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ABSTRACT Breast cancer is the most commonly occurring cancer in women worldwide. While
mammography remains the gold standard in breast cancer screening, ultrasound is an important imaging
modality for both screening and cancer diagnosis. This paper presents a novel method for the detection
of breast lesions in ultrasound images using texton filter banks, local configuration pattern features, and
classification, without employing any segmentation technique. The developed method was able to accurately
detect and classify breast lesions and achieved an accuracy, sensitivity, specificity, and positive predictive
value of 96.1%, 96.5%, 95.3%, and 97.9%, respectively. The paradigm that we describe may, therefore,
be useful as an effective tool to detect breast nodules during screening and in whole breast imaging, enabling
clinicians to focus on images where a lesion is already known to be present. The developed method may
also serve as a component for automatic breast nodule detection, and, when found, for the subsequent
classification between lesion type benign versus malignant.

INDEX TERMS Breast, ultrasound, image, texton, local configuration pattern, malignant, benign, classifier.

I. INTRODUCTION

Breast cancer is a life-threatening cancer affecting women
worldwide [1]. The frequency of new cases continues to rise,
and the lifetime risk of being diagnosed with breast cancer
for a woman in the United States is equal to 1-in-8 [2]. The
early detection of breast cancer is extremely important for
improved survival rate [3], and various imaging modalities
are used in clinical practice for early detection and accu-
rate assessment. Among imaging techniques, ultrasound (US)

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

has had a fundamental role in breast cancer detection for
many years, thanks to its low cost, the fact that it does
not use ionizing radiation, and its ability to assess various
important aspects from multiple planes with high resolu-
tion. Specifically, ultrasound enables the assessment of ori-
entation, morphology, lesion margin, and internal structure
for both dense glandular structures and predominantly fatty
breasts. Many features, such as surrounding tissue, mar-
gin contour, shape, posterior acoustic features, and lesion
boundary, are important for correct lesion differentiation. The
Breast Imaging Reporting and Data System (BI-RADS) of
the American College of Radiology [4] is widely adopted for
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breast cancer screening. This classification system reduces
the analysis variability between radiologists. The large study
carried out by the American College of Radiology Imag-
ing Network (ACRIN protocol 6666) has demonstrated how
adding ultrasound imaging to the screening process alongside
mammography enables identification of an additional 4.3
cancers per 1000 women screened [5]. Their work reported
a decrease in specificity and an increase in sensitivity in
detecting small breast cancers. However, they reported that
performance of detection may increase marginally by using
ultrasound images with mammogram images [5].

As a downside to ultrasound imaging, this technique is
operator-dependent, and the imaging and diagnosis often
present a high inter-operator variability. Due to these
issues, design and implementation of computer aided detec-
tion (CAD) systems could be useful to provide a second
opinion for detecting and classifying breast cancer [6].

There are numerous studies in the literature that
present CAD systems for the differentiation between
benign and malignant nodules in breast ultrasound (BUS)
images [7]-[14]. However, all of these studies rely on a breast
nodule being definitely present within the ultrasound image.
As the use of ultrasound imaging in screening becomes more
prevalent, it is important to focus attention not only on the
differentiation between benign and malignant nodules, but
also on automatic detection of the presence or absence of a
breast mass. During the screening process, a large number of
acquired ultrasound images would not present with a breast
nodule. Therefore, the automatic detection of such nodules
is of fundamental importance, and can be considered the first
step in developing an automatic classification system that first
detects whether a lesion is present or not, and then, if present,
determines if it is benign or malignant.

