).
- [15] Y. Assran, *Study and Operational Characteristics of RPC for the CMS Experiment at LHC*, Ph.D. Thesis, University of Cairo, Cairo Egypt (2013).
- [16] Y. Assran and A. Sharma, *Transport Properties of operational gas mixtures used at LHC*, arXiv:1110.6761.
- [17] M. Abbrescia et al., *Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium*, 2016 JINST 11 P08019 [arXiv:1605.01691].
- [18] Particle Data Group collaboration, C. Patrignani et al., *Review of Particle Physics*, *Chin. Phys.* C 40 (2016) 100001.
- [19] Regulation (EC) No. 1005/2009 of the European Parliament and of the Council of 16 September 2009 on Substances that deplete the Ozone layer (text with EEA relevance).
- [20] Y.-S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, Rev. Mod. Phys. 46 (1974) 815 [Erratum ibid. 49 (1977) 521].
- [21] S.F. Biagi, Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nucl. Instrum. Meth. A 421 (1999) 234.
- [22] ASHRAE standards home page https://www.ashrae.org.
- [23] J. Va'vra, Physics and chemistry of aging: Early developments, ICFA Instrum. Bull. 24 (2002) 1.
- [24] F. Sauli, Fundamental understanding of aging processes: Review of the workshop results, Nucl. Instrum. Meth. A 515 (2003) 358.
- [25] B. Schmidt, Recommendations for building and testing the next generation of gaseous detectors, Nucl. Instrum. Meth. A 515 (2003) 364.

- [26] M. Hohlmann, Final remarks: Do we need a Global Universal Aging Research and Development (GUARD) facility?, Nucl. Instrum. Meth. A 515 (2003) 372.
- [27] J.A. Merlin, Study of long-term sustained operation of gaseous detectors for the high rate environment in CMS, CERN-THESIS-2016-041 (2016).
- [28] R125 Data sheets, National Refrigerants, http://www.refrigerants.com/pdf/SDS%20R125.pdf; Dupont, http://www2.dupont.com/inclusive-innovations/en-us/sites/default/files/Pentafluoroethane/20/28R125/29/20Product/20Safety/20Summary.pdf; http://www.afrox.co.za/internet.global.corp.zaf/en/images/NAF_S125266_409501.pdf?v=1.0; BOC gases, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r125410_55984.pdf.
- [29] R23 Data sheets, Matheson trigas, https://www.mathesongas.com/pdfs/msds/MAT09970.pdf; AIRGAS, https://www.airgas.com/msds/001078.pdf; PRAXAIR, http://www.praxair.com/-/media/documents/sds/halocarbon-23-chf3-safety-data-sheet-sds-p4668.pdf?la=en;

Arkema, http://www.lskair.com/MSDS/R23/20MSDS.pdf;
National Refrigerants, http://www.refrigerants.com/pdf/SDS%20R23.pdf;
BOC gases, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r23410_64635.pdf;
Airliquid, http://docs.airliquide.com.au/msdsau/AL637.pdf.

- [30] R143 Data sheets, Dupont, http://www.afrox.co.za/internet.global.corp.zaf/en/images/R134a266_27719.pdf?v=2.0; Air Liquide, http://www.msds-al.co.uk/assets/file_assets/Trifluoroethane_(R143a).pdf; Air Liquide Gas Encyclopedia, http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=114; Rivoira, http://www.msds-al.co.uk/assets/file_assets/Trifluoroethane_(R143a).pdf.
- [31] R14 Data sheets, AIRGAS, https://www.airgas.com/msds/001051.pdf; PRAXAIR, http://www.praxair.com/-/media/documents/sds/halocarbon-14-cf4-safety-data-sheet-sds-p4665.pdf?la=en;

Matheson trigas, https://www.mathesongas.com/pdfs/msds/MAT02100.pdf; Lynde, http://produkte.linde-gas.at/sdb_konform/R14_10021832EN.pdf; Air Liquide,

http://www.msds-al.co.uk/assets/file_assets/SDS_116-CLP-TETRAFLUOROMETHANE_R14.pdf; BOC gases, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/sg_116_tetrafluoromethane _r14410_64642.pdf?v=2.0;

Spectra Gases Material safety data sheet, http://www.spectragases.com.cn/pdfs/MSDS/pure%20gases/MSDS_Tetrafluoromethane-1028_121305.pdf.

