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Learning Categories from Few Examples with
Multi Model Knowledge Transfer

Tatiana Tommasi, Francesco Orabona and Barbara Caputo

Abstract—Learning a visual object category from few samples is a compelling and challenging problem. In several real-world
applications collecting many annotated data is costly and not always possible. However a small training set does not allow to cover the
high intraclass variability typical of visual objects. In this condition, machine learning methods provide very few guarantees. This paper
presents a discriminative model adaptation algorithm able to proficiently learn a target object with few examples by relying on other
previously learned source categories. The proposed method autonomously chooses from where and how much to transfer information
by solving a convex optimization problem which ensures to have the minimal leave-one-out error on the available training set. We
analyze several properties of the described approach and perform an extensive experimental comparison with other existing transfer
solutions, consistently showing the value of our algorithm.

Index Terms—Knowledge Transfer, image categorization, discriminative learning

�

1 INTRODUCTION

AS human beings, our learning ability develops progres-

sively in time. At the age of six, we recognize around

104 object categories [1] and we go on learning more while

we grow up. All the information acquired through our five

senses is encoded and stored in memory, with concepts and

categories organized on the basis of their common properties.

This means that any new concept is not learned in isolation,

but considering connections to what is already known, which

makes the skill of building analogies one of the cores of human

intelligence [2]. Even focusing only on visual tasks, we can

give several examples of this cognitive ability. Have you ever

seen a guava or an okapi? The guava is a fruit that externally

looks like a lime, while its inner part is similar to an apple. An

okapi is an animal that can be roughly described as a horse,

with the legs of a zebra and the head of a giraffe (see Figure

1). Once we have seen a single image for each of the two

target objects, we can easily memorize and recognize them

by referring to the source objects mentioned in the provided

description. In psychology this process is known as knowledge
transfer: it encompasses phenomena ranging from simple (e.g.

generalization of conditioned response between familiar and

novel stimuli) to extremely complex (e.g. carrying over a

solution from a problem in arithmetic to a novel class of

problems) behaviors [3], and it makes learning further con-

cepts extremely efficient. This capacity allows us to mine many

kinds of recurrent patterns and to make inductive inferences
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Fig. 1. Two examples of using some source knowledge
on fruits and animals while learning the target objects
guava and okapi.

on a new task even with only a small amount of data.

A large part of recent literature on visual object cate-

gorization focuses on reaching impressive results on large

and difficult datasets [4], [5]. However, these works rarely

refer to the effort done in collecting the data. In many real

applications gathering fully annotated images can be extremely

time consuming and might have a significant impact on the

overall cost of the final system. On the other hand, standard

learning techniques do not handle well the case of very small

training sets. Differently from the described cognition mecha-

nism, all the learning approaches consider each task separately

with respect to other possible source of relative information.

Reproducing the knowledge transfer process in this scenario

might consistently boost the learning performance. The basic

intuition is that, if a system has already learned j categories,

learning the (j+1)-th should be easier even from one or few

training samples [6].

A first practical implementation of the knowledge transfer

idea was presented in [7] following a Bayesian approach. A

generic object model is estimated from some source categories

and it is then used as prior to evaluate the target object

parameter distribution with a maximum-a-posteriori technique.

This work left some open questions discussed in its conclusive

section: (i) All the different known source categories are used
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together to define a single prior; would a more sophisticated

multi-modal prior be beneficial in learning? (ii) Is there any

other productive point of view beside the generative Bayesian
one that allows to incorporate prior knowledge? (iii) Is it easier

to learn new target categories which are similar to some of

the source categories? Several other works in the computer

vision literature followed this first attempt [8], [9], [10], [11],

introducing different methods to increase the categorization

performance with respect to learning from scratch in case of

few available samples. However, due to the small differences

in the chosen settings, the proposed solutions were never

compared among each other.

In this work we focus on knowledge transfer across visual

object categories and our main contribution is a learning

algorithm that directly addresses the open problems in [7]. We

consider (i) the availability of several separate source models
and we introduce (ii) a discriminative approach based on

Least Square Support Vector Machines (LS-SVM, [12]). Any

new target class is learned through adaptation by imposing

closeness between the target classifier and a linear combination

of the source classifiers already learned on the j object sources.

The weight assigned to each source knowledge is defined by

solving a convex optimization problem which minimizes an

upper bound of the leave-one-out error on the training set.

This provides a principled solution for choosing from where

to transfer and how much to rely on each known source.

In practice, the proposed method (iii) autonomously tunes

the transfer process depending on the similarity between the

sources and the target tasks. We analyze in detail several

properties of the described approach and perform an extensive

experimental comparison with other existing transfer solutions,

consistently showing the value of our algorithm.

The rest of the paper is organized as follows. Section 2

provides a short introduction to the goals, challenges and

possible scenarios of knowledge transfer. Section 3 briefly

reviews the literature. A detailed description of the notation

and of the mathematical framework for our method follows

in Section 4. Section 5 contains the formal definition of

our knowledge transfer algorithm. Section 6 introduces an

extension to the case of heterogeneous sources. Finally in

Section 7 we present a thorough experimental evaluation,

benchmarking against several other state of the art approaches.

Section 8 concludes the paper with an overall discussion and

pointing out possible avenues for future research.

2 KNOWLEDGE TRANSFER: ISSUES AND
SCENARIOS

The main assumption in theoretical models of learning, such

as the standard PAC (Probably Approximately Correct [13])

model, is that training instances are drawn according to the

same probability distribution as the unseen test examples. This

hypothesis permits to estimate the generalization error and the

uniform convergence theory [14] provides basic guarantees on

the correctness of future decisions.

This ideal assumption is not always true in practical prob-

lems. It can happen that we have a lot of annotated data on a

Fig. 2. Three ways in which transfer might improve the
learning performance when the number of target training
samples increases. Forcing the target learning process to
rely on unrelated sources produces the negative transfer
effect. (Figure reproduced and adapted from [16]).

Fig. 3. A scheme of the possible transfer learning con-
ditions in visual object categorization. The number of
source sets can increase with different possible levels
of relatedness with respect to the target category. The
tasks are heterogeneous (homogeneous) if the samples
are represented with different (the same) descriptors.
The target task can be supervised with an increasing
number of training samples or unsupervised when the
target samples are not annotated.

source problem and the need to solve a different target prob-

lem with few labeled samples, where source and target present

a distribution mismatch. In this case knowledge transfer (a.k.a

transfer learning [15]) may decrease the effort of collecting

new samples, while at the same time it may reduce the risk of

overfitting by leveraging over the existing source knowledge

to solve a target task. It is possible to define three measures

by which transfer may improve the effectiveness of learning

(see Figure 2):

(1) Higher start: the initial performance achievable on the

target task is much better compared to that of an ignorant

agent [16]. This is true even using only the source transferred

knowledge, before any further learning on the target problem.

(2) Higher slope: this indicates a shorter amount of time

needed to fully learn the target task, given the transferred

knowledge, in comparison with learning from scratch [16].

(3) Higher asymptote: in the long run, the final performance

level achievable over the target task may be higher compared

to the final level without transfer [16].