Surprisingly, few published studies focus on automatic
classification. Two studies, by Mogatadakala et al. [15] and
Kutay er al. [16] showed satisfactory results in distinguish-
ing tumorous vs non-tumorous regions (AUC = 91% and
AUC = 97%, respectively), but both of these studies were
based on the raw RF signal, which is not typically given as
output from clinical ultrasound devices. Other studies focus
on whole breast ultrasound images, where 200-300 slices typ-
ically represent each lesion. Ikedo et al. [17] used 109 whole
breast images (23 abnormal and 86 normal) and employed an
edge direction technique, obtaining an 80.6% sensitivity with
3.8 false positives (FPs) per whole breast image. The same
group further extended their database and with 260 whole
breast images (208 normal and 52 with masses) using a
similar but improved version of the previous algorithm [18]
were able to obtain an 80% sensitivity in mass detection at
16.8 FPs per breast. Moon et al. [19] presented an algorithm
using 148 whole breast images, where however each vol-
ume included a lesion, so that the problem was focused on
determining which slices contained an actual lesion. Their
technique was based on a 3D mean shift and fuzzy c-means
algorithm, and they obtained an 89% sensitivity with 2 FPs
per volume. Drukker et al. [20] presented a first study that
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used 757 traditional 2D ultrasound images of the breast, but
in this study the authors focused on the classification of
breast masses (complex cysts, benign nodules and malignant
nodules), and only constructed 36 normal images from the
acquired data. The algorithm rendered a sensitivity equal to
87% at 0.76 FPs, but showed 6 FPs on the 36 constructed
healthy images. The same group continued their work [21],
focusing more on the detection between normal and patholog-
ical images, using 757 training images and 1740 test images,
which included 578 normal breast images. In their study,
the authors detected potential lesions based upon expected
lesion shape and margin characteristics, and then classified
the candidate lesions by a Bayesian neural network developed
from lesion features. The method provided an accuracy of
94% for the training set and 91% for the test set.

Herein, we present an automatic method for the first
classification problem; hence the determination of the pres-
ence or absence of a breast mass within the ultrasound image.
The developed technique is based on texton and local con-
figuration pattern features and does not require any image
segmentation or potential lesion detection.

FIGURE 1. Example breast images: (A) normal breast tissue; (B) benign
nodule; (C) malignant nodule.

Il. MATERIALS AND METHODS

A. IMAGE DATABASE

In this study, we used a database consisting of 448 B-mode
ultrasound images of breast cancer of three different types:
147 images of a normal breast, 210 images of a benign
nodule, and 91 images of a malignant nodule. Figure 1 shows
examples of the US images acquired for each type. The
images were collected from 282 patients (100 patients with
benign nodules, 82 patients with malignant nodules, and
100 patients with normal breast) at the University Malaya
Medical Centre. All images were acquired with a high reso-
lution ultrasound system using a 5-12 MHz linear transducer
(IU-22 Philips Medical System, Seattle, USA) and were
subsequently exported for offline processing. The benig-
nity/malignancy of the breast nodules were confirmed with
biopsy.

B. AUTOMATIC BREAST NODULE DETECTION
Figure 2 shows a flow chart of the proposed algorithm, which
is based on preprocessing, the calculation of texton features,
the extraction of local binary pattern features, synthetic data
sampling, feature reduction, and classification.

VOLUME 7, 2019
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FIGURE 2. Flow chart of the proposed algorithm.

1) PREPROCESSING

The first step in the proposed breast nodule detection
algorithm is image preprocessing to standardize the inten-
sity distribution and to increase contrast. In order to do
so, an adaptive histogram equalization algorithm [22] was
applied to each image.

2) TWO-DIMENSIONAL TEXTON FORMATION

The spatial disposition of colors and regions in images along
with the image pixel intensities together make up complex
visual patterns that can be systematically characterized via a
textural analysis [23]-[25]. Textons are the basic microstruc-
tures in images, and they can be used to construct detailed
pixel-based textural features. In practice, textons are obtained
via the convolution of a particular image with a filter set, that
therefore characterize various pixel relationships in specific
areas of the image [26], [27]. In this study, the filter banks that
were used to find the response vectors for each texton were
the Leung-Malik (LM) filters [28], the Schmid filters [29],
and the Maximum Response (MR) filters [30], presented in
detail following.

3) LEUNG-MALIK (LM) FILTER BANK

The LM filter banks present the interesting characteristic of
being rotationally variant, meaning that the LM filter deriva-
tives alter the image according to filter orientation. The filter
bank is composed of 48 filters: the first two Gaussian deriva-
tives for six different directions and three scales, four Gaus-
sian filters, and eight Laplacian of Gaussian filters [28]. The
database images are convolved with the 48 filters, thereby
producing the filter responses, which correspond to the tex-
tural characteristics for each texton. A graphical represen-
tation of these filters can be appreciated in the study by
Acharya et al. [31]. Figure 3 shows examples of the obtained
images after applying the LM filter bank in all three
classes (normal, benign and malignant). The filter banks
help to highlight the hidden minute changes present in the
images.

