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On the operations of sequences in rings and binomial type

sequences

Stefano Barbero, Umberto Cerruti, Nadir Murru

Abstract

Given a commutative ring with identity R, many different and interesting operations can be
defined over the set HR of sequences of elements in R. These operations can also give HR the struc-
ture of a ring. We study some of these operations, focusing on the binomial convolution product
and the operation induced by the composition of exponential generating functions. We provide new
relations between these operations and their invertible elements. We also study automorphisms of
the Hurwitz series ring, highlighting that some well–known transforms of sequences (such as the
Stirling transform) are special cases of these automorphisms. Moreover, we introduce a novel iso-
morphism between HR equipped with the componentwise sum and the set of the sequences starting
with 1 equipped with the binomial convolution product. Finally, thanks to this isomorphism, we
find a new method for characterizing and generating all the binomial type sequences.

1 Introduction

Given a commutative unitary ring (R,+, ·), where as usual the unit, the additive identity and the
set of invertible elements will be denoted by 1,0, and R∗, we will examine the set, that we call HR, of
sequences with terms belonging to R. The aim of this paper is to highlight new perspectives in studying
the algebraic structures arising when HR is equipped with the most commonly used and interesting
operations between sequences. Specifically, we will provide novel relations between inverse elements
with respect to the binomial convolution product (also called Hurwitz product) and with respect to
the product defined by the composition of exponential generating functions. Moreover, we will study
automorphisms of the Hurwitz series ring and find a new computable isomorphism between the set of
sequences starting with 1 equipped with the Hurwitz product and HR equipped with the componentwise
sum. Finally thanks to this isomorphism we will show a straightforward method to generate all the
binomial type sequences.

First of all, let us start with some definitions and notation.

Definition 1. Let us consider the set

HR = {(an)+∞n=0 = (a0, a1, a2, ...) : ∀i ≥ 0, ai ∈ R}

of sequences whose terms belongs to R. We denote with a bold letter the generic element of HR and we
will refer to the n+ 1–th term of a ∈ HR with the two equivalent notations a[n] or an.

We also define the following two subsets of HR

H
(n)
R = {a ∈ HR : a = (a0, a1, . . . , an−1)}

the set of sequences having lenght n ≥ 0 and the set

Hm
R = {a ∈ HR : a[i] = 0, i = 0, 1, . . . ,m− 1},

of sequences having the first m terms equal to zero.We call zero of order m any a ∈ Hm
R .

The exponential generating function (e.g.f.) and ordinary generating function (o.g.f.) related to a ∈ HR

will be

se(a) = A(t) =

+∞∑
h=0

ah
th

h!
, so(a) = Ā(t) =

+∞∑
h=0

aht
h,

where we denote with se and so the bijections that map any sequence a ∈ HR to its e.g.f. or o.g.f.
respectively.
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We define two useful transform acting on sequences a ∈ HR.

Definition 2. The transforms λ− (the shift operator) and λ+,u, u ∈ R, map any sequence a ∈ HR

respectively into the sequences

λ−(a) := (a1, a2, ...), λ+,u(a) := (u, a0, a1, ...).

Finally we recall the definition of an important family of partition polynomials.

Definition 3. Let us consider the sequence of variables X = (x1, x2, . . .). The complete ordinary Bell
polynomials are defined by

B0(X) = 1, ∀n ≥ 1 Bn(X) = Bn(x1, x2, . . . , xn) =

n∑
k=1

Bn,k(X),

where Bn,k(X) are the partial ordinary Bell polynomials, with

B0,0(X) = 1, ∀n ≥ 1 Bn,0(X) = 0, ∀k ≥ 1 B0,k(X) = 0,

Bn,k(X) = Bn,k(x1, x2, . . . , xn) = k!
∑

i1+2i2+···+nin=n
i1+i2+···+in=k

n∏
j=1

x
ij
j

ij !
,

or, equivalently,

Bn,k(X) = Bn,k(x1, x2, . . . , xn−k+1) = k!
∑

i1+2i2+···+(n−k+1)in−k+1=n−k+1
i1+i2+···+in−k+1=k

n−k+1∏
j=1

x
ij
j

ij !
,

satisfying the equality ∑
n≥1

xnz
n

k

=
∑
n≥k

Bn,k(X)zn.