How to get these advantages and up to which extent the

transfer process can be useful depends on the specific scenario
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at hand (object categorization, detection, reinforcement learn-

ing, etc.) and on the relation between source and target tasks.

Apart from the different levels of semantic similarity, source

and target might be represented with the same or with different

descriptors which give rise respectively to a homogeneous or a

heterogeneous transfer process. Moreover, a transfer learning

problem can scale with respect to the number of annotated

target samples and of possible source sets (see Figure 3).

Indeed, to fully define any knowledge transfer method it is

necessary to answer to three main questions.

(1) What to transfer? It refers to which knowledge can be

transferred and to the form in which it is coded. In general

terms, some knowledge might be specific for a task while some

other knowledge might be common and shareable.

(2) How to transfer? This question is about the definition of

a learning algorithm that can properly incorporate the source

knowledge while building on the target samples.

(3) When to transfer? Finally, it is always necessary to

evaluate the differences among the source and the target task

and question whether the transfer is worthwhile or not.

In the following section we review the knowledge transfer

literature, referring to how each of the proposed method

addresses these challenging questions.

3 RELATED WORK

The fundamental motivation for knowledge transfer in the field

of artificial learning was discussed in a NIPS-95 workshop

on learning to learn [17] which focused on the need for

open ended learning systems that retain and reuse previ-

ously acquired knowledge. Since then, research on this topic

has attracted more and more attention and several transfer

approaches has been proposed in machine learning, natural

language processing and computer vision.

3.1 What to Transfer
Depending on the problem to solve, the transferred knowledge

can be in the form of instances, feature representation, or

model parameters [15].

The main idea at the basis of instance transfer approaches

is that, although no all the source data are useful, there are

certain parts of them that can still be selected and considered

together with the few available target labeled samples. In [18]

Dai et al. proposed a boosting algorithm that uses both the

source and the target data to solve visual object classification

problems. Lim et al. [19] have shown that it is possible

to borrow and transform examples across different visual

object classes, demonstrating a performance improvement in

detection problems.

Any feature transfer approach consists in learning a good

representation for the target domain encoding in it some

relevant knowledge extracted from the source. Bart and Ull-

man [20] proposed to perform feature adaptation using a

single example of a novel class and showed a significant

gain in classification performance. An alternative solution is

to consider directly a metric learning approach [21] or more in

general to exploit suitable kernels for the target data in SVM-

based methods [22]. Moreover, the feature transfer approach

has proven to be extremely useful in the deep learning frame-

work for unsupervised classification tasks [23]. In this setting

some recent work proposed also to represent object categories

indirectly by their attributes [24]. An attribute is a high level

semantic information (e.g. striped, furry) that is shared by

multiple object categories and can be easily transferred as a

descriptor.

Finally, a parameter or model transfer approach assumes

that the source tasks and the target tasks share some parameters

or prior distributions of the models. As already mentioned, Fei-

Fei et al. [7] proposed to transfer information via a Bayesian

prior on object class models, using knowledge from known

classes as a generic reference for newly learned models. Stark

et al. [10] defined a technique to transfer a shape model across

object classes. Yang et al. [25] presented a method to transfer

the source information originally coded into an SVM model.

3.2 How to Transfer
A large variety of methods have been studied to integrate

in different ways the source and target information: boosting

approaches [18], [9], KNN [26], Markov logic [27], graphical

models [28]. Most of the work has however been done in

the generative probabilistic setting. Given the data, the target

model makes predictions by combining them with the prior

source distribution to produce a posterior distribution. A

strong prior significantly affects these results serving as a

natural way for Bayesian learning methods to transfer source

knowledge. Some discriminative (maximum margin) methods

are presented in [21] by learning a distance metric, and in

[25] by exploiting a pre-learned SVM model. Also [11], [29]

proposed to use a template learned previously for some object

categories to regularize the training of a new target category.

3.3 When to Transfer
In real learning scenarios, the information acquired in the past

is not always relevant for a new target problem. Rosenstain

et al. [29] empirically showed that if two tasks are dissimilar,

brute force transfer hurts the performance producing the so

called negative transfer (see Figure 2). Ideally, a transfer

method should be beneficial between appropriately related

tasks while avoiding negative transfer when the tasks are not

a good match. In practice, these goals are difficult to achieve

simultaneously. Approaches that have safeguards against neg-

ative transfer often produce a smaller effect from positive

transfer due to their caution. Conversely, approaches that

transfer aggressively and produce large positive-transfer effects

often have no protection against negative transfer.

It is possible to identify two main strategies to decide

when to transfer. One consists in rejecting bad information,

or at least making sure that its impact is minimized. This

means choosing always how much to transfer, and disregard

completely the source knowledge if not relevant for the target.

A different strategy can be applied when there are more

than one source task: in this condition the problem becomes

choosing the best source. Transfer methods without much

protection against negative transfer may still be effective in

this scenario, as long as the best source task is at least a
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decent match. Taylor et al. [30] proposed a transfer hierarchy,

sorting the tasks by difficulty. Given a task ordering, it may

be possible to locate the position of the target task in the

hierarchy and select the most useful source set. In [31] the

authors used conditional Kolmogorov complexity to measure

relatedness between tasks and transfer the right amount of

information.

Our work fits in this context. We propose a discriminative

knowledge transfer method that relies on a set of models

learned on the source categories (what to transfer) which

are then used to regularize the target object model (how to
transfer). The relatedness among the tasks is automatically

evaluated (when to transfer) through a principled optimization

problem without any need of hand tuned parameters, extra

validation samples or a pre-defined ontology.

4 MATHEMATICAL FRAMEWORK

We introduce here the formal notation and the necessary math-

ematical tools used in the rest of the paper. In the following we

denote with small and capital bold letters respectively column

vectors and matrices, e.g. a = [a1, a2, . . . , aN ]T ∈ R
N and

A ∈ R
M×N with Aji corresponding to the (j, i) element.

When only one subscripted index is present, it represents the

column index, e.g., Ai is the i-th column of the matrix A.

Moreover we indicate with ‖a‖p :=
(∑N

i=1 |ai|p
)1/p

the p-
norm of a vector a ∈ R

N .

Let us assume xi ∈ X to be an input vector to a learning

system and yi ∈ Y its associated output. Given a set of

data D = {xi, yi}Ni=1 drawn from an unknown probability

distribution P , we want to find a function f : X → Y such that

it determines the best corresponding y for any future sample

x. We consider X ⊆ R
d and Y = {−1, 1}.

The described learning process can be formalized as an op-

timization problem which aims at finding f in the hypothesis

space of functions H, which minimizes the structural risk [14]

Ω(f) + C

N∑
i=1

�(f(xi), yi) . (1)

Here Ω(f) is a regularizer, which encodes some notion of

smoothness for f , and guarantees good generalization per-

formance avoiding overfitting. In the second term, � is some

convex non-negative loss function which assesses the quality

of the function f on the instance and label pair {xi, yi}. In

practice it expresses the price we pay by predicting f(xi) in

place of yi. The predictivity is a trade-off between fitting the

training data and keeping the complexity of the solution low,

controlled by the parameter C > 0.