[32] R7146 Data sheets, Airgas Material safety data sheet, https://www.airgas.com/msds/001048.pdf; PRAXAIR safety data sheet, http://www.praxair.com/~/media/North%20America/US/Documents/SDS/Sulfur%20Hexafluoride%20SF6%20Safety%20Data%20Sheet%20SDS%20P4657.ashx; Air Liquide material data sheet, http://mfc.engr.arizona.edu/safety/MSDS%20FOLDER/SF6%20-%20MSDS%20Air%20Liquide.pdf;

Concorde material data sheet,

http://www.concordegas.com/Images-%281%29/pdf/SF6-MSDS-English.aspx;

AFROX material data sheet,

 $http://www.afrox.co.za/internet.global.corp.zaf/en/images/Sulphur\%20Hexafluoride.doc266_27767.pdf?v=4.0.$

[33] R407 Data sheet, National Refrigerants. Material safety data sheet, http://www.refrigerants.com/pdf/SDS%20R407C.pdf;

Honeywell Material safety data sheet,

Harp Material safety data sheet,

http://www.harpintl.com/downloads/pdf/msds/harp-r407c-sds-clp.pdf;

BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r407c410_55995.pdf.

[34] R142b Data sheet, AIRGAS Material safety data sheet, https://www.airgas.com/msds/001150.pdf; National Refrigerants. Material safety data sheet,

http://www.refrigerants.com/pdf/SDS%20R142b.pdf;

BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r142b410_55987.pdf;

Air Liquide material data sheet,

http://www.msds-al.co.uk/assets/file_assets/SDS_025-CLP-CHLORODIFLUOROETHANE.pdf.

[35] R134a Material safety data sheet, Honeywell Material safety data sheet, https://www.conncoll.edu/media/website-media/offices/ehs/envhealthdocs/Genetron_R-134a.pdf; National Refrigerants. Material safety data sheet,

http://www.refrigerants.com/pdf/SDS%20R134a.pdf.

[36] R124 Material safety data sheet, AIRGAS Material safety data sheet,

https://www.airgas.com/msds/001135.pdf;

Arkema Material Safety Data Sheet,

http://www.hudsontech.com/pdfs/MSDS/R-124/ARKEMA R-124.pdf;

Honeywell Material safety data sheet, http://www.honeywell.com/sites/docs/doc19194b8 -fb3eb4d751-3e3e4447ab3472a0c2a5e5fdc1e6517d.pdf;

BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r124410_55983.pdf;

Actrol Material safety data sheet,

http://webcache.googleusercontent.com/search?q=cache:KUwNI9lnEIUJ:https://go.lupinsys.com/actrol/harms/public/materials/85cd6647d2c675a5fc02bf5367e562d8-published/attachments_api/997a373e34311b7c499864235208d0ef/search_api/R124_Refrigerant-MSDS.pdf+&cd=5&hl=it&ct=clnk&gl=ch&client= firefox-a;

Advanced Specialty Gases Material safety data sheet,

http://www.advancedspecialtygases.com/pdf/R-124_MSDS.pdf;

Honeywell Material safety data sheet,

http://www.hudsontech.com/pdfs/SDS/R124/Honeywell_Genetron_R124.pdf.

[37] R744 Material safety data sheet, National Refrigerants, http://www.refrigerants.com/pdf/SDS%20R744CO2.pdf.

