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Summary  

This dissertation primarily deals with the development of a new geostatistical 
model for the independent management of Epistemic Uncertainties (EUs) and 
Aleatory Variabilities (AVs) in shear wave velocity profiles (VS) obtained with 
surface wave methods. This topic has gained much interest in light of the recent 
probabilistic advancements in of ground motion predictions, particularly in case of 
only deterministic available solutions.  

An overview of the methods that address for the influence of epistemic 
uncertainties and aleatory variabilities in probabilistic hazard studies is initially 
presented. The essential role of the process for the Identification, Quantification, 
and Management (IQM) of uncertainties and variabilities is widely discussed along 
with the included practical criticisms.  

The dissertation focuses on the role played by site effects in hazard studies. The 
research is primarily devoted to the study of these effects by means of 1D Ground 
Response Analyses (GRAs). In this regard, the dissertation presents an extensive 
analysis of the most critical sources of EUs and AVs included in this type of 
numerical simulations. Also, the effects of these sources on the results are explicitly 
investigated and summarized.  

In particular, the dissertation highlights the primary importance of shear wave 
velocity profiles in GRAs. In this regard, substantial consideration is given to 
different seismic (i.e., geophysical) tests that experimentally estimate this 
parameter. An extensive and precise analysis of the sources of EUs and AVs in each 
geophysical tests is presented and summarized along with the issues for their 
identification and quantification. Also, the usually adopted methods for the 
management of uncertainties and variabilities are described and discussed in details. 

The development of the new geostatistical model is strictly connected to the 
compilation of the Polito Shear Wave velocity Database (PSWD). This collection 
of high-quality surface waves experimental data represents the main ingredient for 
the analysis of the random variables involved in the problem and for the rigorous 
calibration of the model. Moreover, the availability of a large amount of data and 
the study of the geostatistical model allowed examining in depth three main side 
products of the dissertation. The first regards the accurate study of the uncertainties 
and variabilities included in the processing of surface wave tests and the 
experimental dispersion curve. The second concerns the development of a robust 



transformation law between the wavelength of the Rayleigh waves and the depth of 
the harmonic average VS profile. The third main side product of the research is the 
implementation of a method for inversions with a variable number of layers. 

The primary characteristics of the proposed geostatistical model are the 
experimentally-based calibration, the separation of the random variables space and 
time, the site- and test-specific features, the user-friendliness, and the flexibility. 
The flexibility of the model is demonstrated by a prototype application to Down-
Hole tests, which represents its natural future development. 

The proposed geostatistical model is validated by means of a real case study for 
the site of Mirandola (Italy). Both the linear viscoelastic and the nonlinear responses 
of the deposit are modeled. The results show a significant improvement in the 
management of EUs and AVs in GRAs, compared to the methods usually adopted 
for scientific and technical applications. The geostatistical model allows a rigorous 
control of the level of uncertainties and variabilities introduced in the hazard study. 
However, further research should be devoted to additional validations of the 
randomization model in light of the possible separation of EUs and AVs in the final 
result. Indeed, the model is capable to manage indistinctly the uncertainties that are 
the results of the identification and quantification steps. Also, the extension of the 
model architecture to other geophysical tests (e.g., Down-Hole tests) can be easily 
implemented and represents a further research’s goal. In this regard, a preliminary 
validation of the extended model is finally proposed and applied to a real Down-
Hole test performed in Mirandola. 

 
  



 

Acknowledgment  
 

Mentors. 
 

Adrian, I can say you are definitely the keystone of my Ph.D. carrier. The 
work at Patton Hall overturned my professional attitude. At the same time, 
that tall man met on a hot day in Blacksburg became a good partner and an 
advisor also far from the crude probabilistic theories. I distinctly remember 
the day in your office when I said, “we should change the Toro model”, and 
you: “Do you think I haven’t already tried?”.  
Cesare, my crux and my joy. I found in you something I had never discovered 
in anyone else. You are a huge and essential part of this story, from the first 
time when you gave me a sledgehammer, to the endless discussions and 
lessons learned. At the same time a friend, a stepbrother, a mentor. 
Guido, just one date: International Women Day 2016. That time your sweet 
hand picked me up when I was really alone. I will never forget. 
Sebastiano, let me call you with your name for the first time. Our professional 
and personal relationship incredibly evolved in these four years. From the trip 
to Nice, through satisfaction and difficulties. I cannot hide some delusions I 
received. However, a-posteriori, each your behavior that hit me demonstrated 
a deeper meaning. I told you once, and now I can reaffirm it, without any 
ulterior motive: you have been, are, and will be a reference point, a model to 
be inspired to. In the acknowledgment of your Thesis, there is a reference to a 
pupil and a Master. In my case, that challenge is even harder to be 
accomplished. I am pretty sure my dream will be your reality, soon. Make us 
proud! 
 

Mates and colleagues. 
 

A special thank you goes to Giampiero and Renzo, the people who welcomed 
the new Ph.D. student 3 years ago and supported him in many situations, with 
care, patience, and gentleness. You know me better than anyone else under 
this roof and, maybe, now you can state that the lab experienced another 
“golden age”. 
A particular acknowledge is for Andrea Ciancimino, Andrea Luciani, e 
Carolina: first mates, then colleagues. 
A mandatory thought is for all the wonderful people met along this 
extraordinary journey: Mahdi, Renato, Alessandro, Alessandra, Maria Lia, 
Maddalena e Valerio, Giovanni, Silvio, Gaetano, Fabio, Erica, Matteo, 
Lorenzo, Gianmarco, Paolo, Viviana, Mauro e Federica. 

 
Important advisors. 

 
During my Ph.D. I had the privilege to be in close contact with other 
Professors who gave me support and advice, both from the scientific and 



 

human point of view. I felt naturally accepted by people who were at the other 
side of the tribune just a few days before and suddenly put me at the same 
their level: Professors Renato Lancellotta, Daniele Costanzo, Donato Sabia, 
e Monica Barbero. 
A specific line in this category is dedicated to Valentina Socco, a crude but 
affectionate advisor that lighted a spark within me. I can undoubtedly say that 
your compliments a few months ago were one of the most incredible pride I 
will treasure from this experience. 
The last acknowledge is for Professor Brady R. Cox for the material provided 
for Chapter 4.  
 

Friends. 
 

The people I chose to be part of my life and with I share the incredible miracle 
of the friendship: Luca, Claudia e Tommaso, Francesca e Simone, Ettore, 
Federica e Fabio, Veronica, Matteo, Claudio e Alessio, Alessandro Paoletti, 
Eleonora e Marco Nali, Alessandro Marsura, Chiara, Dario, Ciccio, Giusy e 
Rocco, Salvo, Luciana e Marco Pavan, il Pennezz, Maria Chiara e Vincenzo. 
You are my strength; you are my step-family. I usually say that everyone reaps 
what he sows; look at you, such an extraordinary garden! 
A mandatory reference goes to the essential Franco’s friends I had to painfully 
leave many years ago in the wonderful Francavilla. 
 

Family. 
 

Valentina, this is also your finishing line. Your support along this journey was 
essential like oxygen, often showing the light at the end of the tunnel, with 
your love, patience, strength. You have been maybe the person who has most 
suffered during these last months. 
Cecilia e Francesco, with awesome three gifts you continuously gave me a 
further, huge, reason to be attached to home. You are a spectacular example 
of what family means, a mirror to look at. 
Mamma e Papà, it is worthless to explain with simple ink on a page the part 
you play on the stage of my life.  
 

Fede. 
 

I had sworn to myself to avoid this section. In the end, I gave up. I need to 
impregnate these pages acknowledging Federico. The one who worked even 
7/7, 18 hours per day, who set the alarms in the middle of the night to check 
the analyses. The one who really suffered the solitude in Blacksburg. The guy 
that sacrificed every single breath to proudly leave something valuable at the 
end of this journey. 
 

In memory of. 
 

During this period I lost people I would like to dedicate a few words.  
First, Nonna Tittina, a remarkable strength condensed in a tiny and old body.  



 

The second thought goes to Barbara. You were the one who first discouraged 
me about the Ph.D. I cannot firmly say if you were right or wrong, but I can 
undoubtedly affirm that you will always have a place in my heart. This world 
misses your proud gaze and your sweet wisdom. Gina, this thesis deals with a 
phenomenon similar to you: an earthquake. You were the symbol of the 
energy, a reference point for the love you demonstrated to your family. 
 
 

 
In the bachelor’s thesis, I found this sentence in the acknowledgments: 
 

…Ringrazio tutte le persone che mi hanno insegnato qualcosa, perché insegnare è il 
mestiere più importante del mondo… 

 
I hope I had accomplished this mission in my short experience, and I would like to thank 
the people who allowed me to realize this dream and to experience this enormous pride.  
 
In addition, I would be similarly proud if I have left a good memory within the people part 
of this life’s Chapter. 
 
 
 
Now, I gotta go and never stop going 'till I get there. 

 

 

 

 

 

 

 

 

 

 

  



 

  



 

 
 

            A Cecilia e Valentina 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Leave this world a little better than you found it.” 

 

Robert Stephenson Smyth Baden-Powell; Last message. 



 

 
 

  



 

Contents 

Chapter 1 Introduction ..................................................................................... 1 

1.1      Motivation .......................................................................................... 1 

1.2       Research Objectives and Achievements ............................................ 2 

1.3       Dissertation Outline ........................................................................... 3 

Chapter 2 Probabilistic Seismic Hazard Analysis: Epistemic Uncertainty, 
Aleatory Variability, and Ergodicity ................................................................. 7 

2.1 Seismic Hazard .................................................................................. 7 

2.1.1 Site Effects ................................................................................... 11 

2.1.2 Examples of seismic hazard assessment studies .......................... 16 

2.2 Epistemic uncertainty and aleatory variability ................................ 19 

Chapter 3 Uncertainties and variabilities in site response studies ................. 27 

3.1 Numerical simulations ..................................................................... 31 

3.1.1   Site Response Analysis (SRA, 2- or 3D) ...................................... 37 

3.1.2   Ground Response Analysis (GRA, 1D) ........................................ 39 

3.1.2.1   VS profile ................................................................................... 41 

3.1.2.2   Modulus reduction and damping (MRD) curves ....................... 41 

3.1.2.3   Input motion selection ............................................................... 42 

3.1.2.4   Nonlinear approach .................................................................... 43 

3.1.2.5   Shear strength ............................................................................ 46 

3.1.2.6   Small strain damping Dmin ......................................................... 47 

3.1.2.7   Summary .................................................................................... 47 

3.2 Effects of uncertainties and variabilities on GRA results ................ 49 

3.2.1 VS profile ...................................................................................... 59 

3.2.2 Modulus reduction and damping (MRD) curves ......................... 59 

3.2.3 Input motion selection .................................................................. 60 

3.2.4 Nonlinear approach ...................................................................... 61 

3.2.5 Summary ...................................................................................... 67 



 

 
 

Chapter 4 Shear wave velocity models .......................................................... 69 

4.1  Topic overview ............................................................................... 69 

4.1.1    Seismic waves in elastic solids .................................................... 73 

4.1.2  Geotechnical parameters associated with seismic waves ............. 79 

4.2  Seismic tests .................................................................................... 84 

4.2.1   Invasive Methods ........................................................................ 85 

4.2.1.1    Down-Hole Seismic Testing ..................................................... 85 

4.2.1.2    Cross-Hole Seismic Testing ...................................................... 90 

4.2.1.3    PS suspension logging .............................................................. 93 

4.2.2   Non-invasive Methods ............................................................... 95 

4.2.2.1    Seismic refraction ..................................................................... 95 

4.2.2.2    Surface wave testing ............................................................... 100 

4.2.2.3    Horizontal to Vertical Spectral Ratio ...................................... 131 

4.2.3    Summary .................................................................................... 137 

4.3  Management of EUs and AVs ...................................................... 143 

4.3.1  Alternative (upper-range and lower-range) models ................... 146 

4.3.2  Geostatistical randomization models ......................................... 150 

4.3.3 Literature overview .................................................................... 161 

Chapter 5 Polito Shear Wave velocity Database (PSWD) ........................... 175 

5.1  Description of the database ........................................................... 176 

5.2  EDC uncertainties and variabilities .............................................. 182 

Chapter 6 Randomization models ................................................................ 185 

6.1        Solving the Rayleigh inverse problem.......................................... 185 

6.1.1    Round-1: inversion with a constant number of layers ............... 187 

6.1.2    Inferential process ...................................................................... 194 

6.1.2.1    Statistical distribution of VS .................................................... 195 

6.1.2.2    Statistical distribution of the thickness of the layers .............. 199 

6.1.2.3    Inter-layer correlation ............................................................. 202 

6.1.2.4    Halfspace velocity and halfspace depth .................................. 203 

6.1.3    Round-2: inversion with a variable number of layers ................ 206 

6.2      The geostatistical model applied to surface wave testing methods 209 

6.2.1    Model calibration ....................................................................... 211 

6.2.1.1    Travel-times logarithmic standard deviation .......................... 211 



 

 
 

6.2.1.2    Travel-times inter-layer correlation coefficient ...................... 213 

6.2.1.3    Correlation coefficient for the halfspace depth/velocity ......... 216 

6.2.1.4    Halfspace depth and halfspace velocity .................................. 216 

6.2.2    Summary and example application ............................................ 220 

6.3 Prototype application to Down-Hole testing methods ................... 229 

Chapter 7 Case study: Mirandola ................................................................. 233 

7.1      The InterPACIFIC project and Mirandola...................................... 233 

7.2      Surface wave testing methods ........................................................ 236 

7.2.1    Linear viscoelastic response ...................................................... 244 

7.2.2    Equivalent linear analyses ......................................................... 246 

7.2.3    Discussion .................................................................................. 249 

7.3 Down-Hole testing methods .......................................................... 251 

Chapter 8 Conclusions and Recommendations ............................................ 257 

8.1       New geostatistical model ............................................................... 257 

8.2       Side products ................................................................................. 260 

8.3       Recommendations for Future Research ......................................... 261 

References ..................................................................................................... 263 

Appendix ....................................................................................................... 285 



 

  



 

 
 

List of Tables 

Table 3.1. Summary of the most critical sources of epistemic uncertainties and 
aleatory variabilities in Ground Response Analyses. ............................................ 48 

Table 3.2. List of most studies regarding the evaluation of the influence of 
epistemic uncertainties and aleatory variabilities in Ground Response Analyses. 68 

Table 4.1. Typical VS values for soils (after Foti et al. (2018)). ..................... 84 

Table 4.2. Summary table for the identification and quantification of EUs and 
AVs in seismic tests. ............................................................................................ 141 

Table 7.1. List of participants of the InterPACIFIC project for the surface wave 
methods (after Garofalo et al. 2016b). ................................................................. 234 

Table 7.2. Processing and inversion strategies adopted by each team at 
Mirandola (after Garofalo et al. 2016b). .............................................................. 237 



 

  



 

 
 

List of Figures 

Figure 2.1. Schematic illustration of the three contributions to the final seismic 
risk. .......................................................................................................................... 8 

Figure 2.2. DSHA and PSHA method (modified from Kramer (1996)). ........ 11 

Figure 2.3. Surface hazard terms: source, path, and site along with an example 
of obtained hazard curve for a reference condition. .............................................. 12 

Figure 2.4. Example of amplification function for PGA (T=0 s) and generic 
T=T0 (modified from Pehlivan et al. (2016)). ........................................................ 14 

Figure 2.5. Differences between deterministic and probabilistic convolution 
method (modified from Pehlivan et al. (2016)). .................................................... 16 

Figure 2.6. Mississippi embayment hazard maps for PGA, T=0.2 s, and T=1 s 
(modified from Cramer (2006)). ............................................................................ 17 

Figure 2.7. Hazard maps for T=0.1 s and 16th, 50th, and 84th percentile (from 
left to right) and return period of 475 years in Germany (after Grünthal et al. 
(2018)). .................................................................................................................. 18 

Figure 2.8. Mean hazard curves at the bedrock for spectral accelerations at 0.01 
s and contributions to the mean hazard from the ten seismic sources at the Thyspunt 
site (after Bommer et al. (2015)). .......................................................................... 19 

Figure 2.9. Logic tree adopted for the Italian PSHA. Weights are given in 
percent. ................................................................................................................... 22 

Figure 3.1. Site response scheme. ................................................................... 27 

Figure 3.2. Example of Theoretical Transfer Function (TTF). ....................... 28 

Figure 3.3. Examples of comparison of Theoretical Transfer Functions and 
Empirical Transfer Function (after Baise et al. (2011) and Kaklamanos et al. 
(2015)). .................................................................................................................. 34 

Figure 3.4. TTF-ETF comparison adopting the advanced HH model (after Shi 
& Asimaki (2017). ................................................................................................. 35 

Figure 3.5. TTF-ETF comparison and correction of the shear wave velocity 
profiles (after Régnier et al. (2018)). ..................................................................... 36 

Figure 3.6. Results of a 2D Site Response Analysis (SRA) using LSR2D (Local 
Seismic Response 2D). .......................................................................................... 37 

Figure 3.7. Mass discretization models for a Ground Response Analysis (GRA) 
(after Kwok et al. (2007)) ...................................................................................... 39 

Figure 3.8. Primary sources of epistemic uncertainties and aleatory variabilities 
in GRAs (modified from Rathje et al. (2010)). ...................................................... 41 



 

 
 

Figure 3.9. Schematic illustration of the main two nonlinear approaches (i.e., 
EQL and NL) (after Zalachoris & Rathje (2015)). ................................................ 44 

Figure 3.10. Matching process between small strain and shear strength (after 
Zalachoris & Rathje (2015)). ................................................................................. 46 

Figure 3.11. Randomization of the parameters and results illustrated as mean 
amplification function and logarithmic standard deviation (after Bazzurro and 
Cornell (2004a)). .................................................................................................... 50 

Figure 3.12. VS profiles and MRD curves randomization proposed in Rathje et 
al. (2010) for the assessment of the parameter uncertainties and variabilities. ..... 51 

Figure 3.13. Results obtained in Rathje et al. (2010). ..................................... 52 

Figure 3.14. Epistemic uncertainties and aleatory variabilities of VS profiles and 
MRD curves propagated on the surface response spectra (after Li & Asimaki 
(2010)). .................................................................................................................. 53 

Figure 3.15. PSHA low designed by Rodriguez‐Marek et al. (2014) for a project 
in South Africa. ...................................................................................................... 54 

Figure 3.16. Map of the substantial spatial (i.e., aleatory) variability 
investigated in the Rome’s downtown (after Pagliaroli et al. (2015)). .................. 55 

Figure 3.17. MRD curves influence resulted after the stochastic study 
conducted by Bahrampouri et al. (2018) at the Groningen gas field. .................... 56 

Figure 3.18. Comparisons of obtained results from the different NL codes at 
Sendai with the experimentally-measured solution (after Régnier et al. (2018)). . 57 

Figure 3.19. Small strain damping calibration and TTF-ETF comparison (after 
Zalachoris & Rathje (2015)). ................................................................................. 58 

Figure 3.20. Illustration of the Frequency Index proposed by Asimaki & Li 
(2012). .................................................................................................................... 62 

Figure 3.21. Guidance thresholds for the nonlinear approaches applicability 
(after Kaklamanos et al. (2013b)). ......................................................................... 63 

Figure 3.22. Guidance thresholds for the nonlinear approaches applicability 
(after Kim et al. (2013a)). ...................................................................................... 64 

Figure 3.23. Guidance thresholds for the nonlinear approaches applicability 
(after Zalachoris & Rathje (2015)). ....................................................................... 65 

Figure 3.24. Estimated shear strains interpolation illustrated in Kim et al. 
(2016). .................................................................................................................... 66 

Figure 3.25. Final comparison of suggested applicability thresholds in various 
studies (after Kim et al. (2016)). ............................................................................ 66 

Figure 3.26. Analysis of the GRAs accuracies obtained by different NL 
approaches (after Aristizabal et al. (2018)). .......................................................... 67 



 

 
 

Figure 4.1. a) Example of P and S-wave interval and harmonic average profiles, 
and b) zoom on the S-wave interval and harmonic average velocity profiles with 
VS,30 for Mirandola (data from Griffiths et al. (2016a)). ........................................ 72 

Figure 4.2. Representation of the a) P and b) S-wave propagation in a medium 
as the direction of propagation and direction of the induced particles motion (after 
Foti et al. (2014)). .................................................................................................. 74 

Figure 4.3. Polarization of S-waves in SV (i.e., shear a vertical plane), and SH 

(i.e., shear a horizontal plane) (after Foti et al. (2014)). ........................................ 75 

Figure 4.4. Schematization of the wave refraction phenomenon for a double-
layers system and a single impinging wave. .......................................................... 76 

Figure 4.5. Partitioning of waves traveling from a less stiff to a stiffer material. 
a) Incident P-wave partitioned in a reflected P and an SV and a refracted P and an 
SV waves, b) incident SV-wave partitioned in a reflected P and an SV and a refracted 
P and an SV waves, and c) incident SH-wave partitioned in a reflected SH and a 
refracted SH waves (courtesy of Prof. Brady R. Cox)............................................ 76 

Figure 4.6. a) Rayleigh waves surface wavefield direction of propagation and 
induced displacement for a point source. b) Particle orbit with depth as a horizontal 
and vertical component of the displacements (after Foti et al. (2014)). ................ 78 

Figure 4.7. Sampled depths by Rayleigh waves with different frequencies for a 
three-layers system (after Foti et al. (2014)). ......................................................... 79 

Figure 4.8. a) Maximum shear modulus and secant shear modulus and b) 
modulus reduction (MR) curve and small-strain linear elastic range investigated by 
the in situ seismic tests (courtesy of Prof. Brady R. Cox). .................................... 80 

Figure 4.9. Relationships between velocities of propagations in an ILEH 
material (courtesy of Prof. Brady R. Cox). ............................................................ 82 

Figure 4.10. VP dependence on the a) B-value of the material and b) the degree 
of saturation Sr (after Valle-Molina (2006)). ......................................................... 82 

Figure 4.11. Seismic wave velocity profiles estimated in the Venice Lagoon 
with clear evidence of an unsaturated zone around 12 m (after Jamiolkowski et al. 
(2009)). .................................................................................................................. 83 

Figure 4.12. Down-Hole (borehole-based) test setup (modified from ASTM 
D7400-17). ............................................................................................................. 86 

Figure 4.13. Picture of some equipment used for a Down-Hole test. a) 
Horizontally striking sledgehammer source on a shear beam, b) T-Rex Vibroseis 
truck (courtesy of Prof. Brady R. Cox), c) 8 triaxial geophones string (Politecnico 
di Torino), and d) DAQ system and general test setup (data cables, laptop, clamping 
system, and seismograph). ..................................................................................... 87 



 

 
 

Figure 4.14. Example of the acquired waterfall a) SH-waves and b) P-waves DH 
seismogram at the Mirabello site (Italy) for the first Italian blast test experiment and 
included in the PSWD (after Passeri et al. (2018b)). ............................................. 88 

Figure 4.15. DH data processing adopting for the site of Acquasanta Terme 
(Italy) included in the PSWD a) the true-interval method and b), c) the slope-based 
method for the right (R) and left (L) strike. ........................................................... 89 

Figure 4.16. Cross-Hole (borehole-based) test setup (modified from ASTM 
D4428/D4428M-14). ............................................................................................. 91 

Figure 4.17. Cross-Hole (borehole-based) test setup (modified from ASTM 
D4428/D4428M-14). ............................................................................................. 92 

Figure 4.18. CH results for the Zelazny Most tailing dam (Prof. Jamiolkowski, 
personal communication). ...................................................................................... 93 

Figure 4.19. Scheme of the PS suspension logging test and an example of 
results at Mirandola (Garofalo et al. 2016a, Passeri et al. 2019). .......................... 94 

Figure 4.20. P-wave refraction: a) seismogram for a forward shot, and b) 
seismogram for a reverse shot (after Foti et al. (2014)). ........................................ 97 

Figure 4.21. Travel-time vs. distance plot for an example single layer deposit 
and identification of the crossover distance (after Lippus (2007)). ....................... 98 

Figure 4.22. Equivalence of travel time curves for different profiles (after Foti 
et al. 2014)). ........................................................................................................... 99 

Figure 4.23. Example of 2D P-wave tomography at Fonte del Campo (PSWD), 
a) 2D map of the estimated VP velocities with clear evidence of the saturated depth 
(i.e., VP>1500 m/s), and b) seismic rays coverage (after Passeri et al. (2018a)). 100 

Figure 4.24. Three main steps in surface wave testing methods, 1) acquisition, 
2) processing, and 3) inversion (modified from Foti et al. 2014))....................... 102 

Figure 4.25. Combined acquisition of passive and active Rayleigh waves for 
the evaluation of a broadband experimental dispersion curve (modified from Foti et 
al. (2014)). ............................................................................................................ 104 

Figure 4.26. Typical setup of a MASW test and equipment including the trigger 
system, sledgehammer, vertical geophones, DAQ system with a seismograph and 
data cables and a laptop (modified from Foti et al. (2014)). ............................... 106 

Figure 4.27. a) and b) three-component seismometer ground coupling for AVA 
tests, and c) typical AVA array geometries (after Foti et al. (2018)). ................. 109 

Figure 4.28. Experimental dispersion curve obtained by the University of Texas 
at Austin for the Mirandola site (Griffiths et al. 2016b). a) Typical velocity-
frequency plot, b) wavelength-velocity plot, and c) same of b) but for larger depths 
and suggested resolvable depth limits. ................................................................ 110 



 

 
 

Figure 4.29. Example of the application of the pseudo-depth method for a first 
assessment of the VS interval profile and/or a check of the obtained results after the 
inversion (after Foti (2000)). ............................................................................... 111 

Figure 4.30. Rayleigh waves particle motion with depth and usually adopted 
pseudo-depth (i.e., equal to half the experimental wavelength) (modified from 
Richart et al. (1970)). ........................................................................................... 111 

Figure 4.31. a) Best interval velocity profile, and b) comparison between the 
best solution VS,Z profile and the EDC at Mirandola (the University of Texas at 
Austin solution). ................................................................................................... 113 

Figure 4.32. Example of an f-k spectrum obtained for one shot at the site of 
Accumoli, Italy. ................................................................................................... 114 

Figure 4.33. Primary sources of epistemic uncertainties and aleatory 
variabilities identifiable during the MASW processing stage (after Foti et al. 
(2014)). ................................................................................................................ 117 

Figure 4.34. Example of acquired 8-sensor ambient vibrations and estimation 
of the R-wave velocity by HFK method (courtesy of Prof. Brady R. Cox). ....... 118 

Figure 4.35. Example of an f-k spectrum with clear evidence of a higher mode 
identification (after Foti et al. (2018)). ................................................................ 120 

Figure 4.36. Epistemic uncertainties and aleatory variabilities converged in the 
EDC for active-source tests. a) Normal histogram of VR for a fixed frequency (after 
Lai et al. (2005)), b) application of the chi-square test for the Normal assumption 
(after Lai et al. (2005)), c) example dataset of different measured EDCs in South 
Iceland (after Olafsdottir et al. (2018)), and d) calculated COV (after Olafsdottir et 
al. (2018)). ............................................................................................................ 121 

Figure 4.37. Approximated method to evaluate an initial model for the 
inversion process (after Foti et al. (2018)). .......................................................... 123 

Figure 4.38. Prediction error as a function of a model parameter in the solution 
of a least-squares nonlinear inverse problem. (a) Well-defined single minimum 
corresponding to a unique solution. (b) Two well-separated minima with lack of 
uniqueness in the solution. (c) Infinite well-separated countable minima with severe 
lack of uniqueness in the solution due to the periodicity of the prediction error 
function. (d) “Flat bottom” having an uncountable finite range of solutions with 

severe lack of uniqueness due to ill-conditioning of the prediction error function 
(after Foti et al. (2014)). ....................................................................................... 126 

Figure 4.39. Probability density function of the Fisher distribution and example 
of the application of the one-tail statistical test to obtain the statistical sample of VS 

profiles. ................................................................................................................ 127 

Figure 4.40. High-quality drone picture of Accumoli (16-12-2016). ........... 128 



 

 
 

Figure 4.41. Borehole information of the site of Accumoli, San Francesco 
Square. ................................................................................................................. 128 

Figure 4.42. Results of the inversion for the site of Accumoli, San Francesco 
square. a) Statistical sample of the interval velocity shear wave profiles, and b) 
statistical sample of the harmonic average shear wave velocity profiles. ........... 130 

Figure 4.43. Results of the inversion for the site of Accumoli, San Francesco 
square (PSWD). Comparison between the experimental dispersion curve (in black 
with its standard deviation) and 12512 theoretical dispersion curves selected by the 
statistical test over 400000 initial models. ........................................................... 130 

Figure 4.44. Example of an H/V curve obtained at the site of Fonte del Campo 
(after Passeri et al. (2018a)). ................................................................................ 132 

Figure 4.45. Smeducci’s tower, San Severino Marche (Italy). ..................... 134 

Figure 4.46. Plan view and a 2D geological section of the Smeducci’s tower 

area with the location of the two MASW tests and two HVSR measurements. .. 135 

Figure 4.47. Comparison between lowest misfit interval velocity VS profiles 
obtained with the improved Monte Carlo algorithm and the Neighbourhood 
Algorithm implemented in GEOPSY. ................................................................. 136 

Figure 4.48. Results of the geophysical characterization of the Smeducci’s 

Tower, San Severino Marche (Italy). a) Comparison between comparison between 
the lowest misfit TDC (in red) and the EDC (in black), and b) comparison between 
the ellipticity curve of the lowest misfit model (in red) and the experimental H/V 
curve (in black). c) Comparison between the interval VS velocity profiles obtained 
by the inversion of the single MASW test and the combined EDC-H/V inversion.
 ............................................................................................................................. 137 

Figure 4.49. Different investigated volumes obtained by means of invasive (i.e., 
CH, DH, and PS suspension logging) and non-invasive (i.e., seismic refraction, and 
surface wave) tests to be accounted for in the identification and quantification of 
AVs. ..................................................................................................................... 138 

Figure 4.50. Comparison of VS,30 obtained performing invasive or surface wave 
tests in five studies in the literature (after Garofalo et al. 2014b). ...................... 140 

Figure 4.51. Standard soil profile appropriate for the Central and Eastern United 
States sited and site categories indicated by their respective soil column depth (after 
EPRI (1993)). ....................................................................................................... 144 

Figure 4.52. Random shear wave interval velocity profiles (separate 
randomization of interval velocity and depth) (after EPRI (1993)). .................... 145 

Figure 4.53. Mathematical relationship between the logarithmic standard 
deviation and the coefficient of variation. ........................................................... 149 



 

 
 

Figure 4.54. Soil classification schemes adopted by Toro (1995) (after Toro 
(1995)). ................................................................................................................ 152 

Figure 4.55. Interval velocity profiles included in the category USGS A+B. a) 
Interval velocity profiles, b) logarithmic standard deviation of the interval velocity 
profiles, and c) mean +/- 1 sigma profiles (after Toro (1995)). ........................... 153 

Figure 4.56. Essential three parts of the TM95. a)  A layering model that 
describes the thickness of each layer (or the position of the interfaces, in an 
equivalent way), or rather the density of interfaces in one meter, which is a function 
of depth, b) the velocity model that describes the velocity of each layer at its mid-
depth (intra-layer), and c) the correlation model of the velocities of a layer with 
respect to the other layers as the depth varies (inter-layer). ................................ 154 

Figure 4.57. Comparison of the experimental transition rate obtained from the 
database and the theoretical transition rate obtained with the modified power law 
and the model parameters proposed (after Toro (1995)). .................................... 157 

Figure 4.58. Lognormal probability plot evaluated using the ensemble of data 
from the EPRI shear wave velocity database. Smooth curves correspond to the 10% 
Kolmogorov-Smirnov bounds of the probability distribution. A lognormal 
distribution (after Li and Assimaki (2010)). ........................................................ 158 

Figure 4.59. Results for the inter-layer correlation model proposed in the 
TM95. a) Table with the parameters classified for each category, and b) example of 
the correlation factors with depth for USGS A+B (after Toro (1995)). .............. 160 

Figure 4.60. Inter-method comparison of the theoretical transfer function ratios 
(i.e., surface wave over invasive) proposed by a) Boore and Brown (1998) for six 
sites and b) Brown et al. (2002) for three sites (after Boore and Brown (1998) and 
Brown et al. (2002)). ............................................................................................ 162 

Figure 4.61. a) Equivalent interval velocity profiles for Torre Pellice, b) EDC-
TTC comparison, c) comparison regarding TTF (i.e., small-strain dynamic 
behavior), and d) results as EQL surface response spectra (after Foti et al. (2009)).
 ............................................................................................................................. 164 

Figure 4.62. Fifty theoretical dispersion curves and 50 corresponding VS 
profiles, respectively, obtained from surface wave inversions based on different 
layering ratios (from a) to l)). The numbers in brackets represent dispersion misfit 
values. Also shown are the theoretical dispersion curves and the VS profiles 
corresponding to +/- 20% (after Teague and Cox (2016)). .................................. 165 

Figure 4.63. Fifty VS profiles generated using the Toro model and their 
corresponding theoretical dispersion curve with a) and b) site-specific parameters 
and c), and d) default/recommended parameters (after Teague and Cox (2016)).
 ............................................................................................................................. 166 



 

 
 

Figure 4.64. Median response spectra obtained from high-intensity EQL GRAs 
using a suite of 8 input motions scaled to a PGA of 0.3 g and VS from inversion 
with different layering ratios (from a) to f)) and those from the Toro model with g) 
site-specific parameters, and h) default parameters. The response spectra for the 
solution +/- 20% are shown in all sub-plots for comparison (after Teague and Cox 
(2016)). ................................................................................................................ 167 

Figure 4.65. Profiles generated for the GRAs at Mirandola. Experimental 
dispersion data for Mirandola and the theoretical dispersion curves from the 50 
inversions VS profiles, the minimum misfit, the 5th and 95th percentile and the +/- 
20% for a) Rayleigh wave and b) Love wave data (within square brackets the misfit 
values). Experimental dispersion data for Mirandola and the theoretical dispersion 
curves from the 50 inversions VS profiles, and the 50 Toro-generated profiles for c) 
Rayleigh wave and d) Love wave data (within square brackets the misfit values) 
(after Griffiths et al. (2016a)). ............................................................................. 168 

Figure 4.66. a-c) Equivalent linear response spectra and d-f) amplification 
factors for each VS profile at Mirandola (after Griffiths et al. (2016b)). ............. 169 

Figure 4.67. a) VS profiles previously developed at the GVDA site using 
downhole testing (Gibbs 1989), shallow and deep PS suspension logging (Stellar 
1996), and SASW testing (Stokoe et al. 2004b). b) Theoretical linear viscoelastic 
shear wave transfer functions (TTFs) between a depth of 150 m and the ground 
surface were computed for the previously developed VS profiles that extended into 
rock (i.e., seismic downhole and simplified PS logging). Also shown in b) is the 
median ETF +/- σlnETF (after Teague et al. (2018)). ............................................. 170 

Figure 4.68. Theoretical linear viscoelastic shear wave transfer functions 
(TTFs) between a depth of 150 m and the ground surface for VS profiles developed 
via randomization about the a) downhole VS profile and b) PS suspension log VS 
profile (after Teague et al. (2018)). ...................................................................... 171 

Figure 4.69. Theoretical linear viscoelastic shear wave transfer functions 
(TTFs) between the ground surface and a depth of 150 m computed using the 
inversion VS for the 99 ground models from the North, Central, and South 
accelerometer locations developed using layering ratios of a) 1.5, b) 2.0, c) 3.0, d) 
3.5, e) 5.0, and f) 7.0. The median transfer function, computed using 99 TTFs (33 
from each accelerometer location), is indicated for each layering ratio. Also shown 
is the median ETF +/- lnETF (after Teague et al. (2018)). ................................... 172 

Figure 4.70. a, b) VS profiles, c, d) theoretical fundamental mode Rayleigh 
wave dispersion curves, and e, f) TTFs associated with the randomized and 
screened-randomized VS profiles. Randomized and screened-randomized profiles 
were developed using the downhole a, c, e) and PS log b, d, f) VS profiles as base 



 

 
 

cases. Shown in c) and d) is the mean experimental dispersion data. Shown in e) 
and f) are the median ETF and its associated standard deviation. ....................... 173 

Figure 5.1. Shear wave velocity profiles classified according to the soil classes 
described in Eurocode 8 and used for the work by Aimar (2018). ...................... 176 

Figure 5.2. Spatial distribution of the sites investigated and included in the 
PSWD. ................................................................................................................. 179 

Figure 5.3. Experimental wavelengths associated with each EDC of sites 
included in the PSWD. ......................................................................................... 180 

Figure 5.4. Classification of the sites included in the PSWD following the 
NEHRP or EC-8 provisions. ................................................................................ 181 

Figure 5.5. Fitting models for the coefficient of variation of the Rayleigh wave 
velocity, a) entire set of experimental values along with the calculated moving 
average, b) results of the 4 different approaches used for the fitting and Adjusted 
R-Square values, and c) selected best model and suggested precautionary choice.
 ............................................................................................................................. 184 

Figure 6.1. Input parameters, output parameters and the primary goal of the 
free-layering and geostatistical randomization models. ...................................... 186 

Figure 6.2. Set of equivalent TDCs obtained for the site of Acquasanta Terme 
(in red the minimum misfit) along with the EDC. ............................................... 189 

Figure 6.3. a) Set of equivalent interval velocity profiles and b) set of equivalent 
harmonic average shear wave velocity profiles obtained for the site of Acquasanta 
Terme (in red the minimum misfit and in dashed black the results from the DH test).
 ............................................................................................................................. 190 

Figure 6.4. a) Set of equivalent interval velocity profiles and b) set of equivalent 
harmonic average shear wave velocity profiles obtained for the site of Acquasanta 
Terme (in red the minimum misfit and in dashed black the results from the DH test).
 ............................................................................................................................. 190 

Figure 6.5. Correlation between the shear wave velocity and the depth of the 
halfspace for Acquasanta Terme. ......................................................................... 191 

Figure 6.6. Determination of the wavelength-depth (i.e., 𝝀-𝒛) relationship for 
Acquasanta Terme. .............................................................................................. 192 

Figure 6.7. Determination of the wavelength-depth (i.e., 𝝀-𝒛) relationship after 
the first round of inversions. ................................................................................ 193 

Figure 6.8. Application of the obtained 𝝀-𝒛 transformation to Accumoli, GMN, 
Tarcento-10, and Tarcento-2. ............................................................................... 194 

Figure 6.9. Inferential method applied to the interval velocity profiles at a depth 
equal to 3 m for Acquasanta Terme. a) Set of equivalent profiles obtained after the 
first round of inversions (i.e., fixed number of layers), b) normal distribution panel 



 

 
 

as a histogram and Q-Q plot, c) lognormal distribution panel as a histogram and Q-
Q plot. .................................................................................................................. 196 

Figure 6.10. Inferential method applied to the interval velocity profiles at a 
depth equal to 6 m for Acquasanta Terme. a) Set of equivalent profiles obtained 
after the first round of inversions (i.e., fixed number of layers), b) normal 
distribution panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 
histogram and Q-Q plot. ...................................................................................... 197 

Figure 6.11. Inferential method applied to the harmonic average velocity 
profiles at a depth equal to 3 m for Acquasanta Terme. a) Set of equivalent profiles 
obtained after the first round of inversions (i.e., fixed number of layers), b) normal 
distribution panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 
histogram and Q-Q plot. ...................................................................................... 197 

Figure 6.12. Inferential method applied to the harmonic average velocity 
profiles at a depth equal to 6 m for Acquasanta Terme. a) Set of equivalent profiles 
obtained after the first round of inversions (i.e., fixed number of layers), b) normal 
distribution panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 
histogram and Q-Q plot. ...................................................................................... 198 

Figure 6.13. Inferential method applied to the cumulated travel time profiles at 
a depth equal to 3 m for Acquasanta Terme. a) Set of equivalent profiles obtained 
after the first round of inversions (i.e., fixed number of layers), b) normal 
distribution panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 
histogram and Q-Q plot. ...................................................................................... 198 

Figure 6.14. Inferential method applied to the cumulated travel time profiles at 
a depth equal to 6 m for Acquasanta Terme. a) Set of equivalent profiles obtained 
after the first round of inversions (i.e., fixed number of layers), b) normal 
distribution panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 
histogram and Q-Q plot. ...................................................................................... 199 

Figure 6.15. Rate of inter-layer boundaries (lambda) in the VS profiles obtained 
in the round 2 inversion results for the Acquasanta Terme site. The mean and 
maximum and minimum boundaries of the depth-dependent layer occurrence ratio 
are also shown. ..................................................................................................... 200 

Figure 6.16. Example of application of the shift to the EDC (i.e., from 
wavelength to depth) and identification of the “dark zones” where the experimental 

information loses of resolution with depth (Acquasanta Terme). ....................... 201 

Figure 6.17. Regression of the minimum generable thickness imposed on the 
randomization model for Acquasanta Terme. ...................................................... 202 

Figure 6.18. Inferential method applied to the halfspace velocities for 
Acquasanta Terme. a) Halfspace VS-halfspace depth relationship after the first 



 

 
 

round of inversions (i.e., fixed number of layers), b) normal distribution panel as a 
histogram and Q-Q plot, c) lognormal distribution panel as a histogram and Q-Q 
plot. ...................................................................................................................... 203 

Figure 6.19. Inferential method applied to the halfspace depths for Acquasanta 
Terme. a) Halfspace VS-halfspace depth relationship after the first round of 
inversions (i.e., fixed number of layers), b) normal distribution panel as a histogram 
and Q-Q plot, c) lognormal distribution panel as a histogram and Q-Q plot. ..... 204 

Figure 6.20. Correlation matrix plot for Acquasanta Terme and evaluation of 
the Pearson’s linear correlation coefficient. ........................................................ 204 

Figure 6.21. Schematic flow of the second round of inversions. .................. 207 

Figure 6.22. Determination of the wavelength-depth (i.e., 𝝀-𝒛) relationship after 
the second round of inversions. ........................................................................... 209 

Figure 6.23. Logarithmic standard deviation calculated for the cumulated travel 
time for each site in the PSWD. ........................................................................... 212 

Figure 6.24. a) Logarithmic standard deviation calculated for the interval shear 
wave velocity profile for each site in the PSWD and b) same as a) including other 
results in the literature. Specifically, R.M. et al. 2014 (Rodriguez-Marek et al. 
2014), G. et al. 2016 (Griffiths et al. 2016), T&C 2016 (Teague and Cox 2016), S. 
et al. 2014 (Stewart et al. 2014), P. et al. 2018 (Passeri et al. 2019). .................. 213 

Figure 6.25. Geometrical variables included in the formulation for the proposed 
first-order auto-regressive model. ........................................................................ 214 

Figure 6.26. Results of the nonlinear regression of the experimental inter-layer 
travel-time correlation coefficients: a) 𝒕 − 𝝆 space, b) 𝒛 − 𝝆 space, and c) 3D space 
with the best fitting solution obtained for Accumoli. .......................................... 215 

Figure 6.27. Standard-normal plot for the estimation of the correlation 
coefficient between the halfspace depth and halfspace velocity. ........................ 216 

Figure 6.28. Results of the analysis of sensitivity performed for the logarithmic 
standard deviation of the halfspace depth. a) 𝑪𝑶𝑽𝝀𝒎𝒂𝒙 − 𝝈𝐥𝐧𝒅𝒉 space, b) 𝜼 −
𝝈𝐥𝐧𝒅𝒉, and c) 3D space with the interpolated experimental values. .................. 218 

Figure 6.29. Results of the analysis of sensitivity performed for the logarithmic 
standard deviation of the halfspace velocity. a) 𝑪𝑶𝑽𝑽𝑹,𝒎𝒂𝒙 − 𝝈𝐥𝐧𝑽𝒉 space, b) 
𝜼 − 𝝈𝐥𝐧𝑽𝒉, and c) 3D space with the interpolated experimental values. ........... 220 

Figure 6.30. Input parameters for the geostatistical model, a) velocity profiles 
and experimental dispersion curve and b) Poisson’s ratio profile associated with the 

base-case velocity profile (Accumoli). ................................................................ 221 

Figure 6.31. Schematic flow for the generation of consistent values of 
compressional wave velocities and Poisson’s ratios. ........................................... 223 



 

 
 

Figure 6.32. Layering generation for the example of Accumoli, a) occurrence 
rate of the base-case profile fitted and generated for the randomized profiles and b) 
minimum thickness limitation according to the experimental resolution with depth.
 ............................................................................................................................. 225 

Figure 6.33. Results of the randomization for Accumoli. a) Randomized 
cumulated travel-times (for P- and S-waves), b) randomized harmonic average 
profiles (for P- and S-waves), c) generated Poisson’s ratios, d) 3D histogram for the 
random variable VS,Z, and e) 3D histogram for the random variable Poisson’s ratio.

 ............................................................................................................................. 226 

Figure 6.34. Example of randomization and comparison between the Toro 
(1995) model and the new geostatistical model proposed in the present Chapter. 
The comparison is conducted by introducing the uncertainty only in the spatial 
variable. ................................................................................................................ 227 

Figure 6.35. Complete Accumoli profile randomization. ............................. 228 

Figure 6.36. Validation of the randomization performed for the site of 
Accumoli, a) comparison as theoretical dispersion curves, and b) comparison as 
theoretical transfer functions. .............................................................................. 229 

Figure 6.37. Base-case profile for the application of the geostatistical model to 
the DH test in Acquasanta Terme. a) Shear wave velocity base-case interval profile 
and b) cumulated travel times with experimental standard deviations compared to 
the cumulated travel times calculated from the base-case interval velocity profile.
 ............................................................................................................................. 231 

Figure 6.38. Randomization results obtained from the DH test performed in 
Acquasanta Terme. a) Interval velocity profiles reassembled and b) Theoretical 
Transfer Functions. .............................................................................................. 232 

Figure 7.1. Location of the three sites analyzed during the InterPACIFIC 
project (after Garofalo et al. 2016b). ................................................................... 234 

Figure 7.2. Stratigraphy of the Mirandola site (after Garofalo et al. 2016a). 235 

Figure 7.3. Locations and characteristics of the surface wave acquisitions 
performed at Mirandola (after Garofalo et al. 2016b) and position of the boreholes.
 ............................................................................................................................. 236 

Figure 7.4. Experimental Dispersion Curves obtained by different teams at the 
site of Mirandola. ................................................................................................. 238 

Figure 7.5. Profiles at Mirandola selected for the Ground Response Analyses, 
a) interval velocity profiles, and b) harmonic average profiles. .......................... 239 

Figure 7.6. Profiles at Mirandola selected for the Ground Response Analyses 
including the upper/lower range profiles, the profiles generated by the Toro model, 



 

 
 

and the profiles generated by the new geostatistical model as a) interval velocity 
profiles, and b) harmonic average profiles. ......................................................... 241 

Figure 7.7. Experimental Dispersion Curves obtained by different teams at the 
site of Mirandola and Theoretical Dispersion Curves calculated from the set of 
profiles available for the subsequent Ground Response Analyses, included the 
solution obtained from the work by Laurenzano et al. (2017). ............................ 242 

Figure 7.8. Comparison of the five classes of profiles as Theoretical Transfer 
Functions. The experimental resonant frequency obtained by the HVSR test is also 
indicated. .............................................................................................................. 246 

Figure 7.9. Comparison obtained for the first resonant frequencies of the 
theoretical transfer functions for each of the 1000 profiles of Class 4 and Class 5 
profiles. ................................................................................................................ 246 

Figure 7.10. Results of the Equivalent Linear Analyses conducted for the five 
classes of profiles and the 0.1 g scaled input motions, a) Surface Response Spectra 
and b) Amplification Functions. .......................................................................... 248 

Figure 7.11. Results of the Equivalent Linear Analyses conducted for the five 
classes of profiles and the 0.5 g scaled input motions, a) Surface Response Spectra 
and b) Amplification Functions. .......................................................................... 249 

Figure 7.12. Mean response spectra and logarithmic standard deviations for a) 
and b) the low-intensity input motions suite and for c) and d) the high-intensity 
input motions suite. .............................................................................................. 250 

Figure 7.13. Mean amplification functions and logarithmic standard deviations 
for a) and b) the low-intensity input motions suite and for c) and d) the high-
intensity input motions suite. ............................................................................... 251 

Figure 7.14. Selected DH profiles at Mirandola: a) interval velocity profiles, 
and b) harmonic average profiles. In green, the profiles obtained from surface wave 
methods are also shown (see Figure 7.5). ............................................................ 252 

Figure 7.15. Down-Hole profiles at Mirandola including the upper/lower range 
profiles, the profiles generated by the Toro model, and the profiles generated by the 
prototype geostatistical model as a) interval velocity profiles, and b) harmonic 
average profiles. In green, also the solutions obtained from surface wave methods 
are proposed (see Figure 7.6). .............................................................................. 253 

Figure 7.16. Theoretical Dispersion Curves associated with the DH profiles 
obtained by different teams at the site of Mirandola and calculated from the set of 
profiles from EPRI provisions and from the prototype geostatistical model. ..... 254 

Figure 7.17. a) Comparison of the profiles as Theoretical Transfer Functions. 
The experimental resonant frequency obtained by the HVSR test is also indicated. 



 

 
 

b) Comparison obtained for the first resonant frequencies of the Theoretical 
Transfer Functions. .............................................................................................. 255 



 

1 
 

Chapter 1                                                                                                          
Introduction 

1.1    Motivation 

The estimation of the seismic risk is of primary interest in a comprehensive 
framework, ranging from Earthquake Engineering to Civil Protection purposes. 
Massive efforts are made to provide an accurate prediction of the seismic hazard at 
a site by means of numerical simulations and/or analysis of recorded data. In this 
context, the performance of hazard-consistent site response analyses represents one 
of the most challenging aspects.  

In particular, the seismic hazard is strongly dependent on the near-surface 
characteristics of the soil deposit that are usually modeled by one-dimensional site 
response analyses (termed Ground Response Analyses, GRAs). In this regard, both 
Epistemic Uncertainties (EUs) and Aleatory Variabilities (AVs) have to be 
Identified, Quantified and Managed (i.e., IQM method) along the GRA process. 
This operation is essential for a rigorous agreement with the hazard results obtained 
with Probabilistic Seismic Hazard Analyses. However, various criticisms arise 
moving from the theoretical to the practical point of view, particularly for the 
identification and quantification steps. 

The epistemic uncertainties result from incomplete knowledge of the physics 
of the process and/or from insufficient and/or inadequate experimental data and 
adopted models. They can, in principle, be reduced by the collection of additional 
and higher quality information and can be managed with advanced models. The 
aleatory variability refers to the intrinsic randomness of natural systems. It can be 
quantified, but it cannot be reduced using multiple experimental measurements.  

Epistemic uncertainties and aleatory variabilities in GRAs can be grouped in 
four main classes of parameters (Idriss 2004). These are included in the shear wave 
velocity profile, the modulus reduction and damping curves, the input motion 
selection process, and the numerical model adopted for the simulations (Rathje et 
al. 2010). The shear strength and the small-strain damping can be considered as two 
further sources of uncertainties and variabilities. 

The shear wave velocity (VS) profile is the parameter that controls the elastic 
behavior of the soil deposit as a small-strain “site signature”. The VS profiles are 
estimated by seismic (i.e., geophysical) tests that are often divided into two broad 
categories: invasive or non-invasive methods (Foti 2000). The invasive methods 
still represent a solid reference, even if they can be affected by large biases 
(resulting from both EUs and AVs). On the contrary, the non-invasive tests are 
increasingly spreading in standard practice because of their time and cost-
effectiveness.  
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The identification of EUs and AVs in shear wave velocity profiles should be 
performed by expert analysts, explicitly accounting for the geophysical background 
theory. In particular, each seismic test shows specific sources of uncertainties and 
variabilities. This step is then dramatically delicate for the application of the 
theoretical definitions of EUs and AVs. 

The quantification of EUs and AVs for shear wave velocity profiles should 
evaluate the global engineering perspective of the case study and the spatial scale 
of the specific problem. Different geophysical methods are associated with a 
specific amount of EUs and AVs that strongly depends on the characteristics of the 
investigated volume (e.g., geological environment). In addition, for most cases, an 
accurate separation of these contributes appears not feasible from a practical point 
of view. 

The management of epistemic uncertainties and aleatory variabilities in shear 
wave velocity profiles still represents an open issue (Stewart et al. 2014a), 
particularly in case of a limited deterministic framework. For these purposes, two 
methods are presented in the Electric Power Research Institute (EPRI) guidelines 
and are usually adopted for scientific and technical applications. The first is referred 
to as alternative (upper-range and lower-range) method and is suggested for the 
management of epistemic uncertainties. The second is described in Toro (1995) as 
a geostatistical randomization model for the management of aleatory variabilities. 
Many authors demonstrated various limits of these methods in reproducing a 
consistent “picture” of uncertainties and variabilities. In particular, the upper-lower 
range profiles lead to a distorted response of the soil profile, mainly due to the 
scaling procedure. Similarly, the Toro model generates shear wave velocity models 
that are incompatible with the experimental evidence (i.e., site signatures). This is 
mainly due to the inadequate randomization approach. In addition, the separate 
management of EUs and AVs can be difficult in light of the various issues in the 
identification and quantification steps. However, the proposed model is 
independent of the type of uncertainty that is identified and quantified in the first 
steps of the IQM method. For example, the model calibration performed for the 
surface wave testing methods is based on the joint management of EUs and AVs, 
as a distinction is practically unfeasible for these tests. 

1.2    Research Objectives and Achievements 

The primary goal of the dissertation is the development of a new geostatistical 
model for the independent management of EUs and AVs in shear wave velocity 
profiles obtained with surface wave tests. The model has to be able to overcome the 
limitations of the usual methods adopted for scientific and technical applications 
indistinctly for EUs and AVs. On the same hand, the model should solve the 
limitations of the deterministic solutions usually available after the characterization 
of a site. 

The geostatistical model has to be calibrated with a high-quality database of 
surface wave experimental measurements. The proposed model is based on the 
specifically compiled Polito Shear Wave velocity Database (PSWD) that ensures 
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high-quality standards. A systematic inversion conducted for each site guarantees 
the quality of the obtained solutions. The PSWD represents the fundamental 
ingredient for the development of the geostatistical model and the additional side-
products presented in the dissertation.  

The Toro model randomizes the interval velocities based on a stack of a finite 
number of horizontal layers with constant velocity. The inadequacies of the interval 
velocity scheme are extensively demonstrated in the dissertation, as they are only 
an engineering scheme adopted in GRA models. The new geostatistical model 
assumes a neat separation between the fundamental physical quantities of space and 
time, avoiding parasite (i.e., multiple) uncertainties. The double-counting of 
uncertainties is indeed typical if the model randomizes separately the interval 
velocity and the depth of interfaces (i.e., layer thicknesses), as proposed in Toro 
(1995).  

The new geostatistical model has to be site- and test-specific. This allows 
reproducing realistic (i.e., experimentally-based) characteristics of the test 
regarding both EUs and AVs. 

Finally, the new geostatistical model has to be flexible for further 
improvements (e.g., an extension of applicability to other geophysical tests). The 
“core” of the model remains fixed, whereas additional dedicated parts can be 
introduced to specify the problem. In this regard, the dissertation presents a 
prototype evolution of the model applied to Down-Hole tests that represents the 
natural extension of the model. 

The dissertation also includes three side products. The first is the regression of 
a function for the experimental quantification of EUs and AVs in the dispersion 
curve. The proposed formulation could be used in case of deterministic processing 
of the seismic data. Then, a further achievement regards the development of a robust 
transformation law between the wavelength of the Rayleigh waves and the depth of 
the harmonic average VS profile. This approach presented in Socco et al. (2017) is 
very appealing for the possible development of an “inversion-free” analysis of 

surface waves. The third main side product of the research is the implementation of 
a rigorous method for the inversion of the experimental dispersion curve with a 
variable number of layers. This methodology considerably enlarges the space of the 
solutions of the inverse process. These three results demonstrate the benefits of the 
PSWD that offers an excellent resource also for future research. 

1.3    Dissertation Outline 

The dissertation is organized in two different blocks. The first part is 
methodological: it gives an insight into the characteristics of modern approaches 
for hazard-consistent GRAs for ground motion predictions. The remaining part 
presents the new geostatistical model and its applications (both to surface wave 
methods and Down-Hole tests), the side products, and the conclusions. 

More in detail, in Chapter 2, the global framework is presented, and the various 
contributes to the seismic risk are briefly analyzed. The discussion focuses on the 
more generic to the specific problem of site effects along with a list of examples of 
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hazard assessment studies. Then, the dissertation addresses the distinction between 
epistemic uncertainties and aleatory variabilities for IQM purposes in a non-ergodic 
perspective. The Chapter focuses on the practical issues included in the 
methodology. 

Chapter 3 is entirely devoted to the specific problem of the site effects. The 
primary methods for evaluating the influence of the site effects are discussed (i.e., 
numerical simulations and/or analysis of recorded data). Then, the dissertation 
focuses on the primary sources of EUs and AVs in GRAs (i.e., 1D numerical 
simulations) that are summarized in a dedicated section. Also, the effects of these 
sources are presented by means of an extensive literature overview, always 
highlighting the delicate processes of identification and quantification. 

Chapter 4 is dedicated to the VS profiles and includes a brief introduction on 
seismic waves in elastic solids and associated geotechnical parameters. An 
overview of the methods currently used in practice and newly proposed for soil 
characterization is also presented. The Chapter includes a useful summary 
regarding the crucial identification and quantification of EUs and AVs for each 
seismic test. A specific section is devoted to the management process with a broad 
literature overview of the most adopted methods and their applications. 

Chapter 5 describes the characteristics of the Polito Shear Wave velocity 
Database (PSWD) that has been specifically compiled for the present study. 
Particular attention is paid to the quantification of EUs and AVs in the experimental 
dispersion curve and their often unfeasible practical separation. 