4) SCHMID FILTER BANK
In contrast to the LM filter bank, the Schmid filter bank
contains rotationally invariant filters, which are therefore ori-
entation invariant [32]. Using these filters, texton clustering
occurs in a higher dimensional space, making them very
effective in capturing subtle changes that may be present in
the images.

The Schmid filter bank is made up of thirteen filters,
which are convolved with the database images. A graphical
representation of these filters can be appreciated in the study

VOLUME 7, 2019

FIGURE 3. Example of images obtained after the Leung-Malik (LM) filter
banks are applied to each of the image types in dataset: normal breast,
benign nodule, and malignant nodule.

by Acharya et al. [31]. Figure 4 shows examples of obtained
images after applying the Schmid filter bank in all three
classes (normal, benign and malignant).

22831
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FIGURE 4. Example of images obtained after the Schmid filter banks are applied to each of the image types in dataset: normal breast, benign

nodule, and malignant nodule.

5) MAXIMUM RESPONSE (MR) FILTERS

Similar to the Schmid filter bank, the MR filters are rota-
tionally invariant and provide the maximum filter response
over various orientations and scales [30]. Practically speak-
ing, 38 different filter banks are used: an orientation filter is
utilized over six different orientations at three scales (6 ori-
entations *x 3 scales = 18, 182 orientations = 36 filters) in
the first and second derivative, followed by Gaussian filtering
and then Laplacian of Gaussian filtering. Once these filters
are applied, the largest response for all different orientations
is taken as the maximal response output. A graphical repre-
sentation of these filters can be appreciated in the study by
Acharya et al. [31].

In this study, we employed two different types of MR
filters: MR8 and MR4. The MR8 filter bank results in eight
responses: the responses from the Gaussian and Laplacian of
Gaussian filters and six from the first and second derivatives,
at the three different scales. On the other hand, the MR4 filter
bank will record four responses: two of which are from
the Gaussian and Laplacian of Gaussian filters, and two
responses result from the first and second derivatives.

22832

Figures 5 and 6 show examples of the obtained images after
applying the MR8 and MR4 filter banks in all three classes
(normal, benign and malignant).

6) LOCAL BINARY PATTERN EXTRACTION

Once all texton filter banks have been applied to the images,
it is then necessary to extract features from the obtained
images. In this study, we extracted the local binary pat-
tern (LBP), which is a straightforward and efficient texture
descriptor used in previous studies [33]. This texture descrip-
tor is rotationally invariant and can be defined as:

P—1
_ —g), Ux)<2
LBPp g (x) = | 2P0 (80 = 8) 1
PR (¥) [P+ 1, otherwise M
where
1, x>0
s(x) =
0, x<0

Furthermore, P is the number of points on the circumference
of a circular neighborhood. g. is the central pixel intensity,
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FIGURE 5. Example of images obtained after the Maximum Response 8 (MR8) filter banks are applied to each of the image types in the dataset:

normal breast, benign nodule, and malignant nodule.

FIGURE 6. Example of images obtained after the Maximum
Response 4 (MR4) filter banks are applied to each of the image types in
the dataset: normal breast, benign nodule, and malignant nodule.

whereas g,,p = 0,1, ... ,P — 1, is the pixel intensity of
the P points. The created neighborhood is assigned with
U(x), which is a uniformity measurement that counts the
number of bit transitions (from 0 to 1 and vice versa) in
the circular domain. From the LBP calculated in the entire
circular domain (considering therefore different angles),
the frequency of the recurring pattern can be calculated and
subsequently mapped to a histogram. In this study we used
P=38,16,24andR =1, 2, 3.

7) ADASYN SYNTHETIC SAMPLING
A very important detail in classification and learning is to
present a balanced dataset to ensure that no bias is introduced
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by an imbalanced data distribution. Adaptive synthetic sam-
pling (ADASYN) is a method that has been used in prior
work to increase classification accuracy by balancing the
data samples, thereby reducing bias [34], [35]. As can be
appreciated in Section 2.1, the original database is partially
imbalanced, so we employed ADASYN to overcome this
issue and balance the dataset. After ADASYN synthetic sam-
pling, the database then consisted of 192 images of normal
breast, 210 images of a benign nodule, and 215 images of a
malignant nodule (Table 1).

TABLE 1. Details of data used.