[38] R123 Material safety data sheet, Global Refrigerant Material safety data sheet,

http://www.globalrefrigerants.com.sg/docs/5Cglobal_r123_msds.pdf;

National Refrigerants. Material safety data sheet, http://www.refrigerants.com/msds/nri-r123.pdf; BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r123410_55982.pdf;

AFROX material data sheet,

http://www.afrox.co.za/internet.global.corp.zaf/en/images/R123266_27717.pdf;

AIRGAS Material safety data sheet, https://www.airgas.com/msds/001084.pdf;

Air Liquide material data sheet, http://docs.airliquide.com.au/MSDSCalgaz/50106.pdf; Refrigerant inc. material data sheet, http://www.refrigerantsinc.com/images/R123_MSDS.pdf; Honeywell Material safety data sheet, http://msds-resource.honeywell.com/ehswww/hon/result/result_single.jsp?P_LANGU=E&P_SYS=1&C001=MSDS&C997=C100%3BESDS_US%2BC102%3BUS%2B1000&C100=*&C101=*&C102=*&C005=000000009885&C008=&C006=HON&C013=+;

Honeywell Material safety data sheet,

http://www.hudsontech.com/pdfs/SDS/R123/Honeywell_Genetron_R123.pdf.

[39] R290 Material safety data sheet, National Refrigerants. Material safety data sheet,

http://www.refrigerants.com/pdf/SDS%20R290%20Propane.pdf;

Kaltis Material safety data sheet, http://www.kaltis.com/PDF/R290%20_Propane_%20MSDS.pdf; Global Refrigerant Material safety data sheet,

http://www.globalrefrigerants.com.sg/docs/global_r290_msds.pdf;

Lynde Material safety data sheet,

http://www.lindecanada.com/internet.lg.lg.can/en/images/Propane_EN135_104332.pdf;

AIRGAS Material safety data sheet, https://www.airgas.com/msds/001135.pdf;

BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/r124410_55983.pdf;

Advanced Gas Technologies Material safety data sheet, http://www.fieldenvironmental.com/assets/files/MSDS/20Sheets/MSDS/20Sheets/202012/4/20CarbonDioxide.pdf;

Honeywell Material safety data sheet, http://www.honeywell.com/sites/docs/doc19194b8-

fb3eb4d751-3e3e4447ab3472a0c2a5e5fdc1e6517d.pdf;

Energas Material safety data sheet,

http://www.energas.co.uk/uploads/safety_sheet/file/62/Propane.pdf;

Calor Material safety data sheet,

https://www.calor.co.uk/media/wysiwyg/PDF/propane safety data sheet.pdf;

Unitor Material safety data sheet, http://www.wilhelmsen.com/services/maritime/companies/buss/DocLit/MaterialSafety/Documents/MSDS/Refrigeration/REFRIGERANT_R_290_Italian.pdf.

[40] R218 Material safety data sheet, AIRGAS, https://www.airgas.com/msds/001044.pdf;

Spectra Gases, http://www.spectragases.com.cn/pdfs/MSDS/pure/20gases/

MSDS_Octafluoropropane1059_020507.pdf;

BOC gases,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/perfluoropropane410_64742.pdf; Tygris,

http://www.tygrisindustrial.com/product/static/assets/downloads/coshh/R218_5060253470215.pdf; Lynde, http://produkte.linde-gas.at/sdb_konform/R218_10021732EN.pdf.

[41] R318 Material safety data sheet, Lynde,

http://produkte.linde-gas.at/sdb_konform/RC318_10021758EN.pdf;

Matheson tri-gas, http://www.nfc.umn.edu/assets/pdf/msds/octafluorocyclobutane.pdf;

Spectra Gases, http://www.spectragases.com.cn/pdfs/MSDS/pure/20gases/

MSDS_Octafluorocyclobutane-1057_121305.pdf;

Carboline, https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKE wiWopPwp93ZAhUPsKQKHc7UCv0QFggvMAE&url=http%3A%2F%2Fmsds.carboline.com A%2FR318A1NL_%2Fservlet%2FFeedFile%2F1%2Fprod%2FR318%2F8FD80F6F 2 USANSI.pdf&usg=AOvVaw1P74x5-OMCXQFQOwsPGCKk.