Chapter 6 presents the operations conducted on the PSWD in addition to the 
step-by-step development and calibration of the geostatistical model for surface 
wave methods. A systematic inversion with variable layers number was performed 
for each site in the database. This was conducted to study the optimal mathematical 
architecture for the model and the distribution of the considered random variables. 
Indeed, the results of the inversions allowed a rigorous evaluation of the essential 
characteristics of the experimental evidence that should be reproduced by the 
randomization model. The development and calibration of the geostatistical model 
are step-by-step presented in details, along with a final example of an application 
for a site in the PSWD. Chapter 6 also includes the extension of the geostatistical 
model to Down-Hole tests. This application represents a step-forward and 
demonstrates the flexibility of the proposed model. However, the lack of a 
dedicated database prevents the calibration of the geostatistical model also for these 
types of invasive tests. As for the application to surface wave methods, also in this 
case the model can manage indistinctly EUs or AVs. 

A systematic application of the developed geostatistical model for surface wave 
tests is proposed in Chapter 7. In this case, however, the site was not part of the 
PSWD, in order to rigorously validate the results of the model. The site of 
Mirandola is chosen for a large amount of available information, as collected during 
the InterPACIFIC project. The Chapter can be seen as an extension of the work 
presented in Passeri et al. (2019) and concludes the topic with a broad comparison 
of the different methods for the management of EUs and AVs in VS profiles. This 
Chapter presents also a further application of the geostatistical model to a Down-
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Hole test performed in Mirandola. As already discussed, the capabilities of the 
model allow for an extension to invasive tests, although a test-specific set of model 
parameters would be required. 

Finally, Chapter 8 summarizes some comments and conclusions, together with 
the indication of some specific topics for further development and research. 

Appendix A reports details about the PSWD and the results of the inversions 
that were used as the main ingredient of the proposed geostatistical model. 
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Chapter 2                        
Probabilistic Seismic Hazard 
Analysis: Epistemic Uncertainty, 
Aleatory Variability, and 
Ergodicity 

The present Chapter gives a global perspective of introductory definitions regarding 
the probabilistic hazard-consistent prediction of earthquake-induced ground 
motions. The discussion starts from the usual methods and procedures for the 
evaluation of the seismic hazard at a specific site. Particular attention is paid to the 
inclusion of site effects within the hazard estimations, as broadly discussed in 
Stewart et al. (2014). The importance of uncertainties and variabilities is discussed 
in Section 2.2, where a detailed discussion regarding the Identification, 
Quantification, and Management (IQM) of Epistemic Uncertainties (EUs) and 
Aleatory Variabilities (AVs) is presented. The discussion highlights the major 
challenges included in the three steps, particularly in terms of separation of the two 
main contributes to the identification and quantification steps. 

2.1 Seismic Hazard 

The study of seismic events has always been a crucial topic in earthquake 
engineering. The prediction and assessment of the effects of a seismic event is a 
multidisciplinary process that involves seismologists, geotechnical and structural 
engineers, risk management experts and politicians. In particular, the analysis of 
the seismic risk can be broken into three separate components (Figure 2.1) as 
suggested in the Performance-Based Earthquake Engineering (PEER, Pacific 
Earthquake Engineering Research center) methodology (Moehle 2003): 

- Seismic hazard assessment (Hazard); 
- Structural response and damage to components (Vulnerability); 
- Repair costs and loss analysis (Exposure). 

The first component (i.e., hazard) regards the prediction of a suitable set of 
ground motion intensity measures (i.e., simple parametrizations of the seismic 
ground motion). A vector of intensity measures (or a single parameter) is predicted 
as a function of site/seismic parameters adopting full probability distribution 
functions. The evaluation of the vulnerability requires engineering demand 
parameters to quantify the structural response. These parameters are predictable as 
a function of the prescribed intensity measures adopting full probability distribution 
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functions. The exposure is quantified by decision variables and provides tools for 
decision makers (e.g., owners, public policy officials) regarding the possible losses 
and the total cost. 

Each of these components is affected by uncertainties and variabilities that 
propagate to the final result (i.e., global loss estimate) (Baker & Cornell 2008). In 
this dissertation, only the hazard contribution to the total risk is addressed. Indeed, 
the objective is to obtain design ground motions (i.e., described by appropriate 
intensity measures) expected at a site as a result of future earthquakes (i.e., for 
different return periods in a probabilistic framework. 

 

Figure 2.1. Schematic illustration of the three contributions to the final 
seismic risk. 

A seismic hazard study accounts for all the complex factors that control the 
ground motion at a site. These are generally grouped into the source, path, and site 
effects (see Figure 2.3). In this work, the attention will be paid to the modeling of 
the site response (i.e., site effects). Indeed, examples in the literature showed that 
the site contribution is one of the most important (e.g., Bazzurro and Cornell 
2004a), although some other studies contest this assertion (e.g., Lee & Anderson 
(2000)). Only in this Chapter, the following introductory definitions apply to the 
source, path, and site contributions in the global perspective of the seismic hazard 
assessment.  
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The most popular method adopted for seismic hazard assessments is the 
Probabilistic Seismic Hazard Analysis (PSHA) method, described by Allin Cornell 
in 1968. The PSHA method replaced the more straightforward Deterministic 
Seismic Hazard Analysis (DSHA). Figure 2.2 presents a schematic comparison of 
the two methods; further details can be found in Kramer (1996).  

Specifically, a PSHA is a methodology that estimates the likelihood that 
various levels of earthquake-induced ground motion will be exceeded at a given 
location in a given future time period (Budnitz et al. 1997). A PSHA integrates (see 
Equation 2.1) over all possible ground motions at a site to produce a composite 
representation of the hazard at the site (Cornell 1968). The PSHA has a firm basis 
in earth sciences and earthquake engineering and allows decisions on seismic 
design levels for a facility to be made in the context of the earthquake magnitudes, 
locations, and ground motions that may occur (McGuire 2008). The “hazard 

integral” can generally be written as 
 

𝑃[𝑌 > 𝑦∗] = 𝑃[𝑌 > 𝑦∗|𝑿]𝑃[𝑿] = ∫𝑃[𝑌 > 𝑦∗|𝑿] 𝑓𝑥(𝑿)𝑑𝑥 (Eq. 2.1) 

 
where 𝑿 is a vector of random variables that influences 𝑌. For simplicity, we can 
assume that the quantities in 𝑿 are limited to the magnitude 𝑀, and the distance 𝑅. 
The result of a PSHA is usually associated with a reference condition (e.g., stiff and 
flat outcrop). The hazard at the reference condition is given as a mean (or median) 
hazard curve for a single intensity measure (e.g., spectral acceleration at a given 
oscillator period) and its associated uncertainties, represented by different fractiles 
for different confidence levels to be adopted in the design (Abrahamson & Bommer 
2005) (Figure 2.3). The hazard curve plots the mean annual rate of exceedance of 
the intensity measure as a function of the amplitude of the intensity measure. For a 
given mean annual rate of exceedance, the hazard at a reference condition can also 
be given in term so the Uniform Hazard Spectrum, UHS (either mean, median, or 
at a given fractile level). 

The analyst of a PSHA study accounts for the contributions of the uncertainties 
of the engineering approach and the inherent randomness of the seismic 
phenomenon. The Identification, Quantification, and Management (IQM) of the 
involved uncertainties always represented a critical issue (Budnitz et al. 1997, 
Bommer & Abrahamson 2006) in PSHA studies. Modern PSHA studies should 
consider the variability of the earthquake magnitude, distance, and intensity. Also, 
for very critical facilities, more complete methodologies are adopted to investigate 
also model uncertainties and different alternative modeling choices (Abrahamson 
& Bommer 2005).  

In the early 2000s, the probabilistic approach was opposed by some 
practitioners and scientists who supported the more “transparent” deterministic 

approach (Krinitzsky 1995, Bommer 2003). In DSHA, a single, deterministic 
design earthquake resulted from the analysis, instead of an integrated description of 
the seismic hazard representing all events. This “design earthquake” was often 
desired wherein the earthquake threat was characterized by a single value of 
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magnitude, distance, and other relevant parameters (McGuire 1995). With the 
advent of PSHA and the inclusion of uncertainties in the seismic hazard assessment 
study, the design earthquake disappears, and this raised criticism and doubts in the 
scientific and professional community. One implication of the absence of a precise 
design earthquake is that it is no longer clear how to select realistic accelerograms 
when engineering design is required. The authors recognized the importance of the 
PSHA but affirmed that the adoption of recorded accelerograms in the reproduction 
of the hazard is strongly dependent on the analysis results. Sometimes, indeed, the 
PSHA integration operation leads to spectra (e.g., the UHS) that are not realistic for 
design purposes. Nowadays, however, the adoption of a consistent and complete 
probabilistic approach to evaluate the seismic hazard is globally recognized, and 
PHSA studies are conducted all around the world ranging from ordinary buildings 
to critical facilities (McGuire 2008, Rathje et al. 2015). 
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Figure 2.2. DSHA and PSHA method (modified from Kramer (1996)). 

2.1.1 Site Effects 

The site response (i.e., site effect) describes the effects of local site conditions 
on earthquake ground motions. Site effects are quantified by the difference between 
the ground motion for a given site condition (i.e., specific) and what would have 
occurred at a reference condition. Typically, the ground motion at the reference 
condition is prescribed by the PSHA study. Beyond the source and path, the site 
response should be addressed to evaluate a seismic hazard that includes the site 
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characteristics (see Figure 2.3). The UHS (or, equivalently, the hazard curve) is 
therefore used as input into the evaluation of the surface ground motion.  

In recent years, considerable progress has been made in the evaluation of the 
site response. In 2004, Boore shared his skepticism regarding an accurate and 
precise evaluation of the surface motion with empirical or theoretical approaches. 
He showed that there was a significant amount of variability in ground motions, 
both site-to-site (i.e., for a given earthquake) and earthquake-to-earthquake (i.e., for 
a given site). For these reasons, he suggested the use of mean site responses for a 
broad class of sites. 

Nowadays, an hazard-consistent ground motion prediction should include a 
specific site term (Baturay & Stewart 2003, Goulet et al. 2007, Papaspiliou et al. 
2012a, Kaklamanos et al. 2013b, Pehlivan et al. 2016). The specific site term can 
be evaluated using analysis of recorded ground motions (i.e., data-based) and/or 1D 
numerical simulations (termed simulation-based Ground Response Analyses, 
GRAs,) reproducing the mean and standard deviation of the site response (Olsen 
2000, Bazzurro & Cornell 2004a).  

 

Figure 2.3. Surface hazard terms: source, path, and site along with an 
example of obtained hazard curve for a reference condition. 

The site response (i.e., site effect) is represented in engineering seismology and 
geotechnical earthquake engineering in the frequency (or oscillator period) domain. 
The Spectral Acceleration (SA) at an oscillator period 𝑇0,  𝑆𝐴(𝑇0), is the maximum 
acceleration of a Single Degree Of Freedom (SDOF) system with a period 𝑇 = 𝑇0, 
subjected to an input motion: 

 
𝑆𝐴(𝑇0) = max[𝑎(𝑡)]}|𝑇=𝑇0 (Eq. 2.2) 
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The curve obtained by discretely changing the period 𝑇 of different SDOFs 
subjected to the same excitation is hereafter called Response Spectrum (RS). The 
spectral acceleration obtained for 𝑇0 = 0 𝑠 (i.e., infinitely stiff system) is equal to 
the peak acceleration in the ground (i.e., the  Peak Ground Acceleration, PGA). The 
mean Amplification Function (AF) is calculated as the ratio of spectral 
accelerations of the surface and of the input motion as: 

 

𝐴𝐹(𝑇)̅̅ ̅̅ ̅̅ ̅̅  =
𝑆𝐴(𝑇)𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑆𝐴(𝑇)𝑖𝑛𝑝𝑢𝑡
(Eq. 2.3) 

 
As both functions are lognormally distributed, is preferable to quantify their 

standard deviations in natural log units (i.e., 𝜎ln(SA)(𝑇), and 𝜎ln(AF)(𝑇)). Similarly, 
Eq. 2.3 can be rewritten as: 

 
ln(AF(T)) = [ln( SA(T)surface) − ln(SA(T)input)] (Eq. 2.4) 

 
It is essential to include 𝐴𝐹(𝑇)̅̅ ̅̅ ̅̅ ̅̅  in PSHA studies to obtain a more rigorous and 

specific (not necessarily lower) (Papaspiliou et al. 2012a, Pehlivan et al. 2016) 
evaluation of the hazard at the site, including nonlinear effects (i.e., PSHA-NL) 
(Park & Hashash 2005b). Indeed, the shape and the mathematical model describing 
the amplification function of the site should be carefully evaluated (Bazzurro & 
Cornell 2004b, Goulet et al. 2007, Seyhan & Stewart 2014, Stewart et al. 2014a) to 
reproduce the nonlinear soil response (Afshari & Stewart 2015a). 

The mean amplification function should be calculated along with its standard 
deviation 𝜎ln(AF)(𝑇) (Olsen 2000, Bazzurro & Cornell 2004b, Papaspiliou et al. 
2012b, Pehlivan et al. 2016, Aristizabal et al. 2018). The inclusion of 𝜎ln(AF)(𝑇) 
along with the mean amplification function within a rigorous probabilistic approach 
to account for site effects allows for a consistent probabilistic evaluation of the 
hazard at the specific site. This does not occur when the reference condition of the 
PSHA (i.e., source and path) is modified simply by deterministic amplification 
function (Cramer 2003, Bazzurro & Cornell 2004b, Goulet et al. 2007, Papaspiliou 
et al. 2012a, Pehlivan et al. 2016).  

The nonlinear response of the site deserves further observations, and several 
researchers have studied this phenomenon in the last few years (e.g., Bazzurro and 
Cornell 2004b, Park and Hashash 2005, Assimaki and Li 2012, Kaklamanos et al. 
2013). The nonlinear response of natural materials was examined since the ’60s 
along with the experimental observation of earthquakes consequences (Hashash et 
al. 2010). It is nowadays recognized that natural materials exhibit nonlinearity (i.e., 
deviation from a simple linear constitutive model) and hysteresis (i.e., energy 
dissipation due to cyclic loads) even at small strains. Then, the site response study, 
by using both abovementioned approaches (data-based and/or simulation-based), 
should account for the nonlinearity of the soil response that can alter the hazard 
both for frequency content and amplifications (means and standard deviations). 
Figure 2.4 shows an example of a mean Amplification Function for PGA and a 
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specific period T0.Figure 2.4. Example of amplification function for PGA (T=0 s) 
and generic T=T0 (modified from Pehlivan et al. (2016)). 

 

Figure 2.4. Example of amplification function for PGA (T=0 s) and 
generic T=T0 (modified from Pehlivan et al. (2016)). 

Once the mean and standard deviation of the amplification function have been 
estimated, the site term should be included in the PSHA results obtained for the 
reference condition. Many methods are proposed in the literature for merging the 
PSHA for the reference condition and the site-specific term. Uncertainty and 
variability in the site amplification should be incorporated in the PSHA, producing 
ground motions defined for specified hazard levels. If the analysis does not account 
for uncertainties in site response, the resulting surface motion would be associated 
with an unknown hazard level, and a non-rigorous result is obtained. However, not 
all the approaches respect the probabilistic framework. The following list starts 
from the most generic, to the most rigorous method for merging the site term into 
the PSHA: 

 Amplification factors (e.g., simplified method prescribed by National and 
International regulations: EC8, NEHRP, and NTC1). This is a simplified 
approach to be used only for standard design projects (Bazzurro & Cornell 
2004b, Papaspiliou et al. 2012a). This approach is a mixture of probabilistic 
and deterministic approaches (Goulet & Stewart 2009). In this case, both the 
mean and the standard deviation of the site response are not explicitly 
addressed (Papaspiliou et al. 2012a). 

 Hybrid method (Cramer 2003). “Hybrid” because a probabilistic result at the 

bedrock is multiplied by a deterministic evidence from the site response 
study. The result is not still probabilistic (Goulet & Stewart 2009), as the 
method assumes the same uncertainties and variabilities at the bedrock and 
the surface. Moreover, it does not account for the different responses 

                                                 
1 EC8, EuroCode 8; 
NEHRP, National Earthquake Hazard Reduction Program; 
NTC, Norme Tecniche per le Costruzioni (Italian Regulation). 
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between a rock material and soft material with respect to the characteristics 
of the input motion (e.g., magnitude and distance first). This approach is 
inadequate for high intensities (low probability of exceedance, critical 
facilities) and soft materials (Papaspiliou et al. 2012a) and can lead to non-
uniform, inconsistent, and unconservative results, with no estimation of the 
event’s probability of exceedance (Bazzurro & Cornell 2004b, Papaspiliou 
et al. 2012b, Pehlivan et al. 2016). 

 Modified hybrid (Goulet & Stewart 2009). This method is a step forward 
compared to the previous ones. It first accounts for the influence of M and R 
as controlling parameters of the hazard at the site.  

 Convolution (Bazzurro & Cornell 2004b) (Figure 2.5). Bazzurro & Cornell 
(2004b) were the first to recognize the importance of the uncertainties and 
variabilities inclusion in the site-specific seismic hazard studies and the study 
of the most influent variables on site amplification (Bazzurro & Cornell 
2004a, Papaspiliou et al. 2012b, Papaspiliou et al. 2012a, Rathje et al. 2015, 
Pehlivan et al. 2016). Bazzurro and Cornell 2004a also showed results of the 
convolution method in agreement with the fully probabilistic method using 
a limited number of inputs. Moreover, Papaspiliou et al. (2012a) showed 
good results of a sensitivity analysis adopting this approach after driving 
through the model a limited number of inputs. A fascinating application of 
the convolution method and a clear picture of the deterministic and the 
probabilistic approach is given in Pehlivan et al. (2016). They studied the 
factors that influence soil surface seismic hazard curves. They encouraged, 
for modern applications, to avoid the deterministic approach (Cramer 2003), 
in favor of the more flexible convolution. Another application of the 
convolution approach is presented by Aristizabal et al. (2018) for a case 
study at the Euroseistest in Greece. In this case, satisfactory results were 
obtained, also comparing them to a fully probabilistic stochastic method. The 
results showed that the uncertainty in the adopted method for merging 
reference PSHA and site amplification has a second-order effect compared 
to other sources of uncertainties. However, it must be acknowledged that the 
choice of the regression formulation for the amplification term represents a 
source of uncertainty in the method (Afshari & Stewart 2015a). 
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Figure 2.5. Differences between deterministic and probabilistic 
convolution method (modified from Pehlivan et al. (2016)). 

 Fully probabilistic calculation of the hazard integral (Cornell 1968). This 
methodology is by far the most precise and rigorous (Papaspiliou et al. 
2012a). An example is shown by Goulet et al. (2007) that found a 
considerable improvement in the hazard estimates especially for soft 
deposits. In this case, the PSHA is conducted for the specific site, 
recalculating the hazard in the most rigorous way. Another application is 
presented in Aristizabal et al. (2018), who satisfactorily compared the results 
from the convolution approach. 

2.1.2 Examples of seismic hazard assessment studies 

One of the first pioneering application of the PSHA method discussed above is 
presented in Algermissen & Perkins (1976) and Algermissen et al. (1982). They 
first applied the Cornell approach at a large scale for the US hazard maps. In 
particular, in 1982, the maximum horizontal accelerations and velocities were 
mapped for exposure periods of 10, 50 and 250 years at the 90% probability level 
of nonexceedance. The US hazard maps are then updated by Frankel (1995) 
preparing a new version for the 1997 edition of the NEHRP (National Earthquakes 
Hazard Reduction Program) building provisions. Frankel et al. (2002) were 
designated for the incremental production of new hazard curves in the US. In this 
updated version, besides the improvements of the previous work (i.e., spatially-
smoothed seismicity), more modern approaches were adopted especially for 
uncertainties management. 



 

17 
 

After the Friuli 1976 earthquake, Faccioli (1979) applied the PSHA method for 
the north-east Italian area. Although simplified, this example of PSHA application 
first showed the advantage and potentials of the probabilistic method. 

Another application of a wide-scale PSHA is presented in Cramer et al. (2004) 
and Cramer (2006). The authors extended the work by Toro et al. (1992) and studied 
the Memphis area, the Upper Mississippi Embayment, and adjacent areas, 
systematically accounting for the associated uncertainties. In this case, the presence 
of a thick (around 1 km) deposit of sediments was expected to have substantial 
effects on the computed seismic hazard regarding hazard maps. A fully probabilistic 
procedure, combined with the national seismic hazard study was performed 
improving the models for reproducing the nonlinear response of the sediments (Park 
& Hashash 2005b). An example of the final obtained hazard maps is provided in 
Figure 2.6. 

 

Figure 2.6. Mississippi embayment hazard maps for PGA, T=0.2 s, and 
T=1 s (modified from Cramer (2006)). 

More recently, Grünthal et al. (2018) updated the German hazard assessment, 
considering the range of different types of uncertainties. This work is part of the 
national design regulations that are evaluating the seismic loads. Grünthal et al. 
(2018) performed a transparent and comprehensive analysis, systematically 
identifying, quantifying, and managing the uncertainties. The results are considered 
given both in terms of hazard maps (PGAs and macroseismic intensities) and 
response spectra, for three hazard levels (Figure 2.7). 
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Figure 2.7. Hazard maps for T=0.1 s and 16th, 50th, and 84th percentile 
(from left to right) and return period of 475 years in Germany (after 

Grünthal et al. (2018)). 

One of the most recent examples of a rigorous application of a modern PSHA 
is presented for a potential nuclear power plant in South Africa (Thyspunt) by 
Bommer et al. (2015) and Rodriguez‐Marek et al. (2014). In this case study, the 
low-to-moderate seismicity of the area and the lack of records represented the most 
challenging aspects. The hazard study was conducted as an SSHAC (Senior Seismic 
Hazard Analysis Committee) Level 3 process. A site-specific evaluation of the 
hazard was obtained by correcting the adopted GMPEs (Ground Motion Prediction 
Equations) for high-frequencies damping kappa values and accounting for shear 
wave velocity profiles experimentally measured. In particular, the PSHA at 
Thyspunt confirmed the value of additional data collection activities (i.e., 
geological and geophysical surveys, historical research), in reducing uncertainties. 
With this respect, the amount of uncertainties in the process was handled, and 
rigorous hazard maps were produced as a total hazard and for each seismic source. 
An example of the mean hazard curves for spectral accelerations at 0.01 s is given 
in Figure 2.8. 
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Figure 2.8. Mean hazard curves at the bedrock for spectral accelerations 
at 0.01 s and contributions to the mean hazard from the ten seismic sources 

at the Thyspunt site (after Bommer et al. (2015)). 

2.2 Epistemic uncertainty and aleatory variability 

The previous section also focused on the importance of uncertainties inclusion 
in seismic hazard assessment studies (Bommer 2003). This operation is essential a 
site-specific evaluation of the seismic hazard. For this purpose, the uncertainties 
have to be first identified (i.e., first step of the IQM method) distinguishing between 
two main contributions for engineering applications (e.g., reliability assessments, 
risk-based decision making, other than seismic hazard analyses). These 
contributions are termed Epistemic Uncertainty (i.e., EU) and Aleatory Variability 
(i.e., AV). Note that, although theoretically precise, the practical use of the 
following definitions is still challenging for identification and quantification 
purposes. 

Epistemic is a transliteration of the Greek term meaning "scientific 
knowledge”, which Plato opposed to dòxa, “opinion”. In contemporary philosophy, 
it is the set of positive knowledge and scientific theories. On the other hand, aleatory 
derives from the Latin word alea, “dice”, and it represents a total uncontrollable 
and random process, as in gambling. 

Beyond the semantics, nowadays the epistemic and aleatory concepts have been 
used in different scientific areas. One of the first comprehensive discussions of the 
topic is presented in Budnitz et al. (1997). They defined two different classes of 
uncertainties for the SSHAC Guidelines. In particular, the epistemic portions are 
“due to the lack of knowledge, the uncertainties arising because our scientific 

understanding is imperfect for the present, but are of a character that in principle 
are reducible through further research and gathering of more and better 
earthquake data”. The aleatory portion is “uncertainties that for all practical 

purposes cannot be known in detail or cannot be reduced (although they are 
susceptible to analysis concerning their origin, their magnitude, and their role”. 
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Budnitz et al. (1997) also admitted that the division between the two different types 
of uncertainty is somewhat arbitrary. This is because, conceptually, some of the 
processes and parameters whose uncertainties are classified here as aleatory may 
be partially reducible through more elaborate models and/or further study.  

Another pioneering distinction between epistemic and aleatory came from Toro 
et al. (1997) and termed as epistemic uncertainties (or just uncertainties) and 
aleatory uncertainties (or randomness). It interesting to see how modern concepts 
are tracing these initial definitions: 

- “Uncertainty that is due to incomplete knowledge and data about the 

physics of the earthquake process. In principle, epistemic uncertainty can 
be reduced by the collection of additional information.” 

- “Uncertainty that is inherent to the unpredictable nature of future events. 

It represents unique details of the source, path, and site response that 
cannot be quantified before the earthquake occurs. Collection of additional 
information can not reduce aleatory uncertainty. One may be able, 
however, to obtain better estimates of the aleatory uncertainty by using 
additional data.” 

Toro et al. (1997) already distinguished the reducible and non-reducible 
characteristics of the two contributions. Then, the word “randomness” suggests the 

adoption of randomization methods for reproducing this type of variability. An 
interesting example is also discussed in Toro et al. (1997) about the generation 
process of a new GMPE. The standard practice defines a mean value for the ground 
motion intensity measure 𝜇 and a standard deviation related to aleatory variabilities 
𝜎. However, it is possible to estimate 𝜎𝜇 and 𝜎𝜎 that are the epistemic components 
due to epistemic uncertainties in the GMPEs generation (e.g., a limited number of 
data, adopted model).  

A further contribution to the clarification of the EU and AV concepts is given 
by Bommer (2003). In his opinion paper titled “Uncertainty about the uncertainty 

in seismic hazard analysis”, the author introduced the terms epistemic and aleatory 
in the “probabilistic’s arsenal”. At that time, indeed, many analysts and scientist 
were still supporting the use of deterministic approaches, and precise identification 
of the sources of uncertainty was not common yet. Bommer (2003) defended the 
adoption of a common and an unambiguous terminology for uncertainties 
identification concluding that “uncertainties in seismic hazard assessment will 

clearly not in itself make things more certain, but it will certainly make things 
clearer”. 

Later, a rigorous treatment of the distinction between epistemic uncertainty and 
aleatory variability is given by Abrahamson & Bommer (2005). They refer to 
epistemic uncertainty (i.e., uncertainty) as the scientific uncertainty in the models 
of earthquake occurrence and ground motion, whereas aleatory variability (i.e., 
randomness) as inherent variability. However, the semantics of the problem is not 
essential as the need for a specific treatment of these two main contributions. 
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In 2006, Bommer & Abrahamson (2006) reported many cases for which the 
PSHA study ignored (or, at least, mistreated) the GMPE aleatory variability. They 
strongly condemn some applications of the PSHA, even for critical facilities, that 
led to unconservative hazard estimates, because of the underestimation of the 𝜎.  

A general discussion of EUs and AVs is subsequently proposed in Der 
Kiureghian & Ditlevsen (2009). The paper titled “aleatory or epistemic? Does it 

matter?” is a manifesto of the crucial topic regarding the identification and 
classification of uncertainties. The authors mostly discussed sources and characters 
of uncertainties in engineering modeling for risk and reliability analyses. Their 
primary distinction criterion is based on the possibility of reducing these sources. 
In particular, an epistemic uncertainty can be reduced by gathering more data or by 
refining models. Contrarily, for an aleatory uncertainty, there is no chance to be 
reduced in an acceptable time interval (sophistically, each uncertainty could be 
reduced thanks to the scientific advancements). The distinction is also important 
from the viewpoint of transparency in decision-making since it then becomes clear 
as to which reducible uncertainties have been left unreduced by our decisions. 

Nowadays, for seismic hazard assessment studies, modern concepts of EU and 
AV are discussed in the literature. Epistemic uncertainties result from incomplete 
knowledge of the physics of the process and/or from insufficient and/or inadequate 
experimental data and adopted models. They can, in principle, be reduced by the 
collection of additional and better quality information and can, in some senses, be 
managed utilizing more advanced models (Rodriguez‐Marek et al. 2014, Stewart et 

al. 2014a). Aleatory variability refers to the intrinsic randomness of natural systems. 
It can be quantified, but it cannot be reduced using multiple experimental 
measurements. However, while the differences between EUs and AVs in hazard 
assessment studies appear to be theoretically clear, for most applications a proper 
identification is often not feasible (Passeri et al. 2019).  

After the identification process, the following step for a rigorous treatment of 
EUs and AVs in seismic hazard assessment studies regards the quantification. A 
critical aspect for EU and AV is their balancing (i.e., the amount of each component 
in the global problem). It must be clear that a typical amount of the two 
contributions is involved in every engineering application. The amount of EU and 
AV should be carefully evaluated, moving from the global scale of the problem to 
the smaller scale. Each source of uncertainty should be rigorously classified before 
any further application is performed. Particularly for seismic hazard assessment 
studies, the spatial scale of the problem (i.e., source, path, and site) represents an 
essential contribution. Note that the previous observations regarding the 
identification and quantification steps still represent a crucial and “open” topic. 

Once the identification and quantification process is completed, the 
management step should be considered (Budnitz et al. 1997). In particular, 
Abrahamson & Bommer (2005) assumed that the epistemic uncertainties should 
lead to alternative hazard curves, whereas the aleatory variabilities have to modify 
the shape of the single curve. Epistemic uncertainties should be handled 
establishing a rigorous logic tree approach with weights assumed by engineering 
judgment of experts. For the German seismic assessment, for example, a logic tree 
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of 4040 end branches was designed (Grünthal et al. 2018). A more limited, but 
complete, logic tree approach was used by de Almeida et al. (2018) to account for 
a significant amount of epistemic uncertainties in a PSHA in Brazil. Another 
example of a logic tree approach was performed for the Italian PSHA (Sismica 
2004), and it is shown in Figure 2.9. In this case, the epistemic uncertainties 
regarded the database completeness, the method for calculating the maximum 
magnitude, the adopted GMPE, the type of magnitude. The last column of the logic 
flow shows the adopted weights. 

Hence, the result of the logic tree approach for the PSHA applications leads to 
a different picture of the confidence level (i.e., fractiles) that can be assumed in the 
design. These different scenarios cannot be obtained with a single logic path. 
Generally, for wide-scale hazard studies, the 16th, 50th (median), and 84th fractiles 
are computed. For example, for critical facilities, Abrahamson & Bommer (2005) 
suggest using the 84th fractiles of the results.  

 

Figure 2.9. Logic tree adopted for the Italian PSHA. Weights are given in 
percent. 

The aleatory variabilities have to enter the hazard integral. Indeed, the old 
definition of Probabilistic Seismic Hazard Analysis by Cornell (1968) should be 
respected: 

“It is a process that integrates (aggregation) over aleatory uncertainties (e.g., 

future earthquake locations, future earthquake magnitudes) to calculate the 
likelihood of occurrence (or the probability of exceedance) of an earthquake 
characteristic, Y, at a site during a given period of time.” 

For example, Abrahamson & Bommer (2005) affirmed that a PSHA result for 
which the GMPE aleatory variability was not addressed in the hazard integral could 
not be considered a genuine hazard study. 
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At this point, should be clear to the reader that these two methods for the 
separate management of EUs and AVs appear theoretically precise, but difficult to 
implement in a practical application. There are engineering problems that prevent 
a rigorous identification and quantification of the uncertainties, leading to a more 
complex independent management step. One example regards the EUs and AVs in 
shear wave velocity profiles discussed in Chapter 4. In that case, each seismic test 
will be discussed and the main sources of EUs and AVs identified. In case of surface 
wave testing methods, a distinction within the experimental dispersion curve is 
practically unfeasible. For this reason, the model calibration of the geostatistical 
model performed for these types of tests leads to a joint management of the two 
contributes.  

Ergodicity 

Generally, for standard PSHA studies, the relationship between one intensity 
measure and other variables (e.g., magnitude, distance, site term) is given by a 
GMPE (Lee & Anderson 2000, Baturay & Stewart 2003, Stewart et al. 2014a, 
Thompson & Wald 2016). This equation provides an estimation of the motion at a 
site (as mean value and an associated aleatory variability for an intensity measure) 
obtained by collecting a significant amount of data in different regions (i.e., spatial 
variability) (Toro et al. 1997, Al Atik et al. 2010). However, the use of GMPEs with 
a site term can be seen as the typical example of an ergodic process (Stewart & 
Baturay 2001, Goulet et al. 2007, Asimaki & Li 2012) in the PSHA. 

The ergodic process is a definition usually adopted in signal analysis. It is a 
random process in which the distribution of a random variable in space is the same 
as the distribution of that same random variable at a single point when sampled as 
a function of time (Anderson & Brune 1999). The ergodicity represents the 
underlying assumption for which the variability in space is assumed to be equal to 
the variability in time. Then, ergodicity for site-specific seismic hazard assessments 
means to deliberately "confuse" variability in space with variability over time. It 
means accepting that the average of the events measured at different sites, and 
different regions, represents the average over time, at a specific site (where it is 
impossible to obtain a reasonable statistical sample over time) (Anderson & Brune 
1999). The problem is that, generally, the variability in time (for a site) is lower 
than the variability in the space, (for different sites), then a reduction criterion 
should be applied (Luzi et al. 2014, Rodriguez‐Marek et al. 2014). 

In light of the previous concepts, it should be clear that the adopted model in 
the GMPE (e.g., based on average shear wave velocities, bedrock depth…) cannot 

account for the multitude of complex physics phenomena that govern the site-
specific response (Bazzurro & Cornell 2004b), even if it comes from a very robust 
regression and an extensive database (Atkinson 2006, Thompson & Wald 2016). 
The general adoption of a global database to estimate the hazard at the site 
inevitably produces an inaccurate result along with a large dispersion of the 
predicted ground motion (Baturay & Stewart 2003, Stewart et al. 2014a, Faccioli et 
al. 2015). The ergodic process usually fails also for weak input motions (i.e., 



 

24 
 

approximately linear response) overestimating the associated aleatory variability 
(Kaklamanos et al. 2013b). The adoption of a generic model that attempts to 
reproduce the site response represents a typical example of epistemic uncertainty 
source (Thompson & Wald 2016). Although modern GMPEs try to refine the 
adopted model, incorporating a nonlinear term and a dependency of the uncertainty 
and variability on the site characteristics (usually more substantial for softer 
materials). However, great care should still be used (Goulet & Stewart 2009) when 
the study relies on these completely ergodic processes, especially in case of 
nonlinear responses (Asimaki & Li 2012, Kaklamanos et al. 2013b).  

The single station method (Atkinson 2006) is an excellent example of IQM of 
uncertainties and variabilities in the study of the site component of a GMPE (Luzi 
et al. 2014, Rodriguez‐Marek et al. 2014). It addresses uncertainties and 
variabilities, reducing the level of ergodicity in PSHA studies (Rodriguez-Marek et 
al. 2011, Faccioli et al. 2015). However, the price that must be paid is a higher level 
of detail on the site characterization (i.e., the price of implementation) and a large 
number of recorded motions across a wide intensities range (i.e., the price of 
adequately quantifying non-ergodic standard deviations) (Lin et al. 2011). The 
single station approach identifies what component of ground motions are repeatable 
and which are truly random. Then we assume that the repeatable component is 
“knowable”, thus its uncertainty is epistemic. If the analyst can distinguish, within 
the site term, between site-to-site and single-station contributions, he can remove 
the site-to-site epistemic uncertainty, leading to less aleatory variabilities that enter 
in the hazard integral. Hence, the analyst is removing from the GMPE prediction 
the repeatable component from the aleatory variability of the site response that he 
can experimentally estimate at the site. However, the removed site-to-site epistemic 
uncertainty will be addressed incorporating a logic tree approach in the hazard study 
(Rodriguez‐Marek et al. 2014). For these reasons, the separation will not 
necessarily produce a lower hazard at the site, but a more reliable estimate. Indeed, 
this application generates more consistent and non-ergodic evaluations, especially 
for low probabilities of exceedance (e.g., for critical facilities) (Rodriguez‐Marek 

et al. 2014), because of the considerable overestimation of aleatory variability in 
GMPEs for strong motions. The results in Atkinson (2006) shows a reduction of 
10% of the aleatory variability by adopting the single-station approach. In Italy, 
Luzi et al. (2014) showed a 15% decreased value adopting the single station 
approach. Moreover, this approach produces very stable values of standard 
deviation (Lin et al. 2011) equal to approximately 0.4 to 0.5 (in natural logarithmic 
units) (Stewart et al. 2014a) within specific areas as Japan (Rodriguez-Marek et al. 
2011), Italy (Luzi et al. 2014), and the Po plain (Faccioli et al. 2015), or across 
various tectonic regions (Rodriguez‐Marek et al. 2013). 

A further approach is also proposed by Atkinson (2006), and it specifies the 
topic to a single-path condition. In this case, evidence showed a reduction of the 
aleatory variability, compared to the total in the GMPE, equal to 40%. However, 
this approach deserves a broader set of recorded motions, to own a sufficiently large 
database for each seismic source. Despite the difficulties, this approach can be seen 
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as a further removal of the ergodicity from the initial assumptions in the GMPE 
model (Lin et al. 2011). 



 

26 
 

  



 

27 
 

Chapter 3                     
Uncertainties and variabilities in 
site response studies 

The present Chapter focuses on site response studies for the estimation of the site 
effects. Site response studies can be performed using seismic event recordings 
(data-based) or numerical simulations (simulation-based, mainly 1D) (Stewart et al. 
2014). The Identification, Quantification, and Management (IQM) of the Epistemic 
Uncertainties (EUs) and Aleatory Variabilities (AVs) for site response studies will 
be discussed through an extensive literature review. 

As anticipated in Section 2.1, site response is the process for which 
considerable modifications of the seismic waves are produced by variations of the 
material properties and/or surface topography near the Earth’s surface (Aki 1993, 

Kramer 1996, Boore 2004). Site response analysis considers the differences in the 
expected motion for amplitude, frequency content, and duration between a 
reference condition (e.g., consistent with the results of the PSHA studies) and a 
given site condition (Figure 3.1). It is important to remark that often in site response, 
the outcrop (i.e., reference) motion is assumed to be deterministically related to the 
bedrock condition. However, outcrop motions are known to be more variable than 
soft soil motions, and the treatment of the "rock motion" as an immutable constant 
in site response analysis is highly questionable. A recent discussion regarding this 
topic is presented in Passeri et al. (2018a). 

 

Figure 3.1. Site response scheme. 

Site response (i.e., site effect) is usually evaluated in the frequency domain 
using Transfer Functions (TFs) defined as the ratio of Fourier spectra. Generally, 



 

28 
 

the Fourier spectra of the accelerations are computed at the surface and the input 
(Baise et al. 2011) as  

 

𝑇𝐹(𝑓) =
𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑓)

𝑈𝑖𝑛𝑝𝑢𝑡(𝑓)
(Eq. 3.1) 

 
where 𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑓) is the accelerations Fourier spectrum of the ground motion at 
the surface obtained by surface recording instruments, 𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑(𝑓), or by 
numerical simulations, 𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑓). 𝑈𝑖𝑛𝑝𝑢𝑡(𝑓) is the acceleration 
Fourier spectrum of a type of input (real or stochastic), 𝑈𝑖𝑛𝑝𝑢𝑡−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑓), or the 
input motion obtained by an in-hole instrument (in case of DH-array), 
𝑈𝑑𝑜𝑤𝑛ℎ𝑜𝑙𝑒−𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑(𝑓). 

Therefore, it is useful to distinguish the empirical (i.e., experimentally 
measured) transfer function: 

 

𝐸𝑇𝐹(𝑓) =
𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑(𝑓)

𝑈𝑑𝑜𝑤𝑛ℎ𝑜𝑙𝑒−𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑(𝑓)
(Eq. 3.2) 

 
and the theoretical (i.e., simulated, Figure 3.2) transfer function: 

 

𝑇𝑇𝐹(𝑓) =
𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑓)

𝑈𝑖𝑛𝑝𝑢𝑡−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑓)
(Eq. 3.3) 

 

 

Figure 3.2. Example of Theoretical Transfer Function (TTF). 

As discussed in 2.2 for global hazard studies, the “relaxation” of the ergodic 
assumption in site response studies can be performed with recorded data (an 
example is the single station reported in Section 2.2) and/or with 1D numerical 
simulations (termed Ground Response Analyses, GRAs). Both approaches allow 
for a specific evaluation of the mean hazard at the site and the estimation of the EUs 
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and AVs at stake (Stewart et al. 2014a). In particular, these two approaches provide 
an estimate of the mean (i.e., 𝐴𝐹̅̅ ̅̅ ) and the logarithmic standard deviation (i.e., 
𝜎ln(AF)) of the site amplification function. In addition, various contributions to the 
final uncertainty can be identified within the 𝜎ln(AF) term (Li & Asimaki 2010, 
Rodriguez‐Marek et al. 2014).  

The data-based methods estimate 𝐴𝐹̅̅ ̅̅  and 𝜎ln(AF) by collecting a large amount 
of high quality records (if available), whereas for GRAs a great number of 
simulations should be performed in a probabilistic (i.e., stochastic) framework, 
often leading to high computational demand. An important contribution to this topic 
is given in Hollender et al. (2018). They illustrate the summary of the CASHIMA 
project for the hazard assessment in low-to-moderate seismicity areas. In their 
opinion, both data-based and simulation-based methods are mandatory and 
complementary. The first is used to validate the results of the GRAs (in the small-
strain behavior), then numerical simulations are fundamental to extend the observed 
ground motion to different hazard scenarios (i.e., high intensities and nonlinear 
responses). 

If the data-based approach is adopted, the first and most important step in each 
study is the compilation (or query) of a high-quality database, according to specific 
characteristics (e.g., magnitudes, distances, period, hypocentral depth, the presence 
of aftershocks, filtering). The records can be collected only at the surface, or also 
exploiting the vast capabilities of in-hole recording arrays (Rodriguez-Marek et al. 
2011, Kaklamanos et al. 2013b). Then, the data processing continues with the 
clustered parameters regression on most influent variables and the analysis of model 
residuals, along with standard errors. Comparisons with other studies are usually 
made to validate and/or extend the results applicability (Al Atik et al. 2010, Lin et 
al. 2011, Kaklamanos et al. 2013b, Rodriguez‐Marek et al. 2013, Luzi et al. 2014, 
Faccioli et al. 2015). Results from the literature showed a stable value of the 
logarithmic standard deviation of the measured amplification function 𝜎ln(AF)(𝑇) ≈
0.4 to 0.5 over a wide range of periods (Rodriguez‐Marek et al. 2013, Luzi et al. 

2014, Faccioli et al. 2015). Many studies also showed a systematic and clear 
identification of the different sources as EU or AV.  

If the 1D simulation-based approach is adopted, the analyst simulates the wave 
propagation phenomenon through the site taking advantages from the results of a 
single and/or multiple reference seismic hazard scenarios (Rodriguez‐Marek et al. 

2014). Note that also 2- or 3D models (termed Site Response Analyses, 2D or 3D 
SRAs) could be used for the estimation of the site-specific response. However, 
these methods still have a large amount of model (i.e., epistemic) uncertainties that 
would enter in the already complex process of hazard estimation.  

In early literature of this topic, for example, Stewart and Baturay (2001) showed 
that, for low periods, non-ergodic numerical simulations always resulted in better 
prediction than GMPEs. Moreover, Baturay and Stewart (2003) showed a better 
result regarding both bias and variability and agreement with the spectral shape, 
compared to the ergodic processes. However, it should be acknowledged that mixed 
and controversial results have been obtained using GRAs in the literature predicting 
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the mean site response (Stewart & Baturay 2001, Baturay & Stewart 2003, Andrade 
& Borja 2006, Asimaki et al. 2008, Kwok et al. 2008, Stewart 2008, Li & Asimaki 
2010, Baise et al. 2011, Asimaki & Li 2012, Thompson et al. 2012, Kaklamanos et 
al. 2013a, Kaklamanos et al. 2013b, Afshari & Stewart 2015b, Kaklamanos et al. 
2015, Régnier et al. 2016a, Shi & Asimaki 2017, Aristizabal et al. 2018, Hollender 
et al. 2018, Régnier et al. 2018). These results prove that the user should possess 
the specific expertise and particular knowledge of the global procedures and 
phenomena. This is particularly true in case of the strong nonlinear response of the 
site (Park & Hashash 2005b, Hashash et al. 2010, Stewart et al. 2014a, Kim et al. 
2016, Régnier et al. 2016b, Régnier et al. 2018) or for complex geological 
environments (Faccioli et al. 2002b, Thompson et al. 2012). An initial assessment 
of the applicability of GRAs should always be performed by a taxonomic procedure 
(Baise et al. 2011, Thompson et al. 2012, Kaklamanos et al. 2013b, Kaklamanos et 
al. 2015). The taxonomy is the practice and science of classification of things or 
concepts, including the principles that underlie such classification. In this case, the 
authors suggest a clear initial classification of a case study, based on the site 
complexity. 

Nevertheless, the 1D numerical simulation of specific site characteristics 
always represents a step forward, compared to the total ergodic process (Stewart & 
Baturay 2001, Hashash et al. 2010, Papaspiliou et al. 2012b, Kaklamanos et al. 
2013b). They also represent the only chance, in case no records are available at the 
specific site (also empirical, VS,30-based factors can be used, but are not a standard 
procedure) (Olsen 2000, Rodriguez‐Marek et al. 2014, Bommer et al. 2015, Faccioli 

et al. 2015).  
Besides the mean amplification function estimation, an important step regards 

the evaluation of 𝜎ln(AF)(𝑇) and the identification/quantification of different 
contributions of EU and AV. There are examples for which the resulted 
uncertainties and variabilities can be biased (Goulet et al. 2007, Stewart et al. 
2014a). Generally, uncertainties and variabilities are overestimated for low periods 
and underestimated for long periods (Rodriguez‐Marek et al. 2014, Afshari & 

Stewart 2015a, Pehlivan et al. 2016), compared to the constant results obtained with 
the data-based approach. However, other examples showed consistency with the 
variability obtained from recorded data (Papaspiliou et al. 2012a, Papaspiliou et al. 
2012b, Kaklamanos et al. 2013b, Aristizabal et al. 2018).  

These inaccuracies obtained by the GRAs can be due to an inadequate 
quantification step in the IQM process. The amount of epistemic uncertainties is 
dramatically dependent on the specific engineering application. For each problem, 
an ad-hoc evaluation of the relevant EUs should be performed. In site response 
studies, the analyst should precisely account for every single source of EU in the 
process, starting from the experimental tests and the adopted models used to 
reproduce the natural phenomenon. Specific expertise and a deep understanding of 
the physics of the problem is fundamental in the quantification of the EUs. 

Similarly, the amount of aleatory variability in the site responses should be 
explicitly quantified depending on the size of the studied area and its geological 
complexity. This is inherent in the definition of spatial variability (i.e., AV). For 
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example, if the analyst considers a single building/facility, in a restricted and 
spatially homogeneous area, the most critical contribution to uncertainty in site 
response comes from the epistemic uncertainties. Of course, when enlarging the 
studied area to geologically complex environments (e.g., road projects or 
microzonation of heterogeneous regions), the contribution of the aleatory (i.e., 
spatial) variability increases and can be much more influent than epistemic 
uncertainties.  

Contrarily, for global seismic hazard studies, also the contributions of source 
and path are essential for the aleatory variability estimation. The AV that is usually 
accounted for at the global scale is almost independent of the size of the area under 
analysis (earthquakes come from far away and cover vast distances). Contrarily, the 
AVs at the site scale (i.e., for site response studies) are strongly dependent on the 
extent of the studied area. 

Even though the dissertation will focus on the uncertainties and variabilities 
estimates from GRAs, a reference list is given for examples using recorded data for 
the IQM of EUs and AVs (Chen & Tsai 2002, Atkinson 2006, Chiou et al. 2008, 
Morikawa et al. 2008, Al Atik et al. 2010, Lin et al. 2011, Rodriguez-Marek et al. 
2011, Rodriguez‐Marek et al. 2013, Luzi et al. 2014).  On the other hand, more 
examples will be discussed for the EUs and AVs in GRAs (listed in Table 2). A 
hybrid-intermediate set of studies that investigate the propagation of EUs and AVs 
in site response studies by adopting both approaches (Thompson et al. 2012, 
Kaklamanos et al. 2013b, Seyhan & Stewart 2014, Afshari & Stewart 2015a, 
Faccioli et al. 2015, Kaklamanos et al. 2015). 

3.1 Numerical simulations 

As anticipated, numerical simulations can estimate the mean amplification 
function for a site and identify, quantify, and manage relative EUs and AVs as 
standard deviations. In this dissertation, the attention will focus on 1D site response 
simulations (GRAs), even if a brief introduction to 2D and 3D site response 
simulations (2D or 3D SRAs) will be provided.  

The most critical point in this framework regards the study of the applicability 
of simplified GRAs. The analysis of the advantages and disadvantages of each 
method should always be carried out, accounting for all the characteristics of the 
specific problem from a global perspective. 

One of the first contributions to the study of the applicability of GRAs is given 
by Faccioli et al. (2002a). The authors studied the complex site effects in predicting 
ground motions, including the topography. They found that, even for complex 2D-
3D geological environments, the predominant resonance frequencies are controlled 
by the 1D simple formulations. However, 1D wave propagation models cannot 
account for the magnitude of the amplification, and the width of the relevant 
frequency band observed in weak motion records. For this purposes, a 2D (or, for 
some cases, even 3D) modeling of the problem could be required.  

A further study was presented by Baise et al. (2011) and Thompson et al. (2012) 
who classified the investigated sites as “simple” or “complex”, depending on the 
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accuracy obtained by 1D GRAs. In this framework, the analyst can select the most 
suitable type of analysis (GRA or 2D/3D SRA) depending on the site complexity 
(Thompson et al. 2012, Afshari & Stewart 2015b), always accounting for the 
nonlinear response of the site (Zalachoris & Rathje 2015, Kim et al. 2016). In fact, 
preliminary results from GRAs found a general underprediction of the motion, for 
low periods (i.e., lower than the model period), possibly due to the difficulty in 
catching different phenomena (Kwok et al. 2008, Stewart & Kwok 2008, Li & 
Asimaki 2010) independent from the 1D model parameters (Baise et al. 2011). In 
some particular circumstances, 1D models show a “base-isolation effect” due to 

high shear strains (i.e., small stiffness) focused in a specific layer. This phenomenon 
is prevented in case of 2D and 3D processes, thanks to the lateral heterogeneity that 
allows a more realistic spatial spreading of stresses (Makra & Chávez-García 2016). 
However, there is a multitude of other alternative or additional reasons that could 
explain these experimental differences within the GRAs  (e.g., nonlinear adopted 
approaches, Zalachoris & Rathje (2015)). For example, recent studies as Shi & 
Asimaki (2017) showed that a considerable improvement of the motion prediction 
obtained by GRAs could be achieved. In their work, the authors confirmed that a 
portion of the previous inaccuracies and bias obtained by 1D simulations could be 
due to inappropriate nonlinear constitutive models, as also confirmed by Régnier et 
al. (2018). 

A recurring question regards accuracies (bias), and variabilities (precisions) 
(Kaklamanos et al. 2013b) obtained using these 1D procedures compared to 
independent DH-arrays in the linear and nonlinear behavior (Shi & Asimaki 2017).  

The empirical transfer function represents a fundamental advancement offered 
by DH-arrays. Baise et al. (2011) and Thompson et al. (2012) first identified the 
transfer function as a useful tool in the validation of GRA by comparison with the 
DH-arrays. So, first, a helpful definition of site response from DH-arrays (Baise et 
al. 2011) is reported: 

“Site response is a relative quantity and thus requires a pair of ground motions, 

one of which contains the effects of the near-surface soils and one that does not. 
The record without the effects of the soil is termed the “input” time series, and the 

receiver is either located at some depth below the free surface (i.e., a “downhole” 

receiver), or on outcropping bedrock. The “output” motion includes the effects of 
soil, so it is located either above a downhole input motion, or on soil near the 
outcrop motion. Site response is often represented as an input/output transfer 
function, and we refer to estimates of the site response transfer function derived 
from recordings of ground motions as the empirical transfer function (ETF). The 
ETF can be compared to theoretical predictions of the transfer function (TTF) 
based on in situ estimates of the seismic properties of the soil and a 
physical/mechanical model for wave propagation between the two points. The 
transfer function (empirical or theoretical) shows how the soil amplifies and 
attenuates seismic waves as a function of the frequency of the loading, f” 

The TTF-ETF comparison from vertical arrays represents a handy tool to 
evaluate the goodness of a GRA result, especially in case of strong nonlinear 
responses for different spectral periods. Examples of this comparison can be found 



 

33 
 

in Andrade & Borja (2006), Asimaki et al. (2008), Kwok et al. (2008), Stewart 
(2008), Stewart & Kwok (2008), Hashash et al. (2010), Li & Asimaki (2010), 
Kaklamanos et al. (2013a), Kaklamanos et al. (2013b), Kim & Hashash (2013), Yee 
et al. (2013), Afshari & Stewart (2015b), Kaklamanos et al. (2015), Zalachoris & 
Rathje (2015), Régnier et al. (2016b), Shi & Asimaki (2017), Aristizabal et al. 
(2018), Régnier et al. (2018). This approach is highly recommended in Hollender 
et al. (2018) as data-based and simulation-based methods are complementary in the 
seismic hazard assessment. Studies in the early literature showed a general 
underprediction (i.e., overdamping) of the motion for short periods, comparing the 
GRA results with experimental evidence from DH-arrays. These differences are 
partially due to the influence of 2D and 3D phenomena (Stewart et al. 2014a) in the 
wave propagation process (e.g., base-isolation effect) and/or EU and AV of the 
adopted GRA model. An excellent analysis of the reasons for the possible 
inaccuracy obtained with GRAs is presented in Zalachoris & Rathje (2015). They 
state that in cases where significant topographic and basin effects are minimal, 
GRAs are adequate to represent the wave propagation conditions. However, 
considerable care is necessary to assign the correct boundary conditions at the base 
of the model (Bonilla et al. 2002, Asimaki & Steidl 2007, Stewart & Kwok 2008, 
Thompson et al. 2009, Régnier et al. 2016a) and to model the nonlinearity of the 
response (Régnier et al. 2018). In this respect, Shi & Asimaki (2017) proposed their 
Hybrid Hyperbolic (HH) nonlinear soil model that gave excellent outcomes, 
comparing the results with nine Kik-net down-hole arrays and 2743 input motions. 
Their results showed the most satisfactory performance across all ground-motion 
intensities (PGA up to 0.9g, strain up to 3.67%) and for both broadband and high 
frequencies. In light of these recent studies, it can be stated that a sophisticated and 
modern GRA that includes advanced constitutive models can give excellent results.  

So the question is “Does one-dimensional site response work?”. Baise et al. 
(2011) attempted to answer this question. They collected evidence from other 
studies (some of them later published) (Thompson et al. 2009, Kaklamanos et al. 
2011, Thompson et al. 2012, Kaklamanos et al. 2015) and exploited DH-arrays to 
distinguish “simple” and “complex” sites (i.e., taxonomic procedure). The approach 
is systematic, as they begin the study at the most straightforward scale, investigating 
first the linear response of the deposit. They evaluate the goodness of the 1D 
hypothesis through linear GRAs and weak input motions. In this step, they 
compared the ETF measured for weak motions and the TTF calculated using the 
Haskell-Thomson matrix method (Thomson 1950, Haskell 1953) and a rigid bottom 
halfspace (Figure 3.3). Once the elastic response and the 1D assumption is verified, 
they suggest the step-forward, adopting nonlinear GRAs approaches, as proposed 
in Kaklamanos et al. (2015) and Hollender et al. (2018). 
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Figure 3.3. Examples of comparison of Theoretical Transfer Functions 
and Empirical Transfer Function (after Baise et al. (2011) and Kaklamanos 

et al. (2015)). 

Similarly, Afshari & Stewart (2015b), performed the same initial validation 
between TTF-ETF. They found a better agreement compared to the Japanese sites 
for ten sites in California, also for the event-to-event consistency. Later, Shi & 
Asimaki (2017) showed excellent results for nine Japanese sites, sign that advanced 
1D simulations are giving increasingly better results if appropriate nonlinear 
models are used (Figure 3.4). 
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Figure 3.4. TTF-ETF comparison adopting the advanced HH model 
(after Shi & Asimaki (2017). 

The TTF-ETF validation step was also conducted by Régnier et al. (2018) for 
two sites in Japan (Figure 3.5). In this work, the authors focused their attention also 
on the quality of GRA input data, besides the limitations of the 1D approach. They 
showed that the bias and inaccuracies of GRAs mainly depend on the EU and AV 
of the shear wave velocity profile for the small-strain response. Based on this 
assumption in the viscoelastic behavior, they proposed a benchmark for the 
assessment of the NL code-to-code variability. 
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Figure 3.5. TTF-ETF comparison and correction of the shear wave 
velocity profiles (after Régnier et al. (2018)). 

Figures 3.3, 3.4, and 3.5 showed that the availability of an experimental transfer 
function allows validating the numerical model in the visco-elastic behavior. This 
procedure is essential before moving forward with the numerical simulations that 
account for the nonlinearity of the response. 

Summarizing the observations in the papers reviewed above, we can conclude 
that there are five main causes for the ETF-TTF disagreement during the validation 
stage: 

1. Epistemic uncertainties in the soil property measurements and adopted 
numerical models; 

2. Aleatory variability (i.e., soil heterogeneity) of the soil properties; 
3. Non-vertical incidence of the waves; 
4. Surface waves and basin effects; 
5. Topographic effects. 