4.1 Adaptive Regularization
We set H equal to space of all the linear models of the form

f(x) = w�φ(x) + b . (2)

Here φ(x) is a feature mapping that maps the samples into

a high, possible infinite dimensional space, where the dot

product is expressed with a functional form K(x, x′) =

φ(x)�φ(x′) named kernel [32]. We also set the regularizer

to be Ω(f) = 1
2‖w‖2, so that, regardless of the specific form

of the loss function, the learning problem (1) becomes

min
w

1

2
‖w‖2 + C

N∑
i=1

�(w�φ(xi) + b, yi) . (3)

In this classical scheme for inductive learning, the knowledge

eventually gained on the data D̂ = {x̂i, ŷi}N̂i=1 extracted from

a distribution P̂ , different with respect to the target one P ,

is not taken into consideration. However, if N̂ � N with

a small number of available samples N (∼ 10) and if the

two distributions P , P̂ are somehow related, the auxiliary

knowledge can be helpful in guiding the learning process.

Let us suppose that the optimal ŵ has been already found

by minimizing (3) for some source problem. When facing a

new target task, we can always ask w to be close to the known

ŵ by simply changing the regularization term [33] such that

the learning problem results

min
w

1

2
‖w − ŵ‖2 + C

N∑
i=1

�(w�φ(xi) + b, yi) . (4)

Thus, the optimization problem aims now at obtaining a vector

w close to the source model ŵ by maximizing the projection

of the first on the second. To properly scale the importance

of this projection in the optimization problem, it is possible

to add a weighting factor β such that the regularizer becomes

‖w − βŵ‖2.

5 MULTI MODEL KNOWLEDGE TRANSFER

Consider the following situation. We want to learn the target

object class okapi from few examples, having already a model

for the source categories horse, zebra, melon and apple. On

the basis of the visual similarity, we can guess that the

final model for okapi will be close to that of horse and

zebra. Thus in the learning process we would like to transfer

information from these two categories. We would expect the

model obtained in this way to produce better recognition

results with respect to (i) just considering horse or zebra as

reference, and (ii) relying over all the source knowledge in a

flat way, as melon and apple might induce negative transfer.

This kind of reasoning motivates us to design a knowledge

transfer algorithm able to find autonomously the best subset of

known models from where to transfer, and to weight properly

the relevant information.

Any transfer method, based on the adaptive regularization

described in the previous section, answers the question what to
transfer in terms of model parameters, by passing the known

ŵ to the new target problem. However, previous work did not

pay too much attention on when and how much to transfer.

The discussed weight factor β in the regularizer is usually

set equal to 1 with the hypothesis that the known models are

useful and related to the target problem [25]. In other cases

β is treated as a learning parameter, and is chosen by cross

validation assuming the availability of extra target training

samples [11]. Both these choices present some issues: the

first case does not consider the danger of negative transfer
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when only unrelated prior information is available, while in

the second, the existence of extra data for cross validation is

incoherent with the small sample scenario of transfer learning.

Here we study instead the case of multiple (J) available

sources. We propose a learning method which relies over all

of them and assigns to each a weight βj for j = 1, . . . , J .

These values are automatically tuned on the basis of the few

available target training data. We name our algorithm Multi

Model Knowledge Transfer (Multi-KT) and we present its

basic components in the following subsections.

5.1 Adaptive Least-Square Support Vector Machine
The first step to define our transfer learning algorithm consists

in combining linearly the source models to have
∑J

j=1 βjŵj

and using this as reference instead of the single source in (4).

Moreover, we choose the weighted square loss �(f(xi), yi) =
ζi(f(xi) − yi)

2 [34], where the parameter ζi can be used

to balance the contribution of positive and negative samples,

taking into account that their proportion in the training set may

be not representative of the operational class frequency.

The obtained optimization problem is:

min
w,b

1

2

∥∥∥∥∥∥w −
J∑

j=1

βjŵj

∥∥∥∥∥∥
2

+
C

2

N∑
i=1

ζiξ
2
i

s.t. yi = w�φ(xi) + b+ ξi, ∀i = 1, . . . , N, (5)

where we have introduced the slack variables ξi which mea-

sure the degree of misclassification on the data xi. Thus we

obtain a new formulation for Least Square Support Vector

Machine (LS-SVM [12]), that uses the adaptive regularizer

introduced before. The corresponding Lagrangian L is

1

2
‖w−

J∑
j=1

βjŵj‖2+C

2

N∑
i=1

ζiξ
2
i−

N∑
i=1

ai(w
�φ(xi)+b+ξi−yi) .

Here a ∈ R
N is the vector of Lagrange multipliers and the

optimality condition with respect to w is

∂L
∂w

= 0 =⇒ w =
J∑

j=1

βjŵj +
N∑
i=1

aiφ(xi) . (6)

Thus, the adapted model is given by the weighted sum of the

pre-trained source models ŵj and a linear combination of the

target samples. Note that when all the βj are 0 we recover the

original LS-SVM formulation without any adaptation. Consid-

ering also the derivative of L with respect to ξi and ai, we

have respectively ai = Cζiξi and w�φ(xi)+b+ξi−yi = 0.

By combining them with (6) we find

N∑
k=1

ak φ(xk)
�φ(xi)+b+

ai
Cζi

= yi−
J∑

j=1

βjŵ
�
j φ(xi) . (7)

By denoting with K the kernel matrix, i.e. Kji =
K(xj ,xi) = φ(xj)

�φ(xi), the obtained system of linear

equations can be written more concisely in matrix form as[
K+ 1

CZ 1
1� 0

] [
a
b

]
=

[
y −∑J

j=1 βj ŷj

0

]
, (8)

where y and ŷj are the vectors containing respectively

the label of each training sample and the prediction

of the previous model j, i.e. y = [y1, . . . , yN ]� ,

ŷj = [ŵ�
j φ(x1), . . . , ŵ

�
j φ(xN )]�. Moreover, Z =

diag{ζ−1
1 , ζ−1

2 , . . . , ζ−1
N } and to balance the contribution of

differently labeled samples to the misfit term we set

ζi =

{
N

2N+ if yi = +1
N

2N− if yi = −1 .
(9)

Here N+ and N− represent the number of positive and

negative examples respectively.

Finally, the model parameters can be calculated simply by

matrix inversion:[
a
b

]
= P

[
y −∑J

j=1 βj ŷj

0

]
, (10)

where P = M−1 and M is the first matrix on the left in (8).

We underline that the pre-trained models ŵj can be obtained

by any training algorithm, as long as it can be expressed as a

weighted sum of kernel functions; the framework is therefore

very general.

5.2 When and How Much to Transfer
Finding the optimal value for the elements of the weight vector

β corresponds to ranking the prior knowledge sources and

decide from where and how much to transfer. We propose

to choose β in order to minimize the leave-one-out error,

which is an almost unbiased estimator of the generalization

error [34]. While in general computing the leave-one-out error

is a very expensive procedure, we show that for (5) it can

be obtained with a closed-formula, using quantities that are

already computed during the training phase.

Let us denote by ỹi, i = 1, . . . , N , the prediction on

sample i when it is removed from the training set. LS-SVM

in its original formulation makes it possible to write these

leave-one-out predictions in closed form and with a negligible

additional computational cost [34]. We show below that the

same property extends to the modified problem in (5).