[42] R600a Material safety data sheet, Harp International,

http://www.harpintl.com/downloads%5Cpdf%5Cmsds%5CHARP-R600a-CLP.pdf;

National Refrigerants, http://www.refrigerants.com/pdf/SDS%20R600a%20%20Isobutane.pdf;

Global refrigerants, http://globalrefrigerants.com.sg/docs/global_r600a_msds.pdf;

Kaltis, http://www.kaltis.com/PDF/R600a%20_Isobutane_%20MSDS.pdf;

PRAXAIR, http://www.praxair.com/-/media/documents/sds/isobutane-c4h10-safety-data-sheet-sds-p4613.pdf?la=en;

A-Gas UK Limited,

http://www.climatecenter.co.uk/wcsstore7.00.00.749/ExtendedSitesCatalogAssetStore/images/products/AssetPush/DTP_AssetPushHighRes/std.lang.all/_h/&s/R600a_Isobutane_H&S.pdf.

[43] HFO1234ze Material safety data sheet, Honeywell,

http://www.hudsontech.com/pdfs/SDS/1234ze/Honeywell_R1234ZE.pdf;

Harp International Material safety data sheet,

http://www.harpintl.com/downloads/pdf/msds/Solstice-1234ze-SDS-CLP.pdf.

[44] R13I1 Material safety data sheet, Matheson tri-gas safety data sheet,

https://www.mathesongas.com/pdfs/msds/00229444.pdf;

IODEAL Brand safety data sheet, http://coupp-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=163;

filename=2.3%20CF3I%20MSDS.pdf;version=2;

Lookchem safety data sheet,

http://www.lookchem.com/msds/2011-06%2F2%2F171441%282314-97-8%29.pdf;

[45] HFO1233zd Material safety data sheet, Honeywell safety data sheet, http://www.ozoneprogram.ru/upload/files/2/2013_honeywell.pdf.

[46] HFO1234yf Material safety data sheet, Honeywell, http://msds-resource.honeywell.com/ehswww/hon/result/result_single.jsp?P_LANGU=E&P_SYS=1&C001=MSDS&C997=C100;E/2BC101; SDS_US/2BC102;US/2B1000&C100=*&C101=*&C102=*&C005=000000011078&C008&C006=HON&C013;

http://www.idsrefrigeration.co.uk/docs/Solstice/20yf/20MSDS/20version/203.2.pdf;

Harp International Material safety data sheet,

http://www.harpintl.com/downloads/pdf/msds/harp-hfo-1234yf-clp.pdf;

BOC gases Material safety data sheet,

https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/10022549410_90007.pdf?v=4.0;

National Refrigerants Material safety data sheet,

http://www.nationalref.com/pdf/19%20SDSR1234yf.pdf;

Gerling Holzco Material safety data sheet, http://www.ghc.de/media/en/downloads/msds/0070.pdf;

Friedrichs Kä/ltemittel Gmbh, http://www.friedrichs-kaeltemittel.de/download/kaeltemittel-downloads/kaeltemittel/r1234yf/R1234yf-2017-05-15-DE-Friedrichs-Kaeltemittel.pdf.

[47] R116 Material safety data sheet, Matheson tri-gas safety data sheet,

https://www.mathesongas.com/pdfs/msds/MAT10860.pdf;

PRAXAIR safety data sheet, http://www.praxair.com/-/media/documents/sds/halocarbon-116-c2f6-safety-data-sheet-sds-p4670.pdf?la=en;

HYNOTE GAS safety data sheet,

http://www.uacj.mx/IIT/CICTA/Documents/Gases/Hexafluoroethane.pdf;

Spectra Gases Material safety data sheet, http://www.spectragases.com.cn/pdfs/MSDS/pure%20gases/

MSDS_Hexafluoroethane-1058_092605.pdf; BOC gases Material safety data sheet, https://www.boconline.co.uk/internet.lg.lg.gbr/en/

BOC gases Material safety data sheet, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/sg_064_hexafluoroethane_r116410_64639.pdf;

National Refrigerants Material safety data sheet, http://www.refrigerants.com/pdf/SDS%20R116.pdf; AIRGAS Material safety data sheet, https://www.airgas.com/msds/001053.pdf; Dupont Material data sheet,

http://www.hudsontech.com/pdfs/MSDS/R-116/DUPONT_R-116_1-7-97.PDF;

PRAXAIR Material safety data sheet, http://www.praxair.com/-/media/documents/sds/halocarbon-116-c2f6-safety-data-sheet-sds-p4670.pdf?la=en.