Therefore, it is clear that, if GRAs are performed, the influence of the non-
vertical incidence of the waves, surface waves, basin effects, and topographic 
effects cannot be studied (Olsen 2000). These additional sources of uncertainty 
could be handled using SRAs with an appropriate degree of 2D and/or 3D site 
characterization. The use of SRAs includes a more significant number of 
parameters, critically complicating the discussion and the analysis of EUs and AVs 
propagation on the results, particularly for nonlinear simulations. For SRAs, the 
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distinction of each singular contribution to the final uncertainty appears still very 
challenging (Taborda et al. 2010, Pagliaroli et al. 2015, Amorosi et al. 2016, 
Falcone et al. 2018, Hollender et al. 2018). Moreover, recent studies demonstrated 
that the inaccuracies and bias in GRAs are likely due to the nonlinear constitutive 
models, along with EUs and AVs of the input parameters (points 1-2) (Shi & 
Asimaki 2017, Régnier et al. 2018). For some cases, other potential errors (2D or 
3D topography, basin effects) may be the primary culprits in other cases. 

For these reasons, GRAs are still primarily used for the non-ergodic assessment 
of the site response and, particularly, for the IQM of EUs and AVs. 

3.1.1   Site Response Analysis (SRA, 2- or 3D) 

The main advantage of SRAs regards the simulation of the complete wavefield 
within the numerical model. Then, also surface waves (e.g., Rayleigh and Love), 
compressional waves (i.e., P) and vertically polarized shear waves (i.e., SV) can 
propagate into the model. Moreover, the multidimensional simulations allow 
evaluating the effects of local topography, showing results in a 2D space (an 
example is given in Figure 3.6). However, the more complex formulation of the 
physical problem requires careful evaluation of other aspects as: 

- Lateral boundary conditions assignment; 
- Input motion applications; 
- Mesh discretization and dimension (geometrical schemes); 
- Damping formulations; 
- Integration schemes (e.g., finite differences or finite elements); 
- 2D and 3D constitutive models (especially in the nonlinear domain) and 

parameters calibrations; 
- Computation demand. 

 

Figure 3.6. Results of a 2D Site Response Analysis (SRA) using LSR2D 
(Local Seismic Response 2D). 

One of the first examples in the literature that studied the entire wave 
propagation phenomenon for irregular interfaces, in case of plane incident waves 
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from below, is given by Aki & Larner (1970). They provided a simple but efficient 
method to calculate an elastic wavefield propagation in a single layer over a 
bedrock. The importance of a 2D and 3D approach is also shown in Bard & 
Bouchon (1980a) and Bard & Bouchon (1980b), where the Aki-Larner method was 
extended to time-domain analyses separately for SH waves and P-SV wave 
propagation. They showed that the influence of generated Love and Rayleigh waves 
could be very strong in the case of valley formations and suggested the use of SRA 
for very complex site conditions.  

An intermediate example of 3D modeling of ground motion is given by Olsen 
(2000) who studied the sedimentary Los Angeles valley. The author compared 
theoretical finite-difference, finite-fault simulation results with regional 1D crustal 
models. In this particularly complex environment, the use of 3D approaches showed 
quite large differences with the more straightforward one-dimensional method. 
However, the author admits that large uncertainties are involved in the definition of 
the 3D numerical model, and its results should be taken as a guide.  

A similar analysis is conducted by Makra & Chávez-García (2016) for a site of 
the Euroseistest project. They showed an essential difference between 2D-3D and 
1D models for this complex geological and topographical environment. In this 
particular case, however, only an inter-method comparison was performed with a 
single input motion on an idealized case. Also in this case study, despite the 
expected better performance of multidimensional models (otherwise, the adjective 
“simplified 1D” would be meaningless), a limited application is proposed. This 
limitation is mainly due to computational demand and the need for sufficient 
information at the site, which prevents a systematic evaluation of the EUs and AVs 
at stake.  

Significant progress was made in the scientific literature, thanks to the 
development of high-performance computers, stable numerical codes and 
sophisticated constitutive models. One of the most recent applications of a multi-
dimensional and non-linear site response analysis is given by Falcone et al. (2018). 
They examined the accuracy and bias of 2D and 3D numerical simulations 
performed by PLAXIS code for an ideal and real (i.e., urban environment) case. 
The ideal case study is fundamental for the validation of the model with 
independent analytical known solutions. Then, the real case is carefully studied 
accounting for the nonlinearity of the soil response. In the paper, the authors 
attempted to recognize the primary sources of uncertainties as geometrical schemes, 
non-linear soil response, and shear wave velocity profiles. However, the initial 
complexity of the numerical models prevents a systematic analysis of the 
propagation of those uncertainties on the results, as discussed above. 

Another recent example is given in Volpini & Douglas (2018). This study 
aimed at giving suggestions on the behavior of quasi-horizontal layered deposits. 
In particular, the authors questioned how far the one-dimensional approach can be 
used, without significant mistakes and when, on the contrary, the analyst is forced 
to approach this kind of geometry with a two/three-dimensional approach. The 
chosen methodology considers the construction of a chart, with reliable and 
straightforward variables, such as the slope of the critical interface and impedance 
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contrast at this interface. A power law gives the limit between one-dimensional and 
two-dimensional methods. The generation of this power followed a parametrical 
study on a simple geometry, consisting of two layers. The aspects studied are: 

- The influence of the dipping layer and the angle of the slope; 
- The influence of the impedance contrasts; 
- The influence of location within the model. 

3.1.2   Ground Response Analysis (GRA, 1D) 

Differently from SRAs, ground response analyses are based on the assumption 
that all boundaries are horizontal and extend infinitely, whereas the response is 
dominated by vertically propagating and horizontally polarized shear (SH) waves. 
These formulations involve the propagation of SH waves from the base rock to the 
ground surface through a model of the soil layers that can be modeled as lumped 
mass or distributed mass (Figure 3.7). However, the difference between a lumped 
mass system and a distributed mass model is purely semantic. In the distributed 
mass model, the masses are lumped at the nodes; therefore, the two approaches are 
actually the same. Analytical solutions are able to account for spatially distributed 
mass, but numerical solutions always lump the masses to set up a mass and stiffness 
matrix. 

 

Figure 3.7. Mass discretization models for a Ground Response Analysis 
(GRA) (after Kwok et al. (2007)) 

It is mostly recognized that GRAs are a useful tool to investigate the role of EU 
and AV in the site-specific hazard assessment (Field & Jacob 1993). In this 
dissertation, six main inputs and models are identified as sources of uncertainties 
on the results, in agreement with Idriss (2004) and Rathje et al. (2010): 

- Shear wave velocity (VS) profile; 
- Modulus reduction and damping (MRD) curves; 
- Input motions selection; 
- Nonlinear approach; 
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- Shear strength; 
- Small strain damping (Dmin). 

In Idriss (2004) and Rathje et al. (2010), the shear strength and the small strain 
damping ratio contributions were not explicitly identified as crucial parameters. In 
this dissertation, also these further sources of uncertainties and variabilities are 
briefly presented, even if they are likely second-order importance (at least for 
shallow profiles, as discussed in Cabas & Rodriguez-Marek (2018)) compared to 
the four main ingredients discussed in the previous literature (Figure 3.8). In fact, 
for these two sources, there is not a large number of studies in the literature where 
only their influence on the results was explicitly assessed. However, Dmin and the 
shear strength, respectively, could strongly influence the small strain and the large 
strain response. Also, the shear wave velocity profile will be separately addressed 
in the dedicated Chapter 4 (i.e., only a brief presentation is given in Section 3.1.2.1 
for completeness).  

In the following sections, the dissertation will first address the main intrinsic 
causes of EU and AV within each contribution. A comprehensive summary is then 
provided in Table 3.1 (see Section 3.1.2.7) to guide in the IQM of EUs and AVs in 
GRAs. Then, the influence of each parameter on the results of GRAs will be 
presented through an extensive literature review in Section 3.2.  

Note that also in this case, the theoretical separation between EUs and AVs for 
each source is elegant and precise. However, this separation still appears very 
challenging from the practical point of view and strongly influences the 
management step of the IQM methodology. For these reasons, the geostatistical 
model that manages the uncertainties should be independent of their type and size. 
However, a calibration of the model’s parameters can be performed based on a 

rigorous analysis of a database, as discussed in the following for surface wave 
testing methods. In that case, however, the distinction within the experimental data 
in practically unfeasible. For this reason, the set of parameters provided will 
represent simultaneously the EUs and AVs. 
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Figure 3.8. Primary sources of epistemic uncertainties and aleatory 
variabilities in GRAs (modified from Rathje et al. (2010)). 

3.1.2.1   VS profile 

The shear wave velocity profile is the input parameter that governs the waves 
propagation in the elastic medium. It defines resonance frequencies and 
amplification ratios, especially for shallow depths (Kwok et al. 2008). The VS 
profile controls the mechanical amplification/deamplification of the motion at the 
interfaces. The adopted VS profile for a GRA must be based on in situ geophysical 
measurements (Stewart et al. 2014a). Each type of test shows a different amount 
and proportion of EUs and AVs (Passeri et al. 2019), also depending on the site 
complexity (Baise et al. 2011, Thompson et al. 2012) (e.g., deposition environment 
Rathje et al. (2010)). Note that an in-depth discussion regarding this parameter is 
given in Chapter 4. 

3.1.2.2   Modulus reduction and damping (MRD) curves  

The modulus reduction and damping curves are the input parameter that 
characterizes the nonlinear response of the soil material. MRD curves are necessary 
to describe the shape of the backbone curve (MR) and the relationship between 
hysteretic damping (D) and shear strain. Various laboratory tests can evaluate MRD 
curves (e.g., resonant column, cyclic triaxial test, cyclic torsional or simple shear 
test), however they are often chosen from the large number of empirical models 
(Hardin & Drnevich 1972a, Hardin & Drnevich 1972b, Iwasaki et al. 1978, Seed et 
al. 1986, Sun et al. 1988, Vucetic & Dobry 1991, Ishibashi & Zhang 1993, Lanzo 
et al. 1997, Rollins et al. 1998, Darendeli 2001, Andrus et al. 2003, Menq 2003, 
Roblee & Chiou 2004, Stokoe et al. 2004a, Zhang et al. 2005, Amir-Faryar et al. 
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2017). Each empirical model considers a different number of variables (e.g., IP, 
mean confining effective stress, OCR, Ko, frequency). Cross-validation between 
laboratory and empirical curves is always encouraged, before starting large-strain 
numerical simulations (Régnier et al. 2018). 

Along with the mean values, for each shear strain level, some empirical 
formulations also give the EU as standard deviations. This uncertainty represents 
measuring error and can be used for a stochastic study of the parameter sensitivity 
(Darendeli 2001, Zhang et al. 2008). However, a further EU is related to the 
adoption of the empirical correlation itself (Papaspiliou et al. 2012b, Kaklamanos 
et al. 2013a, Faccioli et al. 2015, Kaklamanos et al. 2015) and great care should be 
taken respecting the model assumptions (e.g., strain range applicability) (Baturay 
& Stewart 2003, Stewart et al. 2014a). In case of laboratory results, usual 
experimental limitations (state of stress, boundary conditions, and sample 
disturbance) should be evaluated as EU, particularly in case of high confining 
pressures (i.e., deep deposits) (Park & Hashash 2005a). 

The AV in the MRD curves can be seen as the natural randomness of these 
properties at the site scale, always analyzing a realistic amount of variability, 
depending on the geological complexity and the size of the study (Park & Hashash 
2005a). 

3.1.2.3   Input motion selection 

The input motions in a GRA should correspond to a seismic demand consistent 
with the hazard at the reference condition (i.e., consistent with a hazard scenario at 
the reference condition). It is the only source of EU and AV that can be almost 
entirely removed, in the case of in-hole measurements and for the trivial case of 
predicting something that is already measured. The primary goal is to select input 
motions in agreement with a motion that is expected at the PSHA reference 
condition (as a mean and standard deviation) when the site response is ideally 
removed (see Figure 3.1). There are two main types of inputs for a GRA: recorded 
time histories and stochastic/physics-based motions (Silva et al. 1997, Boore 2003b, 
Asimaki & Li 2012, Aristizabal et al. 2018).  

Generally, recorded time histories that reproduce multiple hazard levels at the 
reference site conditions are used for GRA to better constrain the evaluation of the 
amplification function. The goodness of fit can be evaluated following the approach 
by Kottke & Rathje (2008) which accounts for the fit with both the mean and 
standard deviation of the target spectrum. Moreover, the input motion suite has to 
produce stable results (Baturay & Stewart 2003, Bazzurro & Cornell 2004a, Rathje 
et al. 2010). However, there are cases where just one seismic source does not control 
the hazard at a site, and then it is difficult to define a single input that is compatible 
with the results of PSHA (Bommer et al. 2000). 

An alternative to physical records is the use of stochastic/physics-based 
motions. The use of stochastic/physics-based motion generation can be very 
appealing when there is a small number of real records to choose from, and when a 
large number of analyses are required (Li & Asimaki 2010, Asimaki & Li 2012, 
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Rodriguez‐Marek et al. 2014, Pehlivan et al. 2016, Aristizabal et al. 2018). 
However, care has to be taken for the correct simulation of the wave propagation 
from the source to the near-surface (Asimaki & Li 2012). 

The EU in the selection process is due to the choice of the hazard level, the type 
of reference spectrum (Uniform Hazard Spectrum or Conditional Mean Spectrum 
(Baker & Allin Cornell 2006)), and the matching approach adopted (scaled or 
modified) (Faccioli et al. 2015). Then the type and number of inputs (Rathje et al. 
2010), the searching method, and the consistency with the reference condition 
(Passeri et al. 2018a), also accounting for near-field and far-field effects (Stewart 
et al. 2014a). 

In this case, the AV should be due to the source and path spatial variabilities 
that control the hazard at the reference condition. These AVs can be obtained from 
the PSHA results in terms of spectral standard deviations. 

3.1.2.4   Nonlinear approach 

Several approaches may be used to simulate the nonlinear response of the 
natural material (Joyner & Chen 1975). A GRA is typically implemented in 
numerical codes adopting one of the following methods to account for the nonlinear 
response of the medium: frequency-domain EQuivalent Linear (EQL) and time-
domain NonLinear (NL) (Figure 3.9). 

However, also visco-ELastic (EL) analyses are useful for the initial validation 
of the model (TTF-ETF comparison). Frequency-dependent analyses are not 
addressed as they are not often used (Kausel & Asimaki 2002, Huang et al. 2018)). 
Let’s use an excellent definition by Kim et al. (2013a): 
“An equivalent-linear (EQL) site response analysis approximates the nonlinear 
response of soil using strain-compatible time-invariant soil properties, and 
provides reasonable estimation of ground response for many situations. Time 
domain nonlinear (NL) site response computes the dynamic response of the soil at 
each time step. This more rigorous approach can better capture soil behavior under 
large strains such as for soft soil sites subject to strong ground motions, but it is 
computationally expensive and requires the use of input parameters (such as 
Rayleigh damping) that are relatively unfamiliar for most engineers. Due to the 
advantages and disadvantages of these two approaches, the conditions under which 
the two methods produce consistent and divergent estimates of site amplification 
are of practical interest.” 
An equivalent-linear (EL) one-dimensional (1-D) site response analysis simulates 
the nonlinear response of soil using strain-compatible invariant soil properties. The 
EL soil property estimates are set for an averaged strain computed as a percentage 
of the peak strain and provide a response that is likely in error for lower and higher 
strains than the average strain. Time domain nonlinear (NL) site response analyses 
incorporate changes in the soil properties at each time step. This more rigorous 
approach can better capture soil behavior under large strains such as for soft soil 
sites subject to strong ground motions. NL analyses require greater care in the 
development of required input parameters such as model parameters, viscous 
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damping and profile discretization, and are generally more computationally 
demanding than EL analyses. 

 

Figure 3.9. Schematic illustration of the main two nonlinear approaches 
(i.e., EQL and NL) (after Zalachoris & Rathje (2015)). 

Depending on the expected strains level induced in the medium and/or the 
possible development of excess pore pressure (i.e., total or effective stress analysis), 
the choice should be made between EQL-NL approaches (Kramer & Paulsen 2004, 
Stewart et al. 2014a, Kim et al. 2016). In particular, the EQL method is a simplified 
and usually more stable procedure, however, NL analyses are catching on in the 
usual practice showing more consistent results (Andrade & Borja 2006, Hashash et 
al. 2010, Asimaki & Li 2012, Papaspiliou et al. 2012b, Régnier et al. 2016a, Régnier 
et al. 2018), even if they are still more computationally demanding (Kim et al. 
2016). Many shear strain applicability boundaries are suggested in the literature for 
the use of the EQL or the NL approach. However, a single value cannot be 
proposed, as the effectiveness of each method is depending on the specific 
characteristics of the model (Aristizabal et al. 2018). 

Equivalent linear analyses should be avoided in case of strong nonlinear 
response and large induced shear strains (i.e., soft, sandy soils subjected to strong 
high-frequency motions) (Baturay & Stewart 2003, Hartzell et al. 2004, Asimaki et 
al. 2008, Asimaki & Li 2012, Kaklamanos et al. 2013b, Kim et al. 2013a, 
Kaklamanos et al. 2015, Kim et al. 2016) and in case of no convergence of the 
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iterative process (Papaspiliou et al. 2012b, Papaspiliou et al. 2012a). A source of 
uncertainty in the EQL analysis is related to the time-independent assumption of 
the converged stiffness and damping parameters (Kaklamanos et al. 2013b, 
Kaklamanos et al. 2015, Zalachoris & Rathje 2015, Kim et al. 2016). In particular, 
a Shear Strain Ratio (SSR) is adopted in the EQL analyses to scale the shear strain 
time history by a factor less than one (usually 0.65). This scaling should account 
for the time-invariant choice of the operative mechanical parameters. However, 
there are no specific studies that prescribe a consistent value, depending on other 
simulation parameters (Kim et al. 2016).  

On the other hand, the results of nonlinear approaches should be initially 
verified against more straightforward methods (EL or EQL) and experimental 
evidence (e.g., from DH arrays) as the user expertise plays a fundamental role in 
this framework (Kwok et al. 2007, Stewart 2008, Stewart & Kwok 2008, Hashash 
et al. 2010, Kaklamanos et al. 2015, Kim et al. 2016, Hollender et al. 2018, Régnier 
et al. 2018).  

Many specific sources of EU can be identified in the NL methods, and are 
discussed in Hashash et al. (2010), Régnier et al. (2016a), and Régnier et al. (2018). 
In particular, the PRENOLIN (PREdiction of NOn-LINear soil behavior) project 
investigated the primary sources of EU in GRAs due to differences in NL codes 
with various constitutive models. The project was organized in two steps: the 
verification phase (i.e., the comparison between numerical codes on simple 
idealistic cases) and the validation phase (i.e., predictions of numerical estimations 
with actual strong-motion recordings obtained at well-known sites). Twenty-three 
different computational codes were used in this international benchmark. The 
results of these studies demonstrated that the most critical aspects for an NL GRA 
are numerical integration schemes, damping formulations, constitutive models and 
parameters calibration (curve fitting), especially in the case of pore water pressure 
generation models. The boundary conditions (mainly for the input motion 
boundary) and layers thickness should also be checked to guarantee a consistent 
wave propagation within the model. Other references on this topic can be found in 
Kwok et al. (2008), Stewart (2008), Stewart & Kwok (2008), Papaspiliou et al. 
(2012b), Kaklamanos et al. (2015), Zalachoris & Rathje (2015), Kim et al. (2016). 
In addition, a novel method for matching the MRD curves in nonlinear methods is 
proposed in Yniesta et al. (2017). This method should solve the typical overcoming 
of the delicate calibration step. 

Hence the model adopted for nonlinear GRAs (EQL or one from the vast 
multitude of NL approaches) is mainly a source of EU and should be carefully 
treated (Papaspiliou et al. 2012b). However, a very promising formulation of a new 
constitutive model termed Hybrid Hyperbolic was proposed by Shi & Asimaki 
(2017). This model, although not many applications are proposed in the literature 
so far, seems to provide a consistent step forward for GRAs, for both EQL and NL 
analyses. 
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3.1.2.5   Shear strength 

The shear strength is the input parameter that should be used in GRAs when a 
large shear strain is mobilized, aiming at assuring consistency between the small 
strain behavior characterized by the adopted MRD curves and the large strain 
behavior of the material (Baturay & Stewart 2003, Stewart & Kwok 2008, Hashash 
et al. 2010, Yee et al. 2013, Zalachoris & Rathje 2015, Kim et al. 2016, Shi & 
Asimaki 2017, Régnier et al. 2018). The importance of the inclusion of this 
consistency in GRAs is remarked in Aaqib et al. (2018) for both deep-soft sites in 
high seismicity regions and shallow sites at moderate-to-low seismicity regions. 
The differences are period-dependent, as expected. 

The associated EU has to be evaluated depending on the type of laboratory test 
adopted for the evaluation of the shear strength (Jones et al. 2002). A further source 
of EU is the model adopted for “merging” the small-strain and large-strain (i.e., at 
failure) behavior (Li & Asimaki 2010). An example adopting the Yee et al. (2013) 
is presented in Zalachoris & Rathje (2015) (Figure 3.10). However, a new 
perspective for consistent modeling from stiffness to strength is given in Shi & 
Asimaki (2017). The authors showed that the proposed HH model could reproduce 
both the small-strain behavior from a resonant column test and a moderate-to-large 
strain behavior from the direct shear test. Also, the empirical correlations they 
propose between the shear wave velocity and the model parameters are appealing 
for the initial calibration process and can capture the material strength. Moreover, 
a new method is presented in Aaqib et al. (2018) as a quadratic/hyperbolic model. 
As for the MRD curves, the contribution of AV depends on the geological 
complexity of the project area under analysis. 

 

 

Figure 3.10. Matching process between small strain and shear strength 
(after Zalachoris & Rathje (2015)). 
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3.1.2.6   Small strain damping Dmin 

Laboratory measurements of damping at low strains (Dmin) are generally at odds 
with experimental evidence from downhole arrays. The small strain damping is the 
input parameter that should be added to laboratory evidence in the GRA model to 
fit the experimental evidence. In fact, at the site scale, larger values of energy loss 
are observed from very low strain levels (Régnier et al. 2018), likely due to complex 
wave propagation interaction (Stewart et al. 2014a). One of the controlling 
phenomena is the wave scattering, which produces a variable energy loss in the 
model, depending on the mechanical conditions. This phenomenon is more evident 
in the case of strong impedance contrasts (Zalachoris & Rathje 2015). The central 
problem of this parameter regards the amount of damping at various depths (even 
five times the one from laboratory tests). This Dmin profile can be evaluated, for 
example, using weak motions recordings and back-calculation procedures (Park & 
Hashash 2005a). Then a complex mix of EU and AV strongly influences this 
parameter, as it represents the portion of geometrical damping that controls the 
global spatial wave propagation.  

Moreover, for NL analyses, further EUs are mainly due to the numerical 
approach that is implemented for the addition of the viscous damping to the 
hysteretic damping (Hashash & Park 2002, Park & Hashash 2004, Kwok et al. 2007, 
Stewart & Kwok 2008, Phillips & Hashash 2009, Papaspiliou et al. 2012b, 
Kaklamanos et al. 2015, Rayleigh 2015, Zalachoris & Rathje 2015). 

3.1.2.7   Summary 

The next Table 3.1 summarizes the most common sources of EUs and AVs 
involved in each parameter of a GRA and discussed in previous sections from a 
purely theoretically point of view.  
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Table 3.1. Summary of the most critical sources of epistemic uncertainties and 
aleatory variabilities in Ground Response Analyses. 

 EPISTEMIC UNCERTAINTIES ALEATORY VARIABILITIES 
V

S p
ro

fil
e Epistemic uncertainties are associated with measurement errors; AVs are associated with 

spatial variability. Different tests used to measure VS in the field have different amounts 
of EUs, and capture spatial variability (AV) in different ways, depending on the site 
complexity. 

M
R

D
 c

ur
ve

s 

Regression residuals and specific characteristics of 
the adopted model (in the case of empirical curves). 
Experimental measurements limitations (in the case 
of laboratory tests). 
Cross-validation between laboratory and empirical 
curves is always encouraged. 

Variation of these properties at the 
site scale depending on the 
geological complexity and the size 
of the study. 

In
pu

t m
ot

io
n 

se
le

ct
io

n  Choice of the hazard level 
 Type of reference spectrum and goodness of fit 

evaluation 
 Matching approach 
 Number and type of inputs 
 Searching method 
 Consistency with the reference condition 
 Near-field and far-field effects 

Variability included in the 
reference hazard result that is 
obtained by the PSHA. 

N
on

lin
ea

r 
ap

pr
oa

ch
 

EQL 

 Time-independent parameters  
 High nonlinear responses (i.e., soft, sandy soils 

subjected to strong high-frequency motions) 
 Convergence 
 Shear Strain Ratio (SSR) assumption 
 Total stress analysis (possible development of 

excess pore pressures) 

NL 

 Integration schemes (e.g., implicit or explicit) 
 Damping formulations  
 Constitutive models and parameters calibration 

(curve fitting), especially in the case of pore 
water pressure generation models 

 Boundary conditions (especially at the 
halfspace) and layers thickness 

 Requirement of a specific expertise 

No aleatory variability. 

Sh
ea

r 
st

re
ng

th
 Dependent on the laboratory test used for the shear 

strength evaluation and in situ stress conditions. 
Then, the merging law (i.e., between small strains 
and large strains) or the constitutive model adopted. 

Variation of these properties at the 
site scale depending on the 
geological complexity and the size 
of the study. 

Sm
al

l s
tr

ai
n 

da
m

pi
ng

 Lack of a rigorous knowledge of the amount of 
dissipation phenomena at the site scale, especially 
for high frequencies. Adopted model in NL analyses 
for the additional viscous damping, particularly for 
low periods. 

A portion of geometrical damping 
that is controlled by the global 
spatial wave propagation. 
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3.2 Effects of uncertainties and variabilities on GRA 
results 

This section refers to Idriss (2004) and Rathje et al. (2010) who discussed the 
influence of the primary four sources of EUs and AVs on GRA results. As 
previously anticipated, the shear wave velocity profiles will be separately discussed 
in Chapter 4. However, Table 3.1 and Section 3.2.1 list references that accounted 
for EUs and AVs in VS profiles. The next paragraphs summarize the primary 
examples of IQM of EUs and AVs proposed in the literature also for the shear 
strength and the small strain damping ratio. A final summary is given in 3.2.5 and 
Table 3.2. 

Generally, input parameters randomization methods have been used in the 
literature by adopting Monte Carlo (MC) algorithms (Field & Jacob 1993, Roblee 
et al. 1996, Bazzurro & Cornell 2004a). This choice was critically discussed in 
Andrade & Borja (2006) and Li & Asimaki (2010) who focused their attention on 
the result of the sensitivity analysis, mainly looking at the number of realizations at 
convergence. Monte Carlo randomizations are more time-consuming than other 
approaches, but they are a robust method independent of the problem complexity 
(i.e., nonlinearity) (Li & Asimaki 2010). For these reasons, in recent studies, the 
adoption of MC methods is mostly accepted and corroborated for the evaluation of 
the probabilistic distributions of GRA results (Rathje et al. 2010, Rodriguez‐Marek 

et al. 2014, Bahrampouri et al. 2018). However, Rathje et al. (2010) encourage the 
use of logic trees and the engineering judgment to better model some uncertainties 
contributions.  

Another method to evaluate the final dispersion of the results is the FOSM 
method (Kwok et al. 2008, Stewart & Kwok 2008, Melchers & Beck 2018) which 
requires a reduced number of parameter realizations.   

Historically, Field & Jacob (1993) were the pioneers who investigated the 
effects of EUs and AVs on the GRAs results. Their work was part of the first step 
(i.e., weak motion) benchmark that blindly studied the Turkey Flat array (Kwok et 
al. 2008). In the first step of the work, the results showed good consistency between 
different theoretical techniques in estimating the site response. Then Field & Jacob 
(1993) also investigated the influence of the parameters on the theoretical 
predictions using MC analyses. In this framework, the authors first recognized the 
high degree of variability introduced in the predictions. In particular, they found the 
VS profile to have an important role, especially for a low constraint of the shallow, 
thin, layers. They concluded their study highly recommending the analysis of 
uncertainties influence for GRAs. 

An outside voice regarding the influence of EUs and AVs in the GRA can be 
found in one of the first studies on the topic by Bazzurro and Cornell (2004a). They 
studied the effects of soils parameters uncertainties on the results expressed as 
spectral accelerations, amplification functions and related logarithmic standard 
deviations (both parameters are assumed lognormally distributed). They also stated 
that parameters variability did not seem to produce significant effects on the results. 
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However, in light of modern studies, this observation is not still valid, as their 
pioneer attempt was based on a limited case study and simplified randomization 
models. They proposed a Monte Carlo randomization of seven parameters and 
calculated the site response adopting one input motion for each realization of the 
soil parameters, not detecting an increased variability on the results (Figure 3.11). 
Then, they increased the number of parameter realizations to 10, for each input 
motion, still not detecting an essential difference between the mean responses 
𝐴𝐹(𝑇)̅̅ ̅̅ ̅̅ ̅̅  and/or an increased variability 𝜎ln(AF)(𝑇).  

 

Figure 3.11. Randomization of the parameters and results illustrated as 
mean amplification function and logarithmic standard deviation (after 

Bazzurro and Cornell (2004a)). 
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More recent studies (e.g., Rathje et al. (2010)) demonstrated that the inclusion 
of the input parameters uncertainties and variabilities in GRA is of paramount 
importance. The authors proposed a systematic evaluation of the effect of 
randomized VS profiles and MRD curves using the software STRATA (Kottke & 
Rathje 2009). STRATA represents the first example of a publically-available GRA 
software where also randomization analyses can be performed. Kottke & Rathje 
(2009) first implemented a series of models for the randomization of shear wave 
velocities and MRD curves that included correlations between the parameters. 
Differently from Bazzurro & Cornell (2004a), they showed a substantial impact of 
randomized soil properties on the results, regarding both amplification functions 
and their logarithmic standard deviations (Figure 3.12 and Figure 3.13). 

 

Figure 3.12. VS profiles and MRD curves randomization proposed in 
Rathje et al. (2010) for the assessment of the parameter uncertainties and 

variabilities. 
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Figure 3.13. Results obtained in Rathje et al. (2010). 

Li & Asimaki (2010) analyzed the number and type of input motions to be used 
in the simulations to reproduce a wide strain range of soil and rock responses 
(Papaspiliou et al. 2012a, Aristizabal et al. 2018). As briefly discussed in the 
previous Chapter, the nonlinearity of the response should always be precisely 
evaluated (Hashash et al. 2010, Asimaki & Li 2012). Li & Asimaki (2010), 
Papaspiliou et al. (2012b), Pehlivan et al. (2016), Bahrampouri et al. (2018), and 
Passeri et al. (2019) showed that the input motion intensity strongly influences the 
propagated EU and AV in GRA. In general, they showed increased results 
variability due to the nonlinear response of the soil deposit at large strains. In 
particular, Pehlivan et al. (2016) and Aristizabal et al. (2018) showed a strong 
influence of the soil nonlinearity on the calculated hazard curves, even more than 
other sources of EU and AV. Accordingly, Baise et al. (2011) suggested adding the 
nonlinearity to the analyses only when the linear response was carefully studied, 
regarding mean response and associated variabilities. 

For this reason, Li & Asimaki (2010) used a broad set of synthetic motions 
coming from various ranges of magnitudes and distances for three instrumented and 
well-characterized sites in California. The results are shown as a function of the 
input motion intensity and frequency content as a logarithmic standard deviation of 
the surface response spectrum 𝜎ln(SA)(𝑇) (Figure 3.14).  
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Figure 3.14. Epistemic uncertainties and aleatory variabilities of VS 

profiles and MRD curves propagated on the surface response spectra (after 
Li & Asimaki (2010)). 

Another example of site-specific (i.e., non-ergodic) assessment of the seismic 
hazard a site that also systematically accounted for EU and AV is proposed in 
Rodriguez‐Marek et al. (2014). Their study also regards a few concepts discussed 
in the previous Chapter, condensing various observations in an application for a 
project in South Africa (Bommer et al. 2015). First, they evaluate the EU in the 
model for the reference hazard scenario; then they applied a mixture of logic tree 
and randomization approaches for the subsequent GRAs (Figure 3.15). This study 
represents a modern application of a specific operational flow to perform a hazard 
study for a critical facility, managing all sources and types of EUs and AVs in both 
the reference hazard GRAs.  
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Figure 3.15. PSHA low designed by Rodriguez‐Marek et al. (2014) for a 
project in South Africa. 

A fascinating case study is presented in Pagliaroli et al. (2015) who studied the 
seismic response of Rome’s downtown. Besides the results of the analyses (both 
1D and 2D), this example shows an uncommon source of aleatory variability. The 
Roman subsoil presents large heterogeneities regarding geotechnical parameters. 
This spatial variability is mainly due to buried morphologic and anthropogenic 
coves that reach a thickness of 20 m in the Colosseum area (Figure 3.16). This layer 
is made by “dominant masonry” and “dominant infill” with a high level of 
uncertainties. These uncertainties do not regard a natural variability, but the effects 
of artificial understructures that should be accounted in the site response study. In 
particular, they investigated the effects of EU and AV in VS and MRD curves. 
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Figure 3.16. Map of the substantial spatial (i.e., aleatory) variability 
investigated in the Rome’s downtown (after Pagliaroli et al. (2015)). 

Bahrampouri et al. (2018) presented a study that investigated in depth the 
influence of EUs and AVs for the Groningen gas field hazard assessment. The 
authors systematically investigated the influence of VS and MRD curves on the 
results of the GRAs, as 𝐴𝐹̅̅ ̅̅  and 𝜎ln(AF) . However, the main results regarded the 
influence of the variability of the MRD curves. In particular, they classified the 
input motions in low-intensity and high-intensity and showed the results of MRD 
curves randomization as 𝜎ln(AF) |𝑀𝑅𝐷 (Figure 3.17). For low-intensity motions, the 
contribution of MRD curves uncertainty is only significant (i.e., larger than about 
0.15 in natural log units) for periods slightly higher than 0.1 s. As expected, the 
effects of MRD curves uncertainty increase for larger strains and strong nonlinear 
behavior and are highly site-dependent.  
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Figure 3.17. MRD curves influence resulted after the stochastic study 
conducted by Bahrampouri et al. (2018) at the Groningen gas field.  

Rathje et al. (2010), Li & Asimaki (2010), Rodriguez‐Marek et al. (2014), and 
Bahrampouri et al. (2018) provided multiple reasons to incorporate soil property 
variability in seismic ground response analyses rigorously identifying and 
managing EUs and AVs. In particular, all of them used statistical models for the 
randomization of the input parameters, including the Toro (1995) model for VS and 
the Darendeli (2001) model for MRD curves. 

Besides the EU and AV due to input parameters, a specific focus on the EU due 
to the nonlinear adopted approach is given in Régnier et al. (2016a) and Régnier et 
al. (2018). The increasing spread of nonlinear approaches led the authors to a 
systematic assessment of the most common GRA nonlinear codes performance. In 
Régnier et al. (2018), 19 teams utilizing 23 different codes took part in the 
international project PRENOLIN. They provided a rigorous estimation of code-to-
code variability for two real sites in Japan (i.e., Sendai and KSRH10), where in-
hole measurements were available (i.e., no influence of the input). The authors 
found a variability ranging from 0.05 to 0.25 in log10 units (an average of 0.1 is 
proposed). This indicates a quite considerable influence of the numerical methods 



 

57 
 

on site-effect assessment and more generally on the seismic hazard. The level of 
epistemic uncertainties was found to be also dependent on the site characteristics 
(i.e., shallow or deep deposits) and the quality of the experimental measurements, 
especially for VS profiles and MRD curves (Figure 3.18). 

 

Figure 3.18. Comparisons of obtained results from the different NL codes 
at Sendai with the experimentally-measured solution (after Régnier et al. 

(2018)). 

Due to the lack of a large number of specific studies, the assessment of the 
influence of uncertainties and variabilities in shear strength and small strain 
damping ratio are not widely discussed. However, particular attention should also 
be paid to these two sources of uncertainty when a GRA is performed. For this 
reason, few examples are reported in the next paragraphs. 

In this context, Zalachoris & Rathje (2015) demonstrated that the inclusion of 
the material shear strength in GRAs leads to more accurate results, compared to 
DH-arrays records. They adopted the formulation by Hashash et al. (2010), Yee et 
al. (2013). In particular, both EQL and NL analyses better reproduced the measured 
motions, for all investigated periods. Later, Aaqib et al. (2018) showed the results 
of their quadratic/hyperbolic model for 15 sites, showing period-dependent 
differences regarding RS and induced shear strains. 

The epistemic uncertainties in Dmin lead to an underestimation of the motion 
and more considerable variability of the results. This is more evident for low 
periods (lower than the site elastic or inelastic period) and high-intensity inputs 
(Papaspiliou et al. 2012b, Papaspiliou et al. 2012a, Kaklamanos et al. 2015, 
Zalachoris & Rathje 2015) when the frequency-dependent Rayleigh formulation is 
implemented. For small strain responses, the small strain damping from laboratory 
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curves should be increased according to the wave scattering (i.e., energy loss) 
processes at the field scale (Zalachoris & Rathje 2015). Generally, the EU and AV 
of the small strain damping are likely responsible for the biases in the evaluation of 
the resulted uncertainties and variabilities (Pehlivan et al. 2016). An interesting 
calibration of Dmin is presented in Zalachoris & Rathje (2015) for nine sites in Japan. 
They calibrated the small strain damping for the viscoelastic behavior and 
compared ETFs to TTFs (Figure 3.19), remarking the importance of this input 
parameter in the simulation of the physical phenomenon.  

 

Figure 3.19. Small strain damping calibration and TTF-ETF comparison 
(after Zalachoris & Rathje (2015)). 

In the following sections, a further literature review will be presented for each 
of the four main parameters/approaches (Rathje et al. 2010), then listed in Table 
3.2. As already discussed, EUs and AVs propagated from VS profiles will be only 
briefly discussed for completeness in Section 3.2.1, as an extensive analysis is 
provided in Chapter 4.  
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3.2.1  VS profile 

Kwok et al. (2008) demonstrated that the more substantial contribution to the 
total variability is due to the VS profiles for low periods. They observed that the 
introduction of the VS variability in the analyses produces responses in line with the 
experimental evidence by DH arrays.  

Rathje et al. (2010) and Field & Jacob (1993) demonstrated that the VS profile 
and the MRD curves are the most relevant input parameters. Rathje et al. (2010) 
studied two sites in California with 600 MC GRAs. They also focused their 
attention on randomized soft, shallow layers that are tremendously dangerous for 
the results of the analyses. In particular, an uncontrolled stiffness reduction of these 
layers can lead to unconservative results due to overdamping of the response. In 
this regards, consistent correlation coefficients should be used, along with a logic 
tree approach and an independent engineering judgment.  

Li & Asimaki (2010) showed the high influence of the EUs and AVs in VS for 
sites with strong impedance contrasts. However, they did not find a strong 
dependency on the result variabilities on the frequency content of the input motions.  

Baise et al. (2011) proposed a class of their taxonomic approaches, where the 
GRA responses were due to inaccuracies in VS profiles. They showed that the 
adoption of consistent VS profiles provides an agreement between ETF and TTD 
for weak motions. 

Pehlivan et al. (2016) investigated the influence of VS profile aleatory 
variability randomizing a base case profile, looking at the effects on the surface 
hazard curve obtained by the Bazzurro & Cornell (2004b) convolution method. 
They performed different GRAs with increasing values of VS variability. The 
increased variability on VS produced a stronger prediction for low exceedance 
probabilities, which are typical for critical facilities. In general, the results showed 
a lower amplification, but an increased variability of the amplification function, 
which leads to higher predictions in general. In their study, they stated that the high 
level of VS randomization is likely the primary cause of the overestimation of 
uncertainties and variabilities at low periods. 

Note that the discussion about the influence of VS profiles on the results of 
GRAs will be enlarged in the dedicated Chapter 4. This section condenses an initial 
literature overview of the problem that is the main topic of the entire dissertation. 
For this reason, the next Chapter will provide a more exhaustive picture of the topic. 

3.2.2  Modulus reduction and damping (MRD) curves 

Rathje et al. (2010) and Field & Jacob (1993) demonstrated that the MRD 
curves along with the VS profile are the most relevant input parameters for GRAs. 
Li & Asimaki (2010) illustrated the considerable influence of the MRD curves, 
especially for very soft profiles. Papaspiliou et al. (2012b) showed that the influence 
of the empirical model adopted for the simulations dramatically increases for strong 
input motions. 
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Kaklamanos et al. (2013a) and Kaklamanos et al. (2015) found a low 
performance of the Darendeli formulation in reproducing the surface motion at six 
sites of the Kik-Net DH-array network. The Darendeli model showed an 
overestimation of the damping for large strains, then an underprediction of the 
motion, even if the analyses did not exceed the 0.3% (i.e., suggested an 
experimental limit for this model). A possible reason for this inaccurate 
performance of the Darendeli model can be its large number of model parameters. 
Similarly, the excellent performance obtained by the Zhang et al. (2005), Zhang et 
al. (2008) models can be due to the introduction of the parameter that accounts for 
the age of the deposit. 

Faccioli et al. (2015) showed that, for the specific site of Mirandola (Italy), the 
most influent EU was due to different choices in the MRD curves. In their results, 
the influence of the choice of the MRD curves is even more significant than the 
nonlinear approach adopted (i.e., EL, EQL, or NL), especially for long return 
periods. 

Pagliaroli et al. (2015) showed the second-order importance of the EU and AV 
in the MRD curves. They stated that, for low seismicity areas (i.e., Rome), the 
induced nonlinearity is not enough to show an apparent influence of the MRD 
curves randomization. 

Régnier et al. (2016a) and Régnier et al. (2018) showed that the analyst should 
make an accurate choice of the literature formulations and compare them to the 
specific experimental results.  The goodness of empirical or experimental data 
depends on the case study. 

Bahrampouri et al. (2018) systematically show that the MRD curves 
randomization is strongly dependent on the site and the input motion intensity. The 
logarithmic standard deviation of the computed amplification function increases for 
soft soil and strong input motions. 

3.2.3  Input motion selection 

The significant finding of Bazzurro & Cornell (2004a) is the assessment of the 
main influencing parameters for the mean amplification function. They found that 
the most influencing parameter is the spectral acceleration of the input motion. 
Bazzurro & Cornell (2004a) also studied the effect of the number of input motions 
on the stability of the solution, suggesting ten input motions for estimation within 
10% of the variability.  

Also, Rathje et al. (2010) systematically investigated the influence of the 
number of input motions to obtain a sufficient fit with the mean reference spectrum 
and its standard deviation. They proposed a minimum number of 10 input motions 
that also assures a stable statistical response after analyzing the results of 15 classes 
and 175 input motions. 

A different approach was proposed in Li & Asimaki (2010), where the authors 
used the stochastic method to generate a large sample of inputs with a broad range 
of characteristics (e.g., M and distances).  
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Faccioli et al. (2015) used an iterative procedure in the frequency domain to 
scale a set of carefully selected real records to the target UHS on exposed bedrock 
at Mirandola (Italy). They propose an efficient method for preserving the physical 
nature of the records and, at the same time, for avoiding double counting of aleatory 
variability. In particular, the authors first carefully selected real records 
approaching as closely as possible the target spectrum in a broadband periods range. 
Then, they suggested to iteratively scaling the amplitude of such records in the 
frequency range, with no phase change, to closely match the target spectrum. 

Pehlivan et al. (2016) found no significant differences using recorded input 
motions or adopting the Random Vibration Theory (RVT). In their study, they 
investigated the motion-to-motion variability adopting 130 recorded inputs and 19 
RVT inputs. It is important to remark that, in case of RVT, the obtained variability 
of the response cannot be introduced in the convolution (Bazzurro & Cornell 
2004b), as they are not representing a real record-to-record variability. 

In Aristizabal et al. (2018), the use of synthetic simulations calibrated with real 
data is highly recommended. They stated that synthetic simulations allow a better 
understanding and accounting for the variability of the physical phenomenon. In 
most cases, this achievement is presently not possible with real data because of their 
scarcity at high acceleration levels. 

3.2.4  Nonlinear approach 

Hartzell et al. (2004) proposed one of the first studies for the investigation of 
EU due to the nonlinear approach adopted. They used EQL, EQL-FD, and NL (both 
for total and effective stresses) models for five synthetic profiles from the NEHRP 
provisions and wide ranges of PGAs. As expected by the authors, for stiffer 
conditions no significant differences existed between the models. Then, as the 
average stiffness of the deposit decrease, the EQL models start to deviate from the 
NL predictions. They recommended the use of NL models for soft deposits and 
strong input motions. 

Andrade and Borja (2006) adopted a simple, but efficient, approach imposing 
the same parameters variability to an EQL and an NL code and analyzing the 
dispersion of the results regarding Arias intensity. They proposed an MC 
randomization for VS and the MRD curves of 500 or 300 samples and plotted the 
obtained variabilities regarding experimental probability functions. Their results 
illustrate that the resulted variability from EQL and NL GRAs is similar.  

Stewart and Kwok (2008) and Kwok et al. (2008) proposed rigorous protocols 
for the NL codes usage and verification against DH-arrays records. They found that 
EQL methods tend to over-damp the small periods range (i.e., lower than the natural 
period) more than NL approaches, that also show this limitation. Particularly in 
Kwok et al. (2008) substantial differences of the goodness of prediction depending 
on the model fundamental period are shown. For higher nonlinear responses, 
however, the fundamental shifted period should be addressed as an index. 
Moreover, Stewart and Kwok (2008) and Kwok et al. (2008) also found a more 
considerable variability of the results close to the site period, especially for EQL 
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analyses and sites with strong impedance contrasts. Then, the variability usually 
drops at higher periods, together with increased global accuracy of the GRA.  

A systematic and rigorous treatment of the topic is discussed in Asimaki et al. 
(2008) and Asimaki & Li (2012). They showed parameters that a-priori suggest a 
strong nonlinearity response by the soil deposit. In particular, they found two 
controlling parameters of the site and two parameters of the input. The site 
parameters that mostly control the nonlinear response of the deposit are VS,30 and 
the amplification at the first resonant peak (Amp). The input parameters that mostly 
control the nonlinear response of the deposit are the PGA of the input motion at the 
bedrock and the Frequency Index (FI) (Figure 3.20). Following the controlling 
parameters, they showed that an increasing computational effort in the GRAs is 
needed moving from EL to EQL and NL approaches that always provide the better 
estimation of the response (Asimaki et al. 2008). This increasing complexity 
reduces the amount of EU introduced into the solution by different nonlinear 
approaches.  

 

Figure 3.20. Illustration of the Frequency Index proposed by Asimaki & 
Li (2012). 

The same dependency of the result variabilities on the period was identified by 
Li & Asimaki (2010). They also associated the drop at high periods with a dominant 
influence of the source and path EU and AV in the results. This is consistent also 
with the propagated wavelengths, which are longer than the site scale for very high 
periods.  

Rathje & Kottke (2011) identified epistemic differences between EQL and NL 
results for two case studies. The authors showed disagreements for frequencies 
higher than 25 Hz, between 5 Hz and 25 Hz, and at the resonance frequency of the 
deposit. For high frequencies, less amplification is produced by NL models due to 
the incoherence of the phase in the ground motions introduced by the nonlinear 
response. For intermediate frequencies, the opposite is observed, likely due to an 
over-damped EQL response. At resonance conditions, the NL models showed a 
reduced amplification mainly due to the continuous change of soil stiffness in the 
NL response. 
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Baise et al. (2011) showed that nonlinear approaches are necessary for high 
strains and low periods, especially for soft deposits, where EL analyses show a 
consistent overestimation of the motion. 

Another example of an analysis of the influence of the adopted nonlinear 
approach on GRA results in given in Thompson et al. (2012) and Kaklamanos et al. 
(2013b). The authors systematically investigated the critical parameters affecting 
bias and variability using 100 Kik-Net DH-array data, thanks to the availability of 
a large number of high-quality surface/downhole records. They demonstrated that 
the most influencing parameters on the result are the maximum induced shear strain 
𝛾𝑚𝑎𝑥, the input motion Peak Ground Acceleration (PGA), and the predominant 
input motion period. Depending on the characteristics of the analyses, an initial 
evaluation of the uncertainties in the results can be obtained by using the following 
charts in Figure 3.21. 

 

Figure 3.21. Guidance thresholds for the nonlinear approaches 
applicability (after Kaklamanos et al. (2013b)). 

Moreover, Thompson et al. (2012) and Kaklamanos et al. (2013b) observed a 
systematic underestimation of the motion for low periods (i.e., short wavelengths) 
by both EL and EQL analyses. In their opinion, this result is due to the time-
invariant assumptions of G and D at convergence during the entire analysis. In 
particular, the converged values are associated with the low frequencies, and they 
are usually overestimated for high frequencies, showing a typical flatness in the 
response spectrum.  

Kaklamanos et al. (2013a) and Kaklamanos et al. (2015) used 6 of the 100 sites 
in the previous study that showed clear 1D responses (Baise et al. 2011), also 
performing NL analyses using DEEPSOIL (Hashash et al. 2015) and ABAQUS 
(Hibbett et al. 1998). They still found an overprediction of the motion obtained by 
the EL analyses for 𝛾 > 0.01% and low periods. An underestimation of the motion 
is showed for low periods, for both EQL and NL analyses, even though the 
ABAQUS model performed better. For periods around the system period, they 
found a great advancement of EQL and NL analyses over EL, even if still larger 
biases are detected at resonance, which disappear for long periods. These periods 
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are, in fact, associated with a long wavelength that does not detect the thin surface 
layers, mainly responsible for the site nonlinear amplification. Contrarily, for small 
periods and limited wavelengths, the influence of thin layers with strong impedance 
contrasts and the wave scattering phenomenon control the site response. 

An extension of the work by Asimaki et al. (2008) and Asimaki & Li (2012) 
can be found in Kim et al. (2013a). The goal is the analysis of the applicability 
boundaries between EQL and NL analyses, estimating the EU introduced in the 
results. As discussed in Asimaki et al. (2008) and Asimaki & Li (2012) they want 
to suggest a priori criteria for avoiding large EUs by EQL analyses. Differently 
from Kaklamanos et al. (2013b), they want to predict the introduced uncertainty 
before performing the analyses (i.e., a criterion not based on strain ranges). They 
found the usual inaccuracy depending on both the site and input characteristics, in 
parallel. In particular, a new parameter is suggested and calculated as: 

𝛾𝑒𝑠𝑡 =
𝑃𝐺𝑉𝑖𝑛𝑝𝑢𝑡

𝑉𝑆,30
(Eq. 3.4) 

Accordingly with the performed analyses, they proposed a new chart (Figure 
3.22) to a-priori guide the choice of the nonlinear approach and to eventually limit 
the introduced uncertainties. This chart is defined assuming a 10, 20, and 30% of 
differences between EQL and NL analyses. 

 

Figure 3.22. Guidance thresholds for the nonlinear approaches 
applicability (after Kim et al. (2013a)). 

Zalachoris & Rathje (2015) intensely studied the epistemic uncertainties in the 
results of a GRA evaluating EQL, EQL-FD, and NL simulations. They initially 
showed good consistency in the results for small values of PGAs. Then, when the 
PGA increases, a different frequency-dependent response is observed by the three 
approaches. However, one input motion measure (i.e., PGA) is not enough to 
predict the nonlinear response of a deposit, which depends necessarily on material 
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characteristics. They adopted the maximum shear strain as an index, illustrating a 
different response for 𝛾 > 0.1% at low periods. In particular, both EQL and NL 
analyses showed an underestimation of the motion for high frequencies. This is due 
to high-converged damping values (EQL) and viscous damping formulations (NL). 
The results obtained using EQL-FD become inaccurate for smaller strain levels ad 
across a wider range of periods. As the EUs on the results are largely dependent on 
induced strains and frequencies, they also proposed contour plots, as presented in 
Kaklamanos et al. (2013b) and Kim et al. (2013a) (Figure 3.23). 

 

Figure 3.23. Guidance thresholds for the nonlinear approaches 
applicability (after Zalachoris & Rathje (2015)). 

Kim et al. (2016) published likely the last and most comprehensive study on 
the topic. Their primary goal was to expand the 2013 study, showing new and the 
last results of their research on the relative differences between NL and EQL GRAs. 
They proposed this study to investigate the conditions under which the two methods 
produce consistent and divergent estimates of the site amplification. Differently 
from 2013, they used recorded input motions representative of two central US 
regions. Then, they introduced the influence of the shear strength in the simulations 
and proposed their regressions based on Fourier spectra, instead of RS. The central 
question is still the same as in 2013: “can we a priori predict the effectiveness and 

goodness of EQL, compared to NL approaches?”. For this purpose, they selected 
145+176 input motions for 24+18 sites and 13296 GRAs. In the paper, they were 
looking for the most influent parameter that could predict the divergence between 
the EQL and NL results. In particular, they investigated five main parameters, some 
of the input motions, some of the site. At the end of the study, they found a strong 
relationship with: 

𝛾𝑒𝑠𝑡 =
𝑃𝐺𝑉𝑖𝑛𝑝𝑢𝑡

𝑉𝑆,30
(Eq. 3.5) 

that is a potentially very useful parameter, as it can be a priori computed. 
This parameter, however, should be studied in combination with the frequency. 

As primarily discussed, in fact, the EQL analyses often showed biases for high 
frequencies, whereas for low frequencies the 1D approach could be not very 
efficient. They proposed the following relation for a 20% relative difference 
between EQL and NL (Figure 3.24): 



 

66 
 

 
𝛾𝑒𝑠𝑡 = 0.09𝑓

−0.08 (Eq. 3.6) 
 

 

Figure 3.24. Estimated shear strains interpolation illustrated in Kim et al. 
(2016). 

If the user is interested in relative differences of also 10-30%, the authors 
proposed a final comparison with the other studies about the same topic (Figure 
3.25). 

 

Figure 3.25. Final comparison of suggested applicability thresholds in 
various studies (after Kim et al. (2016)). 

The leading causes of high, frequency-dependent, relative differences between 
EQL and NL can be due to time-invariant parameters (because of the SSR 
assumption) and/or overdamping of the EQL analyses. However, their last 
comparison showed that the 𝛾𝑒𝑠𝑡 can be a very useful a-priori index for an initial 
engineering judgment. 

Another study that investigated the EUs introduced by the nonlinear model 
chosen is given by Aristizabal et al. (2018). The authors investigated the case of the 
Euroseistest site in Greece, comparing the results from 21806 synthetic rock 
motions regarding surface hazard curves computed with two different methods. The 
site shows a very soft behavior, and then a strong nonlinear response was expected 
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by the simulations. Besides the differences between the hazard assessment method, 
the epistemic uncertainties introduced by the adoption of an EQL or an NL 
approach were predominant, even for PGAs less than 0.1 g. For these intensities, 
also a good comparison with recorded motion is obtained by using both approaches 
(Figure 3.26). 

 

Figure 3.26. Analysis of the GRAs accuracies obtained by different NL 
approaches (after Aristizabal et al. (2018)). 

A systematic assessment of the code-to-code uncertainties introduced in NL 
GRAs is proposed in Régnier et al. (2018). They firstly computed the logarithmic 
standard deviation due to this contribution of EUs. The average, almost period-
independent, proposed value is 0.1 for the logarithmic standard deviation. 

3.2.5  Summary 

Table 3.2 presents the primary studies that are summarized in this dissertation 
and that evaluated the influence of EUs and AVs in GRAs. In particular, the 
references are given along with the NL approach adopted in the analyses, the 
number of investigated sites and the availability of in-hole records (no influence of 
the input motion selection). Moreover, the same studies are listed concerning the 
type of EU and AV studied in GRAs (cells filled in black). Note (once more) that a 
precise distinction between EUs and AVs is not always presented, as it appears 
often not feasible from a practical point of view. Most of the proposed literature 
examples only studied the effects of the single source of generic uncertainty on the 
final result, without separating the two major contributes (i.e., EU and AV). 
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Table 3.2. List of most studies regarding the evaluation of the influence of 
epistemic uncertainties and aleatory variabilities in Ground Response 

Analyses. 

Reference 
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Field & Jacob (1993) LE 1 
Bottom-
Surface 

    

Bazzurro & Cornell (2004a) NL (SUMDES) 2 -     

Hartzell et al. (2004) 
EQL, EQL (FD), and NL 
(NOAHW and NOAHB)  5  - 

    

Andrade & Borja (2006) EQL and NL (SPECTRA) 3 
Bottom-
Surface 

    

Stewart & Kwok (2008) 
EQL and NL (D_MOD_2, 

DEEPSOIL, OpenSees, 
SUMDES, TESS) 

4 Bottom-
Surface 

    

Kwok et al. (2008) 
EQL and NL (D_MOD_2, 

DEEPSOIL, OpenSees, 
SUMDES, TESS) 

1 
Bottom-
Surface 

    

Rathje et al. (2010) EQL 1 -     

Li & Asimaki (2010) NL 3 Bottom-
Surface 

    

Rathje & Kottke (2011) EQL and NL (DEEPSOIL) 2 -     

Baise et al. (2011) EQL and NL (DEEPSOIL) 74 Bottom-
Surface 

    

Papaspiliou et al. (2012b), 
Papaspiliou et al. (2012a) 

EQL and NL (DMOD2000 and 
DEEPSOIL) 2 - 

    

Asimaki et al. (2008) and 
Asimaki & Li (2012) 

LE, EQL, and NL  24 Bottom-
Surface 

    

Thompson et al. (2012) and 
Kaklamanos et al. (2013b) LE, EQL 100 

Bottom-
Surface 

    

Kaklamanos et al. (2013a) 
and Kaklamanos et al. 

(2015)   

LE, EQL, and NL (DEEPSOIL 
and ABAQUS) 6 

Bottom-
Surface 

    

Kim et al. (2013a) EQL and NL 24 -     
Rodriguez‐Marek et al. 

