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Abstract Fine particle deposition and streambed clogging affect many ecological and biogeochemical
processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We
evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a
sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF).
Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and
water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF
and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging
in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing
clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining
conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region
on the upstream side of each bed form. Because the area of inflow into the bed was smallest under
gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing
conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments
of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

Plain Language Summary Deposition and accumulation of excessive amounts of clay and silt is
one of the common causes of degradation of river ecosystems. We conducted experiments to evaluate the
effects of flow from the stream into the groundwater (losing stream) and from the groundwater into the
stream (gaining stream) on the deposition of clay particles in a sand bed and the resulting changes in water
exchange between the stream and the subsurface. We found that clay deposition substantially reduced
water exchange due to clogging. Computer simulations of this process revealed that the locations of
clogging are closely related to locations where water exchange occurred, but these patterns differed in losing
and gaining streams. This type of clay accumulation influences water budgets in streams and reduces
connectivity between streams, floodplains, and the underlying aquifers. Such a reduction in connectivity may
negatively affect water resources, ecosystem functions, and river resilience. These results indicate that losing
and gaining flow conditions in streams need to be considered in assessments of streambed clogging and
river restoration.

1. Introduction

Suspended sediment is constantly moving in streams and rivers and is a vital part of their aquatic ecosystems
(Brunke, 1999). While all types and sizes of sediment can be transported by rivers, suspended fine particles
(<10 μm), which are often composed of clay particles or organic matter, are ubiquitously found throughout
river networks even under low flow conditions. Land use changes have drastically increased the amount of
fine particles that are traveling through streams and rivers (Wohl, 2015). Under certain conditions, fine parti-
cles can accumulate in streambeds within coarser material, a process that is commonly termed siltation or
clogging (e.g., Brunke, 1999; Mathers et al., 2014; Wharton et al., 2017). Streambed clogging reduces the
hydraulic conductivity (Ks) of the streambed affecting a myriad of processes including water fluxes into
and out of the channel bed and banks (hyporheic exchange; Findlay, 1995; Rehg et al., 2005), the hydraulic
connections between streams and groundwater (Veličković, 2005), biogeochemical processes (Mendoza-lera
& Datry, 2017; Mendoza-Lera & Mutz, 2013; Navel et al., 2011; Nogaro et al., 2010), and a wide variety of eco-
logical processes (Boulton et al., 2010; Mathers et al., 2014).
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Suspended fine particle deposition in streams is controlled by streamflow conditions and sediment charac-
teristics (Hünken & Mutz, 2007; Packman et al., 2000). For example, slow streamflow conditions favor particle
deposition due to settling (García, 2008). For increasing flow velocities, advective particle transport and
deposition become increasingly important since hyporheic exchange flux (HEF) increases exponentially with
streamflow velocity (Arnon et al., 2013; Packman et al., 2004). The effect of overlying water velocity on fine
particle deposition has been extensively studied (e.g., Fries & Trowbridge, 2003; Rehg et al., 2005;
Stewardson et al., 2016). Recently, it has been suggested that the exchange of water between the stream
and the groundwater (i.e., losing or gaining flow conditions) also plays a significant role in fine particle
depositional processes (Chen et al., 2013; Partington et al., 2017), hyporheic exchange, and biogeochemical
processes (Azizian et al., 2017; Cardenas & Wilson, 2007; De Falco et al., 2016; Trauth & Fleckenstein, 2017).
Some field surveys have demonstrated that the Ks of the streambed is lower under losing conditions, but
the mechanisms controlling this process are not known (Chen et al., 2013; Dong et al., 2012; Simpson &
Meixner, 2012).

The aforementioned studies provide evidence for the influence of stream-groundwater interactions on
streambed clogging. However, because the history of flow conditions and streambed characteristics are
generally not known in field studies, they do not provide an unambiguous explanation of the governing
processes. In order to fill this gap, we conducted controlled flume experiments to quantify how losing and
gaining flow conditions affect the deposition of suspended clay and how this particle deposition influences
HEF. We postulated that particle deposition should increase with increasing HEF, but streambed clogging
depends on local deposition patterns controlled by interactions between gaining/losing fluxes and bed
form-induced HEF.