[48] R32 Material safety data sheet, National Refrigerants Material safety data sheet, http://www.refrigerants.com/pdf/SDS%20R32.pdf;

BOC gases Material safety data sheet, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/sg 152-r32-difluoromethane-v1.51410 39651.pdf;

AIRGAS Material safety data sheet, https://www.airgas.com/msds/001054.pdf;

Spectra Gases Material safety data sheet, http://www.spectragases.com.cn/pdfs/MSDS/pure/20gases/MSDS_Difluoromethane-1029_121305.pdf;

Matheson tri-gas safety data sheet, https://www.mathesongas.com/pdfs/msds/MAT14937.pdf; Harp International Material safety data sheet,

http://www.harpintl.com/downloads/pdf/msds/harp-r410a-sds-clp.pdf;

Dupont Material data sheet, http://www2.dupont.com/inclusive-innovations/en-us/sites/default/files/Difluoromethane/20/28R32/29/20Product/20Safety/20Summary.pdf.

[49] R115 Material safety data sheet, National Refrigerants Material safety data sheet, https://www.msdsdigital.com/chloropentafluoroethane-refrigerant-gas-r115-msds; AIRGAS Material safety data sheet, https://www.airgas.com/msds/001165.pdf; Air Liquide material data sheet, http://www.msds-al.co.uk/assets/file_assets/SDS_030-CLP-CHLOROPENTAFLUOROETHANE.pdf;

Zep Inc. Material data sheet, http://www.zepprofessional.com/msds/eng/R115_ENG_USA.pdf; PRAXAIR Material safety data sheet, http://www.praxair.ca/~/media/North/20America/Canada/Documents/20en/Safety/20Data/20Sheets/20en/Halocarbon/20115/20SDS/20E4669.ashx; Matheson tri-gas safety data sheet, https://www.mathesongas.com/pdfs/msds/MAT04810.pdf.

[50] R22 Material safety data sheet, National Refrigerants Material safety data sheet, http://www.refrigerants.com/pdf/SDS%20R22.pdf;

BOC gases Material safety data sheet, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/sg-027-r22-chlorodifluoromethane-v1.3410 39623.pdf;

Harp International Material safety data sheet,

http://www.harpintl.com/downloads/pdf/msds/HARP-R22-SDS-CLP.pdf;

AIRGAS Material safety data sheet, https://www.airgas.com/msds/001016.pdf;

Remtec Material safety data sheet, http://www.remtec.net/docs/msds-r-22-remtec.pdf; AFROX material data sheet,

 $http://www.afrox.co.za/internet.global.corp.zaf/en/images/R22266_27716266_406286.pdf?v=2.0;$

Dupont Material data sheet, http://www.pchetz.com/_Uploads/dbsAttachedFiles/freon22msds.pdf; SRF LIMITED Material data sheet,

http://www.siggases.com/images/products/MSDS-%20FLORON%20R22.pdf;

Lynde Material data sheet, http://produkte.linde-gas.at/sdb konform/R22 10021746EN.pdf;

Gasco material data sheet, http://site.jjstech.com/pdf/Gasco/MSDS-Freon-R22-in-Air.pdf;

Unitor Material data sheet, http://www.wilhelmsen.com/services/maritime/companies/buss/

DocLit/MaterialSafety/Documents/MSDS/Refrigeration/UNICOOL_R_22_English.pdf;

A-GAS Material data sheet, http://www.airefrig.com.au/file/msds/Agas_R22_MSDS_100708.pdf; Technical Chemical Company Material data sheet http://www.technicalchemical.com/msds/6230.pdf;

Praxair Material data sheet,

http://www.praxair.co.in/-/media/praxairus/documents/sds/halocarbon-22-chcif2-safety-data-sheet-sds-p4667.pdf?la=en&hash=7894DFEA60A891CDFE4C5A58211C76C012EFF98B;

Refron Material data sheet, http://www.acsrefrigerant.com/pdf/REFRON_MSDS_R-22.pdf;

Honeywell Material data sheet, http://www.honeywell.com/sites/docs/

doc19194b8-fb3eb861e4-3e3e4447ab3472a0c2a5e5fdc1e6517d.pdf;

Patton LTD Material data sheet, http://www.pattonnz.com/upload/downloads/safety-data-sheets/A-Gas%20R22%20SDS%20060913.pdf;

Coregas PTY LTD Material data sheet,

http://msds.chemalert.com/company/10000040/download/3109483_001_001.pdf.