Subjects Original Synthetic Total

Normal 147 45 192

Benign 210 0 210
Malignant 91 124 215

8) FEATURE REDUCTION
Feature reduction is important to reduce the dimensionality
of an original features set, aiming to maintain a large separa-
tion between inter-class data samples. The texton extraction
of the LBP from each filtered image produces 36 features.
Therefore, in the case of the application of the LM filter bank
(48 filters), each image is represented with a total of 1728 fea-
tures (36 x 4 = 1728). In the case of the Schmid filter bank on
the other hand, each image is represented with 468 features
(36 x 13 filters). In the case of the MR8 and MR4 filter banks,
288 and 144 features represent each image, respectively
(36 x 8 and 36 x 4, respectively).

In order to reduce dimensionality, a locality sensitive dis-
criminant analysis (LSDA) approach was employed sep-
arately to the features calculated using each filter bank.
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TABLE 2. Top 10 LSDA features obtained with the Leung-Malik (LM) filter banks ranked using the f-value.

Normal Benign Malignant
Feature
B a B o B p-value f-value
LSDA29 0.7059 0.0464 0.7145 0.0736 0.6982 0.0015 0.0039 5.6017
LSDA30 0.7607 0.0069 0.7645 0.0235 0.7615 0.0007 0.0155 4.1925
LSDAI1 0.1023 0.0658 0.0928 0.0178 0.0970 0.0010 0.0445 3.1285
LSDA15 0.8068 0.0588 0.8152 0.0211 0.8110 0.0001 0.0543  2.9266
LSDA17 0.3449 0.0272 03552 0.0870 0.3459 0.0020 0.0946 2.3673
LSDA27 0.4596 0.0392 0.4542 0.0320 0.4568 0.0002 0.1621  1.8249
LSDA2 0.9416 0.0050 0.9343 0.0735 09396 0.0015 0.2074 1.5771
LSDA3  0.0383 0.0698 0.0317 0.0057 0.0337 0.0005 0.2254  1.4937
LSDA9  0.5572 0.0323 0.5542 0.0038 0.5549 0.0006 0.2261  1.4903
LSDA13 0.9471 0.0213 0.9493 0.0083 0.9481 0.0002 0.2284 1.4801
#Mean=a; SD=(
TABLE 3. Top 10 LSDA features obtained with the Schmid filter banks ranked using the f-value.
Normal Benign Malignant
Feature
o § o § o § p-value  f-value
LSDA26 0.9821 0.0024 0.9833 0.0026 0.9825 0.0007 0.0000 19.7613
LSDA14 0.9530 0.0027 0.9542 0.0046 0.9537 0.0002 0.0011 6.8688
LSDA17 0.6385 0.0419 0.6230 0.0761 0.6314 0.0041 0.0086 4.7901
LSDA28 0.6795 0.0636 0.6675 0.0497 0.6793 0.0114 0.0105  4.5898
LSDA24 0.7705 0.0352 0.7781 0.0292 0.7763 0.0097 0.0129  4.3781
LSDA3 0.6928 0.0257 0.6855 0.0385 0.6904 0.0012 0.0192 3.9772
LSDA29 0.9804 0.0061 0.9799 0.0047 0.9809 0.0010 0.0572 2.8741
LSDAS 0.3460 0.0247 0.3549 0.0683 0.3477 0.0016 0.0774 2.5692
LSDA22 0.6212 0.0951 0.6229 0.0883 0.6349 0.0187 0.1239  2.0952
LSDA20 0.6973 0.0687 0.6970 0.0709 0.7060 0.0062 0.1743  1.7520
TABLE 4. Top 10 LSDA features obtained with the Maximum Response 8 (MR8) filter banks ranked using the f-value.
Normal Benign Malignant
Feature
a B o B a B p-value  f-value
LSDA7 0.5757 0.0961 0.5711 0.1085 0.6978 0.0991 0.0000 105.5302
LSDAG6 0.9361 0.0215 0.9258 0.0238 0.9155 0.0138 0.0000 53.6971
LSDAS 09102 0.0266 09119 0.0206 0.8986 0.0239 0.0000 19.5473
LSDAI1 0.5013 0.1433 0.5854 0.1435 0.5595 0.1287 0.0000 19.2454
LSDA10 0.6508 0.1684 0.5584 0.1324 0.5836 0.1833 0.0000 17.1217
LSDA21 0.5720 0.1249 0.5122 0.1264 0.5478 0.1218 0.0000 11.7974
LSDA13 0.8090 0.0299 0.8239 0.0339 0.8140 0.0344 0.0000 10.8042
LSDA16 0.5719 0.1326 0.5389 0.1067 0.5819 0.0796 0.0001  9.2225
LSDA2 0.8226  0.0928 0.8060 0.0920 0.7880 0.0922 0.0008 7.1721
LSDA23 0.3893 0.1301 0.4176 0.1000 0.3834 0.0861 0.0021 6.2287