(2014) 
EQL 1 -     

Zalachoris & Rathje (2015) 
EQL, EQL (FD), and NL 

(DEEPSOIL)  9 
Bottom-
Surface 

    

Faccioli et al. (2015) LE, EQL, and NL 
(DEEPSOIL) 

1 -     

Pehlivan et al. (2016) EQL 1 -     
Kim et al. (2016) EQL and NL (DEEPSOIL) 42 -     

Bahrampouri et al. (2018) EQL 1 -     

Aristizabal et al. (2018) EQL and NL (NL-NOAH) 1 
Bottom-
Surface 

    

Makra & Raptakis (2016) LE 1 -     
Pagliaroli et al. (2015) EQL 1 -     

Park & Hashash (2005b) EQL and NL (DEEPSOIL) 6 -     
Régnier et al. (2016a) and 

Régnier et al. (2018) NL (23 different codes) 2 
Bottom-
Surface 
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Chapter 4                                  
Shear wave velocity models 

This Chapter is devoted to epistemic uncertainties and aleatory variabilities in shear 
wave velocity models and their influence on the ground response. After the 
introduction of seismic site investigation objectives and seismic waves, a part of the 
Chapter will discuss invasive and non-invasive in situ tests. The discussion will 
account for the identification and quantification of Epistemic Uncertainties (EUs) 
and Aleatory Variabilities (AVs) from a purely theoretical point of view. Then, the 
effects of these sources of EU and AV on Ground Response Analysis (GRA) results 
will be discussed through an extensive literature review. Particular attention will be 
paid to conventional methods for managing EUs and AVs in VS profiles as proposed 
in the literature and technical provisions/guidelines. These methods will be 
presented along with the typical challenges regarding the separation of the two main 
contributions to global uncertainty. 

4.1  Topic overview 

Seismic site investigation methods are a multidisciplinary topic across 
geotechnical earthquake engineering and geophysics. However, in general, 
geotechnical engineers are interested in the near-surface characterization of the 
subsoil, differently from the most common exploration geophysics applications 
(Foti et al. 2014). Nowadays, near-surface characterization represents a 
fundamental step for civil engineering projects (Jamiolkowski 2012, Foti & Passeri 
2018). The major challenge of this type of investigations regards the lack of an a-
priori conservative assumption for soil dynamics applications. Soil dynamics 
analyses are dependent on a wide range of parameters that are complexly 
interconnected. Indeed, the analyst cannot assume a “safer” choice in the 

parameters. 
The primary objectives of a seismic site investigation surveys are: 

 Determination of subsurface (near-surface) stratigraphy; 
 Identification of the groundwater table; 
 Development of shear (S) wave interval velocity (VS) profile and/or 

compressional (P) wave interval velocity (VP) profile. 

The first point regards the determination of the geometrical characteristics of 
the subsurface mainly including the thicknesses of the soil layers and the depth to 
bedrock. However, the conceptual differences between soil and rock materials (i.e., 
bedrock) are not entirely defined and still represent a critical issue in GRA 
applications (Table 4.1, Foti et al. (2018)). The seismic bedrock is usually defined 
by a measured VS higher than 800 m/s. This value also defines the ‘stiff soil class’ 
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(VS,30 > 800 m/s) in many national and international regulations as NTC (2018) and 
EC8 (2005). However, the definition of “stiff” is inherently relative. For example, 

US NEHRP provisions introduced a further classification for materials that show 
VS higher than 1500 m/s. There are situations in seismic site characterization where 
it is impossible to identify a stiff material. In these cases of deep bedrock and/or 
insufficient resolution of the seismic test, the VS interval profile ends with a soil-
halfspace, instead of bedrock, if a GRA is to be performed (Foti et al. 2009).  

Besides the mechanical classification, the bedrock represents the conjunction 
between the seismic assessment for the reference condition and the site response. 
Then sources and path effects are usually investigated by seismologists, whereas 
the site response by geotechnical engineers. For these reasons, the consistency with 
the reference stiffness condition prescribed in the PSHA should be guaranteed 
(Passeri et al. 2018a). 

The second primary objective of a seismic site investigation is the identification 
of the water table. This information is fundamental to estimate the saturation degree 
of the soil and/or rock material in case of effective stress GRAs (or for others 
applications, e.g., liquefaction hazard assessment). Also, the water table depth 
indicates a physical boundary that controls the Poisson’s ratio (𝜈) values with depth. 
In the next sections, the importance of the parameter 𝜈 will be illustrated in light of 
the wave propagation phenomenon. 

The third main result of a geophysical survey is the development of interval VS 
and VP profiles. These interval profiles are essential in many geotechnical 
applications other than site response studies, such as liquefaction analyses (Andrus 
& Stokoe 2000), settlement calculations, and in-situ void ratio estimates (Foti et al. 
2002, Foti & Passeri 2016). They are also directly linked to critical geotechnical 
properties discussed in the next sections.  

However, the profiles of interval velocities are an engineering representation 
(i.e., schematization) of a more complex variation of the soil and rock properties 
with depth. The interval velocities are the results of the processing of the 
geophysical data that fit the need of a GRA. Numerical simulations are typically 
based on a stratified (i.e., stack of horizontal and parallel layers) subsurface model 
that, sometimes, should be seen from a different perspective (Comina et al. 2011). 
For this purpose, an interval velocity profile can be converted in a harmonic average 
profile defined as: 

 

𝑉𝑘,𝑧(𝑧) =
𝑧

∑ ( 
𝑑𝑖
𝑉𝑘,𝑖
 )𝑛

𝑖=1

(Eq. 4.1) 

 
where 𝑘 depends on the type of waves, 𝑧 is the depth, 𝑛 the number of layers of the 
interval velocity profile, 𝑑𝑖 the thickness of the layer 𝑖, and 𝑉𝑘,𝑖 is the velocity of 
the layer 𝑖. In fact, it is possible to define the shear wave harmonic average profile 
as 
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𝑉𝑆,𝑧(𝑧) =
𝑧

∑ ( 
𝑑𝑖
𝑉𝑆,𝑖
 )𝑛

𝑖=1

(Eq. 4.2) 

 
moreover, the compressional wave harmonic average profile  
 

𝑉𝑃,𝑧(𝑧) =
𝑧

∑ ( 
𝑑𝑖
𝑉𝑃,𝑖
 )𝑛

𝑖=1

(Eq. 4.3) 

The harmonic average profile is closer to the real physics of the problem than 
the interval velocity profile as it is obtained by dividing a length (i.e., depth) by the 
cumulated travel time defined as 

𝑡𝑡𝑘,𝑧(𝑧) =∑( 
𝑑𝑖
𝑉𝑘,𝑖
 )

𝑛

𝑖=1

(Eq. 4.4) 

 
This last contribution is indeed the time that the wave spends to travel from the 

depth 𝑧 to the surface. This approach was first proposed by Boore & Brown (1998) 
to compare shear wave velocity profiles from inversion of surface wave and down-
hole measurements. The authors suggest to evaluate the differences in VS profiles 
of six sites in the US by looking at the travel times, instead of the typical visual 
inspection of the interval velocities. The comparison of the travel times (or, 
equivalently, the VS,Z profiles) highlights the influence of the shallower layers that 
typically control the dynamic response of the site at small strains. Indeed, the 
resonant frequencies and dynamic amplifications (i.e., the transfer functions) of a 
soil deposit depend on the VS,Z profile. In soil dynamics, the fundamental resonant 
frequency of a soil deposit can be approximated by the equation (Kramer 1996) 

 

𝑓0 =
𝑉𝑆,𝑍(𝑧)

4𝑧
(Eq. 4.5) 

 
where 𝑉𝑆,𝑍(𝑧) is the harmonic average shear wave velocity profile down to the depth 
𝑧. Further suggestions for the comparison of the results of different seismic tests 
are given in Brown et al. (2002). In this case, the authors proposed to drop the 
interval velocities and use the slowness profile (i.e., the inverse of the VS,Z profile) 
for the comparisons. In the next sections, more advantages of the harmonic average 
profile will be discussed, particularly for the similarities with the seismic test 
results. 

One of the best-known applications of the harmonic average velocity is for the 
shear wave velocity profile down to 30 m (100 feet) (Borcherdt 1994, Borcherdt 
2012), VS,30. This parameter is widely used in national and international regulations 
for the definition of generic amplification factors for different soil classes (EC8 
2005, NTC 2018). Some approaches allow estimating the soil class just from 
general considerations on the local geology. This procedure, like the ones that 
estimate VS,30 from empirical correlations, is vehemently discouraged for the large 
approximation introduced in the seismic hazard study of the site (Foti et al. 2011b). 
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Figure 4.1a shows an example of VS and VP interval and harmonic average 
profiles for the site of Mirandola in the InterPACIFIC project (Garofalo et al. 2016a, 
Garofalo et al. 2016b, Griffiths et al. 2016a, Passeri et al. 2019). In Figure 4.1b, a 
zoom on the VS profile is shown, with an example of VS,30.  

 

Figure 4.1. a) Example of P and S-wave interval and harmonic average 
profiles, and b) zoom on the S-wave interval and harmonic average velocity 

profiles with VS,30 for Mirandola (data from Griffiths et al. (2016a)). 

The choice to consider the first 30 m does not have a specific scientific reason 
but derives from an operative choice in the analysis of the amplification phenomena 
that occurred following the Loma Prieta earthquake in 1989 (Borcherdt 1991). This 
choice was then translated into a classification criterion adopted by American 
regulations (Borcherdt 1994, Dobry et al. 2000) and, subsequently, in the EC8 and 
the NTC 2018 with a modification of the subsoil classes.  

However, a single parameter cannot be considered representative of the seismic 
response of the subsoil, typically characterized by very varied stratigraphic 
situations and strongly influenced by the characteristics of the seismic input (Boore 
2004, Albarello & Gargani 2010). For example, a sensitivity study of the seismic 
response demonstrates the considerable variability of results with the same values 
of VS,30 (Ciancimino et al. 2018). Other classification systems have been proposed, 
adopting alternative or additional parameters to VS,30. However, these alternative 
classifications lead to a considerable dispersion of the amplification values within 
the same subsoil class (Pitilakis et al. 2013). 

The non-linearity of soil behavior dramatically influences the local seismic 
response. Therefore, the use of the small strain stiffness can lead to erroneous 
predictions. Some regulations propose a variability of the amplification factors 
according to the intensity of the expected motion at the site. However, these 
procedures neglect entirely the evidence that the nonlinearity acts in very different 
ways for different types of soils. 
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All the target parameters of a seismic site investigation are subjected to a 
different amount of epistemic uncertainties and aleatory variabilities, mainly 
depending on both the adopted seismic method and the investigated site test (Foti 
& Passeri 2018). Therefore, a systematic Identification, Quantification, and 
Management (IQM) process of EU and AV should be performed in seismic 
applications. This engineering process should be then introduced in the assessment 
of the seismic hazard at a site, as discussed in previous Chapters.  

Further analysis of the investigation results might distinguish between the 
reliability and accuracy of the measurements (Foti & Passeri 2018). In general, 
reliability (i.e., repeatability) is the possibility of obtaining the same result repeating 
the measure, whereas accuracy represents the ability of a measure to return the true 
value. The quantification of the latter is particularly complex as the true value is not 
known. Comparisons between results are inevitably affected by the different nature 
of the measurement techniques, and it is generally not possible to consider some of 
the results as the true value. For the geophysical inverse problems, accuracy is 
usually quantified by using numerical simulations in which the true value of the 
parameter is known as a priori established for the definition of the reference model. 
On the other hand, a statistical evaluation of the reliability of experimental data is 
typically prevented from the difficulty of obtaining a number of such measures to 
be considered a representative statistical sample.  

The primary EUs and AVs associated with the experimental estimates depend 
on numerous factors, including the: 

- Adequacy of the measurement system; 
- Validity of the hypotheses used for interpretation; 
- Expertise of the operator in the performance of the test and the 

interpretation of the results. 

The last point may seem somewhat trivial, but it is undoubtedly the most 
difficult to control. Unfortunately, the state of the practice for seismic site 
investigation is in many cases far from what could be considered an acceptable 
level. Verification of results obtained in the seismic tests requires excellent 
attention and sufficient knowledge of the methods. 

4.1.1    Seismic waves in elastic solids 

Seismic tests allow the evaluation of geotechnical parameters by analyzing the 
propagation of the seismic waves in the soil. Seismic waves are classified as body 
waves or surface waves. Body waves travel through the body/interior of the earth, 
whereas surface waves travel at layer interfaces. Wave propagation theory 
distinguishes compressional (P) and shear (S) body waves. On the other hand, 
surface waves are Rayleigh (R), Love (L), Scholte, and Stonely waves. In this 
dissertation Love, Scholte, and Stonely waves are not considered since their minor 
relevance for site characterization. 
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Body waves 

P-waves are also termed primary, (constrained) compression, longitudinal, or 
dilatational waves. They cause volume changes in the interested medium, with an 
induced particle motion parallel to the wave propagation direction (Figure 4.2a). 
Primary waves can travel through fluids and solids and take the name because they 
are faster than the shear waves (i.e., VS < VP). 

On the other hand, S-waves are also called secondary, shear, transverse, or 
distortion waves. This type of body waves does not induce any volume change in 
the medium, but a shape (i.e., angular) change. The particle motion is perpendicular 
to wave propagation direction (Figure 4.2b), and they do not travel in fluids 
(material with no shear stiffness). 

 

Figure 4.2. Representation of the a) P and b) S-wave propagation in a 
medium as the direction of propagation and direction of the induced particles 

motion (after Foti et al. (2014)). 

Moreover, shear waves can be decomposed into SV (i.e., shear on a vertical 
plane), or SH (i.e., shear on a horizontal plane) depending on the polarization plane 
(Figure 4.3). 



 

75 
 

 

Figure 4.3. Polarization of S-waves in SV (i.e., shear a vertical plane), and 
SH (i.e., shear a horizontal plane) (after Foti et al. (2014)). 

A fundamental law that governs the body waves propagation phenomenon was 
proposed by Snell (i.e., Snell’s law also known as Snell–Descartes law or the law 
of refraction) (Sabra 1981). The Snell’s law explains the refraction of waves 

traveling through different materials. The application of this law is fundamental for 
the interpretation of seismic tests, as it relates the wave velocity to the incidence 
angle  

sin 𝑎

𝑉1
=
sin 𝑏

𝑉2
(Eq. 4.6) 

 
where 𝑎 is the angle of the incident wave travelling in the medium one and 𝑏 is the 
angle of the refracted wave in the medium 2 (Figure 4.4). If a downgoing wave with 
𝑉1 < 𝑉2 touches the interface with the called “critical angle of incidence” 
  

𝛾𝑐𝑟𝑖𝑡 = sin
−1 (

𝑉1
𝑉2
) → 𝑏 = 90° (Eq. 4.7) 

 
a “critically refracted wave” is generated at the interface, which travels with the 
velocity 𝑉2. This particular case is important for seismic test applications (e.g., 
seismic refraction and Cross-Hole tests).  
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Figure 4.4. Schematization of the wave refraction phenomenon for a 
double-layers system and a single impinging wave. 

Once Snell’s law is applied, it is possible to evaluate the partitioning of body 

waves hitting an interface. As discussed above, primary waves travel faster than 
secondary waves; then Figure 4.5 shows three different cases of P, SV, and SH 
incident waves. In case of incident P-wave, it is converted in two reflected, and two 
refracted P and SV waves (they quadruple every time they hit an interface). In the 
case of incident SV-wave, it converts in two reflected, and two refracted SV and P 

waves (they quadruple every time they hit an interface). If an SH is incident, no 
splitting is observed, and only one reflected SH and one refracted SH waves are 
generated. 

 

Figure 4.5. Partitioning of waves traveling from a less stiff to a stiffer 
material. a) Incident P-wave partitioned in a reflected P and an SV and a 

refracted P and an SV waves, b) incident SV-wave partitioned in a reflected P 
and an SV and a refracted P and an SV waves, and c) incident SH-wave 

partitioned in a reflected SH and a refracted SH waves (courtesy of Prof. 
Brady R. Cox). 

The impedance ratio (i.e., IR) completes the description of the partitioning of 
body waves hitting an interface. In particular, one can define  

 

𝐼𝑅 =
𝜌2𝑉2
𝜌1𝑉1

(Eq. 4.8) 
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where 𝜌2 is the mass density of the refracted wave material, and 𝜌1 is the mass 
density of the incident wave material. The impedance ratio describes how much of 
the incident wave amplitude is reflected or refracted. If the interface shows high IR, 
it yields large reflections and small refractions/transmittal for downgoing waves. In 
this case, it is difficult to irradiate a downgoing wave energy into a stiff material. 
In case the of low IR, it yields small reflections and large refractions/transmittal; in 
fact, the amplitude of the refracted wave may be amplified relative to the incident 
wave. For upgoing waves, this means that the energy/amplitude of the waves 
coming out of rock into the soft soil can be greatly amplified (i.e., stratigraphic 
amplification phenomenon). 

Surface waves 

The surface waves produced at air/solid interface are Rayleigh and Love waves. 
Scholte and Stonely waves are created at water/solid or solid/solid interface and are 
not discussed in this dissertation, as their use in near-surface characterization is 
minimal (e.g., underwater surface wave analysis). 

Rayleigh waves were predicted in 1885 by Lord Rayleigh, after whom they 
were named (Lai & Wilmanski 2007). They are increasingly used in an ample 
amount of scientific and engineering fields for their non-destructive investigation 
characteristics (Foti et al. 2014). They are produced by an interaction of P and SV 

waves with the ground surface, and they induce an elliptical particle motion 
(retrograde or prograde depending on the depth) (Figure 4.6a-b).  
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Figure 4.6. a) Rayleigh waves surface wavefield direction of propagation 
and induced displacement for a point source. b) Particle orbit with depth as a 

horizontal and vertical component of the displacements (after Foti et al. 
(2014)). 

Love waves are produced by the interaction of SH waves with the ground 
surface. They show a particle motion that is perpendicular to the wave propagation 
direction. Love waves do not exist in homogeneous media. Love wave velocity 
depends only on how VS and mass density vary with depth. In this dissertation, the 
attention will be paid mostly to Rayleigh waves.  

The main characteristic of the Rayleigh waves is that their velocity of 
propagation (VR) in a vertically non-homogeneous, elastic, and isotropic medium 
is frequency-dependent. For this reason, Rayleigh waves are subjected to 
geometrical dispersion (different from the material dispersion that is introduced for 
visco-elastic models) (Foti 2000). This intrinsic characteristic is exploited for non-
destructive surface wave investigations, from materials engineering to exploration 
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geophysics. The geometrical dispersion is inherently linked to the sampling depth 
obtained by surface wave methods. Indeed, if the relationship between the 
frequency 𝑓 and the wavelength 𝜆 

 
𝑉𝑅 = 𝑓 ∗ 𝜆 (Eq. 4.9) 

 
is used, high frequencies correspond to low wavelengths, whereas low frequencies 
correspond to long wavelengths. The amount of the vertical soil deposit that is 
sampled by the R waves is then related to the 𝑉𝑅 wavelength (Figure 4.7). In 
vertically heterogeneous media with increasing velocity (both VS and VP) with 
depth, the velocity of propagation of surface waves decreases for increasing 
frequency (i.e., normally dispersive profiles). 

Surface waves can be studied by solving the eigenvalue problem of the 
Rayleigh secular equation (Socco & Strobbia 2004, Socco et al. 2010). The surface 
waves propagation is also a multimodal phenomenon in a horizontally layered 
medium (Aki & Richards 1980). This means that at each frequency (higher than a 
well-defined cut-off frequency), different modes of vibration exist. Each mode is 
characterized by its propagation velocity, which always increases from the 
fundamental to the higher modes (i.e., overtones) (Foti et al. 2018). The existence 
of higher modes is due to constructive interference phenomena occurring among 
waves undergoing multiple reflections at the layer interfaces. Although their exact 
number and frequency cut-offs depend only on the solution of the free vibration 
problem, the different overtones carry different energy, making them not always 
detectable with seismic tests.  

 

 

Figure 4.7. Sampled depths by Rayleigh waves with different frequencies 
for a three-layers system (after Foti et al. (2014)). 

4.1.2 Geotechnical parameters associated with seismic waves 

Seismic tests are a powerful tool to estimate geotechnical parameters (Foti & 
Passeri 2018). In principle, the velocity of propagation (VP, VS, or VR) represents 
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the link between the geophysical and the geotechnical applications. Geotechnical 
engineers are, indeed, interested in the stress-deformation behavior of the material. 
In particular, natural materials show their failure for shear stresses, then for 
Isotropic, Linear-Elastic, and Homogeneous (ILEH) materials we can refer to 
Figure 4.8a. This Figure shows the physical meaning of the shear modulus 𝐺, the 
shear stress 𝜏, and the shear strain 𝛾. The ILEH model is then based on 

 

𝑀𝑚𝑎𝑥 =
1

𝑚𝑣
= 𝜌𝑉𝑃

2 (Eq. 4.10) 

and  

𝐺𝑚𝑎𝑥 =
𝜏

𝛾
= 𝜌𝑉𝑆

2 (Eq. 4.11) 

 
where 𝑀𝑚𝑎𝑥 is the maximum compression/oedometer (i.e., constrained) modulus, 
𝑚𝑣 is the coefficient of volume change obtained in a oedometer condition (i.e., 
lateral strains prevented), and 𝜌 is the mass density (i.e., the unit weight divided by 
the gravitational acceleration). An important observation regards the linear elastic 
assumption. For seismic tests performed in situ, the induced shear strains (usually 
𝛾 < 10−3%) are compatible with a linear elastic response of the material (Figure 
4.8b). For this reason, seismic tests estimate 𝐺𝑚𝑎𝑥 that corresponds to 𝐺𝑠𝑒𝑐 at small 
strains. Then, 𝐺𝑠𝑒𝑐 decreases at larger strains. The range of strains for which the 
ratio 𝐺𝑠𝑒𝑐

𝐺𝑚𝑎𝑥
< 0.99 is defined by the elastic threshold 𝛾𝑒𝑙. This means that, for GRAs, 

the VS interval profile is the parameter that controls the response of the deposit 
without accounting for the nonlinearity. Shear wave velocities lead the response of 
the material defining the initial (i.e., zero strains) behavior (Foti et al. 2009).  

 

Figure 4.8. a) Maximum shear modulus and secant shear modulus and b) 
modulus reduction (MR) curve and small-strain linear elastic range 

investigated by the in situ seismic tests (courtesy of Prof. Brady R. Cox). 

A second observation regards the difference between the constrained modulus 
𝑀 and the more common unconstrained (i.e., Young’s) modulus 𝐸. In that case, the 
Hooke’s law states that 

𝐸𝑚𝑎𝑥 =
𝜎

𝜖
= 𝜌𝑉𝐶

2 (Eq. 4.12) 
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where 𝜎 is the compressive stress, 𝜖 is the compressive strain, and 𝑉𝐶 is termed 
(unconstrained) compression wave velocity (or rod velocity). This last velocity is 
measurable in the case of free lateral strains, as in cylindrical specimens. It is 
possible to demonstrate that the following relations exist between the velocities and 
moduli 
 

𝑀 > 𝐸 > 𝐺 (Eq. 4.13) 
 

𝑉𝑃 > 𝑉𝐶 > 𝑉𝑆 (Eq. 4.14) 
 

The mechanical theory for ILEH materials states that only two parameters are 
independent in the formulations. The forth other common elastic parameter is the 
Poisson’s ratio. This parameter represents the ratio of the proportional change in a 

lateral measurement to the proportional change in length. Theoretically, this 
parameter ranges are 

0 < 𝜈 < 0.5  
 

even if a few innovative materials show a negative value. In particular, a material 
with a small value of 𝜈 (e.g., cork) shows almost no lateral variations, if a load is 
applied longitudinally. Contrarily, a value close to 0.5 means an infinitely rigid 
response. For soils, typical values range between 0.25 and 0.33, whereas 𝜈 = 0.5 is 
adopted for saturated/undrained conditions. The relationship between the three 
propagation velocities described above can be expressed in terms of 𝜈 (Richart et 
al. 1970) as and illustrated in Figure 4.9 
 

𝑉𝑃
𝑉𝑆
= √

2(1 − 𝜈)

1 − 2𝜈
(Eq. 4.15) 

 
𝑉𝐶
𝑉𝑆
= √2(1 + 𝜈) (Eq. 4.16) 

 
𝑉𝑅
𝑉𝑆
=
1.748 + 1.282𝜈

2 + 𝜈
≈ 0.9 (Eq. 4.17) 



 

82 
 

 

Figure 4.9. Relationships between velocities of propagations in an ILEH 
material (courtesy of Prof. Brady R. Cox). 

From Figure 4.9 it is clear that VP strongly depends on the degree of saturation 
(in soils). Indeed, seismic tests in saturated soils measure a velocity always higher 
than the velocity of propagation in water (i.e., VP > VP,water  ≈ 1500 m/s). A proof of 
the dependency of VP on the degree of saturation is given by Valle-Molina (2006) 
(Figure 4.10). In this case, the Skempton B-value is used to confirm the extreme 
sensitivity of the P-wave velocity (measured with piezoelectric transducers) to even 
small deviations from the full saturation. 

 

Figure 4.10. VP dependence on the a) B-value of the material and b) the 
degree of saturation Sr (after Valle-Molina (2006)). 

For example, Jamiolkowski et al. (2009) showed a portion of unsaturated soils 
detected by Cross-Hole tests in Venice (Figure 4.11). The VP profile highlights the 
presence, below the sea bottom, of an unsaturated soil zone, 12 m thick, due to 
marsh gas. 
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Figure 4.11. Seismic wave velocity profiles estimated in the Venice 
Lagoon with clear evidence of an unsaturated zone around 12 m (after 

Jamiolkowski et al. (2009)). 

On the other hand, VS is almost independent of saturation (i.e., 𝜌 becomes 𝜌𝑠𝑎𝑡 
for saturated conditions). It is mainly controlled by effective stress, density, age, 
and cementation of the natural material. The influence of the in situ state of stress, 
in particular, can be evaluated as 

 

𝑉𝑆 = 𝑉𝑆,1𝑎𝑡𝑚 (
𝜎′0
𝑃𝑎
)

𝑛

(Eq. 4.18) 

 
where 𝑉𝑆,1𝑎𝑡𝑚 is the 𝑉𝑆 corresponding to an effective mean stress equal to 1 atm, 
𝜎′0 is the mean effective stress, 𝑃𝑎 the atmospheric pressure, and 𝑛 is typically 
assumed equal to 0.25 for sands. 

The shear wave velocity is sometimes associated with SPT (Sykora & Koester 
1988, Pitilakis et al. 1999, Brandenberg et al. 2010) and CPT (Mayne & Rix 1995, 
Hegazy & Mayne 2006, Andrus et al. 2007, Robertson 2009, Robertson 2012, 
McGann et al. 2015) correlations or with other empirical correlations (Dobry & 
Vucetic 1987, Wair et al. 2012, Wood et al. 2017). In some regulations, if no 
seismic tests are available, it is possible to infer a soil class by SPT and CPT results. 
Many studies showed similar SPT/CPT-VS trends, but a specific blow count value 
or tip resistance cannot correspond to a specific VS value (i.e., no one-to-one 
relation) (Cox et al. 2018). Also, the induced strains are entirely different. Shear 
wave velocities are a small-strain measurement, whereas SPT and CPT tests lead 
the material to failure (Wood et al. 2017). For these reasons, the VS profile should 
always be obtained only by high-quality geophysical tests. Every use of empirical 
correlations is strongly discouraged and represents an uncontrollable source of 
epistemic uncertainty (EPRI 1993, Lopes et al. 2014, Stewart et al. 2014a, Passeri 
et al. 2019). 
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Typical values for VS are proposed in the scientific literature (Foti et al. 2018) 
as a reference term of comparison for obtained results (Table 4.1). 

Table 4.1. Typical VS values for soils (after Foti et al. (2018)). 

SOIL TYPE VS (m/s) 

Soft Clay 80-200 
Stiff Clay 200-600 

Loose Sand 80-250 
Dense Sand 200-500 

Gravel 300-900 
Weathered Rock 600-1000 
Competent Rock  1200-2500 

 
Figure 4.9 also shows that the velocity of Rayleigh waves is almost independent 

on the Poisson’s ratio, and can be approximated to the VS in an ILEH medium. This 
assumption will be very useful for surface wave testing. 

4.2  Seismic tests 

The near-surface characterization of soil deposits or rocks is generally 
performed by in situ seismic tests (Jamiolkowski 2012). The investigation of a large 
sample of the medium in its natural state is the essential advantage of in situ tests. 
However, also laboratory tests can be used to evaluate geotechnical parameters, 
accounting for various limitations (e.g., sampling disturbance and 
representativeness, scale problems, strain ranges). Moreover, the back-calculation 
from observed ground motions (e.g., from down-hole arrays) represents a useful 
tool for the validation of experimental results (EPRI 1993). Generally, the small-
strain stiffness is deduced from seismic tests, whereas the nonlinear response of the 
material is obtained by laboratory tests (or literature models) and then normalized. 

Seismic tests are generally classified as invasive and non-invasive. However, 
this classification can be misleading because, in reality, all geophysical methods 
investigate the medium in its undisturbed natural state, so they are all strictly non-
invasive. Seismic tests can be alternatively classified as in-hole and surface 
methods, because the measurements are performed respectively positioning the 
instruments within the ground or on the surface. However, in-hole excludes the 
seismic cone (SCPT) (Campanella 1994), the seismic dilatometer (SDMT) 
(Marchetti et al. 2008), and the direct-push cross-hole (DPCH)  (Cox et al. 2018) 
which are methodologically analogous to down-hole and cross-hole tests. The only 
difference is that the receivers are placed inside the rods used to insert the cone or 
dilatometer, rather than in a hole.  

For critical sites, is it desirable to use a minimum of two different and 
independent measurement techniques so that they can serve as a cross-check on 
each other and the occurrence of gross errors (EPRI 1993). 
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In this dissertation, the invasive and non-invasive classification is adopted. 
Particular attention will be paid to surface wave testing (i.e., non-invasive methods). 
However, a general introduction of invasive methods is also proposed to identify 
and quantify epistemic uncertainties and aleatory variabilities included in all the VS 

estimations. Examples of applications are given for each class of methods, drawing 
upon the Polito Shear Wave velocity Database (PSWD) presented in the next 
Chapter. Then, typical sources of epistemic uncertainties and aleatory variabilities 
are summarized in a dedicated concluding section (Table 4.3). 

4.2.1   Invasive Methods 

Invasive methods consider a source and receivers placed beneath the surface. 
Conventionally, they are lowered into appropriate boreholes. More recently, new 
methods are proposed for directly pushing the instruments into the ground. The 
substantial outcome of invasive methods is an evaluation of VP and VS in a 
restricted and localized area. 

Typical invasive (i.e., borehole-based) methods are: 

 Down-Hole seismic testing (DH); 
 Cross-Hole seismic testing (CH); 
 PS suspension logging (PS). 

The other subclass (i.e., direct-push) is based on the same procedures: 

 Seismic cone penetration testing (SCPT, DH equivalent); 
 Seismic dilatometer testing (SDMT, DH equivalent); 
 Direct-push Cross-Hole seismic testing (DPCH, CH equivalent); 

In the next sections, DH, CH, and PS borehole-based tests and associated EUs 
and AVs are illustrated. At the same time, the direct-push methods are addressed, 
as they are a particular application of the same theoretical assumptions.  

4.2.1.1    Down-Hole Seismic Testing 

The Down-Hole seismic testing technique is outlined in ASTM Standard 
D7400-17. The source is located at the ground surface, and the receiver/s is/are 
advanced into the ground either by lowering them in a well-prepared cased and 
grouted borehole (i.e., borehole-based) or directly pushing them (i.e., direct-push). 
A cross section of the usual test arrangement of the borehole-based DH test is shown 
in Figure 4.12. The measured travel time is referred to slanted travel paths (L1 and 
L2) and can be influenced by potential refracted ray paths in the near-surface 
characterization. Generally, the borehole/cone deviation is not accounted for in the 
analysis as for Cross-Hole tests. Multiple interpretation methods can be used for the 
DH test processing and VP-VS interval profiles evaluation (e.g., pseudo- or true-
interval, slope-based, raytracing inversion).  
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Figure 4.12. Down-Hole (borehole-based) test setup (modified from ASTM 
D7400-17). 

The equipment for a high-quality DH test are sources, receivers, and data 
acquisition (DAQ) system.  

Seismic waves are excited at the ground surface introducing in the medium 
vertically propagating, horizontally polarized shear waves (SH) or compression (P) 
waves. The first are excited using a horizontal sledgehammer striking on 
shear/traction beam (Figure 4.13a), a mobile shaker, or a vibroseis truck (e.g., T-
Rex NHERI@UTexas, Figure 4.13b). Compression waves are produced using a 
vertical sledgehammer striking on a metal plate, a mobile shaker, or a vibroseis 
truck. 

In the case of borehole-based, the receiver/s is/are lowered into the borehole 
and clamped to provide coupling with the surrounding soil. The singular or plural 
formulation is due to different techniques that can also use a single receiver (i.e., 
pseudo-interval method), two (i.e., true-interval method), or a string of multiple 
sensors. The pseudo-interval method is highly discouraged by the significant 
uncertainties involved in the triggering system (i.e., timing errors), whereas the 
adoption of a 2-sensor array can lead to time-consuming acquisitions. An example 
of the 7 m (8 triaxial geophones) string used at the Politecnico di Torino is shown 
in Figure 4.13c.  

In case of SCPT, receivers are pushed into the ground in a conical probe (i.e., 
in the CPT cone) or are located in the back part of the rod.  

Both for borehole or direct-push methods, three-dimensional, adequately 
oriented transducers (e.g., geophones or accelerometers) are usually adopted to 
measure the seismic wavefield (both P and SH).  

The DAQ system (Figure 4.13d) is used to acquire, digitize, and store electric 
signals from the source and receiver/s. It is often connected to a laptop (Figure 
4.13d) for first data visualization and storage. The triggering system (Figure 4.13d) 
always represents a critical part of the seismic test. The DAQ continuously monitors 
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and buffers input from the instrumentation. When triggered, the DAQ pulls data 
from the buffer to the storage system. The triggering is detected with an electrical 
contact, switch, or shock accelerometer installed on the source. 

 
Figure 4.13. Picture of some equipment used for a Down-Hole test. a) 

Horizontally striking sledgehammer source on a shear beam, b) T-Rex 
Vibroseis truck (courtesy of Prof. Brady R. Cox), c) 8 triaxial geophones 
string (Politecnico di Torino), and d) DAQ system and general test setup 

(data cables, laptop, clamping system, and seismograph). 

The seismic source is placed at a horizontal offset (i.e., X; from 1 to 4 m) from 
the cased borehole or cone push rod (Figure 4.12). The offset distance should be 
evaluated depending on the interpretation method used, the problems of disturbance 
and rod/tube waves, and the influence of near-surface refractions. Generally, for 
borehole-based DH, a dry borehole is preferred to avoid measuring tube waves 
traveling through the water. If a sledgehammer is used to generate SH waves, the 
operator must strike one end of a well-coupled shear beam (usually a truck or a van 
is placed on the shear beam). It is common to strike each end multiple times (3 to 
10 times) and stack (i.e., superimpose) the recorded waveform from each strike. 
The reverse shot allows correct identification of the shear wave (i.e., the one that 
have an opposite polarity in the seismogram, creating a butterflied waveform) and 
the stacking improves the Signal-to-Noise Ratio (SNR). The hits will generate 
vertically propagating, horizontally polarized shear waves at the ground surface. 
The waves propagate from the source at the surface to the receiver at depth along 
an assumed straight-line travel path. The SH arrival time is manually picked from 
the seismic waveform recorded on adequately oriented transducers within the 
receiver. 
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Once the stacking is completed, both sides of the shear beam have been hit, and 
a first data quality check is carried out on the laptop. The operator advances the 
receiver/s to the next testing depth (typical testing intervals per ASTM are from 0.5 
to 1.5 m) and the procedure described above is repeated. At the end of the test, a 
waterfall plot is developed from the stacked waveform at each testing depth, 
showing the typical butterflied aspect. An example of recorded traces for the site of 
Mirabello (a site from the PSWD) is given in Figure 4.14a (Passeri et al. 2018b). 

In the case of evaluation of VP with DH testing method, the testing methodology 
is similar to S-waves. The main difference is the seismic source. Compression 
waves are generated using vertical, downward sledgehammers that hit on a metal 
strike plate. The waves are best observed using vertically oriented transducers. It is 
generally more difficult to obtain reliable P-wave velocities with DH tests. These 
waves that travel into the borehole casing/fluid or the steel cone push rod are 
referred to “tube waves”. An example of a waterfall plot for P-wave records is given 
in Figure 4.14b for Mirabello (Passeri et al. 2018b). 

In Figure 4.14, also the picking is shown on the recorded traces. This operation 
is by far the most delicate in the interpretation of a DH test.  

For the S-waves, the analyst can pick the First Arrivals (FA) (i.e., first departure 
from the noise floor, with correct polarity), the First Peak/Trough (PT) (can be 
semi-automated by searching for local min/max with correct polarities), or the First 
Crossover (CO) (requires butterflied waveform pairs and can be semi-automated by 
searching for local minimum differences in waveform amplitude) (Stolte & Cox 
2019).  

For the P-waves, usually, the analyst should pick the first departure from the 
noise floor, regardless of the polarity. 

 

Figure 4.14. Example of the acquired waterfall a) SH-waves and b) P-waves 
DH seismogram at the Mirabello site (Italy) for the first Italian blast test 

experiment and included in the PSWD (after Passeri et al. (2018b)). 
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Different methods for the DH velocity analysis are proposed in the literature 
and are permitted by the ASTM D7400-17. Commonly used DH velocity analysis 
methods include: 

 Interval Methods (True- and Pseudo-Interval) (detailed in ASTM 
D7400-17); 

 Corrected-vertical travel time, slope-based method (also called “direct 

methods”) (Patel 1981, Kim et al. 2004, Redpath 2007, Stolte & Cox 
2019); 

 Raytracing Algorithms (Stokoe et al. 1989, Baziw 2002). 

Interval methods assume a straight-line travel path from the source to the 
receiver, based on the testing geometry. They are commonly not reasonable for the 
near-surface characterization (i.e., less than 3 m). The true interval method uses 
pairs of seismic measurements that are simultaneously recorded at two depths (0.5 
to 1 m apart) (Figure 4.15a for the site of Acquasanta Terme). The pseudo-interval 
method uses a pair of seismic measurements that are separately recorded at two 
depths using a single-sensor receiver. In this method, large triggering/timing errors 
may be introduced in the evaluation of the interval time. 

Slope-based methods utilize the vertical travel time corrected using the testing 
geometry. The analyst plots the corrected vertical travel time versus depth and fits 
slopes to data points according to clear breaks in the data and/or layer boundaries 
identified using independent measures (e.g., CPT or boring logs). In this case, the 
VS or VP is evaluated as the slope of the fitting line, as can be seen for Acquasanta 
Terme (a site in the PSWD) in Figure 4.15b-c. 

Raytracing algorithms evaluate refracted seismic wave travel paths through a 
layered velocity model, based on the Snell’s law. The method is based on the 
solution of an inverse problem. 

 

Figure 4.15. DH data processing adopting for the site of Acquasanta Terme 
(Italy) included in the PSWD a) the true-interval method and b), c) the slope-

based method for the right (R) and left (L) strike. 
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The reliability of the down-hole tests was the subject of a comparative study 
conducted in Korea near the city of Pyeong-taek (Kim et al. 2013b, Passeri et al. 
2019). The local litho-stratigraphical conditions are characterized by the presence 
of a relatively shallow bedrock (at about 15 m depth), covered by residual soil 
resulting from the alteration of the bedrock. Six different operators performed 
down-hole measurements within the same hole. The measurements were interpreted 
by each of the operators using both the linear interpolation and raytracing 
algorithms.  

Interpretations based on the first of the two methods led to minor differences, 
confirming greater robustness. Results show local interval velocity differences. 
However, the average velocity remains unchanged since the profiles are equivalent 
to the experimental information available. 

For the raytracing algorithms, the differences appear significantly greater. The 
uncertainties on the individual values of the first arrival times assume greater 
importance.  

4.2.1.2    Cross-Hole Seismic Testing 

The conventional, borehole-based application of the CH seismic testing is 
described in ASTM D4428/D4428M-14. For this class of tests, the source and the 
receivers are lowered down in well-prepared cased and grouted boreholes (two, S 
& R1, or three, S, R1, & R2). The boreholes spacing should range between 1.5 m 
and 5 m, whereas measurements should be performed at different depths every 0.5 
to 3 m. Differently from DH tests, deviation surveys of boreholes are required to 
evaluate the distance between instrumentation at each testing depth. Moreover, the 
problems with the consistency of the wave travel path, SNR, and potential 
refractions should be addressed during the test. A cross section and a plan view of 
the usual test arrangement of the borehole-based CH test is shown in Figure 4.16.  

A new direct-push CH testing method is outlined by Cox et al. (2018), and it is 
very appealing for analysis of ground improvements works. This method represents 
a step-forward with respect to a prototype presented in ’90 using CPT equipment. 
This method was born for P-wave velocity measurement to identify saturated soils 
in-situ (Cox 2006) and, nowadays, it is well-suited to testing near-surface, soft soils 
(Stokoe et al. 2014, Wotherspoon et al. 2015). The source and the receiver are 
directly advanced into the ground using conical probes (i.e., CPT-type equipment). 
The cone spacing ranges between 1.5 and 2.5 m, whereas depth intervals between 
0.2 and 0.5 m. Cone deviation is tracked via tilt measurements and used to evaluate 
the distance between cones at each testing depth. 

Generally, large borehole/cone-rod spacing result in longer direct travel paths, 
increasing the potential for the early arrival of refracted waves. Also, a lower SNR 
is detected. 
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Figure 4.16. Cross-Hole (borehole-based) test setup (modified from ASTM 
D4428/D4428M-14). 

Similarly to DH tests, CH tests are composed by a source, receiver/s, and a data 
acquisition system (DAQ) (Stokoe & Woods 1972). 

The source for borehole-based CH tests is lowered into the borehole and 
wedged in place to provide coupling with the borehole casing. The CH source is 
engaged in generating P-, and SV-waves using different mechanisms (e.g., sliding 
hammers, solenoids). For direct-push methods, the source is included in the 
penetrating cone with mechanisms to generate seismic waves.  

The receiver/s for a CH method are similar to the DH test, both for the borehole-
based and direct-push applications. Also in this case, each receiver contains a sensor 
package capable of measuring capable of measuring vibrations in three directions. 

Also, the DAQ system is similar to the one used for the DH test. The triggering 
system still represents a crucial practical issue. A sensor in the source is used to 
start data acquisition when seismic energy is excited by the source and propagated 
into the soil/rock. 

The first step of the testing methodology consists of propagating waves 
between the source and receiver by exciting the seismic source. As for DH tests, it 
is common to stack 3 to 10 source excitations to improve the SNR. Often, P-waves 
and S-waves are generated by different source excitation, and best observed on 
differently oriented transducers. If possible, the reverse polarity S-waves should be 
generated to aid in picking the arrivals. The operations are then repeated for each 
advance of the source and receiver/s. An example illustrated in Stokoe & 
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Santamarina (2000) is proposed in Figure 4.17 in the case of two- (a) or three-holes 
(b) test setup. 

 

Figure 4.17. Cross-Hole (borehole-based) test setup (modified from ASTM 
D4428/D4428M-14). 

The analysis of a CH test results leads to a velocity estimation obtained as the 
travel path distance divided by the direct travel time. The distance is obtained by 
borehole deviation surveys at each depth, aiming at assessing the correct 
source/receiver position. The travel time requires the process and plot of the 
waveform records, the picking of the trigger and direct arrivals, and the trigger 
calibration/correction. In case of soft, embedded layers, the generation of a faster 
head wave traveling at the interface can compromise the test results. For these 
reasons, the independent information coming from the borehole log should be 
exploited in the data processing. 

An example of CH results is shown in Figure 4.18 for the Zelazny Most tailing 
dam (Prof. Jamiolkowski, personal communication) as part of the massive 
monitoring activity of the largest European tailing dam. The Figure shows the 
typical output for a CH test. In this case, also a statistical sample of repeated 
measurements was obtained to evaluate the experimental uncertainty on the 
velocities. 
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Figure 4.18. CH results for the Zelazny Most tailing dam (Prof. 
Jamiolkowski, personal communication). 

A study on the reliability of the results obtained in the cross-hole tests is 
reported by Callerio et al. (2013). In particular, the authors repeated several times 
both the measurements of wave propagations and the deviation surveys to compute 
means and standard deviations. The results obtained show that the uncertainty 
associated with the deviation from the vertical grows with the depth. On the 
contrary, the uncertainty associated with the estimate of the time of the first arrival 
remains substantially stable with depth. Therefore, the reliability of the CH test 
appears very conditioned by the measurements of deviation from the verticality. 
The deviation surveys should be conducted with great care, especially when VS and 
VP are then used for the estimation of porosity (Foti & Passeri 2016). 

In light of previous considerations, it can be stated that the reliability of a cross-
hole test depends mainly on the quality of the instrumentation and the 
measurements performed, while the interpretation does not require particularly 
refined techniques. 

4.2.1.3    PS suspension logging 

The OYO Company developed the suspension logging method (PS) in Japan. 
This seismic method can be seen as a mixture of DH (i.e., single borehole) and the 
CH testing (i.e., lowered source). Indeed, the PS logging test setup consists of a 
rigid cable lowered in a cased or uncased single borehole. The measurements can 
be performed either in uncased or PVC cased boreholes (also in marine 
environments), although uncased mud-rotary boreholes show better results. The 
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cable sustains the instrument package primary composed of two geophones (i.e., an 
upper and a lower spaced of 1 m) and a source. The total length is approximately 8 
m long. At the surface, a system of winches allows the safe advance of the 
instrument, whereas a logger/recorder acquire, digitize, and store the acquired 
seismograms. The schematic illustration of the test setup is shown in Figure 4.19a.  

The source strikes in two horizontal directions, then in the vertical direction. 
For each energization, the lower and upper geophones record the generated 
wavefield, similarly to the true-interval method described for the DH test. As for 
the DH application, this approach leads to a significant influence of the picking 
strategies. Clear evidence of this influence is shown in Figure 4.19b, where the 
Mirandola’s (Garofalo et al. 2016a, Passeri et al. 2019) results are reported. The 
epistemic uncertainty in the picking does not produce a stable result, as even small 
differences in the picked time are amplified in the calculation of the velocity. 
However, the 1-m resolution allows detecting localized VS oscillations. 

 

Figure 4.19. Scheme of the PS suspension logging test and an example of 
results at Mirandola (Garofalo et al. 2016a, Passeri et al. 2019). 

The PS suspension logging is the only seismic test that gives both P and SH 

wave velocities in a single hole at depths higher than 100 m. The close distance 
between the receivers provides an almost depth-independent high resolution. 

This method shows limitations in case of fractured rocks above the water table 
(i.e., the risk of losing the probe). Other limitations are the possible detection of 
tube waves (particularly pronounced with heavy casing and thick grout), the poor 
signal quality at considerable depths, and the very restricted investigated volume. 
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4.2.2   Non-invasive Methods 

Non-invasive seismic testing methods allow for characterizing sites without 
placing the source or the sensors within the ground. Typically, the interval velocity 
profiles obtained by these methods refer to a global response of the soil deposit, 
differently from the localized measurements of the invasive methods. This 
characteristic is crucial for the evaluation of the AVs involved in this class of 
seismic tests. 

Common non-invasive methods are: 

 Seismic reflection; 
 Seismic refraction; 
 Surface wave testing; 
 Horizontal-to-vertical spectral ratio. 

The seismic reflection is often used for exploration geophysics and not usually 
adopted for near-surface characterization (therefore, it is not discussed in this 
dissertation). In the next section, the seismic refraction will be briefly described 
along with the identification and quantification of EUs and AVs. Then, the surface 
wave class of tests, which includes a wide range of different applications that 
exploit the characteristics of surface waves propagation, is presented in Section 
4.2.2.2. 

4.2.2.1    Seismic refraction 

A complete reference to this type of non-invasive method can be found in 
Redpath (1973). Many interpretation methods are illustrated in the literature for 
refraction tests, from the simplest time-intercept method to more complex full 
tomographic inversion algorithms. More details can be found in ASTM D5777 
which provides a standard of execution and interpretation. 

For near-surface characterization, a linear array of 24-48 geophones is used, 
with a spacing varying between 1 and 5 m. Both VP and VS velocity models can be 
estimated by refraction tests. P-wave refraction uses vertical geophones and is often 
performed in conjunction with Rayleigh waves active-source methods (i.e., they 
share the same test setup and instrumentation) (Foti et al. 2003). SH-wave refraction 
is performed with horizontal geophones. It is less frequent than the P-wave 
refraction as it requires higher energies. Once the wavefield is produced from the 
ground, a manual picking method of the first arrivals is usually adopted, similarly 
to DH and CH based methods. 

The primary applications of the seismic refraction testing method are (Foti et 
al. 2003): 

- Locating and profiling irregular bedrocks; 
- Determining bedrock rippability and locating the depth of saturation in soft 

soils (based on P-wave velocity and handy a-priori information for surface 
wave tests); 
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- Shear wave velocity profiles in case of normally dispersive (i.e., VS 

increasing with depth) and simple models; 
- Locating pipes, tunnels, voids, faults, fracture zones, buried structures (e.g., 

paleochannels); 
- Identify strong lateral variations and inhomogeneity.   

Similarly to invasive tests, the seismic refraction instruments are usually a 
source, a number of receivers, and a data acquisition system (DAQ). The most 
commonly used source is a sledgehammer that impacts vertically on a steel strike 
plate (P-waves) or horizontally on a traction beam (SH waves). If a more in-depth 
profile is needed, also an accelerated weight drop can be used as a source. The most 
crucial part of the test regards the triggering system that should establish the zero 
time. The stacking of 10 traces is usually done also for these tests (as discussed for 
invasive tests) aiming at improving the SNR, especially in noisy environments. 

The generated wavefield is measured by 4.5 to 14 Hz natural frequency 
geophones placed on the ground. These sensors are vertical or horizontal, 
depending on the source. The spacing can vary between 1 to 5 m, depending on the 
designed near-surface resolution and the maximum investigation depth (array 
length approximately 4-5 times the maximum desired depth). 

The DAQ system is the same described for invasive tests (i.e., high-quality with 
24-bit digitizer and anti-alias filter) with a system of seismic cables allowing the 
connection of the test equipment. 

The test procedure is quite simple. The vertical/horizontal geophones should be 
placed on the soil/rock surface depending on the generated wavefield. The shot 
locations should be placed off each end of the array (typically at half the geophones 
spacing distance) to detect dipping layers. Then, also within-array shots are 
desirable. Hitting at the ¼ and ¾ inside the array is common. An example of a 
forward and a reverse shot of a P-wave refraction test is given in Figure 4.20. 
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Figure 4.20. P-wave refraction: a) seismogram for a forward shot, and b) 
seismogram for a reverse shot (after Foti et al. (2014)). 

A typical example of refraction data visualization is given as travel-time vs. 
distance plot. Figure 4.21 reports an example from Lippus (2007) that clearly 
explains the case of critical refraction of waves off of deeper, stiffer layer. When a 
refraction test is performed, one of the most delicate operations is the identification 
of the head wave. The distance at which the head waves overtakes the direct wave 
arrivals is known as the crossover distance (Kramer 1996) (XC in Figure 4.21).  
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Figure 4.21. Travel-time vs. distance plot for an example single layer deposit 
and identification of the crossover distance (after Lippus (2007)). 

Then, for more complex and multiple layers models, the interpretation of the 
test becomes more challenging (Reynolds 2011). In particular, it is important to 
reaffirm that the refraction test gives reliable results only in case of no velocity 
inversions in the model. The refraction testing will not detect a softer/slower layer 
beneath a stiffer/faster layer. Moreover, even if the velocity increases with depth, a 
“hidden layer” can be lost in the interpretation, due to its limited thickness. 

However, the seismic refraction can be combined with surface wave testing 
methods to constraint the final solution and provide a more realistic result (Foti et 
al. 2003). An example of undetectable layers resulted from equivalent seismic 
refraction models is given in Foti et al. (2014) and shown in Figure 4.22. In practice, 
the equivalence is due to multiple velocity profiles that can generate the same travel 
time curves. The example of Figure 4.22 shows how two different velocity profiles 
can generate the same travel time curves. Moreover, the presence of a softer layer 
beneath a stiffer layer (e.g., shallow crust) will lead to errors in the subsurface 
profile. 
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Figure 4.22. Equivalence of travel time curves for different profiles (after 
Foti et al. 2014)). 

The 2D tomography is the most challenging (and fancy) method for the 
interpretation of refraction tests with multiple shot locations. The result is usually 
given as a 2D map of the soil/rock velocities obtained from the inversion of multiple 
shots (outside and within the array). An example of P-wave refraction results is 
given in Figure 4.23 for a site in the PSWD (Fonte del Campo, Passeri et al. 
(2018a)). In this case, the 2D information is balanced with an increasing epistemic 
uncertainty due to the ill-posedness of the inversion process. However, in Figure 
4.23, the water saturation depth is identified around 10 m. It represents fundamental 
information in the geophysical survey to be used as a-priori constrain for the 
inversion of surface wave tests (next section).  
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Figure 4.23. Example of 2D P-wave tomography at Fonte del Campo 
(PSWD), a) 2D map of the estimated VP velocities with clear evidence of the 

saturated depth (i.e., VP>1500 m/s), and b) seismic rays coverage (after 
Passeri et al. (2018a)). 

4.2.2.2    Surface wave testing 

Surface waves are appealing because they are ideal for the development of non-
invasive techniques for material characterization for a wide range of investigation 
scales (Foti et al. 2014). The maximum investigated depth represents the most 
crucial issue. This depth mainly depends on the frequency content of the signal, the 
array layout, the characteristics of the sensors, and the velocity structure of the site. 

The basic idea is inspired by the applications in the seismological field for the 
characterization of the layers of the earth's crust using recordings of seismic events 
(Romanowicz 2002). The first application in the geotechnical field dates back to 
the Steady State Rayleigh Method (Jones 1958) which was however abandoned due 
to the long and complicated test procedures. However, in the past, the presence of 
recorded surface waves in the acquired seismic traces was undesirable and 
considered a “ground roll” to be eliminated (Socco & Strobbia 2004, Socco et al. 
2010). 

The discussion regarding the essential features of this class of waves was given 
in previous Section 4.1.1. Here, surface wave tests based on Rayleigh (R) waves 
will be presented (i.e., Love waves are only briefly addressed). A particular focus 
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on the identification and quantification of EUs and AVs is also given and 
summarized along with the other discussed seismic tests in Table 4.3. The most 
recent reference for the good practice of surface wave analysis is given in Foti et al. 
(2018). These guidelines include a large number of examples and 11 appendices 
with more details and references on the topic.  

Surface waves are adopted in the last two decades for earthquake engineering 
purposes mainly to evaluate 1D VS interval velocity profiles (i.e., for GRAs) (Foti 
et al. 2009, Stewart et al. 2014a) and/or estimate VS,30 (i.e., soil class determination) 
(Brown et al. 2000, Martin & Diehl 2004, Albarello & Gargani 2010, Bergamo et 
al. 2011, Comina et al. 2011). Studies in the literature proposed methods to estimate 
2D and/or 3D VS models from inversion of surface waves. However, a substantial 
increase in the lateral variability is the price to be paid for these multidimensional 
approaches (Socco et al. 2009, Bergamo et al. 2012, Piatti et al. 2013a). Further 
studies that estimate the dynamic attenuation characteristics of the site are presented 
in the literature, even if are not yet commonly adopted in current practice (Foti 
2003, Socco et al. 2010, Foti et al. 2014).  

Surface wave testing methods are a non-invasive (i.e., sources and receivers on 
the surface, as the seismic refraction), economical, and rapid type of tests (Foti et 
al. 2011b). Differently from other non-invasive techniques, they can detect inverse 
low-velocity layers (i.e., inversely dispersive deposits) and can tailor testing for 
shallow (less than 1 m) to deep (more than 1 km) analyses (Foti et al. 2003). 
However, the data processing is complex, and it is followed by an inverse problem 
for model parameter identification. This leads to an ill-posed problem due to the 
lack of information. These complexities could induce interpretation ambiguities in 
the estimated shear wave velocity model. For these reasons, the results of surface 
wave analyses can be considered reliable only when obtained by expert users. 
However, because of the cost and time effectiveness of surface wave methods and 
the availability of ‘‘black box’’ software, non-expert users are increasingly 
adopting surface wave methods. This often leads to strongly erroneous results that 
may induce a general lack of confidence in non-invasive methods in a part of the 
earthquake engineering community (Foti et al. 2018). However, many studies 
demonstrated that surface wave testing methods could provide comparable 
reliability and accuracy with respect to invasive tests (Comina et al. 2011, Garofalo 
et al. 2016b). 

The surface wave testing procedure is divided into three main steps (Figure 
4.24): 

- Acquisition (i.e., measurement of stress waves at the ground surface) using 
active or passive methods; 

- Processing (i.e., determination of the Experimental Dispersion Curve, EDC 
as the velocity of waves propagation vs. frequency); 

- Inversion (i.e., evaluation of the shear wave interval velocity profile vs. 
depth). 
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Figure 4.24. Three main steps in surface wave testing methods, 1) acquisition, 
2) processing, and 3) inversion (modified from Foti et al. 2014)). 