The most simple operation we may introduce on HR is the componentwise sum, i.e., given any
a, b ∈ HR, then a + b = c, where cn = an + bn, for all n ≥ 0. In this case, the additive inverse of an
element a ∈ HR is obviously the sequence −a = (−an)+∞n=0 and (HR,+) is a commutative group, whose
identity is 0 = (0, 0, 0, ...). On the other hand many different operations, playing the role of a product,
can be defined on HR.

The Hadamard product

Given two sequences a, b ∈ HR, the Hadamard product a•b is the componentwise product, i.e., a•b = c,
where cn = an · bn, for all n ≥ 0. A sequence a ∈ HR is invertible with respect to • if and only if
for all n ≥ 0 an ∈ R∗. The identity is clearly the sequence made up with all the elements equal to 1,
which we denote by 1. This product takes its name since the paper of Hadamard [12]. Some recent and
interesting studies on the Hadamard product can be found, e.g., in [1] and [8].

The Hurwitz product

Another well-known and studied operation is the Hurwitz product (also called binomial convolution
product) that we denote with ?. Given a, b ∈ HR, the Hurwitz product is defined as a ? b = c, where

∀n ≥ 0, cn =

n∑
h=0

(
n

h

)
ahbn−h.

The identity with respect to the Hurwitz product is the sequence 1̄ = (1, 0, 0, ...). Moreover the Hurwitz
product and the product between e.g.f.s of sequences are strictly related. Indeed if se(a) = A(t) and
se(b) = B(t) then

se(a ? b) = A(t)B(t) = se(a)se(b). (1)
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Remark 1. If we consider the set HR[[t]] of the formal power series of the form
∑+∞
h=0 ah

th

h!
, then

(HR[[t]],+, ?) is the Hurwitz series ring. The Hurwitz series ring has been extensively studied during
the years, latest papers on this subject are, e.g., [13], [3], [9], [4].

An element a ∈ HR is invertible with respect to ? if and only if a0 ∈ R∗. In the following, we will
denote by a−1 such an inverse and with H∗R the set of the invertible sequences in HR with respect to
the Hurwitz product ?. When it exists, the inverse b = a−1 can be recursively evaluated using the
relations

b0 = a−10 , bn = −a−10

n∑
h=1

(
n

h

)
ahbn−h, n ≥ 1.

Furthermore we easily observe from (1) that the relation between the e.g.f. of a = A(t) and a−1 is

se(a
−1) =

1

A(t)
= (se(a))−1

since se(a ? a
−1) = se(1̄) = 1. We point out that a closed expression for a−1 has been found in [2] by

means of the Bell polynomials. We report this result in the following theorem.

Theorem 1. Let a ∈ H∗R, and b = a−1. Then for all n ≥ 0, we have

bn =
n!Bn(g0, g1, g2, . . . , gn)

a0
, (2)

where

g = (gn)+∞n=0 =

(
− an+1

a0(n+ 1)!

)+∞

n=0

.

The Cauchy product

The Cauchy product ∗ between two sequences a, b ∈ HR, defined as a ∗ b = c, where

∀n ≥ 0, cn =

n∑
h=0

ahbn−h,

is striclty connected to the Hurwitz product. Indeed, the map

γ : (HR,+, ∗)→ (HR,+, ?), γ(a)[n] = n!a[n], n ≥ 0 (3)

is obviously an isomorphism. Thus all the considerations regarding the Hurwitz product ? can be viewed
in terms of the Cauchy product, and vice versa. In the following, we will mainly deal with the Hurwitz
product ?.

Compositions of generating functions

Finally, we can define two products by composing ordinary and exponential generating functions. Specif-
ically, given a, b ∈ HR, we define a ◦o b = c and a ◦e b = d, where

c = s−1o

+∞∑
h=0

ah

(
+∞∑
k=0

bkt
k

)h , d = s−1e

+∞∑
h=0

ah
h!