Proposition 1: Let [a′�, b′]� = P [y�, 0]� and

[a′′�
j , b′′j ]

� = P [ŷ�
j , 0]

� with a = a′ − ∑J
j=1 βja

′′
j . If

we indicate with A′′ the matrix containing the vector a′′�
j in

the j-th row, the prediction ỹi, obtained on sample i when it

is removed from the training set, is equal to

yi − a′i
Pii

+
β�A′′

i

Pii
, (11)

where β ∈ R
J is a vector containing all the values βj .

Proof of Proposition 1: We start from

M

[
a
b

]
=

[
y −∑J

j=1 βj ŷj

0

]
, (12)

and we decompose M into block representation isolating the

first row and column as follows:

M =

[
K+ 1

CZ 1
1� 0

]
=

[
m11 m�

1

m1 M(−1)

]
.
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Let a(−i) and b(−i) represent the model parameters

during the i-th iteration of the leave-one-out cross validation

procedure. In the first iteration, where the first training sample

is excluded we have[
a(−1)

b(−1)

]
= P(−1)(y(−1) −

J∑
j=1

βj ŷj(−1)),

where P(−1) = M−1
(−1) , y(−1) = [y2, . . . , yN , 0]� and

ŷj(−1) = [ŵ�
j φ(x2), . . . , ŵ

�
j φ(xN ), 0]� . The leave-one-out

prediction for the first training sample is then given by

ỹ1 = m�
1

[
a(−1)

b(−1)

]
+

J∑
j=1

βjŵ
�
j φ(x1)

= m�
1 P(−1)

⎛
⎝y(−1) −

J∑
j=1

βj ŷj(−1)

⎞
⎠+

J∑
j=1

βjŵ
�
j φ(x1) .

Considering the last N equations in the system in (12), it is

clear that [m1 M(−1)][a
�, b]� = (y(−1) −

∑J
j=1 βj ŷj(−1)) ,

and so

ỹ1 = m�
1 P(−1)[m1M(−1)][a1, . . . , aN , b]� +

J∑
j=1

βjŵ
�
j φ(x1)

= m�
1 P(−1)m1a1 +m�

1 [a2, . . . , aN , b]� +
J∑

j=1

βjŵ
�
j φ(x1) .

In (12) the first equation of the system is y1 −∑J
j=1 βjŵ

�
j φ(x1) = m11a1 +m�

1 [a2, . . . , aN , b]� , and we

have ỹ1 = y1 − a1(m11 −m�
1 P(−1)m1) . Finally, by using

P = M−1 and the block matrix inversion lemma we get

P =

[
μ−1 −μ−1m1P(−1)

P(−1) + μ−1P(−1)m
�
1 m1P(−1) −μ−1P(−1)m

�
1

]
,

where μ = m11 −m�
1 P(−1)m1 . By noting that the system

of linear equations (12) is insensitive to permutations of the

ordering of the equations and of the unknowns, we have

ỹi = yi − ai
Pii

.

By defining [a′�, b′]� = P [y�, 0]� , [a′′�
j , b′′j ]

� =

P [ŷ�
j , 0]

� , and a = a′ −∑J
j=1 βja

′′
j , we get

ỹi = yi − a′i
Pii

+

J∑
j=1

βj

A′′
ji

Pii
= yi − a′i

Pii
+

β�A′′
i

Pii
,

where β ∈ R
J is a vector containing all the values βj and A′′

is the matrix containing the vector a′′�
j in the j-th row.

Notice that in (11) a depends linearly on β, thus it is

straightforward to obtain the learning model once all the βj

have been chosen. The best values for βj are those producing

positive values for yiỹi, for each i. However, focusing only

on the sign of those quantities would result in a non-convex

formulation with many local minima. We propose instead the

following loss function, similar to the hinge loss

�(ỹi, yi) = ζi|1− yiỹi|+ = ζi

∣∣∣∣∣yi
a′i − β�A′′

i

Pii

∣∣∣∣∣
+

, (13)

Algorithm 1 Projected Sub-gradient Descent Algorithm

1: Input: Set a′, a′′
j , and A′′ according to Proposition 1

2: Initialize: β ← 0 and t← 1
3: repeat
4: ỹi ← yi − a′i

Pii
+
∑J

j=1 βj
A′′ji
Pii

∀ i = 1, . . . , N
5: di ← 1{yiỹi > 0} , ∀ i = 1, . . . , N

6: βj ← βj − 1√
t

∑N
i=1 diyi

a′′ji
Pii

, ∀ j = 1, . . . , J

7: if ‖β‖2 > 1 then
8: β ← β/‖β‖2
9: end if

10: βj ← max(βj , 0), ∀ j = 1, . . . , J
11: t← t+ 1
12: until convergence
Output: β

where |x|+ = max{0, x}. It is a convex upper bound to the

leave-one-out misclassification loss and it favors solutions in

which ỹi has an absolute value equal or bigger than 1, and

the same sign of yi. The weights ζi are set again according to

(9). Finally, the objective function is

min
β

N∑
i=1

�(yi, ỹi) subject to ‖β‖p ≤ 1 , βj ≥ 0 , (14)

where we added some constraint on the β vector as a form

of regularization. They may be helpful to avoid overfitting

problems when the number of known models J is large

compared to the number of training samples N . Depending

on the value of p, how the target learning model leverages

over the source models changes:

p = 2, L2 norm constraint. This is the well known

Euclidean norm indicated by ‖ · ‖2 or simply ‖ · ‖. A regular-

ization based on it generally induces numerical stability. The

optimization process can be implemented by using a projected

sub-gradient descent algorithm, where at each iteration β is

projected onto the L2-sphere ‖β‖ ≤ 1, and then on the positive

orthant. The pseudo-code is in Algorithm 1.

p = 1, L1 norm constraint. This is simply the sum of the

absolute values of the vector elements. This constraint induces

a sparse solution, i.e. only some vector elements remain dif-

ferent from zero. Applied on prior knowledge regularization,

the condition ‖β‖1 ≤ 1 can be easily implemented (e.g. by

using the algorithm in [35]), and it gives rise to an automatic

source selection technique.

p =∞, L∞ norm constraint. This norm is defined as

‖x‖∞ := max{|x1|, . . . , |xd|} . (15)

In practice, by using ‖β‖∞ ≤ 1 as constraint, all the vector

elements will have an absolute value not bigger than one. In

this case the projection consists of a simple truncation.

The second condition in (14) limits the weights of the source

knowledge models to be positive. In fact, in the object category

detection problem, all the considered source and target sets

have the background category as negative class, thus it is

reasonable to expect that the angle between w and any ŵj

is always acute.
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5.3 Computational Complexity

From a computational point of view the runtime of the Multi-

KT algorithm is O(N3+JN2), with N the number of training

samples, and J the number of source models. The first term

is related to the evaluation of the matrix P , which must

anyway occur while training, while the second term is the

computational complexity of (11), which results negligible,

if compared to the complexity of training. Thus, we match

the complexity of a plain SVM, which in the worst case is

known to be O(N3) [36]. The computational complexity of

each step of the projected sub-gradient descent to optimize

(13) is O(JN), and it results extremely fast (our MATLAB

implementation takes just half a second with N = 12 and

J = 3 on current hardware).