Surface wave testing methods are a broad class of seismic tests that includes 
many different methods. These methods can be performed with a vast variety of 
procedures. If correctly implemented and adequately applied, almost any of them 
could provide equivalent results regarding accuracy and reliability (Foti et al. 2018, 
Foti & Passeri 2018). The main differences within this class of methods can be in 
each stage of the measuring process (Figure 4.24). However, surface wave testing 
methods can initially be grouped for the type of source used in active-source or 
passive-source methods.  

For active-source methods, the surface waves are artificially generated by a 
specific seismic source. The first engineering methodologies are described by Jones 
(1958) and Ballard (1964). In particular, Jones (1958) proposed the use of one 
harmonic source and a single receiver that was moved radially with respect to the 
source until the source and receiver were in phase. At this point, the analyst can 
determine, for all single frequencies, the corresponding wavelength and therefore 
the phase velocity. The complexity of the procedure strongly influenced the 
duration of the test.   

A subsequent example of an active test was termed Spectral Analysis of Surface 
Waves (SASW) and was proposed by researchers of the University of Texas 
(Narazian & Stokoe 1983, Stokoe 1994). This type of test required the use of an 
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impulsive source and a pair of receivers. Light sources were used with receivers 
placed at a small distance to obtain information related to high frequencies. On the 
contrary, more massive sources and larger spacing between the receivers investigate 
lower frequencies. For each test configuration, the velocity of propagation for a 
given range of frequencies is obtained from the analysis of the phase of the mutual 
power spectrum for each pair of signals. Assembling the information obtained using 
different configurations is possible to obtain an estimate of the EDC for a 
sufficiently wide frequency range in relation to the subsequent inversion process. 
This test methodology was widely diffused in the geotechnical field. The main 
problems were related to the interpretation of the phase of the mutual power 
spectrum (Poggiagliolmi et al. 1982), which can lead to interpretative ambiguities.  

The use of techniques based on the analysis of several signals related to an array 
of receivers aligned with the source (Nolet & Panza 1976, McMechan & Yedlin 
1981, Gabriels et al. 1987), allows a faster and more stable estimate of the 
experimental dispersion curve (Foti 2002). This method nowadays represents the 
most popular test mode, and it is often referred to by the acronym MASW 
(Multistation/Multichannel Analysis of Surface Waves) (Park et al. 1999, Foti 
2000). 

Passive-source methods use low-frequency vibrations from large-scale natural 
phenomena (e.g., sea waves, wind, and micro-seismicity) and/or high-frequency 
vibrations from human activities (e.g., constructions, industries, called 
anthropogenic noise) that are not directly generated for the test purposes (Horike 
1985, Tokimatsu 1997). The most common passive methods are termed ReMiTM 
(Refraction Microtremors) (Louie 2001, Zywicki 2007, Strobbia & Cassiani 2011) 
and AVA (Ambient Vibration Array) (Tokimatsu et al. 1992a, Okada 2003). The 
main difference between these two methods is the linear (ReMi) or 2D (AVA) 
acquisition array. AVA tests are much preferred for passive measurements and far 
superior for developing robust results. Indeed, the direction of propagation cannot 
be determined using a linear array; then the exact phase velocity cannot be verified 
using ReMi arrays (Cox & Beekman 2010, Foti et al. 2018). 

Modern approaches in near-surface characterization use MASW tests 
combined with AVA methods to extend the frequency of the EDC (Socco et al. 
2010, Foti et al. 2018). The most common acquired waves are Rayleigh waves, even 
though the combined use or Rayleigh and Love waves is becoming more common. 
However, in the present work, from this point forward the attention will be paid 
only on surface wave tests (MASW and AVA) based on R-waves (Figure 4.25). 
Many of the same principles apply to the analysis of other kinds of surface waves, 
such as Love and Scholte waves, which however requires specific data acquisition 
procedures and forward modeling algorithms. For further details about the 
acquisition, processing, and inversion of other surface wave testing methods the 
reader can refer to textbooks such as Okada (2003), Foti et al. (2014). A vast 
scientific literature is also available on the topic (e.g., Socco & Strobbia (2004), 
Bard et al. (2010), Socco et al. (2010), Foti et al. (2011a), Schramm et al. (2012), 
Yong et al. (2013) Foti et al. (2018)). 
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Figure 4.25. Combined acquisition of passive and active Rayleigh waves 
for the evaluation of a broadband experimental dispersion curve (modified 

from Foti et al. (2014)). 

Acquisition 

A MASW data acquisition setup (Figure 4.26) consists of a linear array of n 
vertical (usually 4.5 Hz) geophones in line with the seismic source and with a 
constant spacing Δx. The length of the array (L) is calculated as L = Δx (n-1). The 
sources are usually placed at multiple locations off both ends of the array (at a 
distance LS from the first receiver). For specific applications, also multiple shots 
within the line can be performed. Hence, the MASW equipment consists of a source 
(e.g., sledgehammers, drop weights, mobile shakers, bulldozer, vibroseis trucks, 
seismic guns or explosives), a number of geophones, a high-quality seismograph 
(DAQ), a trigger system, and data cables.  

The frequency content of the propagating seismic signal depends on the type of 
seismic source and the specific characteristics of the site. In particular, active light 
sources (e.g., sledgehammers) generate energy concentrated between several hertz 
and several tens of Hertz. If a very large active source is used, lower frequency 
surface waves can be generated. The use of hydraulic shakers or trucks is an 
expensive but effective solution for the broadband of frequencies generated and the 
high level of energy produced. Seismic guns and explosives should be carefully 
managed for the involved risks and are less frequent for near-surface 
characterization. 

The natural frequency of the geophones should be adequate to sample the 
expected frequency band of surface waves without distortions due to sensor 
response (i.e., nonlinear with some phase distortions that can be visible below the 
resonant frequency). Moreover, the sensors should be adequately coupled with the 
ground both using spikes (i.e., natural surface) or baseplates (e.g., pavements) and 
they should be protected from the eventual inclement weather.  

When the trigger system is activated, the DAQ system acquires a sufficiently 
long window that should include the entire generated R waves wavefield. Usually, 
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5 to 10 shots are stacked to improve the SNR for each source location (Neducza 
2007). 
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Figure 4.26. Typical setup of a MASW test and equipment including the 
trigger system, sledgehammer, vertical geophones, DAQ system with a 

seismograph and data cables and a laptop (modified from Foti et al. (2014)). 

The geometric setup of the MASW array and the recording parameters have to 
be initially carefully designed for each particular application. The geometric 
characteristics are the array length L, the geophones spacing Δx, the geophones 
number n, and the source (i.e., shot) position about the first geophone LS. 

The first rule of thumb is that the array length (i.e., related to the maximum 
generated wavelength) needs to be at least two times the desired depth of profiling. 
Also, the maximum depth of profiling is mainly dependent on the type and location 
of the source and the velocity structure of the site. Indeed, the wavelength is a 
function of both frequency and phase velocity; then it is necessary to make a 
preliminary hypothesis about the expected velocity range to define the frequency 
band of the source. At a soft site, lower frequencies will be necessary to achieve the 
same investigation depth than at a stiff one. Furthermore, in the presence of a sharp 
velocity contrast at shallow depths, the amplitudes of low-frequency surface waves 
are sharply reduced and challenging to measure irrespective of the seismic source. 
Generally, if a profile down to 30 m is required, a 60-90 m array is necessary. 
However, long arrays are more susceptible to the influence of lateral variations in 
the subsoil. 

The receivers spacing should be adequately chosen for the correct identification 
of the generated short wavelengths. In particular, the receivers spacing controls the 
resolution of the layers close to the surface. Signals with wavelengths less than 2* 
Δx are spatially aliased, as demonstrated by the Shannon-Nyquist theorem.  
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The number of receivers can be obtained from L and Δx. Theoretically, in the 
absence of intrinsic material damping, the higher the number of receivers the 
cleaner the dispersion image of the signals processing. 

A more significant source offset distance leads to more in-depth profiles, but a 
low-frequency and a high-energy source are necessary. On the other hand, test 
geometries with sources close to the array can generate a recorded wavefield 
contaminated by near-field effects. Then, the source offset should be selected as a 
compromise between the need to avoid near-field effects and the opportunity to 
preserve high-frequency components, which are heavily attenuated with distance 
(i.e., far-field effects) (Foti et al. 2018). The acquisition should be repeated placing 
the source at both the ends of the array (i.e., at least one forward and one reverse 
shot) to verify the 1D assumption by comparing the obtained EDCs. 

Hence, the choice of the test geometry and recording parameters represents an 
essential part of the test. A summary is given in Table 4.2. Initial visual checks 
should always be performed by the analyst in the field and include that: 

- All sensors are correctly recording and correctly coupled to the ground 
(similar waveforms on receivers close to each other); 

- The time window contains the whole surface wave train, if possible with 
sufficient pretrigger; 

- The overall signal-to-noise ratio is good (the typical cone pattern of surface 
waves is visible in all the shots with good repeatability). 

Table 4.2. Suggested parameters for MASW surveys (after Foti et al. 
(2018)). 

PARAMETER Not. 
Suggested 

values Theoretical implications 

Geophone spacing Δx 1-4 m 

Aliasing. Usual minimum 
measurable wavelength 𝜆𝑚𝑖𝑛 ~ 2Δ𝑥 
Minimum near-surface layer 
thickness/resolved depth 𝜆𝑚𝑖𝑛/3 to 
𝜆𝑚𝑖𝑛/2 

Array length L 23-96 m 
Maximum wavelength 𝜆𝑚𝑎𝑥 ∼ 𝐿 
Expected maximum investigation 
depth 𝜆𝑚𝑎𝑥/3 to 𝜆𝑚𝑎𝑥/2 

Number of 
geophones n 24-48 Quality of the dispersion image 

Offset between 
source and 

1st geophone 
LS 5-20 m 

Near field and far field effects 
Multiple shot locations strongly 
recommended 

Sampling interval Δt 0.5 ms Nyquist/Shannon frequency: 

𝑓𝑚𝑎𝑥  =
1

2Δt
 =  1000 𝐻𝑧 Sampling frequency Δf 2000 Hz 
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Post-trigger 
recording length 
(time window) 

Tw 2 s Record the whole surface wave train 

Pre-trigger recording 
length  0.1-0.2 s Mitigating leakage during processing 

 
The test design for geometry and recording parameters of AVA tests is more 

complicated than for active acquisitions (Peterson 1993). A AVA test acquisition 
setup consists of a 2D array made by at least 8-10, 3-components broadband 
seismometers, and an acquisition system. In this case, ambient vibrations 
(erroneously sometimes called “seismic noise”) are recorded with no need for an 
active source. 

These ambient vibrations primarily contain surface waves since far away from 
the source they carry most of the energy. This further characteristic of surface waves 
is due to their cylindrical wavefront, whereas the wavefront of body waves is 
hemispherical (Socco et al. 2010). For this reason, surface wave amplitude decays 
much less with distance than that of body waves and dominate the far field recorded 
with passive methods.  

Moreover, differently from actively generated signals, ambient vibrations have 
sufficient energy up to periods of tens of seconds. However, the ambient vibration 
level for passive methods is highly variable from one site to the other one, and a 
regular signal quality check is more difficult than for active methods. 

The sensors should be carefully placed on the ground or, better, buried (Figure 
4.27a-b) in order to limit the undesirable type of noise (e.g., due to weather, sensor 
instability, or lack of connections). The natural frequency of the sensors should be 
sufficiently low concerning the target depth of investigation.  

The choice of a given test geometry is a compromise between the available 
number of sensors, the level of ambient vibration, and the operating time that could 
be afforded at the site. Generally, circular arrays are preferred even if spatial 
restrictions in urban areas can force the choice of other geometries (e.g., triangles, 
L-shaped) (Figure 4.27c). Indeed, the ambient vibration wavefield might propagate 
from any direction, as it is difficult to identify a predominant source. The array 
diameter (i.e., aperture) can range from 50 m to 120 m or up to 1000 m. These 
limitations of the array aperture depend on the desirable investigation depth (i.e., 
measured wavelength) and the adopted technical solution. First, a rule of thumb 
suggests a profile depth close to the maximum array aperture. Given the number of 
available sensors, arrays from small to large aperture are usually deployed 
successively in order to sample over a broad wavelength range. Second, standalone 
or wireless equipment are preferred for the ease of use with respect to cabled 
systems. A GPS can provide the time synchronization and the precise location of 
the sensors at the site.  

The recording windows are extended up to 2 hours, and only the vertical 
component is then processed for Rayleigh wave dispersion. The horizontal 
components recorded with the 3-component seismometers can be used for the 
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Horizontal to Vertical Spectral Ratio (HVSR) method (briefly addressed in 4.2.2.3) 
and for Love wave analyses. 

 

Figure 4.27. a) and b) three-component seismometer ground coupling for 
AVA tests, and c) typical AVA array geometries (after Foti et al. (2018)). 

Further recommendations for the acquisition of both active and passive test 
regard the proximity of strong vibration sources and unideal surface conditions. The 
first can introduce an uncontrollable, frequency-dependent, transient noise mainly 
composed of body waves and non-planar surface waves. The presence of pavement 
is usually overcome by using specific metal plates for the sensor coupling. 
However, the presence of underground facilities and buried structures should be 
initially investigated and accounted in the design of the test. 

Processing 

A wave is dispersive if its velocity depends on the frequency (or wavelength). 
Surface waves are subjected to geometrical dispersion for vertically non-
homogeneous deposits. In this case, the wave is dispersive because it samples 
different materials for each frequency. In the case of vertically homogeneous, linear 
elastic and isotropic materials, indeed, the Rayleigh waves velocity shows no 
dependence on the frequency (equal to about 0.9 VS). From this point forward, the 
relationship between frequency 𝑓 and wavelength 𝜆 (Eq. 4.9) will be frequently 
used. This means that high-frequencies components travel in (i.e., sample) the 
shallow portion of the deposit, whereas low-frequencies components travel in (i.e., 
sample) the deeper portion of the deposit (Figure 4.7). 

The fundamental tool that ‘condenses’ the R-waves geometrical dispersion and 
that represents a “site signature” of the deposit is the experimental dispersion curve. 
The fundamental goal of the processing stage is to evaluate a robust and consistent 
EDC for the site. The experimental dispersion curve usually plots the R-waves 
velocity vs. the frequency, even if the dependence on the wavelength is often more 
practical (i.e., it is related to the depth). An example of an EDC obtained at 
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Mirandola (Garofalo et al. 2016b) by the University of Texas at Austin is given in 
Figure 4.28 in different domains (i.e., in this case, linear scale, even if a logarithmic 
plot can also be obtained) as: 𝑉𝑅 − 𝑓 (a) and 𝑉𝑅 − 𝜆 (b-c) (Griffiths et al. 2016b). 
The dispersion curve was obtained including MASW and AVA arrays and it is 
given with the associated velocity uncertainty (i.e., +/- one standard deviation) (Lai 
et al. 2005).  

 

Figure 4.28. Experimental dispersion curve obtained by the University of 
Texas at Austin for the Mirandola site (Griffiths et al. 2016b). a) Typical 

velocity-frequency plot, b) wavelength-velocity plot, and c) same of b) but for 
larger depths and suggested resolvable depth limits. 

The experimental dispersion curve provides necessary information about the 
investigated deposit also by simple visual inspection, especially if combined with a 
careful assessment of the local geology. First, by looking at the velocities, it is 
possible to infer an estimate of S-wave velocity versus depth. A rough estimate can 
be obtained by equating the depth to one-half of the wavelength. This depth is 
termed pseudo-depth: 

𝐷 ≅
1

2 ÷ 3
𝜆 (Eq. 4.19) 

 
This method provides a good first approximation of the interval velocity VS 

profile that can be introduced in the inversion process (next section). Moreover, a 
first simple calculation can give support in the verification of the inversion results, 
as shown in Figure 4.29 for three different VS interval profiles. 
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Figure 4.29. Example of the application of the pseudo-depth method for a 
first assessment of the VS interval profile and/or a check of the obtained 

results after the inversion (after Foti (2000)). 

The previous assumption on the pseudo-depth is based on the Rayleigh waves 
particle motion. Most R-wave vertical particle motion occurs over a depth 
approximately equal to one wavelength (Socco et al. 2010). Thus, the velocity of 
propagation is most influenced by the material within one wavelength of the 
surface, as demonstrated by Richart et al. (1970) and reported in Figure 4.30.  

 

Figure 4.30. Rayleigh waves particle motion with depth and usually adopted 
pseudo-depth (i.e., equal to half the experimental wavelength) (modified from 

Richart et al. (1970)). 

The experimental wavelength is also used to evaluate the resolvable minimum 
and maximum depth. A typical limitation provided in surface waves guidelines 
(Foti et al. 2018) and Table 4.2 is: 
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- 𝑧𝑚𝑖𝑛 > 𝜆𝑚𝑖𝑛/2 
- 𝑧𝑚𝑎𝑥 < 𝜆𝑚𝑎𝑥/2 or 𝜆𝑚𝑎𝑥/3 

With the previous assumptions, it is possible to evaluate a first VS interval 
profile trial for the inversion (or an area of possible solutions). At the same time, a 
critical inspection of the EDC can identify errors in the obtained/provided shear 
wave interval velocity profile. For example, from Figure 4.28, the analyst should 
immediately have an idea of the possible range of solutions. First, the minimum and 
maximum resolvable depths (with colored orange and red areas in Figure 4.28b-c) 
are 
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Then, the analyst can initially estimate an S-wave velocity for the shallower 

layer and the half-space (i.e., deeper resolvable layer) 
  

𝑉𝑆,1 ≅ 1.1 ∗ 115 
𝑚

𝑠
= 127

𝑚

𝑠
 

𝑉𝑆,𝑙𝑎𝑠𝑡 ≅ 1.1 ∗ 811 
𝑚

𝑠
= 892

𝑚

𝑠
 

 
Also, the shape of the EDC can provide further information and hints on the 

expected trends of the VS velocity with depth. Dispersion curve with a smooth and 
continuous decrease of phase velocity for increasing frequency is typically 
associated with simple stratigraphic conditions (i.e., normally dispersive deposits). 
On the contrary, a definite kink or a flat zone (i.e., a region close to a local velocity 
minimum) usually suggests a velocity inversion at a specific depth (about the 
associated pseudo-depth). This is the result of two points with the same R-wave 
velocity, but different frequency/depth and a lower velocity in between. 

Another preliminary analysis of the EDC can be conducted using the harmonic 
average shear wave velocity profile. The pseudo-depth, indeed, is an empirical 
relationship that allows estimating the interval shear wave velocity VS at a specified 
depth (Figure 4.29). This assumption is based on the particle motion function with 
depth that roughly integrates a depth equal to one wavelength. Then, the measured 
velocity is associated with half of the pseudo-depth, for the interval velocity profile. 
However, the harmonic average shear wave velocity function with depth is, 
naturally, a parameter that integrates a velocity over a specified thickness. It 
represents the simplest, physical, description of a traveling wave since it is 
calculated as a distance (i.e., a thickness) over time (i.e., the travel time). If the 
analyst plots the Rayleigh wave velocity versus the wavelength and the VS,Z profile 
of the best solution (Figure 4.31a-b) a remarkable similarity can be observed, as 
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suggested in Socco et al. (2017) and proposed by Brown et al. (2000), Martin & 
Diehl (2004), and Albarello & Gargani (2010) for the estimation of the VS,30. This 
is true also for velocity inversions (i.e., knees) that generates an inversion of the 
VS,Z curve. This topic will be further discussed later on. However, the reader should 
have clear in mind from this point the simple concept of harmonic average and the 
affinity with the EDC. 

 

Figure 4.31. a) Best interval velocity profile, and b) comparison between the 
best solution VS,Z profile and the EDC at Mirandola (the University of Texas 

at Austin solution). 

The experimental dispersion curve can be obtained through various dispersion 
processing techniques. Most of these techniques operate in the spectral domain, 
assuming a 1D medium below the array (i.e., horizontally stratified, velocity only 
varies with depth) and a plane wave propagation (i.e., the surface wave is fully 
developed) (Wielandt 1993). 

For active-source tests (i.e., MASW tests), the most common method is the f-k 
transform that uses a double Fourier Transform to shift from the time (t) to the 
frequency (f) domain and from the space (x) to the wavenumber (k=2π/λ) domain. 
It is possible to demonstrate (Foti et al. 2014) that the velocity of Rayleigh waves 
is associated with a local maximum in the f-k spectrum for each propagation mode. 
Hence, the EDC can be extracted from the seismograms by picking the local 
maxima of the f-k spectrum. The searching area for each mode is selected after a 
visual inspection of the spectrum. It is essential to check the continuity for each 
branch (i.e., mode) of the EDC over a sufficiently broad frequency band. An 
example of an f-k spectrum obtained at the site of Accumoli (included in the PSWD) 
is given in Figure 4.32. 
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Figure 4.32. Example of an f-k spectrum obtained for one shot at the site of 
Accumoli, Italy. 

Other approaches for the MASW data processing are: 

- Frequency-domain beamformer (FDBF) (Lacoss et al. 1969); 
- High-Resolution f-k approach (Capon 1969); 
- Intercept-slowness Linear Radon transform (McMechan & Yedlin 1981); 
- Phase-shift (Park et al. 1999); 
- Frequency Decomposition and Slant Stack (Xia et al. 2007); 
- High-Resolution Linear Radon Transform (Luo et al. 2008). 

A collection of a statistical sample of EDCs is usually obtained by performing 
multiple shots at different locations and by using different sources for a single 
MASW test. This step of the analysis is mandatory, even if there is not yet any clear 
protocol internationally shared. When the statistical sample is available, it is also 
possible to quantify the data dispersion and identify associated EUs and AVs in VR. 
It is recommended that the observed variability on the EDC always be reported with 
the results. This may be represented in the form of condensed statistical parameters, 
as seen in Figure 4.28. Data variability is a clear indicator of the reliability of the 
results and can be used for further assessments during the inversion. Moreover, the 
data quality control during the processing should be carried out. This consists of 
checking that the assumptions on which is based the applied method are valid, at 
least approximately (Foti et al. 2018). 

In Foti et al. (2014), the typical errors for MASW tests were classified as 
coherent (i.e., deterministic) and incoherent (i.e., pseudorandom) noise (i.e., the part 
of the data that does not carry any useful information). For the authors, coherent 
noise is related to the experiment. It is deterministically reproducible and is 
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correlated to the signal. On the contrary, incoherent noise is often referred to in Foti 
et al. (2014) to as ambient noise, or random noise, even if it is statistically not 
random. Incoherent noise is not deterministically reproducible, it is not a source-
generated effect, and it is not correlated with the signal. 

In the present dissertation, most of the coherent and incoherent sources of noise 
are identified as epistemic uncertainty. However, the presence of lateral variations 
is included in the aleatory variabilities, as it can be quantified, but cannot be reduced 
by multiple test repetitions. In the following, the new classification of each source 
of uncertainty or variability is presented, along with the alternative distinction made 
in Foti et al. (2014). 

One of the most influent sources of EUs for MASW tests is related to near-field 
effects (i.e., coherent noise). These effects are mainly due to body wave interference 
and/or cylindrical wavefront of Rayleigh waves near the source (or in case of nearby 
noise in passive acquisitions). Indeed, surface waves must propagate a certain 
distance relative to their wavelength before they fully develop and yield the correct 
phase velocity. Rayleigh waves can be regarded as plane waves only beyond a 
certain distance from the source (i.e., in the far-field) (Richart et al. 1970). 
Recording wavelengths that are not fully developed results in near-field effects, 
which usually result in an underestimation of the R-waves velocity. Using multiple 
source offsets helps to identify near-field effects and remove contaminated data. 

Many studies in the literature attempted to provide practical guidelines to avoid 
the inclusion of near-field effects. (Zywicki 2007), Yoon & Rix (2009) found that 
for most soil profiles the error in phase velocity is less than 10% for  

 
𝜆𝑚𝑎𝑥 < �̅� (Eq. 4.20) 

 
where �̅� is the array center distance. Li & Rosenblad (2011) showed that for 
saturated soils (i.e., high Poisson’s ratio) the maximum wavelength could be set to 

twice the array center distance. In reality, near-field effects are strongly site-
dependent and difficult to predict and great care should be taken by the analyst not 
to include this contamination in the processing. In particular, the frequency-
dependent nature (i.e., higher for low frequencies) of the near-field effects 
represents a further characteristic to be accounted for. 

Body waves can show a significant influence also in the far-field and represent 
a further source of EU, identified as coherent noise in Foti et al. 2014. Body waves 
can propagate from the source to receivers with different paths. In shallow, small-
scale tests, body wave amplitude is often much lower than the surface wave 
amplitude. They are superimposed onto each other in time-offset, but often they 
tend to map into different portions of the f-k spectrum. They can be easily identified 
and removed or ignored.  

Along with the body waves, also the air blast detection can lead to undesired 
noise. It represents an EU, and it is identified as a coherent noise. In particular, the 
sound emitted by the hitting source sometimes couples with the ground, being 
detected by seismic receivers. The presence of a loud air blast is potentially 
troublesome in surface wave measurement because it may superimpose on the 
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Rayleigh wave signature. Indeed, the velocity of propagation in air may be very 
close to Rayleigh wave propagation. The air blast can be observed in time-offset, 
and it is identified in the f–k spectrum as a linear event, with constant velocity and 
very low attenuation, usually extending to high frequency.  

Also, the incoherent noise can be identified as epistemic uncertainty. 
Incoherent noise can be the effect of the background vibrations at the site produced 
by natural and human sources: traffic, vibrating and moving machines, wind, and 
movements of surface or groundwater. It is often dominated by surface waves, 
which are, however, incoherent with respect to the experiment. They are generated 
by sources, the position and time of activation of which are unknown. On the 
contrary, these ambient vibrations represent the signal (i.e., the part of the data that 
carries useful information) for the AVA tests. 

Increasing the SNR is a primary objective of the acquisition of a MASW test, 
and it can be achieved either by reducing the level of the noise or by increasing the 
level of the signal. Reducing the noise is sometimes possible. It can be done by 
acquiring data during quiet times (at night, the human noise is lower) or by using 
better equipment with a lower noise level. Careful execution of the field operations 
can reduce the incoherent noise. The meticulous deployment and ground coupling 
of the receivers including burying receivers, avoiding people and vehicle 
movements, and avoiding vibrations during the acquisition are essential practices 
for minimizing the incoherent noise. Increasing the signal level can be done by 
increasing the energy of the active-source. Possible strategies for increasing the 
signal level include using sources that are more powerful or combining different 
sources for different frequency ranges. An alternative approach is stacking more 
traces during the acquisition stage. 

Once the typical epistemic uncertainties in the processing of a MASW test have 
been discussed, the identification and quantification of aleatory variability are 
presented in the following. According to the definitions in 2.2, the aleatory 
variability is a source of uncertainty that can be quantified but cannot be reduced. 
This definition applies to the presence of lateral variations in the soil deposit, which 
are classified as coherent noise by Foti et al. (2014). The acquired data are usually 
processed with the aim of extracting a 1D VS model (i.e., no significant lateral 
variations of the seismic properties are expected and with the flat or mildly inclined 
surface), as discussed in the next sections about the inversion process. The 
propagation of Rayleigh waves is therefore assumed to be laterally homogeneous 
linear in time-offset and phase-offset. In this context, the effects of lateral variations 
can be considered as the primary source of aleatory/space variability. 

This requirement should be considered when selecting the location of the test, 
avoiding known lithological boundaries but also trying to avoid the acquisition 
along the dip direction for expected dipping layers. For these reasons, the lateral 
variations influence on the obtained result cannot be reduced, because it is 
independent on the test. In general, it can be observed that the characteristics of the 
array are essential, as far as the risk of lateral variations is concerned. Indeed, 
different test setups (i.e., L, Δx, and the number of geophones, repeated shots at 
different positions using different sources) lead to different investigated volumes. 
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Then, the multiple setups allow investigating different portions of the deposit, and 
the different gathered EDCs are a good picture of the spatial/aleatory variability for 
the specific scale of the problem (Wood & Cox 2012, Stewart et al. 2014a). For 
example, the longer the array, the higher the chance of significant lateral variations. 
In addition to different processing techniques, a set of shorter arrays might be 
preferred for investigating sites where lateral variations are expected.  

In Chapter 3, the quantification of aleatory variabilities in site response studies 
was related to the size of the investigated area (Stewart et al. 2014a). Also for 
surface wave testing, the scale of the problem predominantly controls the 
quantification of aleatory variability in the EDC that is mainly due to lateral 
variations. Then, in practice, the identification of lateral variations is an essential 
step of processing and can be done by comparison of information extracted from 
different portions of the array. In particular, shots at both the sides of the array are 
mandatory for assessing the 1D geometry (i.e., no lateral variations) of the 
investigated deposit. 

A summary of the EUs and AVs that can be identified and quantified during 
the processing of MASW data is given in Figure 4.33. 

 

Figure 4.33. Primary sources of epistemic uncertainties and aleatory 
variabilities identifiable during the MASW processing stage (after Foti et al. 

(2014)). 

For passive-source tests (i.e., AVA tests), data processing techniques usually 
derive the dispersion characteristics from statistics computed on a large number of 
small time windows extracted from the long duration recorded signals. The EDC 
can be obtained by frequency-wavenumber techniques (similarly to MASW tests) 
or spatial auto-correlation (SPAC) techniques. For f-k methods, high-resolution 
methods include the high-resolution f-k (HFK), the maximum entropy, and MUSIC. 
Spatial auto-correlation methods include ESAC, MSPAC, MMSPAC, krSPAC and 
other approaches (Bettig et al. 2001). For further details, the reader can refer to 
Okada (2009) and Foti et al. (2014). Generally, for f-k methods, any array shape 
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may be used. However, the array response should be considered. Indeed, the 𝑘𝑚𝑖𝑛 
and 𝑘𝑚𝑎𝑥 at low frequencies are essential experimental parameters of the method, 
as computations are performed in the wavenumber domain. Frequency-
wavenumber methods are best applied for highly directional energies and can 
separate modes by distinguishing multiple phase velocities at a single frequency (as 
discussed for active-source methods). On the contrary, SPAC methods strongly 
benefit from regular arrays (e.g., circles or triangles, Figure 4.27c). They are mostly 
applicable at locations where the impinging energy is well azimuthally distributed. 
As for f-k methods, they are limited at low frequencies by the array aperture, but 
are not as sensitive to the array response as f-k methods since the computations do 
not involve wavenumber domain. In this case, the multiple phase velocity at a single 
frequency are not allowed, and therefore the analyst can mix the modes together. In 
light of the previous discussion, it is recommended that both f-k and SPAC methods 
be performed contemporaneously to mitigate the weaknesses of each method. 

An example of the application of the HFK method is given in Figure 4.34 for 
two different couples of frequencies and wavenumbers. The theoretical approach is 
similar to the f-k method applied for active tests. In this case, however, the 
evaluation of the predominant direction of the ambient vibration is fundamental, 
and then the R-wave velocity is obtained as 

 

𝑉𝑅 = 𝑓
2𝜋

𝑘
(Eq. 4.21) 

 

 

Figure 4.34. Example of acquired 8-sensor ambient vibrations and estimation 
of the R-wave velocity by HFK method (courtesy of Prof. Brady R. Cox). 
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The identification and quantification of EUs and AVs are mandatory also for 
passive tests. Differently from MASW tests, now the EDCs are most often obtained 
by averaging the dispersion estimates from the various time blocks. Such 
uncertainties are related to time variation of ambient vibration wavefield properties, 
in relation with the array capability to separate simultaneous propagating waves 
across the array, with the lateral variation of the subsurface, and with near-field 
effects (Foti et al. 2018). 

An important source of EU for both MASW and AVA tests regards the 
presence of higher modes in the recorded data (i.e., coherent noise) (Figure 4.35). 
The Rayleigh wave propagation is a multimodal phenomenon. The energy can jump 
from the fundamental mode to higher modes (i.e., “mode kissing”, Gao et al. 
(2016)), leading to an apparent dispersion curve (Bergamo et al. 2011). Indeed, the 
energy distribution is a frequency dependent phenomenon: a mode can be actively 
dominating within a specific frequency band, while negligible in other frequency 
bands. Many factors control the energy distribution: primarily the site-specific (3D) 
velocity and attenuation characteristics, in combination with the source type, 
location, and coupling with the ground.  

For typical stratigraphic conditions, the propagation is dominated by the 
fundamental mode, as it typically happens in media characterized by a gradual 
increase of shear wave velocity with depth (i.e., normally dispersive). 

In some cases, however, mainly where extreme velocity contrasts exist between 
layers at shallow depths (e.g., the contact between low-velocity sediments and 
bedrock, typical of class A and E deposits for EC8), or where a low-velocity layer 
exists between two high-velocity layers (i.e., inversely dispersive media), higher 
modes may be excited and need to be considered in the inversion analyses 
(Bergamo et al. 2011). Generally, the EDC shows a jump at low frequencies if the 
bedrock has a significant stiffness, whereas the jump is located at high frequencies 
if there is a stiff and shallow layer (e.g., pavement) (Maraschini et al. 2010).  

Other reasons for an ‘‘apparent’’ mode superposition (i.e., modes are 
theoretically separated but cannot be distinguished by the operator) may be related 
to other factors related to the acquisition geometry (e.g., lack of spatial resolution). 
The energy may move from one mode to the other at particular frequencies where 
two continuous modes have similar velocities, called osculation frequencies (even 
if they also depend on the profile). Also for this reason, an expert user should 
perform a rigorous check of the EDC continuity, and fully automatic procedures for 
the analysis are difficult to implement in practice. 

If the EDC shows a mode higher than the fundamental, it is then the result of 
the superposition of different propagation modes that could not be distinguished 
(i.e., apparent or effective dispersion curve). For these conditions, the spectrum is 
not only dominated by a single energy maximum for each frequency, but more than 
one local maximum can be found for a specific wavenumber (i.e., same frequency 
propagating at different velocities). The misidentifying higher modes as the 
fundamental mode causes severe errors in the inverted VS profile (Tokimatsu et al. 
1992b, Zhang & Chan 2003). Several methods have been proposed in the literature 
to account for higher modes, but the procedures are still not standardized and are 
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not implemented in most commercial codes. However, the use of multiple source 
offsets for MASW tests and specific processing technique for AVA tests helps to 
manage mode segregation and mode misidentification. Moreover, if correctly 
identified, higher modes represent useful information. They only become EU when 
the acquisition, processing, or inversion techniques are not able to deal 
appropriately with them (Maraschini et al. 2010). 

Electric or electronic noise in receivers and cables and the acquisition system 
are types of incoherent noise (i.e., EU) both for MASW and AVA tests. This noise 
may be generated by power lines and other external sources and by imperfections 
in the recording system.  

 

Figure 4.35. Example of an f-k spectrum with clear evidence of a higher 
mode identification (after Foti et al. (2018)). 

Various studies in the literature attempted to quantify the EUs and AVs 
associated with the EDC. For SASW methods,  Marosi & Hiltunen (2004), showed 
experimental values of the Coefficient Of Variation (COV) for VR typically around 
1.5%. They also found that samples were normally distributed for frequencies in 
the range 20–150 Hz. O'Neill (2004) analyzed numerical simulations and 
experimental results. He found that the COVs for Rayleigh wave phase velocities 
increase nonlinearly for decreasing frequencies (i.e., from 1% to around 30%) and 
proposed a Lorentzian distribution for the low-frequency range. The author also 
showed a strong dependence of the test repeatability on the length of the acquisition 
array. 

This topic was then extensively discussed by Lai et al. (2005). The objective of 
their study was to determine how the uncertainty of the experimental data is mapped 
into the uncertainty of S-wave interval profiles. They showed that the EDC could 
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be subdivided in a low-frequency zone with higher uncertainties and a high-
frequency zone with lower uncertainties, as expected. This is the result of the 
natural loss of resolution of the Rayleigh waves with depth and the experimental 
challenges for low-frequency waves generation. They also confirmed the findings 
in Marosi & Hiltunen (2004) showing a normal distribution of the R-wave velocity, 
as illustrated in Figure 4.36a. Further confirmation was obtained using a chi-square 
test application (Figure 4.36b).  

More recently, Olafsdottir et al. (2018) corroborated the previous studies about 
the normal distribution of the R-wave velocity for an example dataset in South 
Iceland (Figure 4.36c-d) using the probabilistic theories illustrated by Shapiro & 
Wilk (1965) and Ross (2014).  

For each study, however, precise identification of the contribution of EU and 
AV within the total standard deviation (or COV) is not straightforward. The 
influence of both EUs and AVs uncontrollably converges into the measured EDC.  

 

Figure 4.36. Epistemic uncertainties and aleatory variabilities converged in 
the EDC for active-source tests. a) Normal histogram of VR for a fixed 

frequency (after Lai et al. (2005)), b) application of the chi-square test for the 
Normal assumption (after Lai et al. (2005)), c) example dataset of different 

measured EDCs in South Iceland (after Olafsdottir et al. (2018)), and d) 
calculated COV (after Olafsdottir et al. (2018)). 

Inversion 

The inversion process is the “last chapter of our story” (Socco & Strobbia 
2004). In this stage, the model parameter identification problem is solved by using 
the EDC as a target. Indeed, this step allows obtaining the resulted interval VS 
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velocity profile from the assumption of linear elastic and isotropic medium adopting 
a proper definition of the misfit function that is minimized in the inversion.  

In geophysics, the term inversion means the “estimation of the parameters of a 

postulated earth model from a set of observations” (Lines & Treitel 1984). The 
requirements for the inversion are derived directly from the properties of the final 
result that can be summarized in the following statement: “the result should be a 
unique subsoil model with adequate reliability and resolution down to the depth of 
interest and should be presented with the associated uncertainties” (Socco & 
Strobbia 2004). 

All inverse problems are ill-posed (Foti et al. 2014), which is perhaps their most 
relevant feature if compared with the well-posedness of the corresponding forward 
problems (Engl et al. 1996, Kirsch 2011). According to Hadamard (1923), a 
mathematical problem is defined as well-posed if it satisfies the following three 
conditions: 

- For all admissible data, a solution exists (existence); 
- For all admissible data, the solution is unique (uniqueness); 
- The solution depends continuously on the data (stability). 

If any of these three conditions fail to hold, Hadamard called the problem ill-
posed. In inverse problems like in surface wave testing, the two conditions that are 
most often violated are uniqueness and stability.  

A straightforward example of the inverse problem is a one-sided equation 
 

?= 9 
 

that can show an infinite number of left-hand side combinations that equally satisfy 
the mathematical problem (6+3, 12-3, 27/3, 3^2, 81^0.5). Another example drawn 
from structural engineering is that of a loaded, elastic beam. Although for a given 
loading configuration a unique deflected shape of the beam can be predicted 
(forward problem), the same deflected shape may be obtained from different 
loading patterns. Hence, the problem of determining the load configuration 
corresponding to a deflected shape (inverse problem) is ill-posed because the 
solution is not unique. 

For surface wave inverse problems, non-uniqueness implies that a given EDC 
may correspond to more than one shear wave interval velocity profile of the soil 
deposit. Therefore, a single best-fitting profile is not generally an adequate 
representation of the solution because it does not provide an assessment of the 
uncertainties due to input data and inversion procedure. From a mathematical point 
of view, non-uniqueness of the solution of an inverse problem is caused by a lack 
of sufficient information to constrain the solution. Indeed, any a-priori information 
from other independent tests (e.g., seismic refraction and reflection, horizontal to 
vertical spectral ratio method, and/or electric tomography) or geological surveys 
with borehole data helps to constrain the inverse problem (Brown et al. 2002, Foti 
& Strobbia 2002, Socco et al. 2009, Cox & Teague 2016, Teague et al. 2017, Foti 
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& Passeri 2018). The constraint of the inversion can be obtained by reducing the 
variability of a specific parameter in the inversion or by performing a joint inversion 
(Comina et al. 2002, Foti et al. 2003, Comina et al. 2004, Arai & Tokimatsu 2005, 
Parolai et al. 2005, Piatti et al. 2013a, Piatti et al. 2013b). The joint inversion of 
independent geophysical and/or geotechnical measurements generally combines 
synergies of each test and provides more realistic estimations of the VS profile. 

Besides the ill-posedness of the inversion process, this operation is affected by 
other challenges. The inversion is a nonlinear problem, as the relationship between 
the data space (i.e., VR-f) and the model space (i.e., VS-z) is strongly nonlinear. 
Then, surface wave inverse problems are mixed-determined, as the model solution 
for deeper layers is dependent on the model solution for shallower layers (Socco & 
Strobbia 2004). 

For the previous characteristics (i.e., ill-posedness, nonlinearity and mixed-
determination) of the inversion process, it is strongly recommended that the 
solution is provided in conjunction with clear identification and quantification of 
the resulted EUs and AVs. These can be represented as an estimated bound on the 
best solution (Lai et al. 2005) or preferably as a set of equivalent solutions (Socco 
et al. 2010, Comina et al. 2011). 

In the processing section, the initial information that can be inferred from the 
EDC were discussed. In particular, a rough initial VS model can be defined for 
starting surface wave inversion (Figure 4.29) from the pseudo-depth and assuming 
approximately 𝑉𝑆 = 1.1𝑉𝑅. An example of this procedure is also given in Foti et al. 
(2018) and in Figure 4.37. 

 

Figure 4.37. Approximated method to evaluate an initial model for the 
inversion process (after Foti et al. (2018)). 

The inversion approach for surface wave testing can be summarized in four 
steps: 
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1) Assumption of a system of linear elastic layers stacked over a half-space. 
Each layer has a specific thickness H, a density 𝜌, a stiffness G (i.e., an 
interval velocity VS) and a Poisson’s ratio 𝜈 (or, alternatively, an interval 
velocity VP); 

2) Calculation of the Theoretical Dispersion Curve (TDC) associated with the 
system in 1) (i.e., forward problem); 

3) Comparison of the TDC to the EDC acquired in the field and processed (i.e., 
definition of a misfit function); 

4) Revision of the system parameters until a satisfactory fit is achieved (i.e., 
backward problem). 

The first point regards the parametrization choice and leads to the scheme of 
interval velocity for VS, as the central assumption is the horizontal and parallel (i.e., 
1D) layers (Cox & Teague 2016). The analyst attempts to recover four model 
parameters for each layer (H, 𝜌, G, and 𝜈) indirectly from data parameters in the 
EDC (VR and f) (i.e., lack of constrains) (Foti & Strobbia 2002). Evidences in the 
literature demonstrated that G and H have the most influence on the TDC  (Nazarian 
1984). For this reason, the density and the Poisson’s ratio (i.e., VP) are usually 
assumed a-priori. As an alternative, also the Poisson’s ratio can be varied during 

the inversion, limited to reasonable bounds and allowing a further degree of 
freedom in the problem. This last strategy, adopted in the present dissertation, has 
the great advantage to prevent the occurrence of physically unrealistic VP-VS pairs 
and to verify the in situ saturation conditions. In this context, it is important to know 
the transition depth between unsaturated and saturated soil. Indeed, for the saturated 
conditions, the behavior of the porous medium is controlled by the condition of 
absence of relative motion between phase solid and fluid phase (i.e., undrained 
conditions, low frequency formulation) (Biot 1956a, Biot 1956b, Miura et al. 2001). 
The consequences of an incorrect choice of the Poisson’s ratio can be very relevant, 
as shown for example by Foti & Strobbia (2002) and Brown et al. (2002). In 
particular, Foti & Strobbia (2002) concluded that the position of the water-table is 
a crucial information to be accounted for during the inversion.  

Moreover, the choice of the layering parameterization (i.e., number of layers) 
has a significant impact on the ability to recover the “true” layered model and 

represents the fifth model parameter (Cox & Teague 2016). The analyst should 
avoid an over-parametrization that leads to an unreliable final model (i.e., over-
determined inversion due to the lack of constraints). On the contrary, the number 
of layers should be sufficient to reproduce the variation with depth, especially for 
the shallower portions of the deposit. An interesting alternative to the stack of 
discrete layers (i.e., interval velocities) is given by Rix & Lai (2007). The authors 
proposed to use a vertically heterogeneous model with continuously variable 
parameters with depth. This approach presents considerable engineering interest for 
the characterization of homogeneous coarse-grained materials where the VS varies 
with confining stress (Santamarina et al. 2005). 

The forward problem can be solved, under the previous assumptions, with a 
transfer matrix method (Thomson 1950, Haskell 1953, Knopoff 1964, Dunkin 
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1965, Press et al. 1992).  Alternatively, other approaches like the dynamic stiffness 
matrix (Kausel & Roesset 1981, Kausel & Peek 1982) can be used. Moreover, 
multimodal inversion can also be performed. In these cases, the forward problem is 
solved not only for the fundamental mode but also higher modes are accounted for 
in the calculations (Maraschini & Foti 2010). In this case, the final solution is more 
robust and also the investigation depth can be increased (Passeri et al. 2018a). 
However, these types of inversions usually require particular expertise and efficient 
algorithms, especially in the case of stochastic analyses and the definition of a 
robust misfit function (Maraschini et al. 2010). 

For each solution of the forward problem, the goodness-of-fit (i.e., TDC-EDC) 
of the chosen model is evaluated by a misfit function. Various misfit functions that 
calculate an overall/average misfit between the TDC and the EDC are presented in 
the literature. The most used was proposed by Wathelet et al. (2004) and written 
here as modified by Socco & Boiero (2008) and used in this dissertation  

 

𝑀 = (∑
(𝑉𝑅,𝑖 − 𝑉𝑅,𝑖̅̅ ̅̅ )

2

𝜎𝑉𝑅,𝑖
2

𝑘

𝑖=1

) ∼ 𝜒2 (Eq. 4.22) 

 
where 𝑘 is the number of points in the EDC, 𝑉𝑅,𝑖 is the R-wave velocity of the TDC 
corresponding to the experimental point at frequency 𝑖, 𝑉𝑅,𝑖̅̅ ̅̅  is the R-wave velocity 
of the EDC corresponding to the experimental point at frequency 𝑖, and 𝜎𝑉𝑅,𝑖

2  is the 
variance of the R-wave velocity at frequency 𝑖 (as presented also in Figure 4.28a). 
This misfit function is similar to a RMS error, where the difference at each data 
point is normalized by the standard deviation. Misfit values less than one indicate 
that on average the theoretical dispersion curve is within one standard deviation of 
the experimental dispersion data across the entire frequency bandwidth. 
Furthermore, it can be demonstrated that 𝑀 follows a chi-square distribution 
defined as the sum of the square of standard normal random variables.  

The points 2) and 3) are usually repeated until a stable response is obtained (i.e., 
backward problem). Many optimization methods are usually adopted in this step 
and are classified as local search methods (LSM) and global search methods 
(GSM). 

Local search methods use linearized and non-linearized least square algorithms. 
The search starts with an initial model (Figure 4.37) and iteratively changes it trying 
to reduce the misfit while only considering the immediate previous model. In this 
case, generally, only one single, “best” (sometimes calling it best is something 

oxymoronic) is retained after the inversion. Moreover, these methods are by far the 
most common in commercial software, even if they can be stuck in local minima 
(i.e., the fundamental importance of the starting model). Figure 4.38 shows an 
example of increasing degrees of complexity that may be encountered in solving 
nonlinear inverse problems, from a single, well-defined global minimum (Figure 
4.38a) to a “flat bottom” with an uncountable, finite range of solutions (Figure 
4.38d) (Foti et al. 2014). 
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Figure 4.38. Prediction error as a function of a model parameter in the 
solution of a least-squares nonlinear inverse problem. (a) Well-defined single 

minimum corresponding to a unique solution. (b) Two well-separated 
minima with lack of uniqueness in the solution. (c) Infinite well-separated 
countable minima with severe lack of uniqueness in the solution due to the 
periodicity of the prediction error function. (d) “Flat bottom” having an 

uncountable finite range of solutions with severe lack of uniqueness due to ill-
conditioning of the prediction error function (after Foti et al. (2014)). 

Global search methods can be based on Monte Carlo algorithms (random search 
or improved Monte Carlo) or directed random search methods (e.g., generic 
algorithm, simulated annealing, and neighborhood algorithm). This class of 
methods generally avoids problems of local minima, and a suite of “equally good” 

models is retained by the stochastic method. Indeed, the resulted “best solution” 

(i.e., lowest misfit) obtained by the misfit function cannot be assumed as unique, 
leading to the well-known geophysical equivalence (Foti et al. 2009). This 
equivalence generates a statistical sample of VS profiles selected to be equally 
corresponding to the experimental evidence, managing both EUs and AVs in the 
entire process. This sample represents a “picture” of the possible solutions of the 
surface wave test and should be used in ground response analyses performing 
multiple calculations (Socco et al. 2010, Comina et al. 2011). 

In this dissertation, the equivalent profiles are obtained by applying a one-tail 
statistical test to the function of the ratio between the best misfit (𝑀𝑚𝑖𝑛 = 𝑀1) and 
the misfit of the n-realization (𝑀𝑛) of the improved Monte Carlo algorithm (Socco 
& Boiero 2008, Foti et al. 2009, Comina et al. 2011). Indeed, it is possible to 
demonstrate that this ratio follows a Fisher distribution 
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𝑀𝑚𝑖𝑛
𝑀𝑛

=
𝑀1
𝑀𝑛

∼
𝜒𝑚𝑖𝑛
2

𝜒𝑛2
=
𝜒1
2

𝜒𝑛2
> 𝐹 𝛼(𝛼, 𝜅, 𝜅) (Eq. 4.23) 

 

where 𝑀𝑚𝑖𝑛 = 𝑀1 is the lowest misfit found with the Monte Carlo algorithm, 𝑀𝑛 
is the misfit of the n-generated-model, 𝛼 is the level of confidence of the statistical 
test, and 𝜅 are the degrees of freedom of the statistical test. The chosen level of 
confidence 𝛼 is 0,01 (Foti et al. 2009, Comina et al. 2011) and degrees of freedom 
equal to 𝑘 (number of points of the experimental dispersion curve). Figure 4.39 
shows an example of a Fisher distribution Probability Density Function (PDF) and 
the acceptance area defining the statistically equivalent sample of VS profiles. 

 

Figure 4.39. Probability density function of the Fisher distribution and 
example of the application of the one-tail statistical test to obtain the 

statistical sample of VS profiles. 

An example of the geophysical equivalence obtained after the application of 
the statistical test is provided for the case study of Accumoli, San Francesco square 
(WGS84 latitude 42.694° N, longitude 13.249° E). This site is part of the PSWD 
(Polito Shear Wave velocities Database) that will be presented in the next Chapter. 
Accumoli was investigated for the microzonation of central Italy and was severely 
struck by the seismic sequence that started on August 2016 and continued until 
October of the same year (Martino et al. 2017, Sextos et al. 2017, Stewart et al. 
2017). At the end of the seismic sequence, Accumoli was almost entirely destroyed, 
as illustrated in the high-quality drone picture taken by the Geomatics team of the 
Politecnico di Torino (Figure 4.40).  
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Figure 4.40. High-quality drone picture of Accumoli (16-12-2016). 

The site is located on a steep hill, and it is mainly composed of shallow (around 
6 m depth) fractured sandstones with a pseudo-vertical stratification. The shallower 
layers show silty sand (0.5-3 m depth) followed by dense sand (3-6 m depth) layers 
as presented in Figure 4.41. 

 

Figure 4.41. Borehole information of the site of Accumoli, San Francesco 
Square. 
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The geophysical survey was conducted on September 2016 and consisted of a 
MASW array of 24 geophones (SENSOR-SM-6/U-B, 4.5 Hz) with a 2 m spacing 
(i.e., 46 m) (Figure 4.40). The used equipment was a Geometrics 24 channel Geode 
Seismograph and an 8 kg sledgehammer impinging on the pavement. The space 
limitations and limited safety conditions did not allow the use of a larger setup.  

Different shots from both the directions were repeated and stacked during the 
processing of the acquired data. An example of a good-quality f-k spectrum 
processed is given in Figure 4.32. The processing did not show any influence of 
higher modes. The EDC was obtained along with the VR standard deviation for each 
frequency. These standard deviations can be assumed as a global estimation of the 
EUs and AVs identified and quantified at the site. 

The inversion process followed a systematic and smart two-step approach that 
will be presented in the next Chapter. In general, this method is based on an 
improved Monte Carlo algorithm with a TDC scaling (Socco & Boiero 2008). In 
the first round, an initial statistical sample of the possible solutions is investigated 
using 200000 theoretical profiles for each inversion. The inversions are performed 
varying all parameters, except for the material density. These guidance inversions 
allow a rigorous assessment of the initial best model parameters (i.e., H, G, and 𝜈). 
Then, an ad-hoc geostatistical model is used in combination with the lowest misfit 
solution obtained after the first stage. In this second round, the possible space of 
solutions is further investigated by an improved Monte Carlo inversion with 200000 
samples and a variable number of layers (i.e., the fifth parameter often neglected in 
the inversion, Cox and Teague 2016). The results of the inversion are showed in 
Figure 4.42a as interval velocity profiles (in red the minimum misfit profile). Figure 
4.42b shows the corresponding harmonic average shear wave velocity profiles (in 
red the minimum misfit). Figure 4.42b suggests that the geophysical equivalence 
should be evaluated on the harmonic average shear wave velocity profiles (Comina 
et al. 2011). Indeed, the results variability in Figure 4.42a is affected by the 
assumption of constant velocity within the layer (i.e., engineering schematization). 
Figure 4.42 suggests that the problem’s statistics should be computed on the 

harmonic average profiles, as the interval velocity mean and standard deviation has 
no physical relevance (Passeri et al. 2019). On the contrary, the VS,Z (or, 
alternatively, the cumulated travel time) overcomes the choice of the layering 
giving a result that is more consistent with the physics of the wave propagation 
process. Moreover, the VS,Z shows similarities with the EDC, especially for the 
mixed-determination of the solution. Indeed, as VR at a wavelength depends on the 
VR of shorter wavelength, also the VS,Z at a specific depth depends on the VS,Z above 
(i.e., due to the cumulated travel-time).  
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Figure 4.42. Results of the inversion for the site of Accumoli, San Francesco 
square. a) Statistical sample of the interval velocity shear wave profiles, and 
b) statistical sample of the harmonic average shear wave velocity profiles. 

The TDC-EDC comparison in Figure 4.43 guarantees the geophysical 
equivalence (in red the minimum misfit and in black the EDC with the associated 
standard deviation). In this case, the statistical test selected 12512 profiles of 
400000 with a misfit ranging from 𝑀1 = 0.0343 and 𝑀12512 = 0.0776. 

 

Figure 4.43. Results of the inversion for the site of Accumoli, San Francesco 
square (PSWD). Comparison between the experimental dispersion curve (in 
black with its standard deviation) and 12512 theoretical dispersion curves 

selected by the statistical test over 400000 initial models. 
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4.2.2.3    Horizontal to Vertical Spectral Ratio 

The Horizontal to Vertical Spectral Ratio (HVSR or H/V) requires passive 
measurements with a single 3-component receiver placed on the ground (or, better, 
slightly buried for a better coupling). In particular, this method alone does not allow 
an accurate estimation of the shear wave velocity profile with depth. However, it 
can provide useful constraint about the position of strong impedance contrasts (i.e., 
deep interface characterization) to be used in the inversion process of surface wave 
tests (i.e., independent geophysical information). Moreover, a combined inversion 
of both EDC and the H/V curve can be performed to obtain more robust results 
(Arai & Tokimatsu 2005, Parolai et al. 2005). 

The HVSR method was initially proposed by Nakamura (1989) as an estimate 
of the 1D Experimental Transfer Function (ETF) also described in Chapter 3. In 
particular, he observed that the ratio between the Fourier spectra of the horizontal 
and vertical components of the recorded motion followed a curve (called H/V or 
ellipticity curve). A clear peak in the H/V curve has been shown to act as a measure 
of the sites fundamental resonant frequency 𝑓0. Nakamura stated, “The spectrum 

ratio of the horizontal components and vertical component of microtremor bears 
resemblance to transfer function for horizontal motion of surface layers.” The work 
by Nakamura (1989) and Herak (2008) suggested that the SH waves microtremors 
produced the observed experimental peaks in the curve. However, other studies 
demonstrated that R-waves (and secondly, Love waves) are the most influent waves 
that produced the H/V peak (Lermo & Chávez-García 1994, Fäh et al. 2001, Arai 
& Tokimatsu 2004, Malischewsky & Scherbaum 2004, Van Der Baan 2009, Tuan 
et al. 2011). More recent studies found that the total wavefield is responsible for the 
H/V peak (Bonnefoy-Claudet et al. 2006, Sánchez-Sesma et al. 2011, Lunedei & 
Albarello 2015). 

The acquisition stage of the HVSR method consists of placing the 3-component 
receiver and record ambient vibrations. The recording time should be based on 
anticipated resonant frequency (lower frequencies require longer recording times). 
Generally, 30 minutes are sufficient (SESAME Team 2004). 

In the processing stage, the analyst breaks recording into time steady-state 
windows and transform them into the frequency domain using a Discrete Fourier 
Transform (DFT). Each component (i.e., vertical, N-S, and E-W) is usually 
smoothed before the calculation of the ratio (the Konno & Ohmachi (1998) 
approach is the most common). Then, N-S and E-W (i.e., horizontal) components 
can be combined in various ways as 

- Geometric mean 𝐻 = √𝑁𝑆(𝑓) ∗ 𝐸𝑊(𝑓); 
- Total energy 𝐻 = √𝑁𝑆(𝑓)2 + 𝐸𝑊(𝑓)2; 

- Squared average 𝐻 = √𝑁𝑆(𝑓)
2+𝐸𝑊(𝑓)2

2
; 

- Directional energy 𝐻 = √[𝑁𝑆(𝑓) cos(𝜃)]2 + [𝐸𝑊(𝑓) sin(𝜃)]2. 
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After the processing of each time window, the noise can be removed in the time 
or frequency domain, and the experimental H/V curve is obtained. An example of 
an experimental H/V curve with an identified peak is given in Figure 4.44 for the 
Fonte del Campo site (PSWD). However, the test can give flat responses in some 
cases. Different reasons can explain the absence of the peak in the ellipticity curve: 

- The site can show no significant impedance contrast at (e.g., gradual 
normally dispersive site) or can be a rock outcrop with no significant 
amplifications (i.e., very stiff site); 

- Anthropogenic noise can mask the site resonant frequency; 
- The sensor is inadequately coupled with the ground; 
- The sensor was not left to record for a sufficient amount of time to develop 

a stable estimate; 
- The impedance contrast is representative of frequencies below limitations 

of the equipment (for this reason the use of 4.5 Hz geophones is 
discouraged); 

- Testing was performed in a low energy environment; therefore, low-
frequency energy was not present to excite the site’s resonant frequency. 