2. Materials and Methods
2.1. Experimental Setup

Interactions between kaolinite particle deposition and HEF were studied in a 640-cm-long and 29-cm-wide
recirculating flume (supporting information I, Fox et al., 2016). The flume was filled with natural silica sand
(384 μm mean diameter) to form a 20-cm deep streambed over a 540-cm flume channel. The bed surface
wasmanually formed into dune-shaped bed forms, which were 15 cm long and 1.5 cm tall with the crest posi-
tioned 10 cm from the downstream trough. The porosity of the sand was 0.33, and the Kswas 0.12 cm s�1. The
sand used in all experiments was washed with a weak acid and base solution in order to remove residual salts,
similar to the procedures that were described by Packman et al. (1997). Average water depth measured from
the water surface to the bed form crest was 9 cm. Water in the flume was recirculated using a centrifugal
pump (Lowara CEA 370/2/A), and discharge was measured with a magnetic flowmeter within the return pipe
(Siemens SITRANS F mag 5000). To enforce losing or gaining flow conditions in the streambed, a drainage
system was constructed on the bottom of the flume and connected to a peristaltic pump, which enables con-
trol of the direction and magnitude of vertical flow through the streambed (i.e., losing and gaining flux; Fox
et al., 2014). The volume of water in the flume was maintained constant by compensating for gains or losses
by pumping water into or out of the main channel with an additional peristaltic pump for losing and gaining
conditions, respectively (supporting information I). The bed form dimensionsmentioned above, as well as the
flow conditions used in this study, are typical of sand-bed streams (e.g., Harvey et al., 2012; Hünken & Mutz,
2007; Mutz, 2003; Mutz, 2000; Stofleth et al., 2008; Strommer & Smock, 1989; Wörman et al., 2007, and
references within).

2.2. Experimental Approach

Three sets of flume experiments were conducted with an average overlying water velocity of 15 cm s�1 (cal-
culated by dividing the discharge by the channel cross-section area that wasmeasured at the bed form crest).
One set of experiments was conducted under losing flux of 12.5 cm d�1, another under gaining flux of
12.5 cm d�1, and the third conducted under neutral conditions (i.e., without imposing a vertical flux).
Losing and gaining fluxes were calculated by dividing the imposed vertical discharge by the streambed sur-
face area. A detailed description of the experiments, including a detailed time line, experimental procedures,
and preparations before each tracer experiment, are given in supporting information II. Briefly, in each set of
experiments, the flow conditions were set and an initial characterization was conducted by measuring HEF
with a salt tracer and by visualizing the flow patterns in the streambed using a dye tracer (see details in
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section 2.3). After the initial characterization, consecutive additions of suspended clay particles (kaolinite)
were performed until HEF substantially reduced. The extent of clay deposition was recorded continuously
by measuring water turbidity. HEF was measured after each addition of kaolinite. Dye injections were used
to visualize HEF both before and after each set of kaolinite additions. Finally, streambed core samples were
collected along the bed form to evaluate the spatial distribution of kaolinite deposits.

2.3. Particle, Salt, and Dye Tracer Additions

Kaolinite deposition rates were measured by adding kaolinite to the surface water andmeasuring the decline
in concentration over time. Each individual addition contained 80 g of kaolinite (cat. 470025-474, Ward’s
Natural Science, USA) suspended in 5 L of deionized water containing 10-mM NaCl. The suspension was vig-
orously mixed for 24 hr prior to the experiment, and then added into the endwell over the duration of a single
water recirculation time in the flume to ensure efficient mixing of kaolinite in the surface water. After dilution
in the flume, the background electrolyte concentration was approximately 3-mM NaCl, which is far below the
critical coagulation concentration of aqueous suspensions of kaolinite (Tombácz & Szekeres, 2006). Kaolinite
concentrations in the surface water were measured continuously (every 30 s) by a turbidity sensor (TurboVis,
Xylem, UK), which was calibrated with known concentrations of kaolinite samples prior to the experiments.