(
+∞∑
k=0

bk
tk

k!

)h .

Let us observe that these products are defined only if the sequence b is a zero of order ≥ 1.
In the following, we will often use the product ◦e obtained by the composition of exponential

generating functions. Thus, we will write ◦ instead of ◦e. It is easy to verify that the sequence
1 = λ+,0(1̄) = (0, 1, 0, 0, ...) is the identity with respect to the product ◦.

A sequence a ∈ HR is invertible with respect to the product ◦ if and only if a0 = 0 and a1 ∈ R∗. In
this case, the inverse of a that we denote by a(−1) is the sequence in HR whose terms are
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a(−1)[0] = 0, ∀n ≥ 1 a(−1)[n] =
(n− 1)!

an1

n−1∑
j=0

(−1)j
(
n+ j − 1

j

)
Bn−1,j (ā1, . . . , ān−j) , (4)

where āi = ai+1

a1(i+1)! , i ≥ 1 (see, e.g. [5], chapter 11, for a detailed proof).

Given the sequence a ∈ HR, with a0 ∈ R∗, the terms of the sequence a−1 can be explicitly evaluated
using (2):

a−1 =

(
1

a0
,−

a1

a20
,

2a21 − a0a2
a30

,
− 6a31 + 6a0a1a2 − a20a3

a40
, ...

)
.

On the other hand, the terms of λ+,0(a)(−1) can be explicitly evaluated with (4):

λ+,0(a)(−1) =

(
0,

1

a0
,−

a1

a30
,

3a21 − a0a2
a50

,
− 15a31 + 10a0a1a2 − a20a3

a70
, ...

)
.

There is new and simple relation between a−1 and λ+,0(a)(−1), i.e., between the inverse elements with
respect to the products ? and ◦ respectively, as we will show in the next theorem.

Theorem 2. Let a ∈ HR be a ?–invertible element, i.e., a0 ∈ R∗, then

a−1 = λ−

(
λ+,0(a)(−1)

)
◦ λ+,0(a). (5)

Proof. Let se(a) = A(t), then

se(λ+(0,a)) = F (t) =

∫
A(t)dt.

If se
(
λ+,0(a)(−1)

)
= G(t), by definition of inverse with respect to ◦, we have

F (G(t)) = G(F (t)) = t.

Moreover, let us observe that

se

(
λ−

(
λ+,0(a)(−1)

))
= G′(t) se

(
λ−

(
λ+,0(a)(−1)

)
◦ λ+,0(a)

)
= G′(F (t)).

Thus, we have
G′(F (t))F ′(t) = 1

and, since F ′(t) = A(t), we obtain

G′(F (t)) =
1

A(t)
,

that completes the proof.

It seems hard to find a simple relation like (5) describing λ+,0(a)(−1) = λ(−1) in terms of a−1.
However, we easily find the following recursive expression

∀n ≥ 0 λ(−1)[n+ 1] = n!

n∑
k=0

a−1[k]

k!
Bn,k

(
λ̄
(−1)

[1], . . . λ̄
(−1)

[n− k + 1]
)
, (6)

where λ̄
(−1)

= λ(−1)[i]
i! for all i ≥ 1. Indeed, using the same notation as in the previous theorem, we

know that
F ′(G(t))G′(t) = 1, F ′(G(t)) = A(G(t)).

Thus,

G′(t) =
1

A(G(t))

and since

1

A(G(t))
=

+∞∑
k=0

a−1[k]

k!
(G(t))k =

+∞∑
n=0

(
n∑
k=0

a−1[k]

k!
Bn,k

(
λ̄
(−1)

[1], . . . λ̄
(−1)

[n− k + 1]
))

tn,

G′(t) =

+∞∑
n=0

λ(−1)[n+ 1]

n!
tn

we obtain (6).
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Automorphisms

Some distributive properties hold for the products •, ?, ◦. We summarize them in the following propo-
sition.