The assessment of the acceptability of the H/V curve can be done referring to 
the work of the SESAME project (SESAME Team 2004). The authors developed 
HVSR guidelines including clarity criteria for the identification of a good peak. 

 

Figure 4.44. Example of an H/V curve obtained at the site of Fonte del 
Campo (after Passeri et al. (2018a)). 
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Once verified, the ellipticity curve can be used as geophysical information 
about the investigated site (Bergamo et al. 2011). As already discussed, the 
fundamental resonant frequency of a soil deposit can be approximated by the Eq. 
4.5 (Kramer 1996). Hence, an experimental estimation of 𝑓0 represents a useful 
independent information to be combined with other results of the geotechnical and 
geophysical survey (particularly useful for the inversion of surface wave tests). It 
is important to notice that also this experimental evidence is strictly related to the 
harmonic average shear wave velocity profile.  

If the H/V curve is the only information at the site, the peak can provide insight 
into the sites general characteristics. It can also be used to assess the 3D nature of a 
site/area qualitatively. The ellipticity curve can help in identifying potential velocity 
reversals (Castellaro & Mulargia 2009). Recently, Vantassel et al. (2018) mapped 
the spatial variability (i.e., AV) of frequency peaks at CentrePort, Wellington. They 
showed rapid changes in fundamental site period, identifying a non-1D subsurface 
due to the bedrock depth oscillations. In this case study, complex H/V data can be 
used to warn the user of complex subsurface conditions. However, the estimation 
of a 1D VS profile from the only H/V curve should be avoided (i.e., HVSR should 
not be used as a standalone method for performing dynamic site characterization) 
(Fäh et al. 2003, Molnar et al. 2017). 

The ellipticity curve can also be used for a combined inversion with the EDC 
from a MASW test. An example of this approach was performed for a site included 
in the PSWD and located in the town of San Severino Marche. The geophysical 
survey was part of a project between the Politecnico di Torino and the Nagoya 
University for the safeguard of the historical Italian building heritage. Indeed, the 
Smeducci’s tower rises at the investigated site. The Smeducci’s tower (40 m high) 

was built in the 13th century and represents a symbol for the town and the entire 
Marche region. As for Accumoli, San Severino Marche is part of the area struck by 
the 2016 seismic events (other than the 1997 earthquake) and included in the 
massive microzonation program sponsored by the Italian Civil Protection. For these 
reasons, a team of experts was engaged in monitoring the dynamic behavior of the 
tower.  

During the last decades, the tower was subjected to various retrofitting 
operations due to its worrying leaning (Figure 4.45). Also, much geotechnical 
information is available for the site from previous surveys (i.e., borehole logs, 
inclinometers, piezometers, SPT tests). These surveys investigated the local 
geology that is mainly composed of quite stiff materials and shallow bedrock. In 
particular, the geological 2D section in Figure 4.46 shows a first layer (1-4 m thick) 
of anthropic materials used to level the area. A second layer is detected, and it is 
composed by eluvial-colluvial deposits with a thickness ranging from 3 to 4 m. 
Then, a layer of fractured rock is shown with a thickness varying from 10 to 14 m, 
laying above a consistent rock halfspace. Hence, the local geology represents a 
significant challenge for the geophysical investigations, as a likely 2D response is 
expected. Moreover, the presence of many anthropic underground structures (e.g., 
the tower was retrofitted with a micro-piles umbrella) is a further complication for 
the in situ acquisitions. 
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Figure 4.45. Smeducci’s tower, San Severino Marche (Italy). 

The geophysical survey of the tower (WGS84 latitude 43.226° N, longitude 
13.167° E) consisted of two MASW arrays and three HVSR tests (Figure 4.46).  

The first MASW array (i.e., MASW-1) was located along the S-W scarp, 
whereas the MASW-2 was located diagonally in the Smeducci’s square. The 

MASW-1 was composed by 36 vertical geophones (SENSOR-SM-6/U-B, 4.5 Hz) 
spaced by 1 m (35 m array length). The MASW-2 was composed by 31 same 
vertical geophones spaced by 1.5 m (45 m array length). The acquisition setup 
consisted of a 24-channel Seismograph Geode and an 8 kg sledgehammer vertically 
impinging on the pavement or a metal plate. Multiple shots at different locations 
were performed, aiming at increasing the SNR and obtaining a reliable statistical 
sample for the evaluation of the VR standard deviations. 

Figure 4.46 also shows two HVSR measurements. These tests were performed 
with a single, 3-component, 2 Hz, geophone buried in the ground (Figure 4.27a). 
The same Seismograph used for the MASW tests was also adopted for the HVRS 
measurements. Each test refers to a 24 minutes’ acquisition in a quite (i.e., no traffic 
or anthropic activities) environment.  
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Figure 4.46. Plan view and a 2D geological section of the Smeducci’s tower 

area with the location of the two MASW tests and two HVSR measurements. 

The MASW processing was performed with an f-k transform that provided two 
different EDCs for each test location. The local geology investigated from MASW-
2 (Figure 4.46) can be approximated as 1D (as also confirmed by the comparisons 
between forward and reverse multiple shots).  Also for this reason, only the MASW-
2 results were used for the following combined inversions.  

The HVSR data were processed in GEOPSY with window lengths from 10 to 
300 s. An anti-trigger algorithm and a high pass (2 Hz) filter were also used in the 
signals processing. After the processing, the SESAME criteria were applied to the 
H/V obtained curves. In particular, the HVSR-1 and HVSR-3 were discarded after 
the verification. 

First, the only MASW-2 EDC was inverted by using the same approach seen 
for Accumoli (16798 accepted models) and presented in the next Chapter. The 
processed data were also inverted adopting the Neighborhood Algorithm 
implemented in GEOPSY (Sambridge 1999, Wathelet et al. 2004). This first stage 
of inversions was designed for a preliminary investigation of the space of the 
possible solutions. The results are in agreement, despite the different GSM adopted. 
Indeed, Figure 4.47 shows the comparison between the interval velocity profiles 
with the lowest misfit obtained with the different methods. 
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Figure 4.47. Comparison between lowest misfit interval velocity VS profiles 
obtained with the improved Monte Carlo algorithm and the Neighbourhood 

Algorithm implemented in GEOPSY. 

Thereafter, the combined EDC-H/V inversions were performed in GEOPSY. 
The input parameters were the EDC from MASW-2 test and the ellipticity curve 
from the HVSR-2 test. Then, 500000 models were generated from the software, 
assuming a maximum iteration equal to 1000. Figure 4.48a-b show the results of 
the lowest misfit solution. In particular, Figure 4.48a shows the excellent 
comparison between the lowest misfit TDC (in red) and the EDC (in black). Figure 
4.48b shows the comparison between the ellipticity curve of the lowest misfit model 
(in red) and the experimental H/V curve (in black). Figure 4.48c shows the 
comparison between the interval VS velocity profiles obtained by the inversion of 
the single MASW test (improved Monte Carlo approach) and the combined EDC-
H/V inversion. From this last Figure, it is clear that the combined inversion allowed 
the investigation of a deeper portion of the site. In this case, the HVSR method 
showed a better resolution with depth and localized a further impedance contrast at 
depths around 35 m. This result is in agreement with the loss of resolution of the 
surface wave tests. In this case study, the 𝜆𝑚𝑎𝑥 ≅ 80 m and the test conditions did 
not allow investigating the depth around the deeper interface.  
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Figure 4.48. Results of the geophysical characterization of the Smeducci’s 

Tower, San Severino Marche (Italy). a) Comparison between comparison 
between the lowest misfit TDC (in red) and the EDC (in black), and b) 

comparison between the ellipticity curve of the lowest misfit model (in red) 
and the experimental H/V curve (in black). c) Comparison between the 

interval VS velocity profiles obtained by the inversion of the single MASW 
test and the combined EDC-H/V inversion. 

4.2.3    Summary 

The next Table 4.3 summarizes the sources of EUs and AVs identifiable for the 
seismic tests described in the previous sections from a purely theoretical point of 
view. This Table aims at giving a rigorous scheme to the analyst who performs 
seismic tests for near-surface characterization.  

The most critical observation regards the balance (i.e., quantification) between 
the identified EUs and AVs and the dependence on the specific test and the 
characteristics of the investigated site. For these reasons, a practical and precise 
identification and quantification of the involved global uncertainties is often not 
feasible.  

The identification and quantification of the EUs are dependent on the type of 
test, and every single source is listed in Table 4.3. In this regard, it is necessary to 
consider also the different resolution with the depth of each seismic test. The 
obtainable resolution of surface wave tests decreases as the depth increases while 
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invasive tests guarantee a good (for the DH) or excellent (for CH and PS suspension 
logging) detail even at considerable depths. 

In the other hand, for AVs, each geophysical test has a spatial extension and 
investigates a different volume of the deposit, which should be compared with the 
extension of the area under analysis (Figure 4.49) (Comina et al. 2011). The most 
localized measurements can be obtained by using the PS suspension logging. Then, 
DH and CH tests that investigate a deposit’s volume depending on the test 

configuration and distance source-receiver (i.e., the waves’ path). Finally, the non-
invasive tests investigate a much larger volume and produce an average response 
for the particular deposit (i.e., more appropriate when only the estimation of VS,30  
is required) (Comina et al. 2011, Stewart et al. 2014a). For these reasons, the 
quantification of the AV requires a systematic analysis of the site (i.e., geologic 
complexity) and test (i.e., spatial resolution) contributions of variability.  

The previous observations confirm that a neat separation between EUs and AVs 
is practically very complex. These issues are then propagated into the adopted 
management method that should singularly treat both the epistemic and the aleatory 
contribute. However, indistinct management is usually carried out, as presented for 
the geostatistical model described in Chapter 6, both for surface wave and DH tests.  

 

Figure 4.49. Different investigated volumes obtained by means of invasive 
(i.e., CH, DH, and PS suspension logging) and non-invasive (i.e., seismic 

refraction, and surface wave) tests to be accounted for in the identification 
and quantification of AVs. 

Numerous inter-method (i.e., invasive vs. non-invasive) and intra-method (i.e., 
within the same class of tests) comparisons reported in the literature showed that 
the agreement between the results is good if the tests are scrupulously conducted 
and interpreted (Boore & Brown 1998, Brown et al. 2002, Moss 2008, Comina et 
al. 2011, Foti et al. 2011b, Kim et al. 2013b, Piatti et al. 2013a, Cox et al. 2014, 
Garofalo et al. 2016a, Garofalo et al. 2016b). These comparisons are usually based 
on independent analysis of the results and called “blind tests”. 
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The first pioneer example is proposed by Boore & Brown (1998). They attested 
a substantial underestimation of VS for the shallower layers, and a substantial 
overestimation for the deeper layers obtained with the surface wave methods. At 
that time, the results of the DH tests were indisputable and were considered as the 
true target. They stated that a possible explanation for the difference could be the 
different investigated volume.  

Brown et al. (2002) expressed more confidence in the surface wave testing 
methods showing ten examples of inter-method comparisons. In one case, the site 
presented no lateral variations, and the SASW array was very close to the invasive 
tests. Likewise, the comparisons of the SASW profile against DH and PS 
suspension logging results were very satisfying. For a second example, there were 
more substantial differences in the inter-method comparison, especially close to the 
surface. However, the authors calculated the TDC associated with the DH profile 
with very different results. This evidence confirmed that the inter-method 
differences were probably due to the considerable lateral variability at the site. For 
all the remaining sites, Brown et al. (2002) generally found lower values of the 
velocity close to the surface by the SASW (i.e., around 15%). Furthermore, it 
should be noted that the DH tests were interpreted with the known stratigraphy, 
while for the SASW this information was not available. Also, the authors confirmed 
that the usual difference might be related to lateral variations and different 
investigated volumes (Boore & Brown 1998).  

A systematic comparison of the uncertainties has recently been carried out in 
the InterPACIFIC project (Garofalo et al. 2016a, Garofalo et al. 2016b), in which 
three sites were characterized using repeated realizations of invasive and surface 
wave tests. The sites were selected to be representative of different stratigraphic 
situations. A rock outcrop characterizes the site of Cadarache. The Grenoble site 
consists of alluvial coarser relatively rigid materials with a deep seismic substrate. 
Finally, the Mirandola site has relatively deformable deposits above one stiff 
substrate placed at around 100 m depth. For each site, DH, CH, SDMT, and PS 
suspension logging were repeated. 

Furthermore, a surface seismic dataset was distributed to different groups of 
analysts who interpreted it using different approaches. The results obtained in the 
study show comparable levels of uncertainty between invasive and surface wave 
tests. However, the lower resolution guaranteed by the surface wave tests is 
reflected in greater uncertainties in the identification of stratigraphic layers and 
consequently in the estimation of interval velocity, especially at significant depths. 

The inter-method comparison, however, is often performed by the interval 
velocity VS profile. As already discussed, this schematization of the subsurface 
represents only a simplification need for the GRAs. A better understanding of the 
inter-method differences can be achieved by looking at the harmonic average shear 
wave velocities. Many authors already suggested this type of comparison but only 
applied to VS,30 (Bergamo et al. 2011). Figure 4.50 compares the results of invasive 
tests (CH, DH or PS suspension logging) with the results of the analysis of the 
propagation of surface waves in five different studies. Generally, the comparison is 
good enough for all soil classes. 
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In Figure 4.50, the data from the study by Comina et al. (2011) also report an 
estimated uncertainty associated with non-uniqueness of the solution quantified as 
the standard deviation of the set of profiles that equivalently honor the available 
experimental data. The impact of the non-uniqueness of the solution appears modest 
for the estimate of VS,30 at eight sites. Similarly, Garofalo et al. (2014b) estimated 
the uncertainty also associated with invasive test and surface wave results during 
the InterPACIFIC project (Figure 4.50). Note that, for the InterPACIFIC project, 
more uncertainties are reported, compared to the results from Comina et al. (2011). 
This is mainly due to the different number of analysts that contributed to the blind 
test. On the other hand, the uncertainties from Comina et al. (2011) are associated 
with a single analyst. 

 

Figure 4.50. Comparison of VS,30 obtained performing invasive or surface 
wave tests in five studies in the literature (after Garofalo et al. 2014b). 
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Table 4.2. Summary table for the identification and quantification of EUs 
and AVs in seismic tests. 

Test EPISTEMIC UNCERTAINTIES ALEATORY 
VARIABILITIES 

D
O

W
N

-H
O

L
E

 S
E

IS
M

IC
 T

ES
T

IN
G

 

- Gross errors in the source, receivers, and DAQ system (inappropriate 
instruments) 

- Inadequate preparation of the borehole (i.e., casing, grouting) (for 
borehole-based) 

- Impenetrable stiff materials (for direct-push) 
- Picking (FA, PT, CO) (mainly for pseudo- and true-interval) 
- Potential near-surface refractions 
- Triggering/timing (particularly for pseudo-interval method) 
- Decreasing resolution with depth and low-energy sources (low SNR) 

(maximum 60-70 m) 
- Insufficient coupling of the shear beam and/or metal plate with the soil 
- Straight ray path assumption (true- and pseudo-interval and slope-

based) 
- Inverse problem non-uniqueness (raytracing velocity analysis) 
- Preliminary choice of layer discretization (slope-based interpretation 

method) 

Second-order importance: 

- Borehole/cone vertical deviation 
- Tube waves generation (especially in water-filled boreholes and P-

waves) 

None (restricted and 
localized 

measurements). 

C
R

O
SS

-H
O

L
E

 S
E

IS
M

IC
 T

ES
T

IN
G

 

- Gross errors in the source, receivers, and DAQ system (inappropriate 
instruments) 

- Inadequate preparation of the borehole (i.e., casing, grouting) (for 
borehole-based) 

- Picking (trigger, P-, and S-wave) 
- Potential refractions and generation of head waves (hidden layer) 
- Interpretative 1D model inadequateness (vertical homogeneity of the 

deposit) 
- Triggering/timing (in the case of 2-holes setup) 
- Decreasing resolution with the distance between the boreholes and low-

energy sources (low SNR) 
- Insufficient coupling of the source lowered into the borehole with the 

surrounding soil 
- Borehole/cone vertical deviation 

None (restricted and 
localized 

measurements). 

PS
-S

L
 

- Picking strategies  
- Possible detection of tube waves (particularly pronounced with heavy 

casing and thick grout) 
- Poor signal quality 
- Very restricted investigated volume 
- Triggering/timing 
- Insufficient coupling of the source lowered into the borehole with the 

surrounding soil 

None (restricted and 
localized 

measurements). 
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SE
IS

M
IC

 R
E

FR
A

C
T

IO
N

 

 
 

- Gross errors in the source, receivers, and DAQ system (inappropriate 
instruments, particularly in the case of S-wave refraction test) 

- Triggering/timing 
- Inadequate if performed on pavements, asphalt or concrete (or in the 

presence of shallow thin stiff layers as desiccated crusts) 
- Picking strategies  
- Insufficient coupling of the shear beam and/or metal plate with the soil 
- Normally dispersive medium (i.e., the velocity has to increase with 

depth, no velocity inversions) assumption  
- Multi-layered models with thin interbedded materials (hidden layer and 

refraction equivalence) 
- Inverse problem non-uniqueness (tomography and multiple shots 

interpretation) 

Dependent on the 
spatial length of the 

array and the 
interpretation 

strategy. 
Tomography and 

Generalized Raypath 
Method allow for the 
reconstruction of 2D 

models. 

SU
R

FA
C

E
 W

A
V

E
 T

E
ST

IN
G

 (M
A

SW
 A

N
D

 A
V

A
) 

ACQUISITION 

- Gross errors in the source, receivers, and DAQ system (inappropriate 
instruments) 

- Insufficient coupling of the geophones with the ground or the pavement 
- Inadequate geometric initial design of the array or recording parameters 

(see Table 4.2), and/or insufficient number/locations of shots (for 
MASW) 

- Inadequate energy or narrow frequencies band produced by the source 
(for MASW) 

- Insufficient ambient vibrations level (for AVA)  
- Inadequate geometric initial design of the array or of recording 

parameters (for AVA)  

PROCESSING 

- Absence of a critical read of the EDC (maximum and minimum 
resolvable depths and the initial range of possible solutions, possible 
velocity inversions, relationship with the VS,Z) 

- Higher modes misinterpretation 
- Incoherent noise (e.g., electric or electronic noise) 
- Near-field effects, body waves, air blast, incoherent noise (e.g., 

anthropic activities) (for MASW) and non-planar Rayleigh wavefront 
- Nondirectional energies (f-k methods), irregular arrays and modes 

mixing (SPAC methods) (for AVA) 

INVERSION 

- Ill-posedness of the non-unique solution  
- Nonlinearity and mixed-determination of the problem 
- Investigation of a limited space of solutions varying the five problem’s 

parameters (especially for LSM) 
- Unacceptable differences between EDC and TDC evaluated by the 

misfit function 
- Inadequacy of the inversion model made by stacked horizontal layers 

(i.e., the presence of lateral variations) 
- Wrong use of a-priori information (e.g., borehole logs and saturation 

depth) 

Dependent on the 
spatial length of the 
array (for active). 
Sites with strong 

lateral/spatial 
variations should be 

avoided. Passive tests 
measure ambient 

vibrations that 
provide a global 

average of the site 
response. The use of 
multiple arrays can 

help in the 
identification of 

lateral variations by 
comparing the 
results. Spatial 

windowing for long 
arrays can be used to 
obtain approximate 

2D models. 

H
V

SR
 

- Gross errors in the receiver (especially the natural frequency of the 
sensor) and DAQ system (inappropriate instruments) 

- Insufficient coupling of the geophone with the ground 
- Short acquisition windows 
- Noisy environments (i.e., incoherent noise) 
- No evidence of a clear peak (normally dispersive or outcrop sites, very 

low-frequency resonance for soft sites, insufficient ambient vibrations 
level)  

- Use of the test as a standalone method for performing dynamic site 
characterization (i.e., estimation of the VS profile) 

These tests measure 
ambient vibrations 

that provide a global 
average of the site 
response regardless 

for lateral variations. 
Multiple tests can 

help in the 
identification of 

lateral variations. 
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4.3  Management of EUs and AVs 

The management (i.e., treatment) of the identified and quantified epistemic 
uncertainties and aleatory variabilities still represents an open topic for the scientific 
and technical community. This section starts with a pioneering example of the 
management of EUs and AVs. Then, two primary methods that are commonly 
adopted by scientists and professionals are described in details. In the subsequent 
parts, an extensive literature overview will be presented, critically illustrating 
applications and results of the management of EUs and AVs of VS profiles. 

The Electric Power Research Institute (EPRI) historically provides guidelines 
for the design of nuclear power plants in the US. These guidelines deal with 
methods for estimating strong design ground motions. The motivation is given by 
the need for a systematic, physically based, and empirically calibrated method that 
could be used to estimate ground motions for the design of nuclear power plants 
and other critical facilities.  

In 1993, EPRI published the technical report called “Guidelines for 

Determining Design Basis Ground Motions”. This report aimed at developing a 
guideline for conducting a complete site investigation. In Chapter 6-Vol. 1, the 
report presents soils amplification factors for the 5% damped response spectra to 
accommodate the effects of soils on a generic basis. A set of five generic soil 
categories ranging from 6 to 165 m depth were presented as well as the VS profiles 
used for EQL-GRAs, after a comparison with NL-GRA results. The stochastic 
analyses likely show the first example of management of uncertainties (i.e., even if 
they were not explicitly classified) in VS profiles. In particular, a generic median 
soil profile was selected and chosen to be consistent with the generally stiff soils 
present under nuclear power plants located in the Eastern and Central United States. 
This generic interval VS profile (Figure 4.51) intended to capture the behavior of 
soils ranging from gravels and sands to low plasticity sandy clays for five site 
categories. 
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Figure 4.51. Standard soil profile appropriate for the Central and Eastern 
United States sited and site categories indicated by their respective soil 

column depth (after EPRI (1993)). 

In order to accommodate for the variation in VS interval velocity profiles, EPRI 
(1993) proposed a randomization model to account for uncertainties and 
variabilities. The uncertainty model applied separately to interval velocities and 
depths and was based on a probabilistic analysis of over 350 profiles taken from 
sites predominately in the conterminous United States. The statistics then 
represented both western and eastern sites of a broad range of possible site 
conditions. An example of randomized interval S-wave velocity profiles is given in 
Figure 4.52 along with the median profile (dashed line). The bedrock (i.e., 
halfspace) median velocity was initially assumed as 2000 m/s and the associated 
logarithmic standard deviation 𝜎ln (VS) = 0.3. The bedrock (i.e., halfspace) depth 
was separately randomized and was constrained to the ranges in depth to which 
category applied. Although this model was very simplified, it likely represents the 
first example of a geostatistical randomization model applied to interval VS profiles. 
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Figure 4.52. Random shear wave interval velocity profiles (separate 
randomization of interval velocity and depth) (after EPRI (1993)). 

A subsequent report (EPRI 2013) presented the identification of uncertainties 
as epistemic uncertainties and aleatory uncertainties (i.e., variabilities). For the VS 
profiles, EPRI (2013) suggested adopting multiple profiles or base cases to account 
for the epistemic uncertainty. Typically, three base cases are suggested. On the 
contrary, randomization about the base cases should be implemented to account for 
the variability in VS over the scale of the footprint of a structure, which is treated as 
an aleatory uncertainty. 

An interesting background on the IQM of uncertainties is initially provided and 
reported here to recall a few central concepts also discussed in Chapter 2. EPRI 
(2013) stated, in B2.1: 
“There are two different types of uncertainty in the development of site-specific 
amplification functions. The first type of uncertainty is epistemic or lack of 
knowledge uncertainty. This represents the uncertainty in the development of the 
base-case models for site profile, dynamic properties, and seismological 
parameters. For well-characterized sites with abundant high-quality data this 
uncertainty would be reduced, possibly eliminating the need to vary some of the site 
parameters such as the site profile. This epistemic uncertainty would increase with 
decreasing confidence in the available data and information. This uncertainty is 
evaluated through the development of alternative base-case models. The approach 
applied for the development of alternative base-case models (epistemic uncertainty) 
is discussed in more detail in the following sections.  
Secondly, at any given site, at the spatial dimensions of typical nuclear facilities 
(100-200 m) there is expected to be some variability in important site response 
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parameters such as shear wave velocities, nonlinear dynamic material properties 
at any depth across the footprint of the facility, and the overall thickness of soil/soft 
rock above firm rock site conditions. It is important to attempt to capture this 
uncertainty in the final estimates. This is treated as an aleatory (randomness) type 
of variability. Current practice represents this variability by developing a candidate 
shear wave velocity profile, depth and overall thickness of soil/soft rock and 
associated nonlinear dynamic material properties (shear modulus reduction and 
damping curves). This is referred to as a “base case” model. Subsequently, 

potential variations in shear wave velocity and layer thickness are represented by 
correlated random perturbations to the base-case values. This is frequently referred 
to as a randomization process. A sufficient number of realizations are used to 
develop stable statistical estimates (log median and log standard deviation) of the 
amplification functions”. 

It is essential to remark two points of the previous definitions. First, the 
identification and quantification of epistemic uncertainties is test- and site-
dependent. Previous sections showed for VS profiles (and in the previous Chapter 
for the other parameters/approaches in GRAs) that each type of seismic test is 
associated with a specific type and amount of EUs and AVs (Stewart et al. 2014a). 
Moreover, also the site conditions contribute to the final evaluation of the EUs 
involved in the process. Indeed, the IQM method should be rigorously applied for 
the specific characteristics of the site under analysis. 

Secondly, EPRI (2013) explicitly considers the dimension of the structure (i.e., 
in this case, the nuclear power plant) to be designed (see the introduction of Chapter 
3). The quantification of the aleatory variabilities in site response studies should 
account for the scale of the problem. The adopted models and their parameters 
should be designed and evaluated for the specific application. The use of generic 
models and parameters obtained for a broad class of site conditions should be firmly 
avoided.  

4.3.1    Alternative (upper-range and lower-range) models 

The generation of alternative base-case models is the proposed method to 
manage (i.e., treat) EUs in VS profiles. It is also known as upper- and lower-range 
method (Griffiths et al. 2016b, Teague & Cox 2016, Teague et al. 2018, Passeri et 
al. 2019). The specific methodology to develop the alternative cases depends on the 
amount and type of information available at a given site. Conceptually in this 
context, for poorly characterized sites, multiple cases should be developed with 
broad ranges of epistemic uncertainty applied in the development of the parameters 
of the alternative cases. For sites that have more complete site characterization 
information available, smaller epistemic uncertainty factors can be employed in the 
development of alternative cases, as discussed in the previous section. Hence, the 
quantified uncertainty depends on the amount of information available along with 
how well the information is correlated with shear wave velocity. The section of the 
EPRI guidelines is here entirely reported and commented for completeness.  
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The first case regards conditions where geophysical information such as very 
limited VS data exist and: 
“[…] the estimate for uncertainty in shear wave velocity is to be taken as: 
 

𝜎ln (VS) = 0.35 
 
This value is similar to a Coefficient of Variation (COV) of 0.25, which is consistent 
with Toro (1997) for observed spatial variability over a structural footprint of 
several hundred meters. The profile epistemic uncertainty factor of 0.35 is to be 
applied throughout the profile and is based on the estimates of epistemic 
uncertainty in VS,30 developed for stiff profiles. The logarithmic factor assumes 
shear wave velocities are lognormally distributed and was originally developed to 
characterize the epistemic uncertainty in measured VS,30 at ground motion 
recording sites where measurements were taken within 300 m from the actual site. 
The uncertainty accommodates spatial variability over maximum distances of 300 
m, and is adopted here as a reasonable and realistic uncertainty assessment 
reflecting a combination of: (1) few velocity measurements over varying depth 
ranges, and (2) the spatial variability associated with observed velocities. The 
application of the uncertainty estimate over the entire profile that is based largely 
on VS,30  implicitly assumes perfect correlation that is independent of depth. While 
velocities are undoubtedly correlated with depth beyond 30 m, which forms the 
basis for the use of VS,30 as an indicator of relative site amplification over a wide 
frequency range, clearly the correlation is neither perfect nor remains high over 
unlimited depths. More direct support for the assumption of a 𝜎ln (VS) of 0.35 comes 
from the measured range in (VS,30) conditional on proxy inferences. For the four 
currently employed (VS,30) proxies: surficial geology Geomatrix site category, 
topographic slope, and terrain, the overall within class or category uncertainty is 
about 0.35. 
This uncertainty reflects the variability of measured (VS,30) about the predicted 
value and is relatively constant across proxies. The proxy uncertainty of about 0.35 
is a direct measure of the epistemic uncertainty of the predicted value or estimate 
and supports the adoption of 0.35 to quantify the velocity uncertainty for cases with 
few or absent direct measurements. For the application to site characterization the 
𝜎ln (VS) of 0.35 has been extended to the entire profile.”  
 

The second situation described in EPRI (2013) regards sites where velocity 
estimations are particularly sparse (e.g., based on inference from 
geotechnical/geologic information rather than geophysical measurements). Indeed, 
EPRI considers methods for the estimation of the interval VS profile based on 
geotechnical/geologic inference rather than geophysical tests. This dissertation and 
Stewart et al. (2014a) firmly discouraged the determination of the small strain 
stiffness using other tests and/or geological assumptions. This observation is 
dramatically crucial for critical facilities such as nuclear power plants. In these 
cases, EPRI (2013) writes: 
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“[…] a conservative estimate of the uncertainty associated with the template 
velocity is to be taken as: 

𝜎ln (VS) = 0.5 
 

The third case described in EPRI (2013) regards sites where multiple, detailed 
VS profiles are available and: 

 
“[…] the level of uncertainty may be significantly reduced, depending on the 
number, depth ranges, and vintage (quality) of the surveys. For sites with an 
intermediate level of information available, such as a single shear wave velocity 
profile of high-quality or shear wave velocities inferred from measured 
compressional-wave velocities 𝜎ln (VS) may be reduced by a factor of two over the 
better constrained portions of the profile. A specific factor of two is taken to provide 
consistency across the sites.” 
 

The last case described in EPRI (2013) regards well-characterized sites with 
multiple measurements and: 

 
“[…] the epistemic uncertainty may be further reduced. In all cases of reduced σ 
the range in base-case profiles reflecting epistemic uncertainty in shear wave 
velocity must represent a realistic expression of the existing information at the site 
as well as possible ranges in velocities for the materials considered. For all sites 
considered, the shear wave velocities developed for the upper- and lower-range 
base-cases must reflect realistic values for the respective geologic conditions at the 
site. The bases for these conclusions should be discussed in the report.” 
 

The sections above deserve few comments and observations. First, there is a 
typo when calculating the Coefficient Of Variation (i.e., the ratio of the mean and 
the standard deviation, COV) from the 𝜎ln (VS) = 0.35. Indeed, the corresponding 
relationship between the coefficient of variation and the logarithmic standard 
deviation is 

𝐶𝑂𝑉 = √𝑒𝜎ln
2
− 1 (Eq. 4.24) 

 
If we introduce 𝜎ln (VS) = 0.35, the corresponding 𝐶𝑂𝑉 = 0.36 and not 0.25. 

(i.e., the logarithmic standard deviation and the coefficient of variation are very 
close for small values, as illustrated in Figure 4.53). This typo is misleading because 
the reader cannot understand which is the correct instruction (i.e.,  𝜎ln (VS) = 0.35 
or  𝜎ln (VS) = 0.25) 
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Figure 4.53. Mathematical relationship between the logarithmic standard 
deviation and the coefficient of variation. 

The second observation regards contamination between the epistemic 
uncertainties and the aleatory variabilities in the report. EPRI 2013 states that the 
value of 𝜎ln (VS) = 0.35 is compatible with the observations made by Toro (1997) 
about the spatial variabilities for a footprint of several hundred meters. Then, they 
say that the uncertainties accommodate spatial variability over a maximum distance 
of 300 m, as applied for ground motion recording sites where measurements were 
taken within 300 meters. This comparison, however, appears misleading. The 
epistemic uncertainty does not reflect a spatial variability (i.e., AV) as it represents 
a different nature of uncertainties that can be reduced. Contrarily, the aleatory 
variabilities cannot be reduced with further and better quality investigation 
methods. 

A further observation concerns the proposed velocity correlation combined 
with a lognormal distribution of the interval velocities. The application of the VS 

shift (+/-) throughout the entire profile is mathematically explained as a perfect 
correlation (i.e., equal to one) between interval velocities of different layers. From 
a geophysical point of view, the management of epistemic uncertainties (i.e., 
measurements and/or model errors, see Table 4.3) cannot be implemented adopting 
a perfect correlation. In the previous sections, we discussed the test- and site-
specific nature of epistemic uncertainties. In light of the previous discussions, the 
assumption of a perfect correlation is an unacceptable simplification of the problem. 
On the other hand, the assumption of the lognormal distribution is reasonable and 
will also be adopted in the next sections of this dissertation.  
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4.3.2    Geostatistical randomization models 

In EPRI (2013), the management of the VS aleatory variabilities that are 
expected across a specific site (i.e., mainly depending on the scale of the problem) 
consists of a randomization process. The aleatory variability about each base-case 
set of VS profiles should be treated by randomizing (a sufficient number of 
realizations to produce stable estimates) S-wave interval velocities, layer 
thicknesses, and depth to reference rock (or reference half-space) through a 
particular class of stochastic models, termed geostatistical models2.  

In particular, in Section B-4.1, EPRI (2013) described the use of a particular 
geostatistical model: 
“The velocity randomization procedure makes use of random field models (Toro, 
1995) to generate VS profiles. These models assume that the shear wave velocity at 
any depth is lognormally distributed and correlated between adjacent layers. The 
layer thickness model also replicates the overall observed decrease in velocity 
fluctuations as depth increases. This realistic trend is accommodated through 
increasing layer thicknesses with increasing depth. The statistical parameters 
required for generation of the velocity profiles are the standard deviation of the 
natural log of the shear wave velocity (𝜎𝑙𝑛 (𝑉𝑆)(𝑧)) and the interlayer correlation 
(𝜌). For the footprint correlation model, the empirical 𝜎𝑙𝑛 (𝑉𝑆)(𝑧) is about 0.25 and 
decreases with depth to about 0.15 below about 15 m. To prevent unrealistic 
velocity realizations, a bound of ± 2𝜎𝑙𝑛 (𝑉𝑆)(𝑧) should be imposed throughout the 
profile. In addition, randomly generated velocity should be limited to 2.83 km/s. All 
generated velocity profiles should be compared to available site-specific data as a 
check to ensure that unrealistic velocity profiles are removed (and replaced) from 
the set of velocity profiles used to develop site response amplification functions. 
This process should be documented as part of the site response analysis.” 

The velocity randomization procedure described by EPRI (2013) refers to the 
geostatistical model developed by Toro (1995). In addition, in this case, the interval 
VS velocity is assumed as lognormally distributed, whereas a specific correlation 

                                                 
2 The theory of stochastic processes concerns the study of systems that evolve over time (but 

also more generally in space) according to probabilistic laws. Such systems or models describe 
complex phenomena of the real world that have the possibility of being random. Such phenomena 
are more frequent than we can believe and we meet all those times when the quantities we are 
interested in are not predictable with certainty. However, how these phenomena show a variability 
of possible outcomes that can be somehow explained or described, and then we can introduce the 
probabilistic model of the phenomenon. The term geostatistics refers to a branch of the more general 
spatial statistics that has had its first applications in the mining field and which owes its development 
mainly to the French scientist Matheron. This discipline was born with the aim of providing an 
estimator that allowed, starting from some sampled points, to reconstruct the complete spatial 
distribution of the concentration of precious metals within the studied field. This estimator had to 
take into account the double structured-random aspect that came out from the analysis of the data. 
Even though there was a specific erratic spatial variability in the metal concentrations, it was 
observed that by comparing samples performed in close points the precious metal contents were on 
average much more similar to when the samples compared were more distant. In light of this, the 
idea was simple enough: to find a way to use this continuity structure in making estimates in non-
sampled points. These concepts can be also applied to the VS profiles. In this case, however, the 
model accounts for a single (1D) spatial variable (i.e., the depth). 
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model (i.e., no perfect correlation) is introduced in the model. The model also 
consists of a statistical model (i.e., Poissonian) for the layer thicknesses that 
reproduces the typical increase of the thickness with depth. However, the model 
still implements the independent randomization of interval velocity and layer 
thicknesses. 

Indeed, the fundamental assumption of the model still regards the 
randomization of the interval S-wave velocity profile. In previous sections, we have 
already discussed the intrinsic limitations that are included in this schematic 
representation of the soil deposit. This dissertation will propose to modify this 
assumption and proceed to a new randomization “philosophy”. This new approach 
will be more consistent with the real physics of the problem. The main characteristic 
of the proposed model overcomes the interval velocity randomization, 
decomposing the problem into the primary random variables: length and time. 

The Toro model (1995) 

In 1995, Toro developed the first (and unique) geostatistical model applied to 
VS interval velocity profiles for the management of AVs. This model (hereafter 
called TM95) is partially described in Kottke & Rathje (2009), Rathje et al. (2010) 
and Li & Asimaki (2010) and represents a fundamental pioneering work. The 
original presentation of the TM95 is published in consulting reports that are not 
readily available using proprietary datasets that are now dated (Stewart et al. 
2014a).  

The main aim of the work by Toro (1995) was the definition of a probabilistic 
model for the variation of VS in soils and rocks, with the explicit purpose of 
calculating median amplification functions together with the uncertainties. In 
general, the model can also be used in the case of availability of measured profiles, 
but not in sufficient numbers for the definition of a specific model. Otherwise, it 
can be used in the case of total absence of repeated measures at the site, using the 
proposed sub-soil categories. Differently from work done for EPRI (1993) (Figure 
4.52), for the TM95 many more VS profiles were added to the database, allowing 
to regress a more refined model. Also, given the high number of profiles, the model 
parameters for different categories were calculated using two different 
classification methods (i.e., GeoMatrix and USGS, Figure 4.54). 
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Figure 4.54. Soil classification schemes adopted by Toro (1995) (after 
Toro (1995)). 

Toro (1995) used the PEA (Pacific Earthquake Analysis) database, which 
contained 745 VS profiles. After a selection procedure, only those that were 
measured in situ (i.e., 557) were used for the development of the TM95. These 
profiles are the result of an interpretation (no raw velocities), and that came from 
geotechnical investigation surveys after 1974 (i.e., when in situ test quality 
standards changed in the US). Then, 92 profiles were grouped into 11 classes, 
according to the distance (i.e., from a hundred meters to a few kilometers). Seven 
of these classes also presented precise information on the location of the profiles in 
order to evaluate the correlation of the horizontal structures of VS profiles. In 
addition to the distance clusters, VS profiles were cataloged with GeoMatrix (Chiou 
et al. 2008) or with USGS (i.e., VS,30-based). Of the 557, 541 have the USGS 
classification, while only 164 the GeoMatrix. Also, the categories are combined as 
A+B (rock or firm soil) and C+D (soft soil). An example of the interval velocity 
profiles used for the category USGS A+B is given in Figure 4.55. In particular, 
Figure 4.55a shows the entire dataset included in this class, whereas Figure 4.55b-
c show the intra-class mean and logarithmic standard deviations of the interval 
velocity profiles. 
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Figure 4.55. Interval velocity profiles included in the category USGS 
A+B. a) Interval velocity profiles, b) logarithmic standard deviation of the 

interval velocity profiles, and c) mean +/- 1 sigma profiles (after Toro (1995)). 

Toro (1995) proposed a list of the sites included in the database with 
information about the site name, latitude and longitude, classification, and profile 
depth. From a precise inspection of these tables, few observations can be done.  

First, the database does not show the method adopted for the estimation of the 
interval VS profile. The author calls “on field” measurements. However, there are 
sites where also empirical correlations with other geotechnical tests (i.e., CPTs) 
were likely used.  

Second, the database presents a substantial spatial variability between the sites 
(e.g., from California to Italy) and only 92 of 557 sites were grouped by distance in 
11 classes (even if only seven classes show a precise location of the profile). Hence, 
the quantification of the AVs includes information ranging between very different 
geological environments. Moreover, the subsequent classification combines a 
spatial variability related to an uncontrollable spatial scale. 

Third, the author classifies the profiles based on GeoMatrix or USGS systems. 
However, there is not clear evidence that the quantified AVs in the VS profiles 
depends on these classification schemes (i.e., the average stiffness of the deposit). 
Furthermore, the database shows profiles with very limited depths. The USGS 
classification appears for some very superficial profiles (e.g., a 15.30 m depth in 
class C). Indeed, some profiles do not reach 30 m, but for which there is a USGS 
classification (e.g., one of 4 m depth).  

The definition of the VS profiles database allowed Toro (1995) assuming that: 

- The distribution of the S-wave interval velocity is lognormal for each depth; 
- The logarithmic standard deviation is constant with depth; 
- If a profile presents an interval velocity of a layer higher than the average, 

then also the layer immediately below shows an interval velocity higher than 
the average. 
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The TM95 is then composed of three parts (Figure 4.56), which respect the 
observations above: 

1) A layering model that describes the thickness of each layer (or the position 
of the interfaces, in an equivalent way), or rather the density of interfaces in 
one meter, which is a function of depth (Figure 4.56a); 

2) The velocity model that describes the median interval velocity of each layer 
at its mid-depth (intra-layer) (Figure 4.56b); 

3) The correlation model of the interval velocities of a layer with respect to the 
other layers as the depth varies (inter-layer) (Figure 4.56c). 

The bedrock (i.e., half-space) is presented separately from the soil part. The 
depth of the bedrock is assumed uniformly distributed between a specified range, 
while its velocity is managed with its mean and standard deviation (always 
following a logarithmic distribution).  

 

Figure 4.56. Essential three parts of the TM95. a)  A layering model that 
describes the thickness of each layer (or the position of the interfaces, in an 
equivalent way), or rather the density of interfaces in one meter, which is a 
function of depth, b) the velocity model that describes the velocity of each 

layer at its mid-depth (intra-layer), and c) the correlation model of the 
velocities of a layer with respect to the other layers as the depth varies (inter-

layer). 

Layering model 

The first ingredient of the TM95 for the management of AVs in VS profiles is 
the layering model (Kottke & Rathje 2009) (Figure 4.56a). The initial idea comes 
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from the observation and the analysis of the collected data. Generally, interval 
velocity profiles have thinner layers at the surface, whereas they have a greater 
thickness at considerable depth. The choice among the various probabilistic 
distributions able to reproduce this natural/aleatory phenomenon fell on a 
Poissonian counting process with a depth-dependent rate (i.e., a non-homogeneous 
Poissonian counter process). 

An aleatory process 𝑁(𝑡), 𝑡 > 0 is called a counter process if 𝑁(𝑡) represents 
the total number of events that occurred within the instant 𝑡. A typical example of 
a counter process is the number of people who have entered a particular store at 
time 𝑡, and then 𝑁(𝑡), 𝑡 > 0 is a counter process in which an event corresponds 
when a person arrives at the store. If we say that an event occurs when a child is 
born, then 𝑁(𝑡), 𝑡 > 0 is a counter process where 𝑁(𝑡) is the total number of child 
who were born until the instant 𝑡. From the definition, a counter process 𝑁(𝑡) 
should satisfy the following conditions: 

- 𝑁(𝑡) > 0; 
- 𝑁(𝑡) is an integer value; 
- If 𝑠 < 𝑡 then 𝑁 (𝑠) <  𝑁 (𝑡); 
- For 𝑠 < 𝑡, 𝑁 (𝑡)  − 𝑁 (𝑠) is equal to the number of events that have 

occurred in the interval (𝑠;  𝑡]. 

The realization of a counter process is a non-decreasing monotone function 
constant at times with jumps of unit width in correspondence with the arrival 
times 𝑡1, 𝑡2, … 𝑡𝑛.  

A counter process has independent (i.e., is called “Markovian”) increments if 
the number of events occurs in disjoint time intervals are independent. This means 
for example that the number of valid events occurring within the instant 10 
(i.e., 𝑁(10)) must be independent of the number of events found between the 
instants 10 and 15, that is 𝑁 (15)  − 𝑁 (10). 

A counter process has stationary (i.e., is called “homogeneous”) increments if 
the number of events found in any time interval depends only on the duration 
interval. In other words, if the number of events in the interval (𝑡1 + 𝑠, 𝑡2 + 𝑠), that 
is 𝑁 (𝑡2 + 𝑠) −  𝑁 (𝑡1 + 𝑠), has the same distribution of the number of events 
found in the interval (𝑡1, 𝑡2), 𝑁 (𝑡2) −  𝑁 (𝑡1) for each 𝑡1 < 𝑡2 and 𝑠 >  0. 

One of the most important counter processes in time is the homogeneous 
Poisson process that can be defined as follows, for 𝑁(𝑡), 𝑡 > 0 and constant time-
rate (or intensity) 𝜆: 

- 𝑁(0) = 0; 
- The process has independent increments; 
- The number of events in any duration interval 𝑡 is a distribution of Poisson 

with average 𝜆𝑡 for every 𝑠; 𝑡 > 0, that is 

𝑃[𝑁(𝑡 + 𝑠) − 𝑁(𝑠) = 𝑛] =
𝑒−𝜆𝑡(𝜆𝑡)

𝑛

𝑛!
 𝑓𝑜𝑟 𝑛 = 0,1,2… (Eq. 4.25) 
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Note that from the third condition follows that a homogeneous Poisson process 
has stationary increments and that 𝐸 [𝑁(𝑡)]  = 𝜆𝑡, which explains why it is called 
time-rate of the process. Indeed, a Poisson model is defined homogeneous (i.e., 
stationary) if it has constant time-rate, while not homogeneous (i.e., non-stationary) 
when the time-rate of the process is a dependent variable.  

The definitions proposed were extended from the variable time to the variable 
space, adopting a non-homogeneous formulation. In the TM95, the Poisson model 
is applied to the distribution of the layer interfaces with depth. The average 
thickness of the layers is dependent on the depth (i.e., the count of interfaces with 
depth follows 𝜆(𝑧), and the process in non-stationary). However, the thickness of 
the layer 𝑖 remains probabilistically independent of the thickness of the 𝑖 − 1 (for 
the definition of a Poissonian process, it is still Markovian).  

Generally, the distribution within each window for the thickness of the layers 
ℎ is exponential, for which the relative Probability Density Function (PDF) is 
written as: 

𝑓(ℎ) = 𝜆𝑒−𝜆ℎ for ℎ > 0 (Eq. 4.26) 
 

whereas the Cumulative Density Function (CDF) can be written as: 
 

𝐹(ℎ) = 1 − 𝑒−𝜆ℎ for ℎ > 0 (Eq. 4.27) 
 
From the equations above, it is possible to generate random distributions of 

thicknesses ℎ with a constant spatial-rate 𝜆 (e.g., in case of the homogeneous 
process): 

 

ℎ =
ln[1 − F(h)]

−𝜆
 for 0 < 𝐹(ℎ) < 1 (Eq. 4.28) 

 
However, Toro (1995) implemented a non-homogeneous Poisson model. He 

chose a modified power-law to characterize the dependence of the layer boundaries 
on the depth: 

𝑓(ℎ, 𝑧) = 𝑒−𝜆(𝑧)ℎ for ℎ > 0 (Eq. 4.29) 
 

𝜆(𝑧) = 𝑐3(𝑧 + 𝑐1)
−𝑐2 (Eq. 4.30) 

 
𝜆(𝑧) = 1.98(𝑧 + 10.89)−0.89 (Eq. 4.31) 

 
𝑓(ℎ, 𝑧) = 𝑒−[1.98(𝑧+10.89)

−0.89]ℎ for ℎ > 0 (Eq. 4.32) 
 
The parameters 𝑐1, 𝑐2, and 𝑐3 are obtained from the database. Toro (1995) 

showed that the experimental data is quite in agreement with the model predictions. 
He plotted (Figure 4.57) the experimental transition rate as the number of interfaces 
10 m above and 10 m below a certain depth, divided by the number of profiles (e.g., 
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at 50 m it is calculated as the number of boundaries between 40 and 60 m divided 
by the number of database profiles that reach a depth greater than 50 m).  

 

Figure 4.57. Comparison of the experimental transition rate obtained 
from the database and the theoretical transition rate obtained with the 

modified power law and the model parameters proposed (after Toro (1995)). 

Velocity model (intra-layer and inter/layer) 

The initial assumption of the TM95 regards the independence between the 
random variable “thickness” and the random variable “interval velocity”. Indeed, 
once the model for the layer thicknesses was validated, Toro (1995) suggested 
separate management of the interval VS velocities (i.e., intra-layer and inter-layer, 
Figure 4.56b-c).  

In particular, the intra-layer model describes how the median velocities of each 
layer are distributed with respect to the median profile at depth 𝑧 (i.e., equal to the 
depth of the layer’s midpoint). Then, the interval velocity is assumed as 
lognormally distributed around the median, and the uncertainties are computed as 
a logarithmic standard deviation. 

The inter-layer model represents the stochastic process that should reproduce 
the correlation of the interval velocity between consequent layers (i.e., the 
relationship between the random variable normalized as a function of depth). Two 
approaches were usually adopted prior to the introduction of the Toro model. The 
first allowed scaling and multiplying the velocity at each depth by a random factor 
or adding a quantity to the average velocity for each depth (McGuire et al. 1988, 
Toro et al. 1992, EPRI 2013). The second assumed, on the contrary, independence 
(i.e., that the velocity of a layer has no dependence on the layer above) (Constantine 
et al. 1991, Field and Jacob 1993). The TM95, instead, is in the middle of these two 
approaches, with a first-order autoregressive model.  

Therefore, within the velocity model, one should take into account the discrete 
statistical distribution of the interval velocities of the individual layer (intra-layer) 
and the relationship between the velocity of a layer and that of the one above (inter-
layer). These models are entirely independent in the TM95. 

The intra-layer velocity model is based on a standard-normal discrete random 
variable 𝑆𝑖 calculated as 
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𝑆𝑖 =
ln(Vi) − ln[ Vmedian(i)]

𝜎ln(V(i))
(Eq. 4.33) 

 
where 𝑉𝑖 is the interval velocity of the layer 𝑖 referred to the depth of its midpoint, 
𝑉𝑚𝑒𝑑𝑖𝑎𝑛 is the velocity of the median profile at the same depth, and 𝜎ln(V(i)) is the 
logarithmic standard deviation at the same depth. Toro (1995) showed that 𝑆𝑖 is 
approximable from a normal Gaussian distribution, which is equivalent to saying 
that 𝑉𝑖 is approximable with a log-normal distribution, at a fixed depth 𝑧. In 
particular, Li & Asimaki (2010) used the theories described in Benjamin & Cornell 
(2014) to confirm the normal distribution, through the 10% Kolmogorov-Smirnof 
boundaries shown in Figure 4.58. 

 

Figure 4.58. Lognormal probability plot evaluated using the ensemble of 
data from the EPRI shear wave velocity database. Smooth curves correspond 

to the 10% Kolmogorov-Smirnov bounds of the probability distribution. A 
lognormal distribution (after Li and Assimaki (2010)). 

The inter-layer velocity model is based on a first-order autoregressive model. 
An autoregressive (AR) correlation is a mathematical model that predicts the value 
of a given physical quantity (generally a function of time) and place it in relation to 
the previous values. This means that the prediction of a given phenomenon over 
time (in our case, in space) is somehow influenced by what happened earlier (in our 
case, above). The model presented by Toro to evaluate layers’ correlation is even 
more simplified because he used a first-order autoregressive correlation. This 
means that, unlike higher orders (2, 3, ... n), the prediction of the value of an event 
over time (i.e., space) is only a function of the previous (i.e., above) value. The first-
order autoregressive model is used to correlate the interval velocity of one layer 
with the one above. As seen for the non-homogeneous Poisson model, the first-
order autoregressive model is also a Markovian stochastic process. Indeed, it can 
be seen that the value at a certain depth is only a function of the previous one.  

A particular case regards the first value, for 𝑖 =  1 
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𝑆1 = 𝜀1 
Then, for 𝑖 = 2,3…𝑛 

𝑆𝑖 = 𝜌𝑆𝑖−1 +√1 − 𝜌2𝜀𝑖 
 

where 𝑆𝑖 is the standard-normal discrete random variable described above for the 
layer 𝑖, 𝜌 is the correlation coefficient (i.e., the coefficient of auto-correlation) 
referred to the depth of the 𝑆𝑖 midpoint, 𝑆𝑖−1 is the standard-normal discrete random 
variable for the layer 𝑖 − 1, and 𝜀𝑖 is a random variable with zero mean and unit 
standard deviation. The equation above means that the 𝑆𝑖 of the layer 𝑖 
(corresponding to a depth equal to the depth of the layer midpoint) is a normal 
random variable with mean equal to 𝜌𝑆𝑖−1 and standard deviation equal to √1 − 𝜌2.  

For example, if we assume a coefficient of the auto-correlation 𝜌 constant with 
depth, it is possible to write for the first layer (i.e., 𝑖 = 1) 

 

𝑆1 =
ln(V1) − ln[ Vmedian(1)]

𝜎ln(V(1))
= normrnd(0,1) 

𝑦𝑖𝑒𝑙𝑑𝑠
→    ln(V1) = ln[Vmedian(1)] + 𝜎ln(V(1))normrnd(0,1) 

 
where the normrnd can be easily implemented in MATLAB for extraction of a 
random value following a normal distribution with mean zero and unit standard 
deviation.  

Then, for the following layer (i.e., 𝑖 = 2) 
 

𝑆2 =
ln(V2) − ln[ Vmedian(2)]

𝜎ln(V(2))
= 𝜌𝑆1 +√1 − 𝜌2𝜀2 

 
= normrnd(𝜌𝑆𝑛−1) + √1 − 𝜌2𝜀2 

 
= normrnd(normrnd(𝜌𝑆𝑛−1), √1 − 𝜌2) 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    ln(V2) = ln[ Vmedian(2)] + 𝜎ln(𝑉(2))normrnd(𝜌normrnd(0,1)),√1 − 𝜌2) 

 
The same can be written for the last layer of the soil column (i.e., 𝑖 = 𝑛) 
 

𝑆𝑛 =
ln(Vn) − ln[ Vmedian(n)]

𝜎ln(V(n))
= 𝜌𝑆𝑛−1 +√1 − 𝜌2𝜀𝑛 

 
ln(Vn) = ln[Vmedian(n)] + 𝑆𝑛𝜎ln(V(n)) 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    ln(Vn) = ln[Vmedian(n)] + 𝜎ln(V(n)) {normrnd(𝜌𝑆𝑛−1),√1 − 𝜌2)} 
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Toro (1995) proposed a variable correlation coefficient with depth. In 
particular, he found that the correlation is higher for considerable depths and thin 
layers. The final formulation is, therefore, a function of depth 𝑧 and distance 
between the mid-points 𝑡 (i.e., different from the layers thickness ℎ) as: 

 
𝜌(𝑧, 𝑡) = (1 − 𝜌𝑧(𝑧))𝜌𝑡(𝑡) + 𝜌𝑧(𝑧) (Eq. 4.34) 

 
where  

𝜌𝑧(𝑧) = {
𝜌200 [

𝑧 + 𝑧0
200 + 𝑧0

]
𝑏

for 𝑧 < 200 𝑚

𝜌200 for 𝑧 > 200 𝑚

(Eq. 4.35) 

 

𝜌𝑡(𝑡) = 𝜌0𝑒
[−
𝑡
Δ
] (Eq. 4.36) 

 
The following Figure 4.59a reports the values of the various parameters of the 

model calculated by Toro (1995) and an example of USGS category A+B (Figure 
4.59b). An observation that can be made about the obtained values of 𝜌200 that are 
close to the unit, which would represent a perfect correlation for the layers at depths 
greater than 200 m. However, the assumption of full correlation is not entirely 
supported by data, since the underlying data at large depths was scarce. As already 
mentioned, in fact, the correlation increases with depth, but not so much as to be 
equal to unity. 

 

Figure 4.59. Results for the inter-layer correlation model proposed in the 
TM95. a) Table with the parameters classified for each category, and b) 
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example of the correlation factors with depth for USGS A+B (after Toro 
(1995)). 

4.3.3   Literature overview 

This section illustrates the main examples proposed in the literature where EUs 
and/or AVs in shear wave velocity models were identified, quantified, and 
managed. This part completes the discussion in Chapter 3 and Table 3.2, where the 
shear wave velocity models were addressed in depth.  

Section 3.3.1 and Table 3.2 reported examples of IQM of EUs and AVs for 
studies that do not discuss in depth the geophysical aspect of the problem. In those 
studies, the VS profile was only an experimental information to be used in GRAs 
(i.e., from the numerical modeler point of view). The examples listed in Table 3.2 
with the VS blackened box represent a fundamental basis for the reader who wants 
to introduce himself to this challenging topic. However, the present Chapter allows 
the reader to understand better geophysical concepts that were not clarified before, 
and that can now push the discussion to a further level. Thus, this section aims at 
summarizing further literature between geotechnics and geophysics and that should 
be added to that list in Table 3.2.  