6 HETEROGOENOUS KNOWLEDGE TRANSFER

The proposed Multi-KT transfer method is based on the idea

of pushing the target model w close to a linear combination

of prior known sources
∑J

j=1 βjŵj . However, to impose this

closeness, all the vectors should live in a single space. This

means that the kernel used in learning over all the sources

and on the new target must be the same. This is quite a strict

condition because it does not give the freedom to build the

source knowledge over heterogeneous feature descriptors, and

imposes a unique metric to evaluate the sample similarity. In

this section we show how to overcome this limit by enlarging

the space in which the learning function lies, by a multi-kernel

approach. We call this variant MultiK-KT.

Assume to have j = 1, . . . , J mappings, each to a different

space, where the image of a vector x is φj(x). We can always

compose all of them orthogonally (see Figure 4) obtaining

the mapping to the final space by concatenation: φ′(x) =
[φ1(x), φ2(x), . . . , φJ(x)]

�. The dot product φ′(x)�φ′(z) in

this new space is equal to the kernel K ′, defined as

K ′(x, z) =
J∑

j=1

φj(x)
�φj(z) =

J∑
j=1

Kj(x, z), (16)

where Kj(x, z) is the kernel function in the j-th space.

Now let us consider the transfer learning problem with

j = 1, . . . , J source object classes and suppose to solve the

binary classification object-vs-background for each of them

in a specific space, i.e. choosing different feature descriptors,

different kernel functions, and/or different kernel parameters.

The obtained model vectors are

ŵj =

N̂j∑
i=1

αj
iφj(xi) .

These solutions can always be mapped in the composed

new space using zero padding. In fact, φj(x) → φ′
j(x) =

[0, . . . , φj(x), . . . , 0]
�, and we have

ŵj → ŵ′
j = [0, . . . , ŵj , . . . , 0]

�

= [0, . . . ,

N̂j∑
i=1

αj
iφj(xi), . . . , 0]

� .

Hence, in the new space, a vector obtained as linear com-

bination of all the known models results:
J∑

j=1

βjŵ
′
j = [β1ŵ1, . . . , βJŵJ ]

�

= [β1

N̂1∑
i=1

α1
iφ1(xi), . . . , βJ

N̂J∑
i=1

αJ
i φJ (xi)]

� .

By supposing that the target problem lives in the new com-

posed space, we can apply our Multi-KT algorithm there.

Hence the original optimization problem in (5) becomes

min
w′,b

1

2

∥∥∥∥∥∥w
′ −

J∑
j=1

βjŵ
′
j

∥∥∥∥∥∥
2

+
C

2

N∑
i=1

ζi(yi−w′�φ′(xi)− b)2 .

The solving procedure is the same described in Section 5.1

and the optimal solution is:

w′ =
J∑

j=1

βjŵ
′
j +

N∑
i=1

aiφ
′(xi) .

When we use it for classification we get

w′�φ′(z) =
J∑

j=1

βjŵ
′�
j φ′(z) +

N∑
i=1

aiφ
′(xi)

�φ′(z)

=

J∑
j=1

βjŵ
�
j φj(z) +

N∑
i=1

ai

(
J∑

j=1

φj(xi)
�φj(z)

)
,

that is exactly the same that would be obtained from (6) using

K ′(x, z) as kernel. Even the original procedure to choose the

best β can be easily enlarged to the case of linearly combined

orthogonal spaces. The vector ŷ′
j containing the predictions

of the j−th known model is:

ŷ′
j = [ŵ′�

j φ′(x1), . . . , ŵ
′�
j φ′(xN ))]

= [ŵ�
j φj(x1), . . . , ŵ

�
j φj(xN ))] = ŷj .

This indicates that MultiK-KT is formally equivalent to the

original Multi-KT with the kernel chosen as in (16). As a

consequence the computational complexity of MultiK-KT is

again O(N3 + JN2) (see Section 5.3).

7 EXPERIMENTS
In this section we show empirically the effectiveness of

our transfer algorithm1 on three datasets: Caltech-256 [37],

Animals with Attributes (AwA) [24] and IRMA [38].
The Caltech-256 contains images of 256 object classes

plus a clutter category that can be used as negative class

in object-vs-background problems. The objects are organized

in a hierarchical ontology that makes it easy to identify the

related and unrelated categories. We downloaded2 the pre-

computed features of [39] and we selected four different image

descriptors: PHOG Shape Descriptors [40], SIFT Appearance

Descriptors [41], Region Covariance [42], and Local Binary

Patterns [43]. They were all computed in a spatial pyramid

[44] and we considered just the first level (i.e. information

extracted from the whole image).
The AwA dataset contains 50 animal classes and it has

been released with several pre-extracted feature sets for each

1. We implemented it in MATLAB, the code is available online http://www.
idiap.ch/∼ttommasi/source code CVPR10.html

2. http://files.is.tue.mpg.de/pgehler/projects/iccv09/
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Fig. 4. For Multi-KT the source and target models must
live in the same space identified by the kernel K. For
MultiK-KT all the sources can be defined independently
in their own space and the target solution lives in the
space obtained by orthogonal combination. We show also
a geometrical interpretation of the kernel combination.

image3. From the full set of categories we extracted the six

sea mammals (killer whale, blue whale, humpback whale, seal,

walrus and dolphin) and used them to define the background

class. We used three of the precomputed descriptors for our

experiments: color histogram, PHOG and SIFT.

The IRMA database is a collection of x-ray images present-

ing a large number of classes defined according to a four-

axis hierarchical code [45]. We decided to work on the 2008

IRMA database version [38], just considering the third axis of

the code which identifies the depicted body part. A total of 23

classes with more than 100 images were selected from various

sub-levels of the third axis, 3 of them were used to define

the background class. Following [46], we used as features the

global pixel-based and local SIFT-based descriptors.

We performed all the experiments in a leave-one-class-out

approach, that is considering in turn each class as target and all

the others as sources. The number of negative training samples

is kept fixed while the number of positive training samples

increases in subsequent steps till reaching the same amount

of the negative set. The samples are extracted randomly 10

times for an equal number of experimental runs. Each prior

knowledge model is built with standard LS-SVM. We use the

Gaussian kernel both on the source and on the target for all the

experiments K(x,x′) = exp(−γ‖x−x′‖2). To integrate mul-

tiple (F) features we calculate one kernel for each of them and

we use the average kernel K(x,x′) = 1/F
∑F

f=1 Kf (x,x
′).

All the transfer results are benchmarked against no transfer:

this corresponds to learning from scratch with weighted-LS-

SVM , i.e. solving the optimization problem in (5) with β = 0.

Regarding the parameters, a unique common value for γ was

chosen for all the kernels by cross validation on the source

sets. In particular, we trained a model for each class in the

source set and we used it to classify on the remaining J − 1

3. http://attributes.kyb.tuebingen.mpg.de/

source classes. Finally, we selected the γ value producing on

average the best recognition rate. The value of C is instead

determined as the one producing the best result when learning

from scratch. There is no guarantee that the obtained C value

is the best for the transfer approach; still in this way we

compare against the best performance that can be obtained

by learning only on the available training samples, without

exploiting the source knowledge. We used this setup for all

the experiments; specific differences are otherwise mentioned.