Proposition 1. Given any b ∈ H0
R and a, c ∈ HR, we have

- (a+ c) ◦ b = (a ◦ b) + (c ◦ b);

- (a ? c) ◦ b = (a ◦ b) ? (c ◦ b).

Given the sequence β(r) = (rn)+∞n=0, for any r ∈ R, and any a, c ∈ HR, we have

- (a+ c) • β(r) = (a • β(r)) + (c • β(r));

- (a ? c) • β(r) = (a • β(r)) ? (c • β(r)).

Proof. The proof is straightforward remembering that + and ? represent the sum and the product of
formal exponential series, respectively.

Clearly the product • by β(r) may be considered as an endomorphism of the ring (HR,+, ?).
Moreover, we can also introduce a class of endomorphisms in (HR,+, ?) by means of the product ◦ by
b ∈ H0

R. We explicitly state these important and immediate consequences of the previous proposition

Corollary 1. For any z ∈ R and any fixed sequence b ∈ H0
R the maps

Hβ(z) : (HR,+, ?)→ (HR,+, ?), Hβ(r)(a) = a • β(r)

µb : (HR,+, ?)→ (HR,+, ?), µb(a) = a ◦ b

are endomorphisms. Furthermore, if r, b[1] ∈ R∗ then Hβ(z) and µb are authomorphisms whose inverses

are, respectively, Hβ(r−1) and µ−1b = µb(−1) and the identity authomorphism is H1 = µ1.

Some interesting classical transforms acting on sequences may be interpreted as special cases of
automorphisms µb of (HR,+, ?) for a suitable choiche of b. Let us summarize these transforms in the
following definition.

Definition 4. Given any sequence a ∈ HR, we define

1. the alternating sign transform E that maps a into a sequence b = E(a) ∈ HR, whose terms are

bn = (−1)nan;

2. the Stirling transform S that maps a into a sequence b = S(a) ∈ HR, whose terms are

bn =

n∑
h=0

{
n

h

}
ah,

where
{
n
h

}
are the Stirling numbers of the second kind (see e.g. [11], chapter 6, for definition and

properties of Stirling numbers of first and second kind);

3. the inverse S−1 of the Stirling transform that maps a into a sequence b = S−1(a) ∈ HR, whose
terms are

bn =

n∑
h=0

(−1)n−h
[
n

h

]
ah,

where
[
n
h

]
are the (unsigned) Stirling numbers of the first kind.

The transform E is often used for studying properties of sequences, also for its simple but important
effect on e.g.f.s, since if se(a) = A(t), then se(E(a)) = A(−t) for all a ∈ HR. Clearly, E is an
automorphism of (HR,+, ?), since we have E = µ−1. Furthermore, to clearly identify the sequence b
such that S = µb we need the following result

Proposition 2. Given a ∈ HR, if se(a) = A(t), then se(S(a)) = A(et − 1).
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Proof. Let us recall that
{
n
h

}
= 0 when h > n and

+∞∑
n=0

{
n

h

}
tn

n!
=

(et − 1)h

h!
,

see [11] pag. 337. Thus, we have

B(t) =

+∞∑
n=0

(
n∑
h=0

{
n

h

}
ah

)
tn

n!
=

+∞∑
h=0

ah

(
+∞∑
n=0

{
n

h

}
tn

n!

)
=

+∞∑
h=0

ah
(et − 1)h

h!
= A(et − 1).

Now, observing that s−1e (et − 1) = (0, 1, 1, 1, ...) = λ+,0(1), we have

S = µλ+,0(1).

Since from Proposition 2 we also easily find that se(S−1(a)) = A(log(t + 1)), from the formal power
series identity

log(t+ 1) =

+∞∑
h=1

(−1)h−1(h− 1)!
th

h!
,

we have
S−1 = µλ+,0(E(f)),

where f = (0!, 1!, 2!, ...) is the sequence of the factorial numbers A000142 in Oeis [16].