The LSDA method presents the positive characteristic of
preserving both discriminant and local geometrical struc-
ture [36], and has been used effectively in the medical image
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analysis field [37]. The study by Cai et al. [36] presents
a detailed description of the functionality of the LSDA
technique.
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TABLE 5. Top 10 LSDA features obtained with the Maximum Response 4 (MR4) filter banks ranked using the f-value.

Normal Benign Malignant

Feature

o B o o B p-value f-value
LSDA3 0.5416 0.1837 0.4451 0.1422 0.4024 0.1297 0.0000  43.8649
LSDAS 0.7273  0.0525 0.7513 0.0518 0.7753 0.0518 0.0000  43.2639
LSDA10 0.7115 0.0820 0.7436 0.1134 0.6630 0.0855 0.0000  38.8432
LSDA14 0.3258 0.0874 0.3014 0.1047 0.3542 0.0947 0.0000 16.0500
LSDA21 0.2569 0.0792 0.2789 0.0857 0.2349 0.1041 0.0000 12.4490
LSDAI1 0.5525 0.2730 0.4768 0.2904 0.4109 0.3040 0.0000 12.0917
LSDA2 0.6842 0.0768 0.7057 0.0642 0.7097 0.0521 0.0002  8.9288
LSDA4 0.4028 0.0150 0.4037 0.0476 0.3923 0.0197 0.0002  8.6539
LSDA24 0.9335 0.0197 0.9274 0.0209 0.9335 0.0195 0.0017  6.4680
LSDAI12 0.8688 0.0312 0.8797 0.0312 0.8757 0.0357 0.0038  5.6260

FIGURE 7. Scatterplot of LSDA features using Leung-Malik (LM) filter banks.

A total of 30 features remained after the application of
LSDA, which were then ranked based on their f-value. Hence,
since we considered four different filter banks in this study
(i.e.,LM, Schmid, MR8, and MR4) we obtained four different
sets of 30 LSDA coefficients.

9) CLASSIFICATION

After the feature reduction, we employed various classi-
fication methods to distinguish automatically between the
ultrasound images that presented a nodule and those that
were normal. Specifically, we used decision tree (DT),
linear discriminant analysis (LDA), quadratic discriminant

VOLUME 7, 2019

analysis (QDA), support vector machine (SVM), k-nearest
neighbor (k-NN), and the probabilistic neural network
(PNN). SVM classifiers can be used with different kernel
functions, and in this study we implemented both polynomial
functions (i.e., polynomials 1, 2 and 3) and a radial basis
function (RBF) [38]. For a more detailed description of these
classification techniques, please refer to [37].

IIl. RESULTS

A. FEATURE EXTRACTION RESULTS

As mentioned in paragraph II section B.5, each image is over-
represented with a high number of features, where the number
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FIGURE 8. Scatterplot of LSDA features using Maximum Response 4 (MR4) filter banks.

FIGURE 9. Scatterplot of LSDA features using Maximum Response 8 (MRS8) filter banks.

of features depends on which filter bank is employed. Hence,
the LSDA feature reduction method was used to reduce the
high number of features to a standard number of 30 LSDA
coefficients. The LSDA coefficients were then ranked
based on their significance calculated with the f-value.

22836

Tables 2-5 show the results of the highest 10 ranked
LSDA coefficients for each feature bank (i.e., LM, Schmid,
MRS and MR4, respectively). Figure 7, 8,9 and 10 show scat-
terplots of the two more significant LSDA coefficients for all
four filter banks, which illustrate how these coefficients can

VOLUME 7, 2019
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FIGURE 10. Scatterplot of LSDA features using Schmid (S) filter banks.

TABLE 6. Classification results for breast nodule determination using the Leung-Malik (LM) filter banks.