The first two pioneer examples are reported by Boore & Brown (1998) and 
Brown et al. (2002). As discussed, these works also showed an inter-method (i.e., 
invasive/surface wave) comparison for VS profiles. The authors performed these 
comparisons also by looking at the different amplifications obtained by a simplified 
approach (i.e., simplified surface-to-bedrock TTFs). Although they did not perform 
a complete GRA, they focused the attention on the differences in the small-strain 
amplifications. Indeed, these differences are entirely depending on the assumed 
interval velocity profile and directly compare the different dynamic responses. The 
results obtained by Boore & Brown (1998) (six sites) are reported in  Figure 4.60a, 
whereas the results obtained by Brown et al. (2002) (three sites) are in Figure 4.60b. 
In both cases, the vertical axis reports the ratio between the TTF of the surface wave 
test profiles and the invasive test profile. These plots showed a systematic 
overestimation of the motion obtained from the surface wave models, particularly 
for high frequencies. It is interesting to remark that these ratios put the invasive test 
as a target “true” result for the comparison (i.e., the denominator in the ratio). 

Nowadays, it is accepted that also invasive tests are subjected to a nonnegligible 
amount of EUs and AVs, as discussed in the previous sections.  
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Figure 4.60. Inter-method comparison of the theoretical transfer function 
ratios (i.e., surface wave over invasive) proposed by a) Boore and Brown 

(1998) for six sites and b) Brown et al. (2002) for three sites (after Boore and 
Brown (1998) and Brown et al. (2002)). 

Foti et al. (2009) suggested that the influence of EUs and AVs in surface wave 
testing methods (in particular the solution non-uniqueness) could be evaluated on 
the results of complete GRAs (i.e., not only in the small-strain range with TTFs). 
This idea is supported by the fact that Rayleigh waves propagate in the same way 
for a given class of equivalent profiles, then the dynamic response of the deposit 
should be similarly equivalent.  

The authors adopted the improved Monte Carlo approach proposed in Socco & 
Boiero (2008) (i.e., the scale property and the one-tail statistical test) for the solution 
of the inverse problem. At the end of each inversion, this procedure confirms the 
equivalence of the obtained profiles and provides a framework of all equivalently 
"good" models. 

Then, the authors showed on a synthetic dispersion curve (i.e., a real one 
perturbed with a Gaussian noise) that the propagation of uncertainties after EL or 
EQL GRAs is negligible. Six equivalent profiles were found, and each of them 
could have been selected with the same probability from a deterministic inversion. 
Comparisons are made on EL analyses with a single input motion, which is then 
scaled to three different PGAs for EQL analyses. Finally, a set of seven 
spectrocompatible input motions is selected for the site. The previous result is 
confirmed, showing that the geophysical equivalence after the inversion 
corresponds to an equivalence of the dynamic response of the profiles. 

Two case studies are also described in Foti et al. (2009): Torre Pellice and La 
Salle. Also, in this case, spectrocompatible inputs were selected for EQL analyses. 
Figure 4.61a shows the equivalent interval velocity profiles for Torre Pellice, 
whereas Figure 4.61b shows the satisfactory EDC-TTC curves match. Figure 4.61c 
shows the excellent comparison regarding TTFs (i.e., small-strain dynamic 
behavior) and 4.61d shows the results as surface response spectra. 
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However, the results of Foti et al. (2009) were in contrast with evidence in 
Boaga et al. (2011), Roy et al. (2013), and Jakka et al. (2014).  

For Boaga et al. (2011), Foti et al. (2009) limited the study to a specific type of 
VS profile (i.e., very shallow bedrock and high impedance contrast). Thus, the 
authors generated five VS synthetic interval velocity profiles with different 
characteristics from the deepest bedrock (minor impedance contrast) to the 
shallowest bedrock (significant impedance contrast). Their results showed a vast 
range of dynamic responses from profiles associated with the same EDC. However, 
Socco et al. (2012) highlighted two main concerns for Boaga et al. (2011) work. 
The first regarded the method used to estimate the solution non-uniqueness and the 
empirical formulation adopted for the standard deviations of the Rayleigh phase 
velocity. The second concern regarded the procedure used to apply the input 
motions in the GRAs. 

Similarly to Boaga et al. (2011), Roy et al. (2013) and Jakka et al. (2014) 
proposed results in disagreement with Foti et al. (2009). However, the analyses by 
Jakka et al. (2014) were based on a very controversial inversion method. They used 
a neighborhood algorithm, which requires the acceptable misfit values as input for 
the inversion. They introduced a limit obtained from the experimental range +/- one 
standard deviation for each of the two investigated sites. In practice, they processed 
the various shots, found the EDCs, and calculated the +/- one standard deviation 
curves. These curves coincided with the empirical ones postulated by Boaga et al. 
(2011) and primarily opposed by Socco et al. (2012) at low frequencies. Once this 
process was completed, they calculated the misfit values relative to the two limit 
curves and proceeded to the inversion. In this way, for example, a TDC similar to 
these two limits could have been accepted. It is then inevitable that the variability 
propagated on GRA results is enormous, both as amplification factors (i.e., TTFs) 
and response spectra. These significant differences are due to the profiles selected 
for the subsequent EQL analyses that did not reflect the fundamental information 
contained in the EDC. In other words, the selected profiles did not trace an 
experimental site signature. Further discussions about this paper are detailed in 
Comina & Foti (2015) and Jakka et al. (2015), whereas Pettiti et al. (2015) provided 
comments on Roy et al. (2013). 
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Figure 4.61. a) Equivalent interval velocity profiles for Torre Pellice, b) 
EDC-TTC comparison, c) comparison regarding TTF (i.e., small-strain 

dynamic behavior), and d) results as EQL surface response spectra (after 
Foti et al. (2009)). 

Teague & Cox (2016) show a further example of IQM of EUs and AVs in VS 
profiles propagated on GRAs. They studied the site 4 of the InterPACIFIC project. 
The dispersion curve of this site was semi-synthetic and corresponded to an 
unknown true profile for the participants to the blind test. 

Also, there was also an H/V curve representing the particular site under 
investigation. This paper took into consideration EL and EQL analyses on different 
VS profiles obtained with different approaches. In particular, the authors used 350 
profiles obtained by an inversion of the EDC with seven different layering ratios 
(Cox & Teague 2016) (i.e., 50*7) (Figure 4.62). Generally, low layering ratios lead 
to a large number of thinner layers, while high layering ratios lead to less and thicker 
layers. All the TDCs seemed to fit the site signature EDC very well, as shown in 
Figure 4.62. However, the misfit values (in the brackets) gave an initial idea of the 
best layering model (i.e., best initial parametrization).  

The authors also analyzed the profiles obtained from alternative (upper-range 
and lower-range) models. They applied a +/- 20% shift to the interval velocity 
models. This operation is partially in contrast with the EPRI (2013) guidelines and 
the lognormal distribution of the VS profiles. However, the scaling operation (i.e., 
perfect inter-layer correlation) was applied to generate the upper- and lower-range 
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profiles. The TDCs of these profiles already showed a systematic inconsistency 
with the site signature EDC and are presented in green in Figure 4.62. 

In addition to these 352 profiles, other 50+50 profiles were generated with the 
Toro model. The first 50 were obtained with site-specific parameters, while the 
second 50 profiles were obtained taking the standard parameters suggested by Toro 
for the specific USGS class. They calculated the TDC for each of the profiles 
generated with the Toro model, in order to compare them to the site signature 
represented by the EDC (Figure 4.63). The results of these profiles gave a 
preliminary idea according to the obtained misfit. In light of the experimental data, 
these results would have never been accepted. 

 

Figure 4.62. Fifty theoretical dispersion curves and 50 corresponding VS 
profiles, respectively, obtained from surface wave inversions based on 

different layering ratios (from a) to l)). The numbers in brackets represent 
dispersion misfit values. Also shown are the theoretical dispersion curves and 

the VS profiles corresponding to +/- 20% (after Teague and Cox (2016)). 
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Figure 4.63. Fifty VS profiles generated using the Toro model and their 
corresponding theoretical dispersion curve with a) and b) site-specific 

parameters and c), and d) default/recommended parameters (after Teague 
and Cox (2016)). 

After a further comparison of the TTFs of the 452 profiles with the H/V curve, 
Teague & Cox (2016) proceeded to select eight input motions that were scaled to 
0.05 g and 0.3 g to conduct EQL GRAs. At this point, they compared the medians 
of the eight inputs for each profile with the results of EQL GRAs coming from the 
true profile that was finally unveiled. They then proceeded to a new median to find 
the unique response spectrum for each of the 11 sets of profiles (i.e., seven from the 
inversion, two +/- 20%, and two from the Toro model) and compared them with the 
result of the true profile for 0.3 g. The results obtained from the high-intensity input 
motions are reported in Figure 4.64. 

This work concludes that the profiles that come out of the inversions, although 
they may be visually different, provide accurate and representative results, in 
accordance with Foti et al. (2009). Both the +/- 20% and the Toro statistical profiles 
do not present adherence to the site signature EDC, which leads to inaccurate results 
of the corresponding GRAs. In general, the analyst should pay attention to the 
signatures of the deposit, whether they are a dispersion, ellipticity curves, and/or 
empirical transfer functions (even if H/V curves and ETF provide approximately 
the same information). Indeed, the H/V curves and the ETFs can be used as a 
fundamental independent a-priori information for the inversion process. 
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Figure 4.64. Median response spectra obtained from high-intensity EQL 
GRAs using a suite of 8 input motions scaled to a PGA of 0.3 g and VS from 

inversion with different layering ratios (from a) to f)) and those from the 
Toro model with g) site-specific parameters, and h) default parameters. The 

response spectra for the solution +/- 20% are shown in all sub-plots for 
comparison (after Teague and Cox (2016)). 

Two companion papers by Griffiths et al. (2016a) and Griffiths et al. (2016b) 
investigated in depth the influence of EUs and AVs in VS profiles on GRAs. The 
authors described the results of the University of Texas at Austin team during the 
InterPACIFIC project. Differently from Teague and Cox (2016), in this case, two 
real sites (i.e., Mirandola and Grenoble) of the blind test were studied.  

The first paper is preparatory to the second contribute. It is mainly descriptive 
of the activities and preliminary analyses that were conducted for Mirandola and 
Grenoble during the InterPACIFIC project (Garofalo et al. 2016a). Primarily, the 
authors generated three classes of VS profiles (i.e., profiles from the inversion, 
statistical profiles, and randomized profiles). In Mirandola, Griffiths et al. (2016a) 
inverted both Rayleigh and Love EDCs, finding 1000 profiles that matched the 
EDC very well and were very similar to the VS profile obtained with an independent 
CH test. Then, they randomly selected 50 of these VS interval velocity profiles to 
proceed with the GRAs.  
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The second class of profiles is obtained as an alternative (upper-range and 
lower-range) models and calculating other statistical profiles. They generated six 
profiles: two +/- 20%, the ones corresponding to the 5th and 95th percentile, the 
median of the 50 inverted profiles discussed above and the one with the lowest 
misfit. This class of profiles was created to manage the epistemic uncertainties 
(even if the +/- 20% do not respect the lognormal distribution, as also discussed for 
Teague and Cox (2016)). 

The last 50 profiles are obtained from the randomization method proposed by 
Toro with site-specific parameters to manage the aleatory variabilities. 

Griffiths et al. (2016a) calculated the TDCs for each of the 106 profiles and 
compared them to the EDC (Figure 4.65). The results from the +/- 20% and Toro 
are almost entirely out of the experimental uncertainty, as demonstrated by Teague 
and Cox (2016). Indeed, these profiles do not trace the dispersion signature of the 
deposit.  

 
Figure 4.65. Profiles generated for the GRAs at Mirandola. Experimental 

dispersion data for Mirandola and the theoretical dispersion curves from the 
50 inversions VS profiles, the minimum misfit, the 5th and 95th percentile and 

the +/- 20% for a) Rayleigh wave and b) Love wave data (within square 
brackets the misfit values). Experimental dispersion data for Mirandola and 
the theoretical dispersion curves from the 50 inversions VS profiles, and the 

50 Toro-generated profiles for c) Rayleigh wave and d) Love wave data 
(within square brackets the misfit values) (after Griffiths et al. (2016a)). 

In Griffiths et al. (2016b), the authors continued the work of the previous paper, 
adding the EL and EQL GRAs. They used a suite of eight input motions scaled to 
0.5 g. In this case, there was not a true response to be used as a reference, as in 
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Teague and Cox (2016), and then they used the median response obtained from the 
50 inversion profiles as a target. Griffiths et al. (2016b) calculated the response 
spectra and TTFs from EL analyses and initially found an enormous variability 
from the profiles of the Toro generation. Also, EQL analyses were performed, and 
results are presented in Figure 4.66 for Mirandola. 

 

Figure 4.66. a-c) Equivalent linear response spectra and d-f) amplification 
factors for each VS profile at Mirandola (after Griffiths et al. (2016b)). 

Griffiths et al. (2016a) and Griffiths et al. (2016b) concluded that the results of 
GRAs obtained from the inverted profiles have undoubtedly lower variability than 
the other classes of profiles (i.e., statistical and Toro-generated). Statistically 
generated profiles are always outliers both for the small-strain and nonlinear 
response. The profiles obtained from the Toro model provided quite conflicting and 
variable results. Further results in Griffiths et al. (2016b) showed that, if a rejection 
criterion is applied to the Toro model generation, results that are more consistent 
can be obtained. However, this modification of the model does not solve the more 
significant problems seen in Figure 4.66 and represents only a partial solution.  

The last example proposed in this literature review is a compendium of many 
aspects discussed in this Chapter. In particular, the authors used a combination of 
EDCs, H/V curves, and ETF as site signatures to be traced by the adopted velocity 
models. 

Teague et al. (2018) investigated the measured vs. predicted ground response 
at the Garner Valley Downhole Array considering shear wave velocity uncertainty 
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from invasive and surface wave tests. The site under analysis was a DH-array with 
three sensors and measurements that cover more than 7000 events with a magnitude 
up to 7.2 and distances up to 720 km. At this site, the three main site signatures (i.e., 
EDC, H/V curve, and ETF) were available.  

The ETF was calculated between the surface and the within the rock. Only 
seismic events that produced a linear viscoelastic behavior of the deposit were 
processed. Indeed, 42 events were used, and the ETFs were calculated using the 
method proposed by Tau and Rathje (2017). The results were calculated with 
respect to the three single accelerometers and both components for each of the 
recordings. 

The authors collected interval velocity VS profiles from a DH, a PS logging and 
two SASW tests (Figure 4.67a). The corresponding TTFs were compared for the 
profiles that reached the bedrock with the average ETF (Figure 4.67b). Results 
showed a wide discrepancy in the resonant frequencies, assessing the limited 
representativeness of the invasive results. 

 

Figure 4.67. a) VS profiles previously developed at the GVDA site using 
downhole testing (Gibbs 1989), shallow and deep PS suspension logging 

(Stellar 1996), and SASW testing (Stokoe et al. 2004b). b) Theoretical linear 
viscoelastic shear wave transfer functions (TTFs) between a depth of 150 m 

and the ground surface were computed for the previously developed VS 
profiles that extended into rock (i.e., seismic downhole and simplified PS 

logging). Also shown in b) is the median ETF +/- σlnETF (after Teague et al. 
(2018)). 

The primary idea of the paper was that if only measurements from invasive 
tests are available at the site, the spatial dispersion (i.e., AVs) of the profiles is 
unknown since most of the time the collection of a suitable statistical sample is 
prevented. Similarly, the management of EUs is not straightforward, given that each 
method has its peculiarities, as primarily discussed in this Chapter. Moreover, the 
previous examples showed a total failure of the conventional methods for the 
management of AVs and EUs. For these reasons, the authors decided to only 
randomize the invasive profiles with the Toro model and parameters suggested by 
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Stewart et al. (2014a). The results were provided as randomization of 100 profiles 
for each baseline in Figure 4.68a (DH-based) and Figure 4.68b (PS logging-based). 
As previously seen, the medians of the randomized suites (in dashed yellow) are 
very similar to the baseline choices, but there is a glaring discrepancy of many 
profiles, due to problems inherent to the Toro model. 

 

Figure 4.68. Theoretical linear viscoelastic shear wave transfer functions 
(TTFs) between a depth of 150 m and the ground surface for VS profiles 
developed via randomization about the a) downhole VS profile and b) PS 

suspension log VS profile (after Teague et al. (2018)). 

In addition to previously performed invasive and surface wave tests, the authors 
conducted a MASW test at the site. Furthermore, AVA measurements with a circle 
configuration were acquired, in order to obtain more information at different 
frequencies. The authors proceeded to evaluate also the H/V curves, in accordance 
with the SESAME criteria. The results showed a clear peak around 2 Hz (i.e., close 
to the peak of the ETF), with a definite tendency to increase with the opening of the 
measuring circle. 

Three EDCs were obtained for each of the three accelerometers (i.e., North, 
South, and Central) in order to evaluate the spatial variability. For the experimental 
uncertainties, COVs of the Rayleigh phase velocity were also evaluated. The 
inversion of the EDCs was performed investigating the parameters of space with 
different layering ratios. An initial check concerning the results obtained with the 
HVSR tests was performed, rejecting all the realizations from the inversion that did 
not represent the H/V data.  

The authors kept 33 profiles for each layering ratio (i.e., 6) and location (i.e., 
3). This means 99 profiles for each layering ratio, which number is comparable with 
the 100 profiles obtained from the Toro model and the invasive test baselines. 

In this way, the three locations together account for AVs at the site, while the 
EUs are taken into account with the different layering ratios.  

Figure 4.69 shows the results of the TTFs calculated for each interval velocity 
profile from the inversion compared to the results of the HVSR method (i.e., ETF). 
The outcome is very satisfying, especially for the first resonance peaks that are very 
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well reproduced. This is in contrast with Figure 4.68, where the profiles obtained 
from the Toro model were inadequate to trace this further site signature. 

 
Figure 4.69. Theoretical linear viscoelastic shear wave transfer functions 

(TTFs) between the ground surface and a depth of 150 m computed using the 
inversion VS for the 99 ground models from the North, Central, and South 
accelerometer locations developed using layering ratios of a) 1.5, b) 2.0, c) 

3.0, d) 3.5, e) 5.0, and f) 7.0. The median transfer function, computed using 99 
TTFs (33 from each accelerometer location), is indicated for each layering 
ratio. Also shown is the median ETF +/- lnETF (after Teague et al. (2018)). 

At the end of the study, Teague et al. (2018) proposed two methods to improve 
the Toro model. The first assumes a site-specific set of model parameters (as already 
seen in previous examples), while the second provides an “appendix” to the model 

that eventually rejects profiles in apparent disagreement with the site signatures.  
The attempt made with the evaluation of site-specific parameters still showed 

inadequate results. This confirms that this approach is not a clear way to improve 
the results of the Toro model, as the architecture of the model itself seems biased.  

The second attempt showed better results (Figure 4.70). The rejection criterion 
acts as a filter for meaningless profiles and reduces the obtained inconsistency with 
independent site signatures. However, this solution is only palliative, as a real 
modification of the model is not implemented. 
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Figure 4.70. a, b) VS profiles, c, d) theoretical fundamental mode 
Rayleigh wave dispersion curves, and e, f) TTFs associated with the 
randomized and screened-randomized VS profiles. Randomized and 

screened-randomized profiles were developed using the downhole a, c, e) and 
PS log b, d, f) VS profiles as base cases. Shown in c) and d) is the mean 

experimental dispersion data. Shown in e) and f) are the median ETF and its 
associated standard deviation. 

Finally, following the initial suggestion by Stewart et al. (2014), also Teague 
and Cox (2016), Griffiths et al. (2016b), and Teague et al. (2018) remark the need 
for a new geostatistical model for the management EUs and AVs in VS profiles. 
Indeed, the Toro model presents many inconsistencies for its specific formulation 
and randomizing “philosophy”. This topic will be central in the next Chapters, with 
the presentation of an innovative geostatistical model for VS profiles.  
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Chapter 5                                  
Polito Shear Wave velocity 
Database (PSWD) 

The present and following Chapters will focus on the shear wave velocity models 
obtained with surface wave testing methods. In particular, this Chapter is dedicated 
to the development of a specific database: the Polito Shear Wave velocity Database 
(PSWD). This database is the essential ingredient for the new geostatistical model 
presented in the next Chapter for surface wave methods. The collection of extensive 
and high-quality experimental measurements represents the core of the model. In 
addition, the PSWD allowed the regression of a useful formulation for the 
estimation of the experimental uncertainties associated with the experimental data. 
This formulation represents the first “side product” presented in the dissertation that 
combines uncertainties and variabilities in the experimental data. Note that the lack 
of further data in the PSWD represents the reason why a test-specific calibration 
cannot be performed so far for other seismic tests (e.g., Down-Hole tests, see 
Section 6.3). 

The lack of a rigorous and complete database was indeed one of the most 
critical aspects of the Toro model (i.e., TM95) (Toro 1995) discussed in 4.3.2. 
Stewart et al. (2014a) openly suggested the compilation of a shared shear wave 
velocities database as a critical step towards the management of Epistemic 
Uncertainties (EUs) and Aleatory Variabilities (AVs) in Ground Response 
Analyses (GRAs).  

Sadiq et al. (2018) and Ahdi et al. (2018) presented a database (heretofore 
referred to as the USVD database, for its name the United States Velocity 
community Database) for VS profiles that is being developed, following similar 
examples presented over the last few years (Kayen et al. 2004, Stewart et al. 2014b, 
Ahdi et al. 2017). The USVD is an online map-based interface with downloadable 
VS profiles and metadata information. Up to the date of the publication of this 
dissertation, the database implementation contains only data from California. In 
order for a site to be included in the USVD, the minimum requirements are geodetic 
coordinates, elevation values, and the shear wave velocity profile. The files are 
organized to store coordinates, velocity profiles, dispersion curve data (for surface 
wave methods), geotechnical data, and HVSR spectral ratios.  

Velocity data in the USVD include the geophysical methods used to obtain the 
interval velocities profile, the type of recorded data, the maximum depth of the 
modeled profile and the calculated VS,30. In the case of surface wave testing 
methods, the dispersion curve data can be queried as phase velocity with respect to 
wavelength or frequency. Also, geotechnical data include the penetration resistance 
of the soils in the profile, and survey logs with cone penetration and laboratory 
index test results (if available).  
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Ciancimino et al. (2018) and Aimar (2018) used a database of 272 real VS 

profiles mainly from the Italian Strong Motion Database, the Swiss Strong Motion 
Network of the Swiss National Network (SED), and the European Interreg III 
project or Seismic hazard and alpine valley response analysis (SISMOVALP). In 
this case, they aimed at validating the simplified approaches included in Eurocode 
8, NTC 2018 (i.e., Italian regulations), and SNZ (i.e., New Zealand regulations) for 
the soil class amplification factors. Figure 5.1 shows the selected models classified 
according to the last seismic regulations. Aimar (2018) extended the database with 
randomization adopting a modified Toro model by creating artificial profiles. In 
this context, the management of different measures of VS represented the most 
crucial challenge. Indeed, different analysts and experimental methods were used 
in the database, leading to large experimental inhomogeneities. 

 
Figure 5.1. Shear wave velocity profiles classified according to the soil 

classes described in Eurocode 8 and used for the work by Aimar (2018). 

5.1  Description of the database 

The Polito Shear Wave velocity Database compiles a considerable number of 
geophysical tests that were performed by the Politecnico di Torino during the last 
20 years. The primary attention is devoted to surface wave tests, as the geostatistical 
model will be developed for this type of tests. However, the database structure is 
flexible and allows storing additional information useful for the characterization of 
the site, including additional invasive and non-invasive tests. When enlarged, the 
PSWD will represent a fundamental basis for the calibration of the geostatistical 
model presented in Chapter 6 also for other seismic tests. 

The first layer of the PSWD is implemented in a Microsoft Excel® spreadsheet 
to assist the user in the data compilation. This first layer is used to introduce 
information about the site, the geophysical tests, the geotechnical investigations, 
and every useful document. These data are stored in a mainsheet (converted into 
Table A1 in the Appendix) that is then linked to a single specific worksheet for each 



 

177 
 

site. These worksheets contain the results of the investigation and automatically 
plot the data for a first quality check. 

The second layer of the PSWD is implemented in MATLAB®. A script reads 
the Excel file and converts the information into a structured file for allowing 
operations to be performed on the data. The code generates figures for a visual 
check of the data. 

Up to the date of this dissertation (November 2018), 92 Italian sites have been 
included in the PSWD for their surface wave tests. The tests at the sites were 
selected to guarantee a high-quality standard. Thirty-nine of these sites also have 
an additional independent measurement from invasive tests, which allows an inter-
method comparison. The surface wave tests for seventy-sites captured only the 
fundamental mode in the Experimental Dispersion Curve (EDC). Forty-nine of the 
sites have an experimental evaluation of the VR standard deviation.  

On the other hand, for 21 sites higher modes are apparently influent and are 
captured in the dispersion curves. Three of them have an experimental evaluation 
of the VR standard deviation.  

The minimum required data for each site are (see also Table A1): 

- Location (latitude and longitude, WGS84); 
- Geometry of the acquisition array (e.g., line, circle, triangle, L-shape); 
- Array length and geophones spacing (for linear arrays) or maximum 

aperture (for 2D geometries); 
- Type of sources (i.e., active or passive); 
- Equipment; 
- Experimental Dispersion Curve (EDC) characteristics (i.e., maximum 

and minimum wavelength, presence of higher modes, experimental 
estimation of VR standard deviation); 

- Single deterministic interval velocity VS profile from previous 
inversions (i.e., maximum depth, VS of the halfspace, type of adopted 
inversion). 

Additional (i.e., optional) data for each site include: 

- HVSR data (i.e., peak frequency and standard deviation); 
- Estimation of the line of saturation from P-wave refraction tests; 
- Geological and/or geotechnical information (e.g., borehole logs, 

laboratory test results); 
- Invasive test interval velocity profiles (VP and VS). 

References for the sites included in the PSWD are listed in the last column of 
Table A1 for further details.  

The EDCs, the deterministic VS interval velocity profiles, and the calculated 
VS,Z profiles are presented in the Appendix. Note that Figures A1-92 (left) show the 
EDC along with the standard deviation of the phase velocity for 52 sites (i.e., 49+3), 
as proposed by Lai et al. (2005) and discussed in O'Neill (2004).  
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Figures A1-92 (right) show the interval and harmonic average VS profiles from 
surface wave methods as proposed in previous works (i.e., single-deterministic best 
fitting profiles). The interval and harmonic average VS profiles from invasive tests 
are also shown (the available 39 sites). In the following Chapters, each EDC will 
be reinterpreted with a rigorous and systematic approach, leading to a statistical 
sample of equivalent solutions (Foti et al. 2009, Comina et al. 2011) (as presented 
in 4.2.2.2 for the Accumoli site).  

The geographic position of the sites in the PSWD is shown in Figure 5.2 (each 
point has a specific color that will be consistently used during the entire 
dissertation). The highest density of sites is in the central (i.e., Abruzzo and Marche 
regions), Northeast (i.e., Friuli region), and Northwest (i.e., Piedmont region) 
Italian areas. Also, a large number of tests were performed in the Eastern part of 
Sicily. 

Figure 5.3 shows the experimental wavelengths associated with the EDCs 
presented in Figures A1-A92. Note that the corresponding ID shown in the first 
column of Table A1 replaced the names of the sites. The common wavelengths go 
from 2-3 m to 50-60 m. However, a good number of experimental measurements 
covers a band from 1 m to 100 m. The user of the geostatistical model presented in 
the next Chapter should account for these ranges of applicability. 

Figure 5.4 gives an initial idea of the characteristics of the sites included in the 
PSWD. This Figure shows the VS,30 values computed from the single, deterministic 
interval velocity profiles from previous inversions (i.e., ‘o’), or from additional 

invasive tests (if available, ‘+’ for DH tests, ‘*’ for CH tests, ‘x’ for PS, and ‘◊’ for 

SDTM). The red lines divide the soil class categories as described in NEHRP or 
EC-8 (i.e., note that the NEHRP classification has a further class between 800 m/s 
and 1500 m/s). Many sites are classified as class C (for NEHRP, but class B for 
EC-8). The rest are mainly included in class D (for NEHRP, but class C for EC-8). 
Only two sites are classified in the last category (i.e., E for EC-8; CAT and Pisa, 
sites 11 and 50, respectively). It is interesting to note that, sometimes, the surface 
methods and invasive tests assign different classes to the same site (e.g., CAT, 
Roccafluvione, and Pontremoli-1 Maggio). This happens for sites with conditions 
close to the classification borders, for which the simplified approach for the site 
response analysis usually fails. In these cases, the influence of EUs and AVs on the 
test results can lead to an erroneous estimation of the surface motion. 
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Figure 5.2. Spatial distribution of the sites investigated and included in 
the PSWD. 
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Figure 5.3. Experimental wavelengths associated with each EDC of sites 
included in the PSWD. 
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Figure 5.4. Classification of the sites included in the PSWD following the 
NEHRP or EC-8 provisions. 
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5.2  EDC uncertainties and variabilities 

The epistemic uncertainties and aleatory variabilities associated with the 
acquisition and processing steps (see 4.2.2.2) are modeled via the standard 
deviation (i.e., 𝜎𝑉𝑅) and/or the Coefficient Of Variation (i.e., 𝐶𝑂𝑉𝑉𝑅) of the 
Rayleigh wave velocity at each frequency (Lai et al. 2005, Foti et al. 2014). Note 
that a precise distinction between EUs and AVs is practically unfeasible in this 
context. The uncertainties and variabilities in the EDC are usually propagated 
indistinctly to the management step. As already discussed in 5.1, 52 sites in the 
PSWD have an experimental estimation of the 𝜎𝑉𝑅  (Table A1). In the present 
section, only the 𝜎𝑉𝑅  associated with the fundamental mode in the EDC are 
addressed. This parameter is crucial for the application of the one-tail statistical test 
to the misfit function proposed by Wathelet et al. (2004) and the definition of the 
sample of equivalent profiles for each site (see Section 4.2.2.2 and Eq. 4.22-4.23).  

A mathematical formulation was needed to estimate 𝜎𝑉𝑅  (or, equivalently, 
𝐶𝑂𝑉𝑉𝑅) for the 22 profiles in the database for which an experimental assessment 
was not available (i.e., 71-49). Several possible functional forms for  𝜎𝑉𝑅  or 
𝐶𝑂𝑉𝑉𝑅  were investigated depending on frequency, wavelength, VR, and 
combinations of them. In addition, different mathematical formulations and fitting 
algorithms were compared. The 𝐶𝑂𝑉𝑉𝑅  was found to be mainly dependent on the 
frequency 𝑓.  

An initial estimation of 𝐶𝑂𝑉𝑉𝑅(𝑓) was obtained by calculating the moving 
average and standard deviation of the experimental results (only fundamental 
modes). This operation suggested a 𝐶𝑂𝑉𝑉𝑅 ≅ 0.05 at high frequencies that 
increases up to 0.15-0.2 at low frequencies. These values are in accordance with 
other examples in the literature (Marosi & Hiltunen 2004, O'Neill 2004, Lai et al. 
2005, Foti et al. 2009, Comina et al. 2011, Wood & Cox 2012, Cox et al. 2014, 
Garofalo et al. 2016a, Garofalo et al. 2016b, Olafsdottir et al. 2018, Teague et al. 
2018). 

Two different functional forms were selected for the regression analysis: 

- 𝐶𝑂𝑉𝑉𝑅(𝑓) = 𝑎𝑓
𝑏 + 𝑐 (i.e., power law); 

- 𝐶𝑂𝑉𝑉𝑅(𝑓) = 𝑎𝑒
𝑏𝑓 + 𝑐𝑒𝑑𝑓 (i.e., double exponential power law). 

The fitting of the experimental 𝐶𝑂𝑉𝑉𝑅  was performed using the bisquare or the 
LAR (i.e., Least Absolute Residuals) robust regression algorithms for each 
functional form (Dumouchel & O'Brien 1992, Huber 2011). The bisquare method 
minimizes a weighted sum of squares, in which the weight given to each data point 
depends on how far the point is from the fitted line. Points near the line get full 
weight. Points farther from the line get reduced weight. Points that are farther from 
the line than would be expected by random chance get zero weight. The LAR 
method finds a curve that minimizes the absolute difference of the residuals, rather 
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than the squared differences. Therefore, extreme values have a minor influence on 
the fit. 

Results are compared in Figure 5.5. First, Figure 5.5a shows the entire set of 
experimental 𝐶𝑂𝑉𝑉𝑅 values for the 52 sites, along with the calculated moving 
average. Then, Figure 5.5b shows the 4 different methods adopted for the fitting 
and the goodness-of-fit reported as Adjusted R-Square values. The final choice of 
the best model was conducted looking at the minimum Adjusted R-Square 
parameter and the behavior at low frequencies. Indeed, the power law led to an 
unrealistic vertical asymptote for low frequencies and was discarded. Hence, the 
double exponential power law obtained using the LAR robust method was selected 
as the best predictive model. In this case, there is a finite value at 𝑓 = 0 𝐻𝑧 
(𝐶𝑂𝑉𝑉𝑅 = 0.3 = 𝑎 + 𝑐) and the equation describes a slight increase of 𝐶𝑂𝑉𝑉𝑅 for 
high frequencies (Figure 5.5c). This shape of the curve is then in agreement with 
the observations made in 4.2.2.2. The loss of resolution for surface wave methods 
is associated both with too low (i.e., due to the lack of penetration at large depths) 
or too high (i.e., due to the spatial aliasing) frequencies. The minimum 𝐶𝑂𝑉𝑉𝑅 ≅
0.03 is shown for frequencies between 15 Hz and 35 Hz, where almost any array 
setup (Casella & Berger 2002) usually provides reliable results. 

The values of the parameters are 
 

𝑎 = 0.2822 
𝑏 = −0.1819 
𝑐 = 0.0226 

𝑑 = 0.0077 
 
An additional set of parameters is provided to obtain a conservative estimate, 

in case of low confidence in the experimental data (dashed red line in Figure 5.5c). 
This solution is obtained as the 10th percentile (i.e., 10% of the experimental values 
are above the fitting line). In this case, the suggested parameters are 

 
𝑎∗ = 0.34 
𝑏∗ = −0.1 
𝑐∗ = 0.06 

𝑑∗ = 0 
 
Note that the fitting is valid up to 75 Hz. For higher frequencies, not enough 

experimental data were available for robust regression and the formulation should 
be adopted with caution. However, this range of frequencies is of little importance 
for near-surface characterization purposes.  

Also, the suggested relationship regards only the uncertainties for the 
fundamental mode of the EDC. Further analyses are needed for an estimation of the 
standard deviations associated with higher mode EDCs. 
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Figure 5.5. Fitting models for the coefficient of variation of the Rayleigh 
wave velocity, a) entire set of experimental values along with the calculated 
moving average, b) results of the 4 different approaches used for the fitting 

and Adjusted R-Square values, and c) selected best model and suggested 
precautionary choice. 
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Chapter 6                   
Randomization models 

This Chapter primary presents a new geostatistical model for the independent 
management of Epistemic Uncertainties (EUs) and Aleatory Variabilities (AVs) in 
VS profiles obtained via surface wave tests. This geostatistical model is used to 
develop a randomization process that generates shear wave velocity profiles 
consistent with the results of the inversions. Indeed, the primary goal is to reproduce 
the statistical sample of profiles in the most frequent case of a single available 
deterministic solution. The management of EUs and AVs follows the identification 
and quantification steps, then it can be indistinctly applied to both types of 
uncertainties. However, the model’s parameters based on the Polito Shear Wave 

velocity Database (PSWD) will simultaneously represent both EUs and AVs, as a 
practical distinction for surface wave tests is prevented. 

The model is also applied to the solution of the inverse Rayleigh problem for 
sites in the PSWD in 6.1. Indeed, various features of the geostatistical model will 
be anticipated in 6.1.2 for the “free-layering” model. The latter aims at introducing 
a variable number of layers in search of the best solution performed with the Monte 
Carlo approach. This randomization model is applied in 6.1.3 for the round-2 of 
inversions and is a companion of the geostatistical randomization model.  

Section 6.2 is entirely dedicated to the geostatistical model calibrated for 
surface wave methods. This methodology aims at moving from a single-
deterministic solution of the problem to a sample of statistical profiles consistent 
with the characteristics of the test and the site. The generation avoids time-
consuming inversions that require specific expertise to obtain a statistically valid 
sample of equivalent profiles. Each component of this model will be discussed in 
detail and summarized in Section 6.2.2. 

Section 6.3 illustrates the preliminary results of the geostatistical model applied 
to Down-Hole (DH) tests.  

6.1    Solving the Rayleigh inverse problem  

The primary goal of this section regards the development of a statistical sample 
of equivalent (in terms of misfit) VS profiles (Foti et al. 2009, Comina et al. 2011) 
for each of the 71 sites in the PSWD where surface wave tests were performed. The 
equivalent VS profiles complement the deterministic solution extracted from 
previous works and reported in Figures A1-92. 

The inversion of the experimental dispersion curves in the PSWD followed a 
two-step process. First, the inversions were performed with a fixed number of layers 
equal to the number of layers adopted in the original deterministic solutions. This 
“standard” inversion (i.e., round-1) is reported in 6.1.1 and aimed at producing an 
initial (i.e., preliminary) ensamble of equivalent solutions for the inverse problem. 
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Note that the space of the solutions is not entirely investigated with a fixed number 
of layers. Indeed, a complete statistical sample of equivalent solutions can be 
obtained only if also this last degree of freedom is taken into account in the 
inversion process (Cox & Teague 2016).  

Second, an inferential analysis was conducted on the results of the round-1 of 
inversions (Ang & Tang 1984, Casella & Berger 2002, Benjamin & Cornell 2014) 
and presented in 6.1.2. The inferential analysis allowed for developing a 
randomization model (hereafter-called free-layering model) for the inversions of 
round-2. This second round added a degree of freedom to the search of the solutions, 
as also the number of layers was considered as random variable. After this second 
round of inversions, each site is associated with a statistical set of best solutions 
that are the fundamental ingredients for the development of the actual geostatistical 
model presented in 6.2 for surface wave tests. 

Note that the inferential process presented in 6.1.2 for the free-layering model 
gave essential results also for the development of the geostatistical model in 6.2 for 
surface wave tests. Ideally, the free-layering model represents a forward analysis 
randomization model, whereas the geostatistical model is the associated back-
analysis randomization model (see Figure 6.1). Although the goal of these two 
randomization models is different (the first introduces a variable number of layers 
in search of the best solution, whereas the second moves from a single-deterministic 
solution of the problem to a sample of statistical profiles), they share the same 
mathematical architecture. Note that the term “forward-analysis” in this context has 

not the usual meaning used in geophysics (i.e., a solution of the direct wave 
propagation problem from a set of known parameters of the theoretical model).  

 

Figure 6.1. Input parameters, output parameters and the primary goal of 
the free-layering and geostatistical randomization models. 
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6.1.1    Round-1: inversion with a constant number of layers 

The round-1 of inversions was performed with an improved Monte Carlo global 
search method (Socco & Boiero 2008) with 200000 samples varying the VS, the 
layers thicknesses and the Poisson ratios. The forward geophysical problem was 
solved considering a stack of elastic, horizontal and homogeneous layers using the 
Haskell-Thomson approach (Thomson 1950, Haskell 1953). The Monte Carlo 
algorithm generated the samples with a fixed number of layers equal to the number 
of layers of the target deterministic solution. The analysis of the 200000 possible 
solutions used the misfit function proposed by Wathelet et al. (2004) for the n-
realized (and scaled) profile (see also Equations 4.22-4.23 and Section 4.2.2.2-
inversion) 

𝑀𝑛 = (∑
(𝑉𝑅,𝑖 − 𝑉𝑅,𝑖̅̅ ̅̅ )

2

𝜎𝑉𝑅,𝑖
2

𝑘

𝑖=1

)

𝑛

(Eq. 6.1) 

 
where 𝑘 is the number of points in the EDC, 𝑉𝑅,𝑖 is the R-wave velocity of the 

TDC corresponding to the experimental point at frequency 𝑖, 𝑉𝑅,𝑖̅̅ ̅̅  is the R-wave 
velocity of the EDC corresponding to the experimental point at frequency 𝑖, and 
𝜎𝑉𝑅,𝑖
2  is the variance of the R-wave velocity at frequency 𝑖 (as presented also in 

Figure 4.28a). It can be demonstrated that 𝑀𝑛 follows a chi-square distribution with 
𝑘 degrees of freedom. This distribution corresponds to the distribution of the sum 
of the square of standard Gaussian random variables (Oldenburg & Li 2005, Socco 
& Boiero 2008). Indeed, 𝑉𝑅,𝑖 follows a normal (i.e., Gaussian) distribution (Lai et 
al. 2005) and  
 

(
(𝑉𝑅,𝑖 − 𝑉𝑅,𝑖̅̅ ̅̅ )

𝜎𝑉𝑅
)

2

= (𝑆𝑉𝑅,𝑖)
2
~𝜒2 (Eq. 6.2) 

 
The objective of this process is to select a statistical sample of profiles that have 

a misfit (𝑀𝑛) lower than a certain threshold value. The threshold value is selected 
by applying a statistical test to the function of the ratio between the best misfit and 
the n-realization (Oldenburg & Li 2005, Socco & Boiero 2008) that follows a Fisher 
distribution, so then 

 
𝑀𝑚𝑖𝑛
𝑀𝑛

∼
𝜒𝑚𝑖𝑛
2

𝜒𝑛2
> 𝐹 𝛼(𝛼, k, k) (Eq. 6.3) 

 
The chosen level of confidence in this dissertation 𝛼 is 0.01 (Foti et al. 2009, 

Comina et al. 2011) and degrees of freedom are equal to 𝑘 (i.e., number of 
experimental points of the EDC). The profiles that pass the statistical test are 
included in the solution of the geophysical problem, representing a set of “equally 

good” solutions. 
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For each site, after the inversion, the statistical sample that passed the test was 
processed, and the following parameters were calculated and stored: 

 𝑀𝑚𝑖𝑛 and number of accepted profiles; 
 Harmonic shear wave velocity profiles (𝑉𝑆,𝑧(𝑧)) and cumulated travel 

time profiles (𝑡𝑡𝑆,𝑧(𝑧)); 
 Theoretical transfer functions (TTFs). 

The TTFs are calculated with the same ancillary values of parameters (i.e., soil 
and halfspace unit weight and damping) for each VS profile. As an example, the 
results of the Acquasanta Terme site are reported in the following. The round-1 of 
inversions produced a statistical sample of 629 equivalent profiles with 𝑀𝑚𝑖𝑛 =
0.0756 (see also Table A2). Figure 6.2 shows the entire sample of Theoretical 
Dispersion Curves (TDCs) along with the EDC. The minimum misfit solution is in 
red. The agreement between the experimental and theoretical site signatures is 
mostly acceptable. Figure 6.3a shows the set of 629 equivalent interval VS profiles 
that passed the statistical test. 

Note that the maximum depth is automatically defined according to the 
maximum experimental wavelength (Foti et al. 2018). The interval velocity profiles 
finish with the velocity of the halfspace that has no thickness. The addition of 
thickness to the halfspace does not change the dynamic behavior of the measured 
profile, even if the EDC gives information more in-depth. Hence, the interval 
velocity profiles are presented up to the last interface above the maximum depth of 
investigation. 

Note also that in the entire dissertation the term “halfspace” is not a synonym 
of “bedrock”. The halfspace is the last identified interface where the VS ends, 
independently of the velocity value. This is on purpose not consistent with the usual 
concept of bedrock (i.e., VS > 600-800 m/s) for GRAs (Baturay & Stewart 2003, 
Stewart et al. 2014a, Passeri et al. 2018a). This distinction is essential because the 
geostatistical model has to be as flexible as possible and will not depend on any 
“artificial” classification method (as for the Toro model). 

Figure 6.3b shows the harmonic average profiles that passed the statistical test. 
The minimum misfit solution is in red. The DH profile is in dashed black. Figure 
6.3a and b confirm the significance of the VS,Z profile already discussed in Chapter 
4. Indeed, the comparison of the 629 solutions is more suitable in Figure 6.3b, where 
the layers’ schematization is abandoned, and the analyst can better compare the 
dynamic behavior (i.e., linked to the resonant frequency) of the obtained solutions. 
This observation is valid also for the inter-method (i.e., invasive vs. non-invasive) 
comparison. The user can assume good inter-method agreement from Figure 6.3a. 
However, Figure 6.3b highlights the expected differences, especially for shallow 
layers, that are the most influent in a GRA (Brown et al. 2002, Bazzurro & Cornell 
2004a, Kwok et al. 2008, Rathje et al. 2010, Stewart et al. 2014a, Zalachoris & 
Rathje 2015). The typical loss of resolution of the DH test for shallow depths (see 
Section 4.2.1.1) leads to a consistent shift of the VS,Z profile and disagreement along 
the entire profile depth. 
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Figure 6.4 completes the comparison within the ensemble of solutions that 
passed the statistical test. This Figure shows the TTF as a further site signature 
(Baise et al. 2011, Teague et al. 2018) associated with the geophysical equivalence 
problem. 

The TTFs show consistent similarities throughout a broad frequency band. 
However, the inter-method comparison is again problematic, especially for high 
frequencies (i.e., shallow depths). This is inherently due to the differences in the 
VS,Z profiles seen in Figure 6.4b. 

Finally, as for the relationship between the halfspace velocity and depth, Figure 
6.5 shows the example for Acquasanta Terme. A clear correlation exists between 
the two random variables. This correlation is due to the EDC that forces results with 
higher depths (i.e., longer wavelengths and lower frequencies) to reach also a higher 
shear wave velocity. This observation will be a pillar for the development of the 
new geostatistical model, which has to reproduce also this experimental evidence.  

 

Figure 6.2. Set of equivalent TDCs obtained for the site of Acquasanta 
Terme (in red the minimum misfit) along with the EDC. 
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Figure 6.3. a) Set of equivalent interval velocity profiles and b) set of 
equivalent harmonic average shear wave velocity profiles obtained for the 
site of Acquasanta Terme (in red the minimum misfit and in dashed black 

the results from the DH test). 

 
Figure 6.4. a) Set of equivalent interval velocity profiles and b) set of 

equivalent harmonic average shear wave velocity profiles obtained for the 
site of Acquasanta Terme (in red the minimum misfit and in dashed black 

the results from the DH test). 
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Figure 6.5. Correlation between the shear wave velocity and the depth of 
the halfspace for Acquasanta Terme. 

The results presented for Acquasanta Terme are typical for the whole dataset. 
Table A2 summarizes the results of the round-1 of inversions in terms of minimum 
misfit and number of accepted profiles. 

VR,λ-VS,Z relationship 

The recent literature suggested the use of transformation laws from the 
wavelength of the EDC to the depth of the corresponding VS,Z (i.e., VR,λ-VS,Z or 
merely 𝜆-𝑧 relationship). Section 4.2.2.2 discussed the concept of pseudo-depth 
(Eq. 4.19) for a first assessment of the VS interval profile and/or a check of the 
results after the inversion. This rule of thumb is based on the Rayleigh waves 
particle motion against depth. Indeed, most R-wave vertical particle motion occurs 
over a depth approximately equal to one wavelength. Thus, the velocity of 
propagation is most influenced by the material within one wavelength from the free 
surface (Foti et al. 2014).  

In Section 4.1 we also discussed that the harmonic average shear wave velocity 
could be seen as an integration of velocity over a specified thickness. The harmonic 
average shear wave velocity represents the simplest, physical, description of a 
traveling wave as it is calculated as a distance (i.e., a thickness) over time (i.e., the 
travel time). Brown et al. (2000), Martin & Diehl (2004), and Albarello & Gargani 
(2010) suggested the use of the VR corresponding to a specific wavelength to 
estimate the VS,30. However, the VS,30 is only a single point of the VS,Z function that 
can be better exploited in light of these observations. Plotting the VR vs. 𝜆 and the 
VS,Z vs. 𝑧 profiles of the equivalent solutions, a remarkable similarity can be 
observed, as suggested in Socco et al. (2017).  
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The transformation between the wavelength 𝜆 and depth 𝑧 is based on a 𝜆-𝑧 
(i.e., wavelength-depth) linear law that also depends on the Poisson’s ratio (Socco 
& Comina 2017). This linear function is defined by searching on the VS,Z curve, for 
each point of the EDC, the couple 𝜆-𝑧 where VR=VS,Z. Figure 6.6 shows an example 
of the procedure for the determination of the 𝜆-𝑧 law for Acquasanta Terme after 
the inversions of round-1 . Note that this operation is conducted on the VS,Z average 
profile (solid red line in Figure 6.6). In this case, the halfspace has a thickness, and 
the profile is then extended by calculating the mean halfspace depth and the mean 
halfspace velocity. The investigation depth is assumed equal to 𝜆𝑚𝑎𝑥/2.5. 

 

Figure 6.6. Determination of the wavelength-depth (i.e., 𝝀-𝒛) relationship 
for Acquasanta Terme. 

The plot of each 𝜆-𝑧 couple calculated for each of the 71 sites after the round-
1 of inversions is shown in Figure 6.7. The data scatter is fitted with a simple linear 
equation in solid red 

 
𝜆(𝑧) = 𝑎𝑧 + 𝑏 (Eq. 6.4) 

 
whereas the dashed red lined show the 68% confidence bounds of the fitting results. 
For example, for 𝑧 = 30 𝑚, 𝜆(𝑧) ≅ 42 𝑚. This gives a robust estimation of the 
VS,30 in agreement with Brown et al. (2000), Martin & Diehl (2004), and Foti et al. 
(2018).  

The 𝜆-𝑧 can replace the use of the pseudo-depth proposed in Equation 4.19 and 
largely adopted for the analysis of surface wave methods. Indeed, this new 
transformation is experimentally verified and links two variables (i.e., VR and VS,Z) 
in a way that is physically consistent.  
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Note that this 𝜆-𝑧 (i.e., 𝑎 and 𝑏) is still based on the results of the round-1 
inversion that are not completely refined. The results after the round-2 inversion are 
given in Section 6.1.3 but the results are very similar to those obtained for the 
round-1 inversions.  

 

Figure 6.7. Determination of the wavelength-depth (i.e., 𝝀-𝒛) relationship 
after the first round of inversions. 

The results of the application of the obtained 𝜆-𝑧 relationship (i.e., VR,λ-VS,Z 
relationship) are given for some sites as an example in Figure 6.8 (i.e., Accumoli, 
GMN, Tarcento-10, and Tarcento-2). This Figure shows the VS,Z profiles after the 
first round of inversions (in black) and the modified (i.e., shifted) curve with the 
experimental uncertainties (i.e., 𝜎𝑉𝑅). The correspondence is excellent. This 
approach could give the chance for a direct interpretation of the experimental data. 
However, this application should be studied in depth with further analyses.  
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Figure 6.8. Application of the obtained 𝝀-𝒛 transformation to Accumoli, 
GMN, Tarcento-10, and Tarcento-2. 

6.1.2    Inferential process 

The results of the first round inversions were analysed using a statistical 
inference method. The inferential analysis allowed developing the main 
characteristics of the geostatistical model presented in 6.2 for surface wave tests, 
but it is initially used for the free-layering model in 6.1.3. The following 
observations are indeed valid for both randomization models (see Figure 6.1).  

The inferential procedure had to answer four main questions regarding: 

1. The VS statistical distribution for the layers; 
2. The statistical distribution of the thickness of the layers with depth; 
3. The correlation structure of the velocity between consecutive layers; 
4. The distribution of the halfspace velocity and depth and the correlation 

between the halfspace velocity and halfspace depth. 

The first three points regard the model above the halfspace (hereafter-called 
“column”), whereas the last point regards the halfspace model. It is essential to 
understand that these two models (column and halfspace) are initially independent 
and are eventually merged in the final part of the method with a physically based 
approach. 
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6.1.2.1    Statistical distribution of VS 

The first question can be answered by looking at the distributions of the results  
for Acquasanta Terme at each depth, as an example. Figure 6.9-6.14 have the same 
layout for different parameters. On the left-hand side (panel a), the investigated 
parameter is presented for a specific depth shown by a red horizontal line. Then, 
the panel b) illustrates the histograms (upper) and the Q-Q plots (lower) assuming 
a normal (i.e., Gaussian) distribution. 

Similarly, the panel c) illustrates the histograms (upper) and the Q-Q plots 
(lower) assuming a lognormal distribution (Rasmussen 2004). A quantile-quantile 
plot (also called a Q-Q plot) visually assesses whether the sample data comes from 
a specified distribution. Practically, the sample data values are ordered from 
smallest to largest, then plotted against the expected value for the specified 
distribution at each quantile in the sample data. The quantile values of the input 
sample appear along the y-axis, and the theoretical values of the specified 
distribution at the same quantiles appear along the x-axis. If the resulting plot is 
linear, then the sample data likely comes from the specified distribution.  

Figure 6.9 shows the analysis performed on the interval velocity profiles for 
Acquasanta Terme at a depth equal to 3 m. The Figure apparently confirms the 
assumption of the lognormal distribution of the VS proposed by Toro (1995), Li & 
Asimaki (2010), and Kottke & Rathje (2009).  

On the other hand, Figure 6.10 negates the assumption of the lognormal 
distribution. Figure 6.10 corresponds to the interval velocity profiles at a depth 
equal to 6 m, which is close to the depth of an interface. It is clear from both the 
histograms and the Q-Q plots that the interval velocity profiles cannot be modeled 
as lognormally distributed close to the depths of the interfaces. At these depths, the 
functions present a discontinuity, and the lognormal distribution cannot be applied 
due to the non-uniqueness of the interfaces position. The bimodal distribution is 
due to the presence of the velocity uncertainties of two layers at the same time. This 
observation represents the additional proof that the evaluation of VS should always 
be carried out by considering the real physical quantities (i.e., lengths and times) 
separately. Interval velocities should be used only for 1D GRAs as “final result”, 
but the data processing and the randomization models should be based on the 
separate random variables of length (i.e., thickness) and time (i.e., travel time or 
interval velocity) separately and modeled by continuous functions. 

The evidence of the superiority of modeling interval velocities is confirmed by 
Figure 6.11-6.14, where the same analysis is presented for the harmonic average 
and cumulated travel time profiles. Both random variables show an excellent 
approximation by the normal and lognormal distributions at various depths. 
However, the lognormal distribution is preferred when modeling non-negative 
quantities such as velocities. Indeed, the lognormal model avoids unexpected 
results and better represents this class of physical quantities. Note that the 
lognormal assumption for the cumulated travel times inherently involves the 
lognormal assumption for the harmonic average profile. This topic was already 
discussed in 4.1 in Equation 4.2 and 4.4. Hence, the evidence of lognormally 
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distributed VS,Z follows the assumption of cumulated travel times lognormally 
distributed: 

 

𝑉𝑆,𝑧(𝑧) =
𝑧

𝑡𝑡𝑆,𝑧(𝑧)
(Eq. 6.5) 

 

log (𝑉𝑆,𝑧(𝑧)) = log(𝑧) − log (𝑡𝑡𝑆,𝑧(𝑧)) (Eq. 6.6) 
 
We can now conclude that the free-layering model and the geostatistical model 

have to separately randomize times and spaces (i.e., thicknesses, in the next 
section). 

 

Figure 6.9. Inferential method applied to the interval velocity profiles at a 
depth equal to 3 m for Acquasanta Terme. a) Set of equivalent profiles 

obtained after the first round of inversions (i.e., fixed number of layers), b) 
normal distribution panel as a histogram and Q-Q plot, c) lognormal 

distribution panel as a histogram and Q-Q plot. 
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Figure 6.10. Inferential method applied to the interval velocity profiles at 
a depth equal to 6 m for Acquasanta Terme. a) Set of equivalent profiles 

obtained after the first round of inversions (i.e., fixed number of layers), b) 
normal distribution panel as a histogram and Q-Q plot, c) lognormal 

distribution panel as a histogram and Q-Q plot. 

 

Figure 6.11. Inferential method applied to the harmonic average velocity 
profiles at a depth equal to 3 m for Acquasanta Terme. a) Set of equivalent 

profiles obtained after the first round of inversions (i.e., fixed number of 
layers), b) normal distribution panel as a histogram and Q-Q plot, c) 

lognormal distribution panel as a histogram and Q-Q plot. 
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Figure 6.12. Inferential method applied to the harmonic average velocity 
profiles at a depth equal to 6 m for Acquasanta Terme. a) Set of equivalent 

profiles obtained after the first round of inversions (i.e., fixed number of 
layers), b) normal distribution panel as a histogram and Q-Q plot, c) 

lognormal distribution panel as a histogram and Q-Q plot. 

 

Figure 6.13. Inferential method applied to the cumulated travel time 
profiles at a depth equal to 3 m for Acquasanta Terme. a) Set of equivalent 

profiles obtained after the first round of inversions (i.e., fixed number of 
layers), b) normal distribution panel as a histogram and Q-Q plot, c) 

lognormal distribution panel as a histogram and Q-Q plot. 
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Figure 6.14. Inferential method applied to the cumulated travel time 
profiles at a depth equal to 6 m for Acquasanta Terme. a) Set of equivalent 

profiles obtained after the first round of inversions (i.e., fixed number of 
layers), b) normal distribution panel as a histogram and Q-Q plot, c) 

lognormal distribution panel as a histogram and Q-Q plot. 

6.1.2.2    Statistical distribution of the thickness of the layers 

The model chosen for the spatial random variable (i.e., the interfaces position 
with depth) is the non-homogenous Poisson model described by Toro (1995). 

The non-homogeneous Poisson process is a Markovian and non-stationary 
process. It can be used for the distribution of layer thicknesses with a depth-
dependent rate (𝜆 (𝑧)) assumed as a modified power-law model with parameters 𝑐1, 
𝑐2 and 𝑐3. These parameters can be site specific (i.e., obtained from a regression 
based on experimental data) or generic, as proposed in Toro (1995). The model is 
described by the typical Poisson exponential formulation in Equation 4.29  

 
𝑓(ℎ, 𝑧) = 𝑒−𝜆(𝑧)ℎ for ℎ > 0 (Eq. 4.29) 

 
Two specific improvements are introduced to the basic formulation of the non-

homogeneous Poisson’s model to make the model specific for the purpose: 

 Initial bounding of generated lambda in order to limit the model 
generation; 

 Second acceptance or refusal criterion of generated layering 
distributions according to the depth resolution of the surface wave tests. 