Salt tracer additions were performed to measure HEF. Each tracer solution contained 120 gr of NaCl dissolved
in 5 L of deionized water, which was added to the flume similarly to the kaolinite solution. The concentration
of the salt in the water wasmonitored with an ECmeter (multi 3430 logger, WTW, UK). The EC wasmaintained
between 300 and 1,000 μS cm�1.

Dye additions were used in order to visualize the exchange flow paths before and after kaolinite deposition in
the streambed. Twenty-five grams of Brilliant Blue dye was dissolved in 5 L of water and added to the flume.
The dye penetration into the sediment was recorded for 24 hr by sequential photographs taken every 30 s
through the glass sidewalls of the flume.

2.4. Distribution of Kaolinite in the Streambed

We assessed the distribution of kaolinite in the streambed by taking core samples along each bed form after
each experiment. Triplicate samples were taken from four sections along the bed form (within 0–3, 4–7, 8–11,
and 12–15 cm from trough to trough, supporting information III). For orientation, location 0 cm is the trough,
4 cm is on the stoss side, 8 cm is close to the crest, and 12 cm is on the lee side of the bed form. Modified
plastic syringes with a diameter of 2.9 cm and a length of 10 cm were used to collect core samples (support-
ing information III). Before taking cores, the flowwas stopped and the water level was gently lowered in order
not to disturb the surface layer of the streambed. Syringes were then inserted into the bed, sealed from the
bottom, and then carefully removed in order not to disturb the structure of the core sample. The cores were
then sectioned every 0.5 cm, which yielded samples of approximately 7 g of wet sand. Extraction of kaolinite
from the sand was done by vigorously mixing each section with 50 mL of deionized water. The concentration
of kaolinite in the water was measured with a spectrophotometer (Evolution 220, Thermo Scientific, USA) by
calibrating kaolinite concentrations to absorbance at 600 nm.

2.5. Data Analysis

Hyporheic exchange flux was quantified using mass balance equations based on the work of Elliott and
Brooks (1997), which was extended by Fox et al. (2014). The latter developed a method that separates the
effect of the imposed losing/gaining flux from the HEF. Images from all the dye additions were analyzed
for the dye distribution in the streambed, using a MATLAB batch image analysis routine developed by Fox
et al. (2016). Comparing time-lapse images enabled us to follow the spatial and temporal changes in HEF
before and after kaolinite deposition.

We visualized the initial porewater velocity field using a numerical model developed previously for HEF under
gaining and losing conditions (Boano et al., 2018). The model was built in COMSOL to reproduce 2-D laminar
water flow below a periodic bed form. Following previous studies (e.g., Elliott & Brooks, 1997), a sinusoidal
function was used to describe the hydraulic head distribution along the bed form profile, and a constant flux
boundary condition was set at the domain bottom to match the flux imposed in each laboratory experiment.
A complete description of the model can be found in the supporting information (section IV).
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Kaolinite flux into the bed was calculated as the average removal of clay mass from the surface water per time
normalized by the streambed surface area. The effect of kaolinite deposition on HEFs under gaining, neutral,
and losing conditions was evaluated by fitting a linear function to the reduction of HEF over time. Differences
in HEF between flow conditions were evaluated by comparing the sum-of-squares for each independent fit
and the combined fit that was calculated using the extra sum-of-squares F test in the statistical software
GraphPad Prism (version 5).