2 Isomorphisms

In the following we focus on a subgroup of H∗R, the set of invertible elements of HR with respect to the
Huwitz product. Specifically, we consider

UR = {a ∈ H∗R : a0 = 1},

and we indicate by U
(n)
R the set of sequences in UR of lenght n. Furthermore we will deal with products

and powers of sequences with respect to the Hurwitz product.
Given a ∈ UR with se(a) = A(t), we let ax denote the sequence such that se(a

x) = (A(t))x. The
sequence ax can be viewed as a sequence of polynomials in the variable x and we use the notation
p(a)(x) = ax in order to highlight this, i.e.,

p(a)(x) =
(
p(a)n (x)

)+∞
n=0

= (ax[n])+∞n=0,

where p
(a)
n (x) ∈ R[x]. Clearly we also have

p(a)(x+ y) = p(a)(x) ? p(a)(y) (7)

since (A(t))x+y = (A(t))x(A(t))y. In the next proposition, we will provide a closed form for the

coefficients of the polynomials p
(a)
n (x).

Proposition 3. Given the polynomial p
(a)
n (x) =

∑n
j=0 cjx

j, then

cj =

n−j∑
h=0

(−1)h
n!

(h+ j)!

[
h+ j

j

]
Bn,h+j(a1, . . . , an−h−j+1), (8)

for j = 0, 1, 2, ..., n, where
[
k
j

]
are the (unsigned) Stirling numbers of the first kind.
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Proof. Since a = (1, a1, a2, ...) has e.g.f. A(t) = 1 +
∑+∞
n=1

an

n!
tn, we have

(A(t))x =

(
1 +

+∞∑
n=1

an
n!
tn

)x
=

+∞∑
k=0

(
x

k

)∑
n≥k

Bn,k(a1, . . . , an−k+1)tn =

=

+∞∑
n=0

1

n!

(
n!

n∑
k=0

(
x

k

)
Bn,k(a1, . . . , an−k+1)

)
tn.

Thus,

p(a)n (x) = n!

n∑
k=0

(
x

k

)
Bn,k(a1, . . . , an−k+1). (9)

Moreover, from equation 6.13 in [11], we can write(
x

k

)
=

(−1)k

k!

k∑
j=0

(−1)j
[
k

j

]
xj (10)

and finally, substituting this equality in (9)

p(a)n (x) =

n∑
j=0

n!

n∑
k=j

Bn,k(a1, . . . , an−k+1)
(−1)k

k!
(−1)j

[
k

j

]xj

from which, replacing the index k with h = k − j, the thesis follows.

Interesting consequences arise studying the sequences ax ∈ UR with respect to the Hurwitz product.
From (8) or evaluating the sequence of formal derivatives of (A(t))x

x(A(t))x−1A′(t), x(A(t))x−1A′′(t) + (x− 1)x(A(t))x−2A′(t)2, ...

we easily obtain that p
(a)
0 (x) = 1 and x|p(a)n (x) for n ≥ 1. Now if we consider, for example, R = Zn,

we have for any a ∈ UZn
, an = (1, 0, 0, ...) = 1̄. Moreover, let p be a prime number, then any element

different from 1̄ in UZp
has period p. Thus

(
U

(n)
Zp
, ?
)

is a finite group of order pn−1 and by the structure

theorem for finite abelian groups, we have the following isomorphism(
U

(n)
Zp
, ?
)
'
(
H

(n−1)
Zp

,+
)
. (11)

Since (11) holds for every prime p we also have for all n ≥ 2(
U

(n)
Z , ?

)
'
(
H

(n−1)
Z ,+

)
and consequently

(UZ, ?) ' (HZ,+) . (12)

The interesting isomorphism (12) is only a special case of a more general computable isomorphism
that we can provide between (UR, ?) and (HR,+). Let us consider the infinite set of sequences B =

{b(1), b(2), b(3), ...}, where

1 = b(1) = (1, 1, 1, 1, ...), b(2) = (1, 0, 1, 0, ...), b(3) = (1, 0, 0, 1, 0...), . . .

i.e., for i ≥ 2, b(i)[i] = 1 and b(i)[k] = 0 for any k 6= 0, i.