[51] BOC gases Material safety data sheet, https://www.boconline.co.uk/internet.lg.lg.gbr/en/images/sg-045-r152a-11-difluoroethane-v1.3410 39625.pdf;

National Refrigerants Material safety data sheet,

http://www.refrigerants.com/pdf/SDS%20R152a.pdf;

Electron Microscopy Sciences Material safety data sheet,

http://www.emsdiasum.com/microscopy/technical/msds/70837.pdf;

Matheson tri-gas safety data sheet, https://www.mathesongas.com/pdfs/msds/MAT26280.pdf; Air liquide Material safety data sheet,

http://www.msds-al.co.uk/assets/file_assets/SDS_045-CLP-DIFLUOROETHANE.pdf;

AIRGAS Material safety data sheet, http://www.airgas.com/msds/001090.pdf;

SIDS Initial Assessment Report for SIAM 22, Paris France (2006),

http://www.inchem.org/documents/sids/sids/75376.pdf.

- [52] W.-T. Tsai, Environmental risk assessment of hydrofluoroethers (HFEs), J. Hazardous Mater. A 119 (2005) 69;
 - T. J. Wallington and O.J. Nielsen, *Atmospheric chemistry and environmental impact of hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs)*, in *The Handbook of Environmental Chemistry. Vol. 3*, A.H. Neilson eds., Springer, Heidelberg Germany (2002);

N. Part, Organofluorines, Springer-Verlag, Heidelberg Germany (2002);

D.R. Lide eds., *CRC Handbook of Chemistry and Physics*, 84th edition, CRC Press, Boca Raton U.S.A. (2003);

- B.E. Poling, J.M. Prausnitz and J.P. O'Connell, *The Properties of Gases and Liquids*, fifth edition, McGraw-Hill, New York U.S.A. (2001).
- [53] HFE7000, 3M Material product information sheet, https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf.
- [54] HFE7100, 3M Material safety data sheet, http://multimedia.3m.com/mws/media/199818O/3mtm-novectm-7100-engineered-fluid.pdf.
- [55] HFE7200, 3M Material safety data sheet, https://multimedia.3m.com/mws/media/199819O/3mtm-novectm-7200-engineered-fluid.pdf.
- [56] HFE7500, 3M Material safety data sheet, http://solutions.3m.com.tw/3MContentRetrievalAPI/BlobServlet?lmd=1257216282000&locale =zh_TW&assetType=MMM_Image&assetId=1180621320870&blobAttribute=ImageFile.
- [57] HFC143a, Airgas Material safety data sheet, https://www.airgas.com/msds/001099.pdf.
- [58] HFC125, H3R Clean Agents Material safety data sheet, http://www.h3rcleanagents.com/downloads/H3R-Clean-Agents-HFC-125-SDS-8-7-14.pdf.
- [59] HFC227ea, Airgas Material safety data sheet, https://www.airgas.com/msds/001170.pdf.