7.1 Setting the Constraints
To fully define the Multi-KT algorithm it is necessary to

choose the p value in the constraint of (14). We evaluate

empirically three cases with p = 1, 2,∞ and we compare

the obtained results over three groups of data that differ

in the level of relatedness among source and target knowl-

edge. Specifically, we extracted 6 unrelated classes (harp,

microwave, fire-truck, cowboy-hat, snake, bonsai), 6 related

classes (all vehicles: bulldozer, fire-truck, motorbikes, school-

bus, snowmobile, car-side) and 10 mixed classes (motorbikes,

dog, cactus, helicopter, fighter, car-side, dolphin, zebra, horse,

goose) from Caltech-256. We refer to a class as the com-

bination of 80 object and 80 background images. For each

class used as target, we extracted 20 training and 100 testing

samples with half positive and half negative data.

The results in Figure 5 (top line) show the clear gain ob-

tained by Multi-KT with respect to no transfer4. The advantage

is maximum in case of related classes (the difference between

Multi-KT L2 and no transfer is 39% in recognition rate for 1
positive sample), it is just a little bit smaller for mixed classes

(34%) and drops more in case of sources unrelated to the target

task (29%). However, regardless of the relatedness level, the

choice of the constraint on β does not produce significantly

different results, apart for a slightly lower performance of the

L1 case with respect to the others. Hence, in the following we

will always use the L2 norm constraint.

7.2 Transfer Weights and Semantic Similarity
The Multi-KT algorithm defines automatically the relevance of

each source model to the current target task. We analyze here

the β vector obtained as a byproduct of the transfer process,

to verify if its elements have a correspondence with the real

visual and semantic relation among the tasks.

We start from the results obtained in the previous section

with the L2 norm constraint and we consider the intermediate

training step with 5 positive samples. We average the β vectors

obtained over the 10 runs defining a matrix of weights with one

row for each class used as target. By simple algebra we can

transform it to a fully symmetric matrix containing measures

of class dissimilarities evaluated as (1−βj) and apply multidi-

mensional scaling on it [48], with two dimensions. We obtain

plots where each point represents a class, and the distance

among the points is proportional to the input dissimilarities.

4. Using SVM for learning from scratch produces slightly better results than
LS-SVM. However in all our experiments this difference is not significant and
it does not change the conclusions on the proposed transfer approach. We use
the sign test [47] for our statistical evaluations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, MONTH YEAR 9

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

# of positive training samples

R
ec

o
g

n
it

io
n

 R
at

e

6 classes unrelated

 

 

no transfer
Multi−KT L

2

Multi−KT L
1

Multi−KT L
∞

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

# of positive training samples

R
e
c
o

g
n

it
io

n
 R

a
te

6 classes related

 

 

no transfer
Multi−KT L

2

Multi−KT L
1

Multi−KT L
∞

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

# of positive training samples

R
ec

o
g

n
it

io
n

 R
at

e

10 classes mixed

 

 

no transfer
Multi−KT L

2

Multi−KT L
1

Multi−KT L
∞

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

fire−truck

cowboy−hatmicrowave

bonsai

harp

snake

6 classes unrelated

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

bulldozer

fire−truck

motorbikes

school−bus

snowmobile car−side

6 classes related

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

dog

horse

zebra

helicopter

fighter−jet

motorbikes
car−side

dolphin

goose

cactus

10 classes mixed 10 classes mixed

 

 

1 2 3 4 5 6 7 8 9 10

1 − dog

2 − horse

3 − zebra

4 − helicopter

5 − fighter−jet

6 − motorbikes

7 − car−side

8 − dolphin

9 − goose

10 − cactus
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5. Top line: Performance of the Multi-KT method with various settings for the constraint on the source knowledge
weights. The results correspond to average recognition rate over the categories, considering each class out experiment
repeated ten times. Bottom line: output of the bidimensional scaling applied on the β vector values. For 10 mixed
classes we also show the assigned weigths with a heat map where each row corresponds to a target class and each
column to a source class.

Figure 5 (bottom line) shows the obtained results. It can be

seen that in the case of unrelated classes the corresponding

points tend to be far from each other. On the other hand,

among the related classes extracted from the general category

motorized-ground-vehicles, the four wheels vehicles form a

cluster, leaving aside motorbikes (two wheels), snowmobile

(skis) and bulldozer (tracks). Finally, among the mixed classes,

helicopter and fighter-jet appear close to each other and to

dolphin. Probably this is due to the shape appearance of

these object classes and to the common uniformity of the sky

and water background. Moreover, all the four legged animals

(zebra, horse and dog) appear on the right side of the plot,

while the vehicles (car-side and motorbikes) are in the left

bottom corner. The heat map of the β weights also shows

that Multi-KT does not leverage over the source models in

a flat way, but chooses properly which part of the available

knowledge can be reused.

Globally all the results indicate that the β vectors actually

contain meaningful values in terms of semantic relation be-

tween the object classes.

7.3 Comparison and Evaluation
Here we evaluate our Multi-KT algorithm in comparison with

several state of the art transfer learning approaches. We briefly

review them before discussing the experimental results.

Single Source. Most of the existing knowledge transfer

methods suppose the availability of a single source knowledge.

Among the approaches listed below, the first two are based on

transferring model parameters as our Multi-KT, while the last

one is an instance transfer technique and exploits directly the

source samples.

Adaptive SVM (A-SVM). This method has been originally

presented in [25] and is based on substituting the usual

regularizer of the SVM formulation with the adaptive version

min
w
‖w − βŵ‖2 + C

N∑
i=1

�H(w�φ(xi), yi) . (17)

Projective Model Transfer SVM (PMT-SVM). Maximizing

the projection of w onto ŵ corresponds also to minimizing

the projection of w onto the source separating hyperplane

(orthogonal to ŵ). Following this idea the objective function

of PMT-SVM [11] is

min
w

‖w‖2 + β‖Rw‖2 + C
N∑
i=1

�H(w�φ(xi), yi)

s. t. w�ŵ ≥ 0, (18)

here R is the projection matrix and ‖Rw‖2 = ‖w‖2 sin2 θ,

where θ is the angle between w and ŵ.
TrAdaBoost: boosting for Transfer Learning. This extension

to the Adaboost learning framework was proposed in [18]. It is

based on mechanism which, starting from the combination of

source and target samples, iteratively decreases the weights of

the source data in order to weaken their impact on the learning

process.
Experiments. We benchmark here our Multi-KT algorithm

against the described A-SVM, PMT-SVM and TrAdaBoost.