Definition 5. We define two elements a and b of UR as independent if < a > ∩ < b >= 1̄, where
< u > is the subgroup of (UR, ?) generated by u ∈ UR.

Clearly the sequences b(i) are mutually independent, since

p(b
(1))(x) =

(
b(1)

)x
= (xn)+∞n=0

7



and considering p(b
(i))(x) =

(
b(i)
)x

, we surely have

∀i ≥ 2, p
(b(i))
1 (x) = · · · = p

(b(i))
i−1 (x) = 0.

Thus we may consider the set B as a basis of (UR, ?).

Remark 2. The sequences p(b
(i))(x) can be evaluated in a fast way by the following formulas. We have

for i ≥ 2

p
(b(i))
0 (x) = 1, p

(b(i))
n (x) =


0, n 6≡ 0 (mod i)(
x
k

) (ik)!
(i!)k

=
(ik)!

k!(i!)k
∏k
h=1(x− h+ 1), n = ki

. (13)

and when i = 1 obviously

∀n ≥ 0 p
(b(1))
n (x) = xn (14)

The equalities (13) and (14) easily follow by relation (9) in Proposition 3 and Definition 3 of partial

ordinary Bell polynomials, or considering for all i ≥ 1 the e.g.f.s se

((
b(i)
)x)

.

Now we can explicitly define an isomorphism between
(
H

(n−1)
R ,+

)
and

(
U

(n)
R , ?

)
by means of the

basis B.

Theorem 3. Let τ (n) :
(
H

(n−1)
R ,+

)
→
(
U

(n)
R , ?

)
be defined as follows

τ (n) : x = (x0, ..., xn−2) 7→
n−1∏
k=1

(
b(k,n)

)xk−1

=

n−1∏
k=1

p(b
(k,n))(xk−1)

where b(k,n) is the sequence b(k) of length n, n ≥ 2. Then τ (n) is an isomorphism.

Proof. Given any x,y ∈ H(n−1)
R as a straightforward consequence of (7) we have

τ (n)(x+ y) = τ (n)(x) ? τ (n)(y).

Moreover, given any a = (1, a1, ..., an−1) ∈ U (n)
R there exists one and only one sequence x ∈ H(n−1)

R

such that τ (n)(x) = a. To prove this claim, first of all we describe explicitly the terms of τ (n)(x), using
equations (13), (14), and the definition of Hurwitz product ?

τ (n)(x)[0] = 1,

τ (n)(x)[1] = x0,

τ (n)(x)[m] = m!
∑∑m

l=1 ljl=m

x
j1
0

j1!

m∏
h=2

(xh−1
jh

)
(h!)jh

, m = 2, . . . , n− 1

(15)

then, if we consider the equation τ (n)(x) = a, we can solve it determining in a unique way every element
of x. Indeed, from (15) is straightforward to observe that for i = 1, . . . , n− 1 the term xi−1 appears for
the first time and with power 1 in the expression of τ (n)(x)[i]. Thus we obtain from (15) the following
system of equations

x0 = a1, x1 + x20 = a2, xi−1 + P (x0, ..., xi−2) = τ (n)(x)[i] = ai, i = 3, . . . , n− 1, (16)

where

P (x0, ..., xi−2) = i!
∑

∑i−1
l=1 ljl=i

xj10
j1!

i−1∏
h=2

(
xh−1

jh

)
(h!)jh

and clearly the unique solution to (16) can be recursively computed.
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Example 1. Given x = (x0, x1, x2, x3) ∈ H(4)
R , we have from (15)

τ (5)(x) = (1, x0, x
2
0 + x1, x

3
0 + 3x0x1 + x2, x

4
0 − 3x1 + 6x20x1 + 3x21 + 4x0x2 + x3.)