Classifier No. feat. TP TN FP FN [(\023 IZ;]\)] S(?)Zi ’ S(I;/i():'
DT 3 390 161 31 35 89.30 92.64 91.76 83.85
LDA 3 242 1 191 183 39.38 55.89 56.94 0.52
QDA 3 231 11 181 194 39.22 56.07 54.35 5.73
SVM Poly 1 3 117 122 70 308 38.74 62.57 27.53 63.54
SVM Poly 2 3 142 162 30 283 49.27 82.56 33.41 84.38
SVM Poly 3 2 240 91 101 185 53.65 70.38 56.47 47.40
k-NN 3 389 149 43 36 87.20 90.05 91.53 77.60
PNN 3 247 8 184 178 41.33 57.31 58.12 4.17
SVM RBF 3 277 147 45 148 68.72 86.02 65.18 76.56

DT: DECISION TREE; LDA: LINEAR DISCRIMINANT ANALYSIS; QDA: QUADRATIC DISCRIMINANT ANALYSIS; SVM: SUPPORT VECTOR MACHINE; K-NN: K-
NEAREST NEIGHBORS; PNN: PROBABILISTIC NEURAL NETWORK; RBF: RADIAL BAS FUNCTION; FEAT: FEATURES; TP: TRUE POSITIVES; TN: TRUE NEGATIVES;
FP: FALSE POSITIVES; FN: FALSE NEGATIVES; ACC: ACCURACY; PPV: POSITIVE PREDICTIVE VALUE; SENS: SENSITIVITY; SPEC: SPECIFICITY.

be used to clearly distinguish between images with normal
breast versus one with a nodule, and therefore provide a high
classification accuracy.

B. CLASSIFICATION RESULTS

Figures 7 to 10 show scatterplots of LSDA features for the
LM, MR4, MRS and S filters, respectively. It is evident from
these figures that MR8 has a greater discrimination power
as compared to the other types, and hence has yielded the
highest performance. The ranked LSDA coefficients are then
used to classify the images with the techniques mentioned
previously: DT, LDA, QDA, SVM with polynomial and RBF

VOLUME 7, 2019

kernel functions, k-NN, and PNN. The classifiers were inde-
pendently employed using the features extracted with each
filter bank, in order to achieve the best classification result
using the lowest number of features, and to be able to discuss
which filter bank provides the highest classification accu-
racy. Tables 6-9 report the classification results obtained in
terms of the confusion matrix, accuracy, positive predictive
value, sensitivity, and specificity, for all filter banks used.
As can be noted, the probabilistic neural network using the
MRS filter bank presented the best classification results using
18 features, with an accuracy of 96.11%, a positive predictive
value of 97.85%, and sensitivity and specificity values equal
t0 96.47% and 95.31%, respectively. These results show how
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TABLE 7. Classification results for breast nodule determination using the Schmid filter banks.

Classifier No. feat. TP TN FP FN ?023 I(’(l;)\)] S(?,Z; ' S(I;/i;
DT 6 382 169 23 43 89.30 94.32 89.88 88.02
LDA 5 349 23 169 76 60.29 67.37 82.12 11.98
QDA 2 247 20 172 178 43.27 58.95 58.12 10.42
SVM Poly 1 4 324 145 47 101 76.01 87.33 76.24 75.52
SVM Poly 2 5 293 144 48 132 70.83 85.92 68.94 75.00
SVM Poly 3 6 298 165 27 127 75.04 91.69 70.12 85.94
k-NN 5 373 159 33 52 86.22 91.87 87.76 82.81
PNN 6 331 30 162 94 58.51 67.14 77.88 15.63
SVM RBF 3 360 159 33 65 84.12 91.60 84.71 82.81
TABLE 8. Classification results for breast nodule determination using the Maximum Response 8 (MR8) filter banks.
Classifier No. feat. TP N FP FN ?)ZC) IZ;})/ S(e(;;; ' S(Iz/eos
DT 10 361 148 44 64 82.50 89.14 84.94 77.08
LDA 16 353 143 49 72 80.39 87.81 83.06 74.48
QDA 15 330 140 52 95 76.18 86.39 77.65 72.92
SVM Poly 1 15 312 158 34 113 76.18 90.17 73.41 82.29
SVM Poly 2 18 381 177 15 44 90.44 96.21 89.65 92.19
SVM Poly 3 17 394 179 13 31 92.87 96.81 92.71 93.23
k-NN 18 392 171 21 33 91.25 94.92 92.24 89.06
PNN 18 410 183 9 15 96.11 97.85 96.47 95.31
SVM RBF 18 417 171 21 8 95.30 95.21 98.12 89.06
TABLE 9. Classification results for breast nodule determination using the Maximum Response 4 (MR4) filter banks.
Classifier No.feat. TP TN FP  FN ‘?;3 IZ‘;\)/ 5(302; S(}g/:;
DT 10 306 142 50 119 72.61 85.96 72.00 73.96
LDA 13 308 133 59 117 71.47 83.92 72.47 69.27
QDA 7 279 124 68 146 65.32 80.40 65.65 64.58
SVM Poly 1 16 267 155 37 158 68.40 87.83 62.82 80.73
SVM Poly 2 15 308 158 34 117 75.53 90.06 72.47 82.29
SVM Poly 3 15 311 158 34 114 76.01 90.14 73.18 82.29
k-NN 16 339 161 31 86 81.04 91.62 79.76 83.85
PNN 17 365 179 13 60 88.17 96.56 85.88 93.23
SVM RBF 16 374 165 27 51 87.36 93.27 88.00 85.94