Since these baseline methods were defined in the hypothesis

of a single available source set, we considered two cases: a

pair of unrelated and a pair of related classes. Both the pairs

were extracted from Caltech-256 and each of the classes is

considered in turn as target while the other represents the

source task.
We used the MATLAB code of PMT-SVM provided by

its authors, together with their implementation of A-SVM5

slightly modifying them to introduce the weights ζi for i =

5. http://www.robots.ox.ac.uk/∼vgg/software/tabularasa/
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Fig. 6. Left and middle columns: recognition rate as a function of the number of positive training samples. In each
experiment we consider in turn one of the classes as target and the others as source, on ten random training sets.
The final results are obtained as average over all the runs. Top Right: (up) the histogram bars represent the recall
produced by the source model (indicated on the x-axis) when used to classify on the target class; (down) we compute
separately the true positive and true negative recognition rate of Multi-KT and we show the value of their difference
with no transfer in the related case. Bottom Right: average norm of the difference between two β vectors obtained for
a pair of subsequent training steps.

1, . . . , N in the corresponding loss function, so to have a fair

comparison with our Multi-KT. The original formulation con-

sidered the linear kernel, thus we chose K(x, z) = x�z for

all the experiments together with the SIFT feature descriptors.

In [11] the β value is defined by cross validation on extra

validation target samples. Here we decided to simply tune it on

the test set, showing the best result that could be obtained. The

same approach was adopted to choose the number of boosting

iterations for TrAdaBoost.

The results are shown in Figure 6 (top line). In the related

(left plot) case all the transfer learning methods show better

performance than learning from scratch with different extent.

The results of our Multi-KT are significantly better than those

of no transfer and PMT-SVM (p ≤ 0.01). Only for 10

positive training samples PMT-SVM and Multi-KT produce

comparable results. Multi-KT also outperforms TrAdaBoost

for all the training steps (p ≤ 0.01) except the first one,

where they are statistically equivalent. Finally, the difference

between Multi-KT and A-SVM is not significant: since the β
parameter for A-SVM is tuned on the test set, this indicates

that Multi-KT is autonomously able to optimally weight the

source knowledge. The bias of A-SVM towards the best

possible recognition rate is evident in the case of unrelated

classes (middle plot) where it is the only method to outperform

no transfer along all the steps. The other knowledge transfer

approaches show better results than no transfer only for less

than three positive training samples (p ≤ 0.05), becoming then

statistically equivalent to learning from scratch.

The histogram bars on the right in Figure 6 (top right -

up) show the recall produced by each source model when

used directly to classify on the target task. This indicates

how good is the source in recognizing the target object

without adaptation and it is clearly lower for unrelated than for

related classes. For a deeper understanding of the method we

also calculated separately the true positive and true negative

recognition rate of Multi-KT in the case of related classes. We

show the value of their difference with no transfer in Figure

6 (top right - down). From the plot we can conclude that the

main advantage in transferring is in fact due to the relation

between the source and target positive classes rather than to

the joint background class.

Multiple Sources. When more than one source set is

available, there are three main strategies that a transfer learning

method can consider. Two extreme solutions consist in either

selecting only one source, evaluated as the best for the target

problem, or averaging over all of them supposing that they are

all equally useful. The third strategy considers the intermediate

case where only some of the source sets are helpful for the

target task and consists in selecting them by assigning to each

a proper weight. To our knowledge, only our Multi-KT method

is based on the third selective technique.

MultiSourceTrAdaBoost: boosting by transferring samples.
An extension to the TrAdaBoost approach in the case of

multiple available sources has been presented in [9]. The

method MultiSourceTrAdaBoost considers one source set at the

time, combining it with the target set and defining a candidate

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, MONTH YEAR 11

weak classifier. The final classifier is then chosen as the one

producing the smallest training target classification error by

automatically selecting the corresponding best source.
TaskTrAdaBoost: boosting by transferring models. This is a

parameter transfer approach consisting of two steps. Phase I

deploys traditional AdaBoost separately on each source task

to get a collection of candidate weak classifiers. Only the most

discriminative are stored. Phase II is again an AdaBoost loop

over the target training data where at each iteration the weak

classifier is extracted from the set produced in the previous

phase.
Single KT. Our Multi-KT algorithm chooses the best set of

weights for all the prior knowledge models at once on the basis

of the loss function defined in (13). An alternative approach

can be defined adopting a logistic loss function [49]:

�(ỹi, yi) = ζi
1

1 + exp{−10(ỹi − yi)} . (19)

If we consider one single source knowledge j at the time,

the corresponding loss �j(ỹi, yi) will depend on the difference

(ỹi − yi) =
(

a′i
Pii
− βj

A′′ji
Pii

)
for all i = 1, . . . , N . Although

this formulation results in a non convex objective function

with respect to βj , it is always possible to evaluate (19) for

a finite set S of weights6. We can store for each source the

value minS{
∑

i �j(ỹi, yi)}, and then compare all the results

to identify the best prior knowledge model and its best weight.

We call this variant of our method Single-KT.
Average Prior Knowledge. As already mentioned in the

introduction, the first knowledge transfer approach able to

perform one-shot learning on computer vision problems was

presented in [7]. This approach does not make any assumption

on the reliability of the prior knowledge, which is always

considered as an average over all the known classes. The

algorithm structure is strictly related to the part-based model

descriptors and neither the code nor the feature used for

the experiments in [7] have ever been publicly released.

However, by following the proposed main idea, any single

source transfer learning method can be extended to the case

of multiple sources by relying on their average model.
Experiments. Here we show a benchmark evaluation of

our Multi-KT algorithm against its Single-KT version, Mul-

tiSourceTrAdaBoost and TaskTrAdaBoost. We also consider

A-SVM as baseline using the average of all the prior models

as source knowledge, thus ŵ = 1
J

∑J
j=1 ŵj and β = 1.

We adopted the same experimental setting of the previous

section with SIFT features, linear kernel and two randomly

extracted sets of 10 and 20 classes from Caltech-256. In

particular, the second set is obtained by adding an extra

random group of 10 classes to the first one. For the boost-

ing approaches all the learning parameters where tuned on

the test set and only the best results are presented. From

Figure 6 it is clear that in both the experiments Multi-KT

clearly outperforms Single-KT and the two boosting methods

(p ≤ 0.01), besides producing better results than learning from

scratch (p ≤ 0.01). Moreover, for very few samples, properly

weighting each prior knowledge source with Multi-KT is better

(p ≤ 0.05) than averaging over all the known models as done

6. We considered a fine tuning varying β in {0.01, 1} with step of 0.01.

by A-SVM: the two approaches are equivalent only after five

positive training samples with 10 classes and respectively three

positive training samples for 20 classes.
The behavior of any method that chooses only one source

model in transferring may vary significantly every time there

is a change in the selected source. This indicates low stability.

Recent work has shown that the more stable is an algorithm,

the better is its generalization ability [50]. The plot on the

bottom right in Figure 6 shows the comparison of Multi-KT

with its Single-KT version in terms of stability. The best βj

value chosen by Single-KT can be considered as an element

of the full β vector where all the remaining elements are zero.

For each pair of subsequent steps in time, corresponding to a

new added positive training sample, we calculate the difference

between the obtained β both for Multi-KT and Single-KT.

From the average norm of these differences it is evident that

choosing a combination of the prior known models for transfer

learning is more stable than relying on just a single source

(lower average variation in the vector β).