Conversely knowing a = (1, a1, a2, a3, a4) ∈ U (5)
R , recursively solving the corresponding equations (16),

we get the unique solution x ∈ H(4)
R to τ (5)(x) = a given by

x0 = a1, x1 = a2 − a21

x2 = a3 − P (x0, x1) = a3 − P (a1, a2 − a21) = a3 + 2a31 − 3a1a2

x3 = a4 − P (x0, x1, x2) = a4 − P (a1, a2 − a21, a3 + 2a31 − 3a1a2) =

= a4 − 3a21 − 6a41 + 3a2 + 12a21a2 − 3a22 − 4a1a3.

As an immediate consequence of the previous theorem, we can define and evaluate the isomorphism

τ : (HR,+)→ (UR, ?)

acting as τ (n+1) on the first n elements of a sequence x ∈ HR, for all n ≥ 1.
Since R is a generic unitary commutative ring, we point out that all the results we have proved also

hold if we consider the ring of polynomials R[x], instead of R, dealing with sequences whose terms are
polynomials. In the next section, we will consider binomial type sequences, which are strictly connected
with the polynomials p(a)(x) and we will use the isomorphism

τ :
(
HR[x],+

)
→
(
UR[x], ?

)
in order to give a method for the construction of all the binomial type sequences.

3 Binomial type sequences

A sequence of polynomials q(x) = (qn(x))+∞n=0, qn(x) ∈ R[x], is called a binomial type sequence if
q0(x) = 1 and

qn(x+ y) =

n∑
h=0

(
n

h

)
qn(x)qn−h(x).

In terms of the Hurwitz product ? the above condition can be restated as

q(x+ y) = q(x) ? q(y),

and clearly q(x) ∈ UR[x].
The binomial type sequences are a very important subject deeply studied during the years. They

were introduced in [17] and used in the theory of umbral calculus. On the other hand, binomial type
sequences are widely used in combinatorics and probability. For instance, in [18] the author showed
the use of binomial type sequences to solve many ”tiling” problems and in [15] the author established
new relations between binomial type sequences and Bell polynomials. Further interesting results can
be found in [14], [10] and [6]. Moreover, many well–known and useful polynomials are binomial type
sequences, like Abel, Laguerre and Touchard polynomials.

It is easy to see, as we have already pointed out in (7), that the polynomial sequences of the kind
p(a)(x) are binomial type sequences. Moreover, we have the following result, i.e., any binomial type
sequences is of the form p(a)(x) for a certain a ∈ UR.

Proposition 4. If q(x) is a binomial type sequence, then there exists a ∈ UR such that q(x) = p(a)(x).

Proof. It suffices to prove that se(q(x)) = (A(t))x, where A(t) = se(a) for a suitable sequence a ∈ UR.
Let ci be the coefficient of x in the polynomial qi(x). Then se(q(x)) = exp(xf(t)), where f(t) =∑∞
n=1 cn

tn

n!
, as proved in [17]. Thus we have only to choose a = s−1e (exp(f(t)).

The result showed in the previous proposition has been also stated in [7]. In the next theorem we
highlight a novel characterization of the binomial type sequences by means of the isomorphism τ and
the basis B defined in the previous section.
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Theorem 4. For any u = (u0, u1, ...) ∈ HR, let xu = (xu0, xu1, ....) be a sequence of polynomials in
R[x], if we consider the isomorphism

τ :
(
HR[x],+

)
→
(
UR[x], ?

)
then τ(xu) is a binomial type sequence. Conversely, any binomial type sequence is of the form τ(xu)
for a certain sequence u ∈ HR.

Proof. The sequence τ(xu) satisfies the relation

τ((x+ y)u) = τ(xu+ yu) = τ(xu) ? τ(yu)

and τ(xu)[0] = 1, thus τ(xu) is a binomial type sequence. On the other hand, since τ is an isomorphism,
given a binomial type sequence q(x) ∈ UR[x] there exists a unique sequence r(x) = (ri(x))+∞i=0 ∈ HR[x]

such that
τ−1(q(x)) = r(x).

Moreover we must have
r(x+ y) = r(x) + r(y) (17)

indeed

r(x+ y) = τ−1(q(x+ y)) = τ−1(q(x) ? q(y)) = τ−1(q(x)) + τ−1(q(y)) = r(x) + r(y),

The equation (17) is satisfied in HR[x] if and only if

∀i ≥ 0 ri(x) = xui, ui ∈ R.