3. Results and Discussion

Dye propagation in the clean sand before the kaolinite additions was observed with time-lapse photography
to assess the evolution of porewater flow patterns (Figures 1a–1c). Dye fronts propagated quickly into the
bed for the first few hours, but with differences between gaining, losing and neutral flow conditions. The
dye propagation rate decreased quickly under gaining conditions as compared to neutral conditions where
it continued to propagate even after 24 hr (Figures 1a–1c and supporting information V). Under losing con-
ditions, the dye propagated quickly downward until it reached the bottom of the bed. Under gaining and
neutral conditions, the dye distribution within the bed is solely related to HEF, since the upwelling water
was dye-free. Thus, the photographs show nicely how upwelling flow under gaining conditions suppressed
the size of the hyporheic zone as compared to neutral conditions. Under losing conditions, the dye patterns
reflect a combination of HEF and the imposed losing flux, which prevents determination of the extent of the
hyporheic zone using this method.

Comparing the dye images with modeled flow fields reveals a good match under gaining and neutral flow
conditions, which is illustrated by the similar size and shapes of the hyporheic zone (Figures 1a, 1b, 1d,
and 1e). The flow fields show that water infiltrated into the subsurface on the stoss side of the bed forms
and returned back not only to the stream in the lee side but also on the lower parts of the stoss side due
to some backward flow paths (lower left side of the images in Figures 1d and 1e; Cardenas & Wilson,
2007). Under gaining flow conditions, upwelling groundwater enclosed the hyporheic zone from both sides

Figure 1. Time series photographs of dye penetration into the bed under (a) gaining, (b) neutral, and (c) losing flow conditions before and after kaolinite additions
(end of experiments). Flow was from left to right at an overlying water velocity of 15 cm s�1, and the losing/gaining flux was 12.5 cm d�1. (d–f) The velocity field
within the sand before the kaolinite additions is shown below the relevant images, (g–i) while the patterns of kaolinite concentrations within the sand at the
end of the experiments are shown in images. Kaolinite concentrations are represented as averages of nine samples (supporting information III), while standard
deviations of kaolinite concentrations were lower than ±0.38% (supporting information VIII).
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and entered the stream mostly within the lee side. Under losing condi-
tions, downwelling flow entered the bed on the entire stoss side, but
bed form-induced hyporheic exchange still occurred with flow paths
returning to the stream on the lee side (Figure 1f).

Differences in the observed dye propagation rates before and after
kaolinite addition clearly demonstrate that clogging affected the sub-
surface flow (Figures 1a–1c and supporting information V). Dye fronts
propagated in the bed more slowly after the kaolinite additions under
all flow conditions, indicating that clay deposition decreased HEF and
the size of the hyporheic zone. After the kaolinite addition, the extent
of dye penetration determined from images (Figures 1a–1c) was 3%,
13%, and 75% of the bed after 480 min under gaining, neutral, and
losing flow conditions, respectively. The same extent of penetration
in the clean sand bed (before clay addition) required only 20 min for
gaining conditions, 60 min for neutral conditions, and 460 min for
losing conditions (supporting information VI). The extent of dye pene-
tration after 24 hr of kaolinite deposition was markedly smaller for the
gaining and neutral conditions than the losing conditions (supporting
information V).

Decreases in HEF coincided with decreases in kaolinite deposition flux
(Figure 2). In each kaolinite addition, the kaolinite concentration in the
surface water column declined rapidly for the first few hours, and then
the deposition rate decayed slowly for the remainder of each experi-
ment. In all cases, the clay concentration in the water column
decreased by at least 50% after 25 hr (Figure 2a). The largest amount
of kaolinite deposition occurred under losing conditions, and the smal-
lest occurred under gaining conditions (supporting information VII).
Kaolinite fluxes into the bed averaged 3.25, 3.3, and 4.12 g m�2 hr�1

over the first 5 hr under gaining, neutral, and losing conditions, respec-
tively, and thereafter decreased to 0.49, 0.76, and 0.82 g m�2 hr�1,
respectively, over the remaining 19 hr of each clay addition. These dif-
ferences in kaolinite deposition rates under neutral, losing, and gaining
flow conditions reflect the total water flux into the bed for each condi-
tion. Under neutral conditions, the exchange flux is purely driven by the
bed structure and the overlying flow conditions (Elliott & Brooks, 1997;
Fox et al., 2014; Packman & Salehin, 2003). Here the neutral bed form-
induced HEF was 17 cm d�1. Losing/gaining fluxes are superimposed
on the bed form-induced hyporheic exchange, which reduces HEF