the developed technique was able to correctly distinguish the
presence or absence of a breast nodule.

IV. DISCUSSION AND CONCLUSIONS

In this work, we used a dataset of 147 images of normal breast
tissue and 301 images of benign and malignant nodules to
develop and assess an automated system for the recognition
of abnormalities in breast tissue, based on 2D B-mode ultra-
sound breast images. We applied the LM, Schmid, MR8 and
MRA4 texton filter banks to each image, and then extracted fea-
tures from the obtained images using the local binary pattern.
An LSDA feature reduction approach was then employed
to reduce the number of features to 30 for each filter bank.
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We then showed how the LSDA coefficients obtained from
the MR8 filter banks were able to correctly detect the pres-
ence or absence of a breast nodule using various classifiers
with a satisfactory level of accuracy.

As can be appreciated from Figure 5, it can be noted how
the MRS features of the benign and malignant nodules can
present some features that can be extracted with the local
binary pattern that are distinct from the normal MRS fea-
tures. In particular, the fifth column shows an example of
the filter bank that helps obtain a high accuracy performance
equal to 96%.

Breast cancer continues to be the most common malignant
tumor that women can face, and while a mammogram
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acquired with x-ray imaging is still the gold standard
for diagnosis, ultrasound breast imaging is becoming an
important complementary modality to increase diagnostic
accuracy [39].

Many studies are present in the literature that focus on
the classification between benign and malignant nodules,
but there are few studies focusing on the first fundamental
classification process: the differentiation between normal and
abnormal 2D ultrasound breast images. The techniques that
do provide this classification are still mainly based on the
segmentation of a potential lesion, which can be a source of
error in classification [15], [40]. Moreover, as stated in the
Introduction, ultrasound imaging is becoming increasingly
appealing for breast cancer screening, as it does not use
ionizing radiation and it is an inexpensive imaging modality.
As ultrasound imaging becomes more fundamental for breast
cancer screening, so does the need for highly accurate and
reliable CAD methods that can aid the practitioner in distin-
guishing between normal breast tissue and breast tissue with
abnormality. This is increasingly important as the amount of
data also increases, allowing experts to focus their attention
on dubious and/or critical cases.

There are several advantages to the method that we propose
in this work, which are:

e The method does not attempt any potential nodule seg-
mentation technique, which can provide an increase in clas-
sification accuracy;

e The application of texton filter banks and the subsequent
feature extraction can distinguish basic microstructures that
characterize various pixel relationships in specific areas of
the image;

e The system showed high accuracy, sensitivity and speci-
ficity. In particular, the best developed system demonstrated
an accuracy equal to 96.31%, a sensitivity equal to 96.47%
and a specificity equal to 95.31%.

e The developed method requires no user interaction and
is therefore automated.

e The technique does not require any volume imaging,
but is rather based on the analysis of single 2D B-mode
ultrasound images of the breast.

Limitations and Future Directions

A limitation to this study is the fact that the database
contained only 282 patients for evaluation, with an image
database equal to 488 images. Therefore, it is necessary to
test the developed technique on a larger database to confirm
and further evaluate the method.

The technique presented here can prove to be a useful tool
for automated detection of breast abnormality, the first step in
developing methodology that focuses upon the differentiation
between benign and malignant nodules. In the future, we plan
to further extend the image database and develop a method for
this subsequent classification. In particular, with the exten-
sion of the database, we plan to implement a convolutional
neural network approach for the detection and classification
of breast masses.
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