Hence, q(x) = τ(xu) for a certain sequence u ∈ HR.

We would like to point out that the previous theorem give a computable method to evaluate binomial
type sequences, starting from any sequence in HR. For example, if we consider the Fibonacci sequence
F = (1, 1, 2, 3, 5, 8, 13, ...) then, using (15), we obtain the binomial type sequence

τ(xF ) = (1, x, x2 + x, x3 + 3x2 + 2x, x4 + 6x3 + 11x2, x5 + 10x4 + 35x3 + 20x2 + 5x, . . .).

On the other hand, given any binomial type sequence in UR[x], we have a computable method to find
the sequence in HR that generates it. In fact we provide in the following theorem a recursive formula
which gives all the terms of the sequence u ∈ HR such that τ(xu) = q(x) for a given binomial type
sequence q(x).

Theorem 5. Let us consider a binomial type sequence q(x) = (qn(x))
+∞
n=0, where q0(x) = 1 and qn(x) =∑n

i=1 ci,nx
i. Then we have τ(xu) = q(x) if

∀m ≥ 1, um−1 = c1,m +
∑

k|m,k 6=1,m

(−1)
m
k m!

m
k (k!)

m
k
uk−1. (18)

Proof. From the definition of τ and (15) we have

τ (n) (xu) [0] = 1 = q0 (x) , τ (n) (xu) [1] = xu0 = c1,1x = q1 (x)

and for all m ≥ 2, the polynomial qm(x) is equal to

τ (n) (xu) [m] = m!
∑

m∑
l=1

ljl=m

(c1,1x)
j1

j1!

m∏
h=2

(
uh−1x
jh

)
(h!)

jh
. (19)

Clearly u0 = c1,1 and, in order to find the value of um−1 for m ≥ 2, we only need to find the coefficient
of x in (19), since it must be equal to c1,m. We observe that in the summation showed in (19) we find
x multiplied by a suitable coefficient only when we consider solutions of

∑m
l=1 ljl = m having the form

10



jk = m
k , with jl = 0 for all l 6= k, where k|m and k 6= 1. Indeed, when k = m we obtain the summand

um−1x and, for all k|m, k 6= 1,m, we easily find from
(
uk−1x
jk

)
m!

(k!)jk
the summands

(−1)
jk+1

(k!)
jk

m!

jk!

[
jk
1

]
(uk−1x) =

(−1)
jk+1

m!

jk (k!)
jk

uk−1x

using (10), since
[
jk
1

]
= (jk − 1)!. Thus we have

um−1 +
∑

k|m,k 6=1,m

(−1)
m
k +1

m!
m
k (k!)

m
k

uk−1 = c1,m,

from which equation (18) easily follows.

Remark 3. As a straightforward consequence we observe that if p is a prime number then up−1 = c1,p.

It would be interesting for further research to focus on the case R = Z, in order to find new relations
between integer sequences and polynomial sequences of binomial type. We provide some examples listed
in the table below, where, for some well–known binomial type sequences, we give the first terms of the
corresponding sequence arising from (18).

Binomial type polynomials Expression Corresponding u

Increasing powers xn 1̄ = (1, 0, 0, 0, ...)

Laguerre Ln(x) =
∑n

k=0
n!
k!

(
n−1
k−1

)
(−x)k (-1,-2,-6,-30,-120,-720,-5040,...)

Touchard Tn(x) =
∑n

k=0

{
n
k

}
xk (1,1,1,4,1,-19,1,771,-559,...)

Abel An(x, a) = x(x− an)n−1 (1,−2a, 9a2,−6a− 64a3, 625a4, . . .)

Pochhammer (x)n = x(x + 1)(x + 2) · · · (x + n− 1) (1, 1, 2, 9, 24, 110, 720, 5985, 39200 . . .)

As far as we know, none of the sequences u different from 1̄, seems to be already recorded in Oeis
[16].
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