and redistributes the porewater flow field (Figures 1d–1f; Cardenas & Wilson, 2007; Fox et al., 2016; Trauth
et al., 2013). Under gaining and neutral flow conditions, the total flux into the bed equals the measured
HEF, while under losing conditions it is the sum of HEF and the losing flux. Here the imposed losing and gain-
ing fluxes were both 12.5 cm d�1. Therefore, the total water fluxes from the surface water into the clean sand
bed (before kaolinite addition) were smallest under gaining conditions (12 cm d�1), intermediate under neu-
tral conditions (17 cm d�1), and greatest under losing conditions (24.5 cm d�1). The trends in these imposed
total water fluxes into the beds follow observed trends in kaolinite deposition in the bed. Finally, consecutive
additions of the same kaolinite mass resulted in a linear reduction in HEF under all flow conditions, with a
greater rate of decrease under gaining conditions than under neutral and losing conditions (Figure 2b).

These observations can be understood as the coupling between hyporheic exchange and particle deposition.
Advective flux into the bed carries suspended kaolinite particles that become filtered along hyporheic
flow paths (Elimelech, 1995; Packman et al., 2000). This filtration ultimately results in deposition and clogging
in regions of water inflow to the bed, which reduces the pore space and decreases HEF and porewater flow
(Packman & Mackay, 2003). Reduction of the pore space due to kaolinite deposition leads to an accelerated

Figure 2. (a) Reduction in the relative kaolinite concentrations in the surface
water during three separate additions and the (b) influence of kaolinite deposi-
tion on hyporheic exchange flux (HEF). Each data point in (b) represents one
addition of kaolinite while the sand was initially particle-free. The HEF decreases
linearly with increasing amounts of kaolinite deposition. All fits had R2 > 0.99
and were statistically different from each other (p < 0.05).
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local deposition of later clay additions due to the smaller pore sizes. While the clay accumulation was very
small, yielding average clay mass fractions in the total bed of 0.036%, 0.041%, and 0.052% under gaining,
neutral, and losing conditions, respectively, accumulation was locally much greater in regions of porewater
inflow into the bed. Streambed core samples showed that kaolinite deposition was more pronounced
along the surface of the stoss side of the bed forms under all flow conditions (Figures 1g–1i and supporting
information VIII). Flow simulations indicate that this region is where most of the advective hyporheic flux
enters the bed (Figures 1d–1f). Gaining conditions yielded clay concentrations of >1% mass fraction of
bed sediments in a small region in the area of greatest HEF: the middle of the stoss side of bed forms
(Figure 1g). Under neutral conditions, concentrations of kaolinite also ranged between 1.0 and 1.2% but
occupied a much larger area covering the majority of the stoss side of the bed form, with lower amounts
of deposition in the region where flow leaves the bed (Figure 1h). Kaolinite deposition under losing con-
ditions was also focused along hyporheic flow paths (Figure 1f) but occurred over a wider region of the
streambed surface and yielded clay accumulation deeper in the bed. Under losing conditions, kaolinite
concentrations ranged between 1.2 and 1.5% along the stoss side, with lower concentrations observed
along the lee side and at the crest (Figure 1i).