7.4 Heterogeneous Knowledge
In this section we consider an heterogeneous setting where

each source knowledge lives in its own feature space and we

compare the performance of MultiK-KT with that of Multi-

KT applied on a restricted homogeneous condition. We show

that the space enlarging trick at the basis of MultiK-KT,

not only allows to overcome the problem due to the source

variability, but it also produces better results than Multi-KT in

the corresponding single space case.
We ran experiments on the same subset of data used in

section 7.1. Here we considered SIFT as unique descriptor

together with the generalized Gaussian kernel: K(x, z) =
exp(−γdρ,δ(x, z)), where dρ,δ(x, z) =

∑
i |xρ

i − zρi |δ . Each

source knowledge is defined by using the best set {γ, ρ, δ}
obtained by cross validation on the corresponding object

category. We learn on the target class considering the sum over

the source kernels. We name no transfer multiK the baseline

corresponding to learning from scratch in this combined space.

Figure 7 presents the obtained results in comparison with the

case of using a single standard Gaussian kernel, with fixed γ
for sources and target tasks (no transfer and Multi-KT curves

in the plot): MultiK-KT always performs significantly better

than Multi-KT (p ≤ 0.002).
Among the baseline methods considered in the homoge-

neous experiments, the only one that allows heterogeneous

sources is TaskTrAdaBoost. We compare it with MultiK-KT

over the random set of ten classes already used in the previous

section. For each source we suppose to have already learned an

SVM model with SIFT descriptors and Gaussian kernel where

the γ parameter is set to the mean of the pairwise distances

among the samples. This means that each source model lives

in its own specific feature space. TaskTrAdaboost in each

boosting iteration simply chooses one of the source models,

while MultiK-KT learns the target task in the composed

space defined by all the sources and obtained on the basis of

the sum kernel. Figure 8 shows that multiK-KT outperforms

TaskTrAdaBoost (p ≤ 0.01) besides obtaining better results

than learning from scratch.
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Fig. 7. Performance of the MultiK-KT method in comparison with the single kernel Multi-KT formulation. The curves
identified by no transfer and no transfer multiK corresponds respectively to learning from scratch by using only the
Gaussian kernel or the combination of generalized Gaussian kernels.
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Fig. 8. Recognition rate as a function of the number of
positive training samples. Each source model is defined
by using a Gaussian kernel with a different γ parameter.
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Fig. 9. Multi-KT performance for high number of source
knowledge sets. Right: one shot learning recognition rate
results when varying the number of prior known object
categories.

7.5 Increasing Number of Sources
For any open-ended learning agent the number of known

object categories is expected to grow in time. An increasing

number of sources may give rise to a scalability problem in

transfer learning due to the necessity of checking the reliability

of each known model for the new task. Specifically, for 102

sources the boosting methods described in Section 7.3 become

extremely expensive in computational terms (indeed in [9] they

considered a maximum of 5 sources).

We performed experiments with 100 and 256 object classes

from Caltech-256 dataset, reporting the result of Multi-KT, no

transfer and A-SVM with average prior knowledge in Figure 9.

In both cases, properly choosing the weights to assign to each

source pays off with respect to average over all the sources

for very few training samples: Multi-KT outperforms A-SVM

(p ≤ 0.05) for less than three positive samples. With enough

training samples and a rich prior knowledge set, the best choice

is to not neglect any source information.

We can expect that with a growing prior knowledge set,

also the probability to find a useful source for the target task

increases. To verify this behavior we focus on the Multi-

KT results obtained with a single positive image. The one-

shot performance for 2 unrelated classes, 2 related classes

and increasing sets of 10, 20, 100 classes plus the final

full set of 256 objects are summarized in Figure 9 (right).

Specifically for each group of J classes we show the average

one-shot recogniton result over all the possible source/target

(J − 1)classes/(1)class combinations. In this way the number

of evaluations grows with the class group dimension and

this may cause small oscillations in the final average results.

Nevertheless, from the bars it is it is clear that by increasing

the number of available sources the one-shot recognition rate

obtained with Multi-KT grows. After an evident gain obtained

by passing from 100 to 101 classes, the difference becomes

less evident from 101 to 102 classes.

7.6 Increasing Number of Samples
Transfer learning has its maximum effectiveness in the small

sample scenario in comparison to learning from scratch. How-

ever, it is also interesting to evaluate the performance of a

knowledge transfer approach when the number of available

training instances increases, thus checking its asymptotic be-

havior (see Figure 2).

We repeated the experiments on the full Caltech-256 dataset

considering {1, 5, 10, 30, 50} positive training samples with a

fixed set of 50 negative training samples. We also run analo-

gous experiments on the AwA and IRMA dataset, considering

respectively 60 (60) and 70 (70) positive (negative) training

samples. For all the datasets the test set contains 60 (30

positive and 30 negative) instances.

All the results are reported in Figure 10 (top line). Although

it is clear the gain of Multi-KT with respect to learning from

scratch for limited available data, in general this advantage
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Fig. 10. Top line: recognition rate as a function of the number of positive training samples. Each experiment is defined
by considering in turn one of the classes as target and the others as sources. The final results are obtained as average
over ten runs. Bottom line: Maximum value over the elements of the β vector averaged over the classes and the splits.

disappears when the number of positive training samples

reaches 30. The absence of the asymptotic advantage was to be

expected for Multi-KT and can be justified in theoretical terms.

Any universally consistent classifier will converge to the target

optimal solution for an infinite number of training samples.

As discussed in [51], this is the case for SVM with universal

kernels, thus we expect that both our Multi-KT and the no

transfer curve will reach the same asymptotic value when

the amount of data increases. The only possible advantage

in performance can be obtained for a reduced set of target

training samples where the effect of the adaptive regularization

in Multi-KT is relevant and advantageous over learning from

scratch. It does not exists a general rule to establish when the

small samples regime ends and the large sample regime starts,

for our algorithm we showed that the limit appears around 30

target training samples.

As a final remark we underline the overall smooth behavior

of Multi-KT in assigning the relevance weights to the source

knowledge. In case of a single positive target training sam-

ple the prediction is strongly supported by the sources, but

their importance progressively decreases when the number of

training samples grows (see Figure 10, bottom line).

8 CONCLUSION
A learning system able to exploit prior knowledge when

learning something new should rely only on the available

target information for choosing from where and how much

to transfer. To be autonomous it should not need an external

teacher providing either information on which is the best

source to use, or extra target training samples. In this paper we

presented our Multi-KT algorithm, a LS-SVM based transfer

learning approach with a principled technique to rely on source

models and avoid negative transfer. The results of extensive

experiments demonstrated the effectiveness of Multi-KT for

object categorization problems with respect to other existing

transfer learning methods. Moreover the weight assigned to

the source knowledge set proved to be meaningful in terms of

the semantic relation among the considered classes. We also

extended our algorithm to the heterogeneous setting.

Recently the computer vision literature has seen an increas-

ing interest towards high scale (104) object problems [5]. Most

of the proposed transfer learning algorithms in this setting have

been developed for object detection [52] and segmentation

[53], while how to scale up the classification problem is still

an open issue. Introducing a structure on the source knowledge

while learning something new might be a promising strategy

to use Multi-KT in this condition. Moreover the associated

scalability problem due to the increasing number of training

examples can be overcome by casting Multi-KT in an online

learning framework [54]. All this clearly indicates possible

directions for future research.
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