- [60] HFE 227ea, Material safety data sheet, http://www.apolloscientific.co.uk/downloads/msds/PC0509_msds.pdf.
- [61] HFC236fa, A-GAS Material safety data sheet, http://www.pgesolutions.com/msds/HFC-236fa-Hexafluoropropane.pdf.
- [62] HFE236fa, DuPont Material safety data sheet, https://www.chemours.com/Refrigerants/en_US/assets/downloads/h77974_hfc236fa_push.pdf.
- [63] HFE245fa, Honeywell Material safety data sheet, https://www51.honeywell.com/sm/common/documents/Public-Ris-Summary-HFC-245fa.pdf.
- [64] HFC245fa, Honeywell Material safety data sheet, http://www.diversifiedcpc.com/Stewardship/Documents/MSDS/SDS%20HFC245fa.pdf.
- [65] Fluoroacetone, Lookchem Material safety data sheet, http://www.lookchem.com/msds/2011-06%2F4%2F115460(430-51-3).pdf.
- [66] 1,1-Difluoroacetone, Material safety data sheet, http://synquestlabs.com/msds/2117-3-13.pdf.
- [67] 1,1,1-Trifluoroacetone, Material safety data sheet, http://datasheets.scbt.com/sc-251537.pdf.
- [68] 1,1,1,3-Tetrafluoroacetone, EPA DSStox Material safety data sheet, https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID20375227.
- [69] Hexafluoroacetone, EPA DSStox Material safety data sheet, https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID9043778.
- [70] P.E. Tuma, Using Segregated HFEs as Heat Transfer Fluids Avoiding problems in system design, Chemical Processing, (2001), pg. 47;
 P.E. Tuma, Hydrofluoroethers as Low-Temperature Heat-Transfer Liquids in the Pharmaceutical Industry, Pharmaceutical Technology, (2000), pg. 104;
 P.E. Tuma and L. Tousignant, New Green Heat Transfer Liquids, Solid State Technol. (2000), pg. 175.
- [71] WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project Report No. 44 (1998).
- [72] P. Tuma and L. Tousignant, *Reducing Emissions of PFC Heat Transfer Fluids*, presented in the *EHS Challenges and Analytical Methodologies session*, at the *SEMI Technical Symposium: Innovations in Semiconductor Manufacturing*, San Jose U.S.A. (2001).
- [73] D.S. Milbrath, Development of 3M Novec 612 Magnesium Protection Fluid as a Substitute for SF₆ over Molten Magnesium, at 2nd International Conference on SF₆ and the Environment, San Diego U.S.A. (2002).
- [74] S. Kakac, M.R. Avelino and H.F. Smirnov, *Low Temperature and Cryogenic Refrigeration*, in *Proceedings of the NATO advanced study on low temperature and Cryogenic Refrigeration*, Altin Yunus-Cesme Turkey (2002).
- [75] J.G. Owens, Low GWP Alternatives to HFCs and PFCs, http:solutions.3mbelgie.be/3MContent RetrievalAPI/BlobServlet?lmd=1310648569000&assetId=1273689616858&assetType=MMM_Image&blobAttribute=ImageFile, 3M Specialty Materials, St. Paul U.S.A.
- [76] Y. Kayukawa, A Study of Thermodynamic Properties for Novel Refrigerants with Rapid and Precise Density Measurement Technique, Ph.D. Thesis, Keio University, Tokyo Japan (2002).
- [77] J.G. Owens, *Low GWP Alternatives to HFCs and PFCs*, 3M Specialty Materials Report, St. Paul U.S.A.

- [78] 3M Novec 1230 Fire Protection Fluid, http://multimedia.3m.com/mws/media/782162O/novec1230-fire-prot-fluid.pdf.
- [79] 3M Novec 4710 Fire Protection Fluid, http://multimedia.3m.com/mws/media/1132124O/3m-novec-4710-insulating-gas.pdf.
- [80] 3M Novec 5110 Material safety data sheet, http://multimedia.3m.com/mws/media/1132123O/3m-novec-5110-insulating-gas.pdf.
- [81] Intergovernmental Panel on Climate Change (IPCC) (2007), Method, 100 Year ITH, CO2=1.
- [82] J. Beringer, 31. passage of particles through matter, Technical Report, Particle Data Group (2013).
- [83] S.M. Seltzer and M.J. Berger, Evaluation of the collision stopping power of elements and compounds for electrons and positrons, Int. J. Appl. Radiat. Isot. 33 (1982) 1189.
- [84] R.M. Sternheimer and R.F. Peierls, *General expression for the density effect for the ionization loss of charged particles*, *Phys. Rev.* **B 3** (1971) 3681.
- [85] I.B. Smirnov, Modeling of ionization produced by fast charged particles in gases, Nucl. Instrum. Meth. A 554 (2005) 474.
- [86] Average energy required to produce an ion pair, Technical Report, ICRU Report 31 (1979).