The horizontal layered structure of kaolinite deposits not only decreased HEF and vertical dye penetration but
also led to an increase in the lateral spreading of exchanged dye. Under neutral conditions, regions of hypor-
heic upwelling flow paths shifted from the recirculation zone on the lee side of each bed form—the location
predicted for homogeneous streambeds—to underneath the crest (indicated by dye-free regions in Figure 1b).
Under losing conditions, the dye-free upwelling zones between bed forms disappeared as a result of clogging
(Figure 1c). While these upwelling zones were visible after 4 hr of exchange in the clean bed, they disappeared
in the clogged bed after approximately 1 hr (Figure 1c). These shifts in porewater flow patterns reflect an
evolution of the hyporheic exchange flow trajectories due to the clogging of pore spaces. In particular, initial
clogging occurred mostly at the stoss side of the bed forms where the higher water flux into the bed was
predicted (Figures 1d–1f). Therefore, the increased horizontal spreading of the dye fronts indicates that clay
deposition in regions of porewater inflow reduced HEF, decreased vertical dye penetration, and shifted
hyporheic flow horizontally. Counterintuitively, HEF decreased more quickly under gaining conditions and
required less clay mass than neutral or losing conditions, despite the fact that the initial water exchange and
clay deposition flux were lowest under gaining conditions (Figure 2b). This is because the area of hyporheic
exchange is much smaller under gaining conditions and highly constrained by the upflowing water. Under
neutral and losing conditions, clay deposition and clogging in the area of water inflow to the bed diverted
inflowing water laterally, shifting inflow to other areas of the bed form (Figures 1b and 1c) and ultimately
producing layered deposits over much of the stoss side of the bed form (Figures 1h and 1i). However, under
gaining conditions, the region of inflow and deposition is highly limited to a narrow region in the middle of
the stoss side of the bed form (Figure 1a) and clay deposition is focused specifically in this region (Figure 1g).
This constraint imposed by upwelling means that clogging of the small region of influx to the bed more readily
reduces HEF under gaining conditions than under neutral or losing conditions.

The deposition of fine particles near the streambed surface found here has been commonly observed in both
laboratory and field studies (Arnon et al., 2010; Drummond et al., 2014, 2017; Stewardson et al., 2016). An
implication of this is that fine particle accumulation within streambeds is highly sensitive to flow events cap-
able of scouring the upper layer of the streambed and remobilizing deposited fine particles. Fine particles
near the surface are often remobilized due to bed mobility and scour, while some particles can be propa-
gated deeper into the streambed where retention times are significantly longer (Drummond et al., 2014).
Other studies that have followed the temporal dynamics of streambed Ks have found that streams with less
frequent bed disturbances have lower streambed Ks and reduced HEF (Blaschke et al., 2003; Datry et al., 2015;
Stewardson et al., 2016). Blaschke et al. (2003) specifically observed in the Danube River that clogging
occurred mostly in the upper few centimeters. The deposition patterns observed in our experiments show
that this behavior may be caused by the strong deposition and clogging in bed forms under neutral and gain-
ing conditions, and more distributed particle deposition under losing conditions.

The layered depositional structures observed here are also common in streambeds and can be formed by var-
ious mechanisms, mostly by depositional patterns during mobile bed conditions (Huggenberger et al., 1998;
Powell, 1998). Layered depositional structures in streambeds produce anisotropy that decreases vertical
hyporheic exchange and favors flow parallel to deposit layers (Fox et al., 2016; Gomez-Velez et al., 2014;
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Jesus et al., 2014; Salehin et al., 2004; Zlotnik et al., 2011). Our results indicate that significant anisotropy can
develop in immobile beds under constant flow conditions due to the combination of advective exchange
and filtration of fine particles, and this will restrict vertical HEF and favor shallow HEF in horizontal layers
under bed forms. HEF and fine particle deposition decreased over time in the clogged bed (supporting infor-
mation VII). While deposition due to filtration is reduced over time, it may be that other mechanisms of
deposition, such as mass transfer due to stream turbulence, still occur and contribute more to the overall
deposition at later stages.

These spatial patterns of HEF and clay deposition have several important implications. The impact of clay
accumulation on HEF is expected to influence water budgets in streams and connectivity between streams,
floodplains, and the underlying aquifers (e.g., Nowinski et al., 2011). Such a reduction in connectivity may
negatively affect bank filtration (Goldschneider et al., 2007). The reduced HEF and altered flow patterns will
change the residence time of solutes in the streambed, thereby influencing biogeochemical processes.
Clogging can result in shallower flow paths and a shrinking of the hyporheic zone (Figure 1), which would
induce a thinner oxic zone (Caruso et al., 2017; De Falco et al., 2016; Kaufman et al., 2017). Changes in HEF,
flow patterns, and chemistry will initiate a response in the ecological communities and their functions. For
example, clogging of the hyporheic zone degrades habitat for benthic fauna, which reduces diversity and
can affect metabolism and the productivity of the lotic ecosystem (Arnon et al., 2007; Brunke, 1999; Jones
et al., 2015; Mathers et al., 2014). These processes could broadly influence stream ecosystem functions and
resilience with implications for management (Nogaro et al., 2010; Wharton et al., 2017). The presence of
unclogged sand beds indicates that there must be either very little input of fines to the system or relatively
frequent bed sediment transport to resuspend deposited fines. Prior experimental observations indicate that
clogging occurs below the active layer during periods of mobile bed forms (Rehg et al., 2005); however, the
temporal variability of scour and Ks remains unclear. In addition, biological processes, such as bioturbation,
can also remobilize fine material and maintain Ks (Nogaro et al., 2006; Song et al., 2010).

This study provides clear evidence that stream-groundwater interactions and deposition of suspended par-
ticles are generally coupled over a wide range of scales. Prior studies have shown that fine suspended parti-
cles are transported into sandy streambeds, leading to clogging of the streambed in locations of hyporheic
inflow (Packman & Mackay, 2003). Here we showed unique experimental evidence that both clay accumula-
tion in the streambed and resulting changes in hyporheic exchange flows strongly interact with larger-scale
gaining and losing flows. The relative importance of HEF versus losing or gaining flux on fine suspended par-
ticle deposition depends on the losing/gaining flux (Fox et al., 2014). Since we showed here that deposition is
related to the advective flux into the bed, it is expected that when HEF is reduced due increase in losing or
gaining fluxes, the relative importance of the losing/gaining flux to deposition becomes higher. Kaolinite
deposition led to a decrease in HEF, changed patterns of hyporheic exchange, and reduced the size of the
hyporheic zone. Following clay deposition, hyporheic flow spread laterally within the near-subsurface region
and propagated outside of the zone of hyporheic exchange identified in the clean bed (prior to clay addition).
This lateral hyporheic spreading was observed under all flow conditions but was more prevalent under gain-
ing and neutral flow conditions.

A major outcome of these observations is that it is essential to evaluate the spatial distribution of Ks when
quantifying exchange fluxes and biogeochemical processes within a reach. The spatial distributions of clay
in coarse sediment beds are also important for assessing the potential for resuspension when assessing
the effects of siltation on hyporheic ecosystems. Including the effects of losing and gaining flow is necessary
to ensure that stream restoration will produce the desired outcomes for hyporheic exchange and ecological
function. While geomorphic field studies often characterize the bulk fine fraction in streambed sediments,
our results show that the clogging process is much more local to the streambed surface, particularly in areas
of HEF into sand beds. Furthermore, the extent of heterogeneity in clogging strongly depends on the pattern
of both hyporheic exchange induced by local streambed features (e.g., bed forms) and larger patterns of river
gaining and losing. Field studies characterizing the Ks of river reaches for the purpose of assessing clogging
and/or restoring degraded hyporheic zones should design sampling schemes to capture the multiscale
exchange and clogging behavior shown here. In particular, a greater number of samples will be needed to
characterize streambed Ks and clogging in reaches with strong internal geomorphic complexity than in
reaches where fine particle deposition and clogging are dominated by general downwelling conditions.
Disconnection of near-surface and deeper porewater by formation of clogging deposits that lead to
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horizontal preferential HEF should also be considered in field site assessments, as these types of flowsmay be
missed by methods that assume homogeneity and/or isotropy, such as estimations of exchange fluxes from
measurements of vertical hydraulic gradients in streambeds. Coupling these observations of fine particle
clogging and HEF patterns to sediment bed dynamics under transient flow (floods) remains an area of active
research; however, environments with frequent floods, capable of moving sediment, may require even more
frequent assessments of streambed Ks to properly characterize the system.
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