These additional conditions were developed to potentially mitigate the 
limitations of the Toro model reported by Griffiths et al. (2016b), Teague & Cox 
(2016), Teague et al. (2018) (see Section 4.3.3). 
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Initial bounding of generated lambda  

The bounding of the generated 𝜆(𝑧) is similar to the hypothesis usually adopted 
for the limitation of the samples generated by the lognormal distribution (e.g., +/- 
two standard deviations) (Li & Asimaki 2010, Rodriguez‐Marek et al. 2014). In 
those cases, the realizations of the lognormal distribution that were out of a user-
defined threshold were rejected. The same operation can be done for the 𝜆(𝑧) 
generated by the non-homogeneous Poisson’s model.  

Experimental results for Acquasanta Terme in Figure 6.15 show that the 𝜆(𝑧) 
after the round-1 of inversions are limited to an acceptance area (the example is 
valid for the entire dataset). The user of the randomization models (i.e., both the 
free-layering and the geostatistical model) can define an upper and lower 
multiplication factor to enlarge or squeeze the “admitted zone” by scaling the 

maximum and minimum fitted boundaries presented in Figure 6.15. This rejection 
criterion avoids the generation of unrealistic values of 𝜆(𝑧) that lead to non-
representative distributions of thicknesses. 

 

Figure 6.15. Rate of inter-layer boundaries (lambda) in the VS profiles 
obtained in the round 2 inversion results for the Acquasanta Terme site. The 
mean and maximum and minimum boundaries of the depth-dependent layer 

occurrence ratio are also shown. 



 

201 
 

Acceptance or refusal criterion of generated layering distributions 

The acceptance criterion of generated layering distributions is based on the 
observations made in 6.1.1. The 𝜆-𝑧 transformation (i.e., VR,λ-VS,Z relationship) is 
used for determining the maximum resolution with depth and, consequently, the 
minimum acceptable thickness that the randomization models can generate. This is 
strictly related to the surface wave methods.  

As already discussed, the Toro model (1995) (i.e., TM95) did not account for 
any specific characteristic of the adopted geophysical method. One of the most 
challenging problem in TM95 was the generation of unacceptable thickness 
distributions. For example, for a surface wave test, the generation of a thin, deep 
layer is not consistent with the observations made in Section 4.2.2.2. The site 
signature (i.e., the EDC) loses resolution with depth, with an increasing dimension 
of “dark zones”. These dark zones are associated with two consecutive values of 
VR at different wavelengths (𝜆) that are now transformed into depths (𝑧) (Figure 
6.16). The idea is that the randomization models should limit the minimum 
thickness of the generated layer with depth, forcing the randomization models to 
generate layers that are in line with the experimental data.  

Figure 6.16 exemplifies this operation for the case of Acquasanta Terme. The 
non-homogenous Poisson model is forced to avoid thicknesses smaller than the 
distance between two experimental points after the application of the 𝜆-𝑧 
transformation. Indeed, the randomization models does not have experimental 
information (i.e., enough resolution) to identify a thin layer at that depth.  

 

Figure 6.16. Example of application of the shift to the EDC (i.e., from 
wavelength to depth) and identification of the “dark zones” where the 

experimental information loses of resolution with depth (Acquasanta Terme). 
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The distance between two experimental points of the shifted EDC (see Section 
6.1.1) is assumed as the minimum thickness at a depth equal to the midpoint depth 
and interpolated as shown for Acquasanta Terme (Figure 6.17). The red line in 
Figure 6.17 represents the experimental threshold that should be iteratively 
respected by the non-homogeneous Poisson’s model. The same Figure shows the 
acceptable area.  

Also, the minimum thickness of the first layer can be imposed on the models in 
a closed form. The randomization models allow the user choosing 𝜆𝑚𝑖𝑛/3 or 
𝜆𝑚𝑖𝑛/2, as suggested by Foti et al. (2018). 

This rejection criterion is different from the one presented by Teague et al. 
(2018). In that case, the authors adopted a rejecting criterion based on the 
calculation of the TTFs of the generated profiles concerning the TTF of the base-
case profile. That operation is again a palliative solution to the inadequacies of the 
TM95, as it excluded the generated interval profiles a-posteriori. In the present case, 
the experimental information included in the EDC is fully exploited to a-priori 
generate compatible VS profiles by separating lengths and times. 
 

 

Figure 6.17. Regression of the minimum generable thickness imposed on 
the randomization model for Acquasanta Terme. 

6.1.2.3    Inter-layer correlation 

The randomization models (i.e., both the free-layering and the geostatistical 
model) use a first-order auto-regressive model (AR1), as proposed by Toro (1995) 
for the column. However, the correlation factor is computed on the cumulated travel 
times, differently from the TM95 who presented the correlation based on the 
interval velocities. This difference is essential and represents the innovation of the 
present work.  

For each generated layering distribution, the free-layering randomization model 
calculates the logarithmic mean ( 𝑡𝑡𝑆,𝑧̅̅ ̅̅ ̅ ), the logarithmic standard deviation 
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(𝜎ln(ttS,z)), and the correlation coefficient (𝜌) between the random variables 𝑡𝑡𝑆,𝑧. 
When applied to the PSWD, these calculations are based on the results of the sample 
of round-1 inversions. This operation is prevented for the geostatistical model that 
does not use the results of the previous inversion, but will be properly calibrated, as 
discussed in 6.2 for surface wave tests. Then, the travel time is randomized with a 
user-defined limitation in terms of standard deviations (Li & Asimaki 2010, 
Rodriguez‐Marek et al. 2014) and finally, the interval velocity profile of the column 
is composed. 

6.1.2.4    Halfspace velocity and halfspace depth 

The velocity of the halfspace can be studied as a semi-independent random 
variable with respect to the velocity of the layers above (the meaning for “semi-
independent” will be clarified at the end of this section). It can be modeled without 
separating length and time random variables, as it has not a spatial dimension (i.e., 
no thickness). Figure 6.18 confirms that the lognormal distribution can also be used 
for the halfspace shear wave velocity. 

The distribution of the halfspace depths is reported in Figure 6.19. The panel c) 
shows a good approximation by the lognormal distribution also for this random 
variable. 

 

Figure 6.18. Inferential method applied to the halfspace velocities for 
Acquasanta Terme. a) Halfspace VS-halfspace depth relationship after the 

first round of inversions (i.e., fixed number of layers), b) normal distribution 
panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 

histogram and Q-Q plot. 

 



 

204 
 

 

Figure 6.19. Inferential method applied to the halfspace depths for 
Acquasanta Terme. a) Halfspace VS-halfspace depth relationship after the 

first round of inversions (i.e., fixed number of layers), b) normal distribution 
panel as a histogram and Q-Q plot, c) lognormal distribution panel as a 

histogram and Q-Q plot. 

Figure 6.5, 6.18a, and 6.19a suggested the presence of a correlation structure 
between the halfspace velocity and depth. As expected, if the halfspace depth 
increases, the VS should increase to be consistent with the experimental dispersion 
curve. This correlation can be seen in Figure 6.20. This Figure shows the correlation 
matrix between the two random variables and the value of Pearson’s correlation 
coefficient (𝜌ℎ) for Acquasanta Terme (Pearson 1895, Kendall 1946).  

 

Figure 6.20. Correlation matrix plot for Acquasanta Terme and 
evaluation of the Pearson’s linear correlation coefficient. 
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We can refer to the standard normal random variable halfspace depth 
 

𝑆𝑑𝑖
ℎ =

(ln(di
h) − ln(dh̅̅ ̅))

𝜎ln(dh)
(Eq. 6.7) 

 
and the standard normal random variable halfspace velocity  

 

𝑆𝑉𝑖
ℎ =

(ln(Vi
h) − ln(Vh̅̅̅̅ ))

𝜎ln(Vh)
(Eq. 6.8) 

 
A simple first-order auto-regressive model can be used and  

 
𝑆𝑉𝑖

ℎ = 𝜌ℎ𝑆𝑑𝑖
ℎ + 𝜖𝑖√1 − (𝜌ℎ)2 (Eq. 6.9) 

 
where 𝜌ℎ𝑆𝑑𝑖ℎ is the corresponding realization of a standard normal distribution for 
the halfspace depth, and 𝜖𝑖 is a separately (and randomly) sampled standard normal 
variate for the halfspace velocity having zero mean and unit standard deviation. So 
we can obtain 𝑆𝑉𝑖ℎ as a realization of a random normal variable with mean 𝜌ℎ𝑆𝑑𝑖ℎ 
and standard deviation equal to √1 − (𝜌ℎ)2, which is transformed in the natural 
value as 

 

𝑉𝑖
ℎ(𝑑𝑖

ℎ) = exp (𝑆𝑉𝑖
ℎ𝜎ln(Vh) + ln(V

h̅̅̅̅ )) (Eq. 6.10) 
 
At the beginning of this section, we defined the velocity of the halfspace as a 

semi-independent random variable with respect to the velocity of the layers above. 
This definition demonstrates that the randomized 𝑉𝑖ℎ depends on the 
randomized 𝑑𝑖ℎ. However, the merging of the halfspace characteristics into the 
column (i.e., the layers above the halfspace) represents a crucial step. Hence, the 
randomized  𝑑𝑖ℎ should be associated with a consistent layering of the column. 
Indeed, the halfspace depth is the link between the halfspace and the column.  

An example can better explain this new feature of the randomization models. 
We can assume randomization of 10 profiles with a halfspace average depth of 100 
m. The layering randomization is concluded and generated 10 different layering 
distributions that showed an interface at 95 m, 96 m, 97 m, 98 m, 99 m, 101 m, 102 
m, 103 m, 104 m, 105 m. The halfspace randomization is concluded and generated 
a sequence of 𝑑𝑖ℎ= 102 m, 97 m, 101 m, 104 m, 96 m, 95 m, 105 m, 98 m, 99 m, 
and 103 m. If a blind implementation of the model is adopted, the same sequence 
of the  𝑑𝑖ℎ is assigned to the 10 column layering distributions. The new 
randomization models search for a consistent combination and assign the halfspace 
depths equal to the interface depths. This operation guarantees a further consistency 
of the randomization, as the layering is not distorted by the inclusion of the 
halfspace depth. Once the best combination is determined, the models generate the 
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halfspace velocity  𝑉𝑖ℎ that will be consistent with the halfspace depth and, 
consequently, the column’s layering distribution. 

6.1.3    Round-2: inversion with a variable number of layers 

The improved Monte Carlo global search method (Socco and Boiero, 2008) 
was also used for the second round of inversions similarly to the round-1. In this 
case, however, also the layers number was considered as a random variable (Cox & 
Teague 2016).  

The free-layering is used in this round-2 inversion. The model follows the 
characteristics described in Section 6.1.2 and was used in conjunction with the 
solutions of the first round inversions. In particular, this randomization model was 
developed following the observations proposed in Section 6.1.2, aiming at 
generating a new set of 200000 VS interval velocity profiles. The results of the first 
round of inversions were used as reference base-case for the randomization. Hence, 
the values for the model parameters 𝑡𝑡𝑆,𝑧̅̅ ̅̅ ̅, 𝜎ln(ttS,z), 𝜌, 𝑑

ℎ̅̅̅̅ , 𝜎ln(dh), 𝑉
ℎ̅̅̅̅ , 𝜎ln(Vh), 

and 𝜌ℎ are automatically estimated by the free-layering model reading the solution 
of the previous round of inversion. The free-layering model respected the global 
characteristics of the first set of equivalent profiles (i.e., harmonic average shear 
wave velocity and halfspace parameters), but generating layering distributions with 
a different number of interfaces (i.e., layers).  

Figure 6.21 shows the schematic flow for the round-2 of inversions illustrating 
the concepts discussed in the previous sections. 
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Figure 6.21. Schematic flow of the second round of inversions. 
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This new population of 200000 profiles was considered for a combined misfit 
analysis, and the statistical test was applied to the entire set of 400000 possible 
solutions. 

Table A2 also summarizes the results of the second round of inversions and the 
misfit analysis on the “merged” sample of profiles. Forty-five (of seventy-one) sites 
show a reduction of the misfit after the addition of the free-layering condition 
(highlighted in green). Moreover, the second round of inversions of the remaining 
profiles led to a misfit almost similar to the one obtained after the first round of 
inversions, except for three sites that showed a considerable increase (highlighted 
in orange).  

The last column in Table A2 quantifies the improvement of the solution 
calculating the ratio of the minimum misfit after the second round of inversions and 
the minimum misfit of the first round of inversions. Surprisingly, the average value 
of these misfit ratios is equal to one. This observation has different interpretations.  

First, the second round inversions provides an essential reduction of the 
minimum misfit in case of inadequate layering adopted in the first round of 
inversions. The addition of the last degree of freedom to the inversion 
systematically avoids gross errors. 

Second, if the layering adopted in the first round of inversions is adequate, the 
solution obtained after the second round of inversions is almost identical. Many 
times, the obtained misfit increases due to the lower number of samples investigated 
during the second round of inversions. Indeed, the second round of inversions 
generates 200000 profiles covering situations with a different number of layers. For 
example, if the first round of inversions generated 200000 profiles with 5 layers, 
the second-round generated 100000 profiles with 5 layers, 25000 with 6 and 4 
layers, 12500 with 2, 3, 7, or 8 layers. If the global minimum is obtainable with 5 
layers, the second round of inversions has fewer profiles with that number of 
interfaces. 

Third, in case of particular layering distributions of the base-case (i.e., three 
sites with a misfit ratio higher than 1.5 in orange), the free-layering model is not 
capable of reproducing an adequate number of profiles with the same number of 
interfaces. This is due to the limitations of the non-homogeneous Poisson’s model 

that cannot be solved with the modifications discussed in Section 6.1.2.2. 
Each site is now associated with a statistical “picture” of best solutions. These 

pictures will be the fundamental ingredients for the development of the actual 
geostatistical model presented in Section 6.2 for surface wave tests. The Figures 
A93-163 show the results of the second round of inversions.  

Figure 6.22 shows the updated 𝜆-𝑧 linear trasformation law obtained with the 
refined sample of solutions. The 𝑎 and 𝑏 parameters of the linear regression slightly 
changed, as the goodness of fit (i.e., the adjusted R-Square). This small change 
demonstrates that the robustness of the linear transformation, and that the second 
round of inversions overall provided a better sample of equivalent results. This 
updated transformation law will be adopted for the layering generation of the 
geostatistical model presented in Section 6.2 for surface wave tests. 
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Figure 6.22. Determination of the wavelength-depth (i.e., 𝝀-𝒛) 
relationship after the second round of inversions. 

6.2    The geostatistical model applied to surface wave 
testing methods 

This Section deals with the presentation of the geostatistical model for the 
randomization of VS profiles obtained via surface wave testing methods. The 
primary goal of the model is to solve the usual limitations of the single-deterministic 
approaches for the solution of the inverse problem. In addition, it can be used 
independently for EUs and AVs that are identified and quantified in the first steps 
of the IQM method. Indeed, the model is included in the final management step that 
is independent of the type of uncertainty. However, the model’s parameters 

suggested from the PSWD include a simultaneous management of EUs and AVs, 
as a distinction in this case is practically unfeasible. 

The essential characteristics of the proposed geostatistical model are: 

 Calibration with a high-quality database of experimental 
measurements; 

 Separation of the random variables relating to space and time; 
 Site- and test-specific features: 

o Based on a rigorous identification and quantification of the EUs 
and AVs involved in the study; 

o Independent modeling (i.e., management, treatment) of the EUs 
and AVs specific and physically-based of the performed 
geophysical test; 

 Flexibility and user-friendliness. 
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The geostatistical model presented here for surface wave testing methods is 
based on the Polito Shear Wave velocity Database (PSWD). The PSWD was built 
up following a rigorous selection procedure of surface wave tests performed over 
the last 20 years by the Politecnico di Torino, as illustrated in Section 5.1. A 
systematic inversion of measured dispersion curves was conducted for each site, 
thus guaranteeing the quality of the resulting velocity profiles. The PSWD 
represents the fundamental ingredient for the development of the geostatistical 
model. The processing of the PSWD serves to constrain the experimental 
parameters to be used in the geostatistical randomization model. These empirically-
based parameters are the main topic of the next sections. 

The separation of the random variables space and time is central to the model 
proposed in this dissertation. The model does not randomize interval velocities (i.e., 
the shear wave velocities associated with a stack of a finite number of horizontal 
layers), but instead assumes a neat separation between the fundamental physical 
quantities time (i.e., travel time) and space (layer thickness). The inadequacies of 
the interval velocity scheme for the randomization were extensively demonstrated 
in Section 6.1.2.1 and will be discussed again in the following sections. The interval 
velocity is just an engineering schematization of the problem to be used a-posteriori 
in the Ground Response Analysis (GRA). Moreover, the use of the harmonic 
average (i.e., the cumulated travel times) allows for a better reproduction of the 
geophysical results. Indeed, it separately accounts for sources of EUs and AVs 
discussed in Section 4.2 and avoids introducing parasite (i.e., multiple) 
uncertainties. This double-counting of uncertainties is typical if the model 
randomizes the interval velocity and the depth of interfaces (i.e., layer thicknesses), 
as proposed by Toro (1995).  

The use and development of a new geostatistical model should be site- and test-
specific. From the user point of view, a rigorous identification and quantification of 
EUs and AVs at the site should always be performed. This initial analysis is 
essential to the generation of VS profiles compatible with the real scenario of the 
site. The user should investigate the case study accounting for the adopted test and 
the spatial scale of the problem and use site-specific model parameters (Li & 
Asimaki 2010, Rodriguez‐Marek et al. 2014, Teague & Cox 2016, Teague et al. 
2018). Similarly, the geostatistical model should be specific for a geophysical test 
(or class of similar methods). This allows reproducing realistic characteristics of 
the test regarding both EUs and AVs, although the model is independent of the type 
of uncertainty. 

Last but not least, the geostatistical model has to be flexible in case of further 
improvements (e.g., an extension of applicability to other geophysical tests, see 
Section 6.3). The “core” of the model remains fixed, whereas additional dedicated 

parts can be introduced to specify the problem. Also, the geostatistical model should 
be offered on a shared and accessible platform and/or included in the most popular 
software for GRAs.  
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6.2.1    Model calibration 

Section 6.1.3 described the equivalent solutions for each site. Indeed, after the 
second round of inversions, a homogeneous set of solutions for each site was 
obtained. The high quality is a result of the data in the PSWD and the application 
of a rigorous inversion method (i.e., the double-round process described in Section 
6.1).  

These VS profiles were then processed to constrain the empirically-based 
parameters of the geostatistical model. As discussed previously, the main difference 
between the geostatistical model and the free-layering randomization model 
presented in Section 6.1 is that the geostatistical model is constrained directly from 
the VS profiles obtained from the inversions. On the other hand, the randomization 
model calculates the necessary parameters from the solutions of the first step of 
inversions.  

It is important to remark that the parameters that will be provided in the 
following sections are only indicative of site-specific values. These parameter 
values can be used in case of insufficient information and/or data from the site under 
analysis. Indeed, a site-specific calibration of the model parameters should always 
be preferred. The following indications can be used as a comparison for 
experimental validation.  

Each statistical sample (i.e., site) was analyzed separating the column and the 
halfspace.  The model parameters of the column are the travel-times logarithmic 
standard deviation (i.e., 𝜎ln(ttS,z)) and the travel-times inter-layer correlation 
coefficient (i.e., 𝜌) for the adopted autoregressive model.  

The first model parameter of the halfspace is the correlation coefficient for the 
halfspace depth/velocity (i.e., 𝜌ℎ). In addition, the halfspace depth (i.e., 𝑑ℎ and 
𝜎ln(dh)) and halfspace velocity (i.e., 𝑉ℎ and 𝜎ln(Vh)) will be studied in conjunction 
with other variables of the problem.  

Note that these last characteristics represent an innovation compared to the 
Toro model (1995). Indeed, the geostatistical model shows new perspectives for the 
merging of the column and the halfspace. Also, 6.1.2.4 described the automatic 
method for the “smart” merger of these two semi-independent random variables. 

6.2.1.1    Travel-times logarithmic standard deviation  

Figure 6.23 shows the 𝜎ln(ttS,z)(𝑧) calculated for each site up to the depth with 
a minimum sample size of fifty equivalent profiles. Specifically, for each site in the 
PSWD, the logarithmic standard deviation 𝜎ln(ttS,z) is presented as a function of the 
depth 𝑧. The calculation stops at a depth where the statistical sample has less than 
50 profiles.  

Results show a typical range of values between 0.006 and 0.03. Also, the values 
can be approximated as constant with depth. Local peaks represent the influence of 
the position of the interfaces. However, the consistent global behavior is maintained 
and can be modeled as depth-independent. Note that a constant logarithmic standard 
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deviation is equivalent to a constant Coefficient Of Variation (i.e., 𝐶𝑂𝑉𝑡𝑡𝑆,𝑧), as 
presented in Figure 4.53. This means that the Gaussian standard deviation 𝜎(𝑡𝑡𝑆,𝑧) 
increases with depth, as the cumulated travel time increases. This observation is in 
line with the gradual loss of resolution of the surface wave tests with depth 
discussed in Section 4.2.2.2. 

The same calculations were performed for the interval velocity profiles, as a 
comparison. In this case, the logarithmic standard deviation of the shear wave 
velocity (i.e., 𝜎ln(VS)) is presented in Figure 6.24a, as illustrated also in Toro (1995) 
(Figure 4.55). The resulted values range from 0.02 to 0.2 and are in accordance with 
other evidence in the literature mainly discussed in Chapter 4 and presented in 
Figure 6.24b (Rodriguez‐Marek et al. 2014, Stewart et al. 2014a, Griffiths et al. 
2016b, Teague & Cox 2016, Passeri et al. 2019).  

As expected, the influence of the interfaces is predominant and different peaks 
are shown at various depths (note that the horizontal axis is in logarithmic scale). 
These peaks correspond to the depth of the interfaces, where a lognormal 
distribution cannot describe the interval velocity profile (Figure 6.10). This is 
further proof that the interval shear wave velocity can be modeled as lognormally 
distributed only within a layer, whereas the entire column does not respect this 
distribution.  

Note that the values in Figure 6.24b by Griffiths et al. 2016 and Teague and 
Cox 2016 are obtained after the processing of a set of equivalent profiles. Also these 
authors show unrealistic peaks in the calculated 𝜎ln(VS). On the other hand, the 
values illustrated by Rodriguez‐Marek et al. 2014 and Passeri et al. (2019) a come 
from the analysis of a set of experimental measures. Finally, Stewart et al. 2014 
suggests their parameters to overcome the large values proposed by Toro (1995). 

 

Figure 6.23. Logarithmic standard deviation calculated for the cumulated 
travel time for each site in the PSWD. 
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Figure 6.24. a) Logarithmic standard deviation calculated for the interval 
shear wave velocity profile for each site in the PSWD and b) same as a) 

including other results in the literature. Specifically, R.M. et al. 2014 
(Rodriguez-Marek et al. 2014), G. et al. 2016 (Griffiths et al. 2016), T&C 

2016 (Teague and Cox 2016), S. et al. 2014 (Stewart et al. 2014), P. et al. 2018 
(Passeri et al. 2019). 

6.2.1.2    Travel-times inter-layer correlation coefficient  

The adopted model for the inter-layer correlation of the travel time variable is 
a first-order auto-regressive model (AR1), as discussed in Section 6.1.2.3 for the 
free-layering model. This section presents the regression of the model parameters. 
It is useful to rewrite the equation of the inter-layer correlation coefficient presented 
in Section 4.3.2 as: 

 
𝜌(𝑧, 𝑡) = (1 − 𝜌𝑧(𝑧))𝜌𝑡(𝑡) + 𝜌𝑧(𝑧) (Eq. 4.34) 

 
where  

𝜌𝑧(𝑧) = {
𝜌200 [

𝑧 + 𝑧0
200 + 𝑧0

]
𝑏

for 𝑧 < 200 𝑚

𝜌200 for 𝑧 > 200 𝑚

(Eq. 4.35) 

 

𝜌𝑡(𝑡) = 𝜌0𝑒
[−
𝑡
Δ
] (Eq. 4.36) 

Figure 6.25 explains the geometrical meaning of the variables 𝑧 (i.e., mid-point 
depth) and 𝑡 (i.e., the distance between mid-points). 
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Figure 6.25. Geometrical variables included in the formulation for the 
proposed first-order auto-regressive model. 

The value of 𝑧0 was fixed to be equal to zero, as also proposed by Toro (1995). 
Hence, the model parameters to be estimated are 𝜌200, 𝑏, 𝜌0, and Δ with the 
following limitations: 

−1 < 𝜌200 < 1 
−1 < 𝜌0 < 1 

 
The regression was performed for each site (i.e., each statistical sample of 

equivalent profiles) using a Nonlinear Least Square approach and a Least Absolute 
Residual (i.e., LAR) robust method. This last choice was due to the large residuals 
expected during the regression.  

The nonlinear fitting algorithm was strongly dependent on the starting 
parameters. For this reason, a multiple regression was designed with a Monte Carlo 
approach. For each site, the search was conducted randomizing 1000 quadruplets 
of starting values in the regression. In the end, the result of the regression with the 
best adjusted R-Square (i.e., goodness of fit) value was selected for the specific site. 

Figure 6.26 shows the regression obtained for the Accumoli site as an example. 
The scattered blue dots represent the experimental inter-layer correlation 
coefficients (𝜌) computed for each equivalent profile in the sample (i.e., 12512). 
The inter-layer correlation coefficients are calculated between each couple of 
interfaces of the profile. Figure 6.26a shows the 𝑡 − 𝜌 space along with the best 
fitting surface. The same for Figure 6.26b and the 𝑧 − 𝜌 space. Figure 6.26c shows 
the 3D space with the scattered experimental values and the best fitting surface for 
Accumoli. In this case, the best fitting values are 𝜌200 = 0.7376;  𝑏 =
0.3474; 𝜌0 = 0.9250;  Δ = 4.2833.  
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Figure 6.26. Results of the nonlinear regression of the experimental inter-
layer travel-time correlation coefficients: a) 𝒕 − 𝝆 space, b) 𝒛 − 𝝆 space, and 

c) 3D space with the best fitting solution obtained for Accumoli. 

The regression was performed for the entire database. The following results are 
provided as mean values for each model parameter (i.e., after an inter-sites 
average). These values can be compared with the values shown in Figure 4.59a. 
The results are in accordance with the ones proposed by Toro (1995). However, the 
present work gives the same model parameters for different soil classes, differently 
from Toro (1995). A cluster analysis was performed before the regression, but the 
results gave no indications for a possible grouping of the solutions based on the soil 
class. For this reason, the parameters below can be considered generally valid. 

 
𝜌200 = 0.7660 
𝑏 = 0.2355 
𝜌0 = 0.6364 
Δ = 5.8532 
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6.2.1.3    Correlation coefficient for the halfspace depth/velocity  

The correlation between the halfspace depth (𝑑ℎ) and halfspace velocity (𝑉ℎ) 
was discussed and demonstrated in Section 6.1.2.4 (e.g., Figure 6.20 for Acquasanta 
Terme). The geostatistical model adopts the same first-order auto-regressive model 
illustrated for the free-layering randomization model.  

Figure 6.27 shows the standard normal random variables for halfspace depth 
and velocity for all sites and all equivalent profiles (i.e., 1722118 samples). These 
random variables were calculated in logarithmic values to respect their lognormal 
distribution. The different color scale represents the points’ density. The correlation 

coefficient was calculated between these two assembled (i.e., inter-site) random 
variables that are still clearly correlated. The value obtained is 

 
𝜌ℎ = 0.508 

 
Figure 6.27. Standard-normal plot for the estimation of the correlation 

coefficient between the halfspace depth and halfspace velocity. 

6.2.1.4    Halfspace depth and halfspace velocity 

The present section illustrates the analysis conducted on the random variables 
halfspace depth (𝑑ℎ) and halfspace velocity (𝑉ℎ). This section of the dissertation 
provides also simple relationships for the estimation of the logarithmic standard 
deviations of these two random variables (i.e., 𝜎ln(dh) and 𝜎ln(Vh)).  

The dependence of 𝜎ln(dh) on various variables of the problem was initially 
investigated. At the end of the analysis of sensitivity, the coefficient of variation of 
the maximum experimental wavelength (i.e., 𝐶𝑂𝑉𝜆𝑚𝑎𝑥) was identified as the 
controlling parameter. This variable is normally distributed (Lai et al. 2005) and 
can be easily computed from the Experimental Dispersion Curve (EDC) as  
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𝐶𝑂𝑉𝜆𝑚𝑎𝑥 =
𝜎𝜆𝑚𝑎𝑥
𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅

 

 
where 𝜎𝜆𝑚𝑎𝑥  is the standard deviation of the experimental point associated with the 
maximum wavelength, and 𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ is the mean maximum experimental wavelength. 
These two quantities can be calculated from the EDC. Indeed, 𝜎𝜆  is equal to the 
corresponding 

𝜎𝑉𝑅

𝑓
 as 𝜆 = 𝑉𝑅

𝑓
 and the frequency is assumed as a deterministic 

variable, and 𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ = max (
𝑉𝑅̅̅ ̅̅

𝑓
). In practice, the user can calculate the EDC as 𝑉𝑅̅̅ ̅ −

�̅� (see Figure 4.28b-c) and find these two parameters 𝜎𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅.  
The 𝐶𝑂𝑉𝜆𝑚𝑎𝑥  represents the experimental confidence resulted for the maximum 

obtained wavelength. We largely discussed in Chapter 4 the relationship between 
the wavelength and the maximum obtainable depth of the VS profile (e.g., pseudo-
depth). This topic was then expanded with the wavelength-depth transformations in 
Section 6.1.1. In practice, this first variable quantifies the experimental accuracy 
regarding the test resolution with depth. 

The logarithmic standard deviation of the halfspace depth is also dependent on 
the ratio between the mean halfspace depth (𝑑ℎ̅̅̅̅ ) and the mean maximum 
experimental wavelength 𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ termed 
 

𝜂 =
𝑑ℎ̅̅̅̅

𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅
 

 
This second parameter describes how much the modeled halfspace depth is 

close to the maximum experimental wavelength. Foti et al. (2018) and Table 4.2 
suggested values ranging between 1/2 and 1/3. However, each specific surface wave 
test has its peculiarities, and the chosen 𝜂 is also depending on other external 
conditions of the problem. 

Figure 6.28 shows the results of the regression (i.e., 𝐶𝑂𝑉𝜆𝑚𝑎𝑥 − 𝜎ln(dh)  plan, 

𝜂 − 𝜎ln(dh) plan, and 3D space). A simple linear interpolation was conducted, and 
the experimental values (same colors in the entire dissertation for each site) are 
presented along with the plane fitting function 

 
𝜎ln(dh) = 𝜁1 + 𝜁2𝜂 + 𝜁3𝐶𝑂𝑉𝜆𝑚𝑎𝑥 (Eq. 6.11) 

 
where 

𝜁1 = 0.0633 
𝜁2 = 0.0432 
𝜁3 = 0.0423 

 
Figure 6.28 shows that the uncertainty in the detection of the halfspace depth 

(𝜎ln(dh)) increases both with the uncertainty associated with the maximum 
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wavelength (𝐶𝑂𝑉𝜆𝑚𝑎𝑥) and the vicinity to the maximum experimental wavelength 
(𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅). This results were expected in light of the specific characteristics of the 
surface wave methods. The reader can imagine the 𝐶𝑂𝑉𝜆𝑚𝑎𝑥  as a visual resolution 
of the halfspace position as a lens diopters. A higher number of lens diopters means 
a “more problematic” patient. Similarly, the 𝜂 variable represents the viewing 
distance. A patient with a serious visual deficiency that want to push his skills to 
long distances is inevitably affected by large errors. 

 
Figure 6.28. Results of the analysis of sensitivity performed for the 

logarithmic standard deviation of the halfspace depth. a) 𝑪𝑶𝑽𝝀𝒎𝒂𝒙 − 𝝈𝐥𝐧(𝒅𝒉) 
space, b) 𝜼 − 𝝈𝐥𝐧(𝒅𝒉), and c) 3D space with the interpolated experimental 

values. 

The evaluation of the logarithmic standard deviation of the halfspace velocity 
followed the same procedure seen for the halfspace depth. In this case, the first most 
controlling parameter was found as the coefficient of variation of the phase velocity 
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associated with the longest wavelength (i.e., most of the times the highest phase 
velocity) 

 

𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥 =
𝜎𝑉𝑅|𝜆𝑚𝑎𝑥
𝑉𝑉𝑅|𝜆𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

 
This variable shows the accuracy associated with the velocity of the deepest 

part of the investigated soil volume. It is equivalent to 𝐶𝑂𝑉𝜆𝑚𝑎𝑥  as 𝜎𝑉𝑅|𝜆𝑚𝑎𝑥 =
𝜎𝜆𝑚𝑎𝑥  𝑓 and 𝑉𝑉𝑅|𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜆𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ 𝑓, then  

 
𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥 = 𝐶𝑂𝑉𝜆𝑚𝑎𝑥 

 
The two variables are equivalent as long as the frequency is treated as a 

determinist variable. However, the following observations are conducted for 
𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥  for clarity reasons. Indeed, it is easy to understand the dependency of 
 𝜎ln(Vh) by working with a coefficient of variation determined as a velocity. 

The second controlling variable for the estimation of the logarithmic standard 
deviation of the halfspace velocity is 𝜂, as seen for 𝜎ln(dh). 

Figure 6.29 shows the results of the linear regression (i.e., 𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥 −
 𝜎ln(Vh)  plan, 𝜂 −  𝜎ln(Vh) plan, and 3D space). The regression is well represented 
by a plane, i.e., a double first-order polinomial function as: 

 
 𝜎ln(Vh) = 𝜈1 + 𝜈2𝜂 + 𝜈3𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥 (Eq. 6.12) 

 
where 

𝜈1 = 0.0017 
𝜈2 = 0.2015 
𝜈3 = 0.0872 

 
The same observations for Figure 6.28 are valid also for Figure 6.29. As 

expected, the logarithmic standard deviation (i.e., accuracy) of the halfspace 
velocity increases with both 𝐶𝑂𝑉𝑉𝑅|𝜆𝑚𝑎𝑥  and 𝜂. 
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Figure 6.29. Results of the analysis of sensitivity performed for the 
logarithmic standard deviation of the halfspace velocity. a) 𝑪𝑶𝑽𝑽𝑹,𝒎𝒂𝒙 −
𝝈𝐥𝐧(𝑽𝒉) space, b) 𝜼 − 𝝈𝐥𝐧(𝑽𝒉), and c) 3D space with the interpolated 

experimental values. 

6.2.2    Summary and example application 

This last section summarizes the main characteristics of the geostatistical model 
proposed for surface wave testing methods. The summary provides a practical point 
of view of the model through an example of the application at the Accumoli site. 
This validation exercise evaluates the model’s capabilities in reproducing the 

known solution in Figure A93. In this section, it is clear that the model is capable 
to generate a statistical sample of VS profiles starting from the single-deterministic 
solution that is usually adopted in the analyses. Once more, the model is 
independent of the type and amount of uncertainties that are defined in the 
identification and quantification step. However, the model’s parameters provided 

are based on a joint analysis of EUs and AVs in surface wave testing methods. 
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First, the input data for the randomization model are: 

1. Experimental dispersion curve as frequency (𝑓), Rayleigh waves phase 
velocity (𝑉𝑅), and Rayleigh waves phase velocity standard deviation 
(𝜎𝑉𝑅); 

2. Single (i.e., deterministic) interval velocity VS profile (i.e., base-case 
profile); 

3. Poisson’s ratio (𝜈) profile associated with the base-case profile. 

Figure 6.30 shows the visual output of the model implemented in MATLAB® 
for the input parameters. Figure 6.30a presents the base-case VS profile in terms of 
interval and harmonic average profiles (i.e., the solution with the lowest misfit in 
Figure A93). Figure 6.30a also includes the EDC proposed as 𝑉𝑅 − 𝜆 as seen in 
Figure 4.28b. The 𝜆-𝑧 linear trasformation presented in 6.1.1 is applied to the EDC, 
and Figure 6.30a shows the transformed EDC that is in very good agreement with 
the VS,Z profile. Note that this comparison can be used for a first assessment of the 
goodness of the obtained solution. A transformed EDC that is not consistent with 
the VS,Z curve can be a sign of a biased inversion process. 

Figure 6.30b shows the Poisson’s ratio interval profile associated with the base-
case velocity profile. This aspect deserves some observations.  

 

Figure 6.30. Input parameters for the geostatistical model, a) velocity 
profiles and experimental dispersion curve and b) Poisson’s ratio profile 

associated with the base-case velocity profile (Accumoli). 

The Poisson’s ratio (𝜈) is a fundamental parameter for the solution of the 
surface wave propagation problem. It controls the VP/VS and VR/VS ratios and the 
global elastic response of the material (see 4.1.2 and Figure 4.9). The Poisson’s 

ratio is then essential in the inversion process for the calculation of the forward 
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geophysical problem (i.e., the Theoretical Dispersion Curve, TDC) as discussed in 
4.2.2.2 (Thomson 1950, Haskell 1953). Indeed, the TDC depends not only on the 
VS profile but also on the 𝜈 (or, alternatively, the VP profile). For these reasons, the 
geostatistical model should account also for the randomization of 𝜈 (or equivalently 
VP). This is mandatory to “close the loop” and avoids the generation of unrealistic 

(or impossible) scenarios.  Moreover, a rigorous global (i.e., VS, VP, and 𝜈) 
randomization guarantees a better agreement with the EDC. 

The observations above should lead to a question: “is the EDC a site 

signature?”. The answer is “partially” and depends on the applications. The EDC 
represents the site signature not only for the propagation of the shear waves. The 
inclusion of a further variable that completes the modeling of the elastic response 
leads to contamination in the definitions. If we are dealing with GRAs, the 1D 
approach works under the fundamental hypothesis of only shear waves traveling 
into the model. Then, the EDC cannot be considered a rigorous site signature in 
case of 1D models, as it inherently includes the presence of compressional waves.  

For these reasons, the evaluation of the adherence (i.e., goodness) of the 
randomized VS profiles with the site signature should be performed by looking at 
the Theoretical Transfer Functions (TTFs). The TTF depends only on the VS profile 
(i.e., the unit weighs and the damping values can be fixed along the entire profile 
to have a rigorous comparison). The evaluation performed on the EDC (Griffiths et 
al. 2016a, Griffiths et al. 2016b, Teague & Cox 2016, Teague et al. 2018) is 
something forced because of the presence of a further depending variable. However, 
an assessment based on the respect of the EDC is always suggested (Foti et al. 
2009). At the same time, the reader should have clarified that differences in the 
TDC-EDC can be due not only on an inadequate randomization model but also on 
a wrong choice of the 𝑣 (or equivalently VP) profile.  

The geostatistical model uses the Poisson’s ratio profile of the base-case 
(Figure 6.30b) to calculate the interval velocity VP profile. The VP profile is a 
physically-based parameter that can be decomposed in the time and space variables 
(i.e., VP,Z) for the randomization. On the other hand, the interval Poisson’s ratio 

profile does not allow the calculation of a continuous (i.e., cumulated) equivalent 
curve. For these reasons, the geostatistical model is equipped with a further specific 
part that controls the generation of realistic VS-VP-𝜈. This operation is conducted 
following the flow shown in Figure 6.31.  

First, the time variable 𝑡𝑡𝑃,𝑧 is calculated from the VP,Z function of the base-
case profile (i.e., no randomization). Then, the model assembles the VP interval 
velocity for each generated layering distribution. The check is performed by 
calculating the Poisson’s ratio associated with the VS independently randomized 
and the VP interval velocity (i.e., not randomized). This Poisson’s ratio is an interval 

value, and it is compared to a user-defined acceptance area. This last operation is 
essential for many applications of surface wave methods. We discussed in Section 
4.2.2.2 that the consequences of an incorrect choice of the Poisson’s ratio can be 

very relevant (Brown et al. 2002, Foti & Strobbia 2002). In particular, Foti & 
Strobbia (2002) concluded that the position of the water-table is a crucial 



 

223 
 

information to be accounted for during the inversion. This a-priori information 
should be respected in the randomization of the profiles. The user can define 
physical boundaries for the generated Poisson’s ratios in order to preserve the 

assumptions on the saturated conditions. If the calculated Poisson’s ratio is within 

the acceptance limits, the VP is not modified. Contrarily, if the calculated Poisson’s 

ratio exceeds the acceptance limits, the 𝜈𝑙𝑖𝑚 is used and the VP is recalculated 
adopting this value. 

 

Figure 6.31. Schematic flow for the generation of consistent values of 
compressional wave velocities and Poisson’s ratios. 

At this point, all the essential characteristics of the model were discussed and 
are listed below: 

1. Unlimited number of generated profiles; 
2. Layering randomization (i.e., space variable) of the column: 

a. Automatic regression of the non-homogeneous Poisson model 
parameters from the base-case VS profile; 

b. Application of user-defined restriction boundaries for the non-
homogeneous Poisson model layering randomization; 

c. Application of thickness-limiting boundaries for the non-
homogeneous Poisson model layering randomization based on the 
experimental resolution with depth; 
 

3. Time randomization of the column: 
a. Application of user-defined restriction boundaries for the 

randomization of cumulated travel times 𝑡𝑡𝑆,𝑧 in terms of number of 
logarithmic standard deviations away from the logarithmic mean 
value; 

b. A-posteriori control conducted on the generated elastic parameters 
(i.e., VP/VS  and Poisson’s ratio); 
 

4. Halfspace: 
a. Halfspace depth/velocity independent randomization; 
b. Halfspace depth/velocity correlation structure and “smart” merger 

of the column layering with the halfspace depth; 
 

5. User-defined or regression-based selection of: 
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a. 𝜎ln(ttS,z) 
b. 𝜌 
c. 𝜌ℎ 
d. 𝜎ln(dh) 
e. 𝜎ln(Vh) 

The geostatistical model implemented in the actual version has no upper 
boundaries for the number of generated profiles. This is due to the continuous 
refinement operations of the code structure that is not time- or memory-consuming. 

The geostatistical model is designed to be as independent as possible. The user 
has the initial control of the randomization, but each operation is conducted in 
automatic (if possible). One example is the regression of the model parameters for 
the non-homogeneous Poisson’s model (i.e., 𝑐1, 𝑐2 and 𝑐3) presented in Figure 
6.32a, 

At the same time, the model automatically limits the layering generations as 
discussed in 6.1.2.2 (see Figure 6.15) according to the user’s choice. This operation 

is conducted with an iterative process, and the result is illustrated in Figure 6.32a 
for the Accumoli’s example. Each point in Figure 6.32a represents a generated 
value of occurrence rate within the user-defined boundaries. The different curves 
(i.e., exponential law) are associated with a different number of layers generated by 
the model. 

The layering generation is then limited according to the test resolution with 
depth and the observations made in 6.1.2.2 (see Figure 6.17). Figure 6.32b shows 
the generated points that respect the prescribed minimum thickness that is 
automatically calculated by a regression of the experimental data. Also, the user 
can select the minimum thickness of the first layer as 1/2 or 1/3 of the minimum 
experimental wavelength (in this case equal to 1.25 m). 
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Figure 6.32. Layering generation for the example of Accumoli, a) 
occurrence rate of the base-case profile fitted and generated for the 

randomized profiles and b) minimum thickness limitation according to the 
experimental resolution with depth. 

Once the layering distributions have been generated, the time randomization of 
the column is performed. The chosen parameters for this example are 𝜎ln(ttS,z) =
0.01, the inter-layer correlation coefficient 𝜌 defined in 6.2.1.2 (i.e., 𝜌200 =
0.7660, 𝑏 = 0.2355, 𝜌0 = 0.6364, and Δ = 5.8532), and time-boundaries set to 
+/- 2 logarithmic standard deviations. Figure 6.33 shows the results of the 
randomization for Accumoli in terms of cumulated travel-times, harmonic average 
profiles, and Poisson’s ratios (i.e., entire column randomization). Figure 6.33a-b 
confirms the accordance of the randomized profiles with the physical fundamental 
quantities of the problem. In particular, Figure 6.33b demonstrates that the VS,Z  and 
VP,Z  values calculated at the bottom of each generated layer are included in a 
restricted area. Figure 6.33c shows that the generated Poisson’s ratios at the 

midpoint of each randomized layer are within the user-defined acceptance area.  
Figures 6.33d-e propose an a-posteriori check of the generated profiles. In 

particular, Figure 6.33d shows a 3D histogram plot obtained for the random variable 
VS,Z, whereas Figure 6.33e for the random variable 𝜈. Both Figures demonstrate that 
the obtained distributions can be still seen as lognormal and do not show unusual 
shapes. 
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Figure 6.33. Results of the randomization for Accumoli. a) Randomized 
cumulated travel-times (for P- and S-waves), b) randomized harmonic 

average profiles (for P- and S-waves), c) generated Poisson’s ratios, d) 3D 
histogram for the random variable VS,Z, and e) 3D histogram for the random 

variable Poisson’s ratio. 

Figure 6.33b shows the benefit of the independent randomization of the space 
and time. In the case of randomization of the interval velocity (i.e., Toro model), 
this agreement cannot be guaranteed. For example, Figure 6.34 shows the 
randomization of the Accumoli base-case with 𝜎ln(ttS,z) = 0. This means that only 
the layering is randomized and the uncertainty in the velocity is discarded both with 
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the Toro (1995) model and the new geostatistical model. The resulted 
randomization should respect this assumption by modeling only the spatial variable. 

The randomization obtained with the Toro model is entirely unrealistic, as the 
model can generate layers with a velocity only equal to the velocity of the three 
layers of the base-case (i.e., 197 m/s, 216 m/s, 328 m/s, and 436 m/s). This is due 
to the use of the interval velocity profile, instead of the continuous harmonic 
average profile. Consequently, the VS,Z profiles are out of the base-case profile, 
leading to altered dynamic behaviors, as shown by Griffiths et al. (2016b), Teague 
& Cox (2016), and Teague et al. (2018). Contrarily, the proposed geostatistical 
model gives results in excellent agreement with the base-case. In this case, only the 
uncertainty in the layering is introduced and modeled with different layering 
distributions. However, the variables separation allows avoiding the presence of the 
parasite uncertainties that perturb the Toro’s solution. 

 

 

Figure 6.34. Example of randomization and comparison between the 
Toro (1995) model and the new geostatistical model proposed in the present 

Chapter. The comparison is conducted by introducing the uncertainty only in 
the spatial variable. 

Figure 6.35 illustrates the randomization of the base-case profile. The 
randomization is performed by adopting the equations presented in 6.2.1.4 for 
𝜎ln(dh) and 𝜎ln(Vh). In addition, the correlation coefficient for the halfspace 

depth/velocity is assumed as 𝜌ℎ = 0.508. 
Figure 6.35a shows the interval velocity profiles after the assembly of the 

layering (i.e., space) and time variables. Also, the velocity of the halfspace is 
merged into the interval velocity VS and VP profile as the last interface. Figure 6.35b 
shows the semi-independent randomization obtained exclusively for the halfspace 
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regarding velocity and depth (the colors illustrate the points’ density, as for Figure 
6.27). As already discussed, these values are merged into the column preserving the 
layering (see Section 6.1.2.4).  

 

Figure 6.35. Complete Accumoli profile randomization. 

The verification of the goodness of randomization is illustrated in Figure 6.36 
in terms of theoretical dispersion curves (Figure 6.36a) and theoretical transfer 
functions (Figure 6.36b). As discussed above, the comparison shown in Figure 
6.36a is not entirely adequate, as the TDC also depends on the Poisson’s ratio (or 
equivalently VP). In any case, the generated profiles are associated with consistent 
TDCs with respect with the TDC of the base-case profile. Figure 6.36a shows a 
large improvement if compared with the solutions obtained by the Toro model in 
Teague & Cox (2016), Griffiths et al. (2016a), and Teague et al. (2018). Only small 
differences are identifiable at high frequencies due to the generation of thicker, 
shallower layers that should have higher velocity to be consistent with the VS,Z 
profile. 

Figure 6.36b shows the excellent agreement between the TTFs of the generated 
profiles and the TTF of the base-case profile. In this regard, the geostatistical model 
respects the site signature in terms of both amplitudes and resonant frequencies. 
Figure 6.36b also shows (i.e., gray background) the envelope of the TTFs calculated 
from the equivalent profiles in Figure A93. It is clear that the geostatistical model 
reproduces well the variabilities obtained after the inversion process.  
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Figure 6.36. Validation of the randomization performed for the site of 
Accumoli, a) comparison as theoretical dispersion curves, and b) comparison 

as theoretical transfer functions. 

6.3 Prototype application to Down-Hole testing methods 

The present Section includes the extension of the geostatistical model to Down-
Hole tests. This application represents a step-forward and demonstrates the 
flexibility of the proposed model discussed throughout the dissertation. However, 
the lack of a dedicated database prevents the calibration of the geostatistical model 
for these types of tests. As for the application to surface wave methods, also in this 
case the model can manage indistinctly EUs or AVs, generating an experimentally-
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consistent sample of equivalent statistical profiles. However, these types of tests 
show a predominant contribution of the EUs in the quantification step. For this 
reason, the possible model calibration could address only for this contribution. 

The proposed geostatistical model discussed in Section 6.2 can be applied for 
DH tests with only minor changes. From a theoretical point of view, the separation 
of the random variables characterizing space and time is most appropriate for this 
type of geophysical tests. Indeed, for DH tests the raw experimental results of the 
test are already obtained as times and lengths. The basic idea is then even more 
straightforward, as in this type of geophysical tests the analyst experimentally 
measures exactly spaces and times separately. Three observations should be 
discussed moving from the surface wave testing methods forward to DH tests. The 
following paragraphs try to answer the central questions of this evolution. 

The first regards the application of the thickness-limiting boundaries for the 
non-homogeneous Poisson model. For surface wave testing methods, the layering 
randomization was based on the experimental resolution of the test with depth. The 
resolution with depth was obtained by analyzing the distances between 
experimental “transformed” wavelengths. The distance between two experimental 
points was assumed as the minimum thickness at a depth equal to the midpoint. For 
the DH test, the user can assume a minimum thickness dependent on the frequency 
of spatial measures with the depth of the experimental test (e.g., one acquisition 
every meter, then a minimum thickness of 2 m).  

The second observation regards the user-defined parameters of the model both 
for the statistical distributions of shear wave velocity (i.e., space and time) and for 
the correlation model. For the geostatistical model in Section 6.2, the parameters 
were based on the results for the PSWD database; then even a non-expert user could 
have used the proposed database formulations. For DH applications, the user has to 
assume each parameter based on his/her knowledge of the test conditions and/or 
other a-priori information. The correlation parameters can be used from the Toro’s 

(actually for interval velocities) or the ones obtained for the SWM (for travel times). 
This is due to the lack of enough information in the PSWD for this type of tests. 
The extension of the database will surely give the chance for a precise calibration 
of the model both for standard deviations and correlation coefficients. 

The third observation deals with the bedrock depth-bedrock velocity correlation 
structure. This innovation was included in the geostatistical model because of the 
natural increase of velocity at low frequencies in the EDC. The same idea can be 
proposed for DH test applications, even if a more specific analysis is encouraged. 

A preliminary application is proposed for the site of Acquasanta Terme that is 
included in the PSWD. The input parameters of the randomization are the 
deterministic VS profile and the experimentally measured travel times with depth. 
Figure 6.37 shows the base-case solution and the experimental cumulated travel 
times of the DH test. Note that these travel times are automatically picked with a 
prototype method that is under development at the Politecnico di Torino. This 
algorithm is still under validation but is capable of estimating a standard deviation 
of the travel times for each depth. These standard deviations are used in this 
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application as an example; more research is needed in this regard for the estimation 
of experimental EUs and AVs associated with DH tests. 

The randomization of the following 1000 profiles is performed with the 
following model parameters: 

- 𝑡𝑡𝑆,𝑧̅̅ ̅̅ ̅ equal to the mean value automatically picked and 𝜎ln(𝑡𝑡𝑆,𝑧) = 0.02 
(assumed, and time-limiting threshold after the randomization set at +/- 
2𝜎ln(𝑡𝑡𝑆,𝑧)); 

- 𝜌 as prescribed in Toro (1995) for the specific soil class; 
- 𝑑ℎ̅̅̅̅  equal to the mean value of the base-case profile and 𝜎ln(𝑑ℎ) = 0.02 

(assumed); 
- 𝑉ℎ̅̅̅̅  equal to the mean value of the base-case profile and 𝜎ln(𝑉ℎ) = 0.02 

(assumed); 
- 𝜌ℎ = 0.508 as found for the surface wave testing methods; 
- Thickness-limiting boundaries for the Non-Homogeneous Poisson model 

set at +/- 50% of the base-case (assumed). 

 

Figure 6.37. Base-case profile for the application of the geostatistical 
model to the DH test in Acquasanta Terme. a) Shear wave velocity base-case 
interval profile and b) cumulated travel times with experimental standard 

deviations compared to the cumulated travel times calculated from the base-
case interval velocity profile. 

Figure 6.38 shows the results of the randomization performed with the 
prototype geostatistical model applied to the solution of the DH test. The result 
presents an excellent agreement of the TTFs of the randomized profiles, with 
respect to the base-case. However, this prototype application needs further research 
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to be considered applicable in scientific and professional analyses. In particular, an 
in-depth and rigorous calibration with experimental results from DH tests in the 
PSWD is necessary to provide a range of suggested values for the model 
parameters. 

 

Figure 6.38. Randomization results obtained from the DH test performed 
in Acquasanta Terme. a) Interval velocity profiles reassembled and b) 

Theoretical Transfer Functions. 
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Chapter 7                                    
Case study: Mirandola 

This Chapter presents two validations of the geostatistical model described in 
Chapter 6 and is organized in three different parts. Section 7.1 briefly describes the 
blind test conducted at Mirandola during the InterPACIFIC project, for which 
multiple VS profiles from surface wave and invasive methods are available. In 
Section 7.2, Ground Response Analyses (GRAs) are conducted at the site of 
Mirandola using the geostatistical model calibrated for surface wave methods for 
the generation of the statistical sample of equivalent profiles. The geostatistical 
model is applied to a deterministic base-case solution to simultaneously reproduce 
the Epistemic Uncertainties (EUs) and Aleatory Variabilities (AVs) empirically 
estimated by the different teams of the InterPACIFIC project. Also for this 
application, the identification and quantification of the two main contributes do not 
influence the results of the randomization. To isolate the effects of the VS profile 
on the results of the GRA, all other parameters (see Section 3.1.2) are kept constant. 
The results of the geostatistical model are compared to the procedures prescribed 
by EPRI (2013) (see Section 4.3) both for the viscoelastic and nonlinear response. 
Section 7.2.3 compares the mean and standard deviations of the obtained responses 
in light of a hazard-consistent evaluation of the ground motion at the site (see 
Chapter 2). Finally, Section 7.3 shows the preliminary results of the geostatistical 
model applied to a Down-Hole (DH) test performed in Mirandola. In this case, the 
lack of a dedicated database prevented a rigorous calibration of the geostatistical 
model. However, the model is able to simultaneously reproduce the EUs and AVs, 
generating a sample of statistically equivalent profiles from a single deterministic 
base-case solution.  

7.1    The InterPACIFIC project and Mirandola 

The InterPACIFIC (Inter-comparison of methods for site PArameter and 
veloCIty proFIle Characterization) project aimed at evaluating the reliability, 
accuracy, and variability of different geophysical methods (i.e., surface waves and 
invasive) in estimating the VS profiles (Garofalo et al. 2016a, b). Several teams of 
engineers, geophysicists and seismologists were invited to take part in the project. 
A list of the participants for the surface wave methods is provided in Table 7.1 
along with the team’s label and the country of origin. In addition, also invasive tests 
(i.e., Down-Hole, Cross-Hole, PS suspension logging, and Seismic Dilatometer) 
were performed during the project. 

Three sites with different subsoil conditions were chosen to be part of the blind 
test: a soft-soil class (i.e., Mirandola), a stiff-soil class (i.e., Grenoble) and a hard-
rock class (i.e., Cadarache) (Figure 7.1). This Chapter will deal only with the site 
of Mirandola. The stratigraphy is composed of alternating sequences of soft silty-
clay layers and sandy horizons (VS,30 between 180 and 360 m/s, Class D for NEHRP 
or Class C for the EC8 regulations) over approximately the top 100 m. Below these 
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successions, the geological substratum consists of marine and transitional deposits 
of lower-middle Pleistocene age.  

Table 7.1. List of participants of the InterPACIFIC project for the 
surface wave methods (after Garofalo et al. 2016b). 

 

 
Figure 7.1. Location of the three sites analyzed during the InterPACIFIC 

project (after Garofalo et al. 2016b). 
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Figure 7.2. Stratigraphy of the Mirandola site (after Garofalo et al. 
2016a). 

For surface waves, the participants of the project analyzed a set of common 
data (i.e., common acquisition step) using their preferred strategies for the 
processing and inversion steps (see Section 4.2.2.2). Both active (i.e., from MASW 
tests) and passive (i.e., from AVA tests) surface wave data (see Section 4.2.2.2) 
were collected with arrays close to the boreholes, to obtain a significant comparison 
between the surface wave and the invasive methods (i.e., inter-method comparison). 
In order to ensure that each participant has performed a blind test, the same surface 
wave experimental datasets were provided to all teams with very little information 
about the sites. 

Furthermore, several participants performed and interpreted invasive 
measurements of shear and compression wave velocities. At least two holes were 
available to perform invasive measurements. Several companies have repeated 
measurements in order to assess repeatability with different acquisition strategies 
and equipment.   

Garofalo et al. (2016a, b) report the entire set of VS profiles from both surface 
wave and invasive tests at Mirandola. The locations of the MASW and AVA’s 

acquisitions, the boreholes, and the surface wave dataset characteristics are also 
reported in Figure 7.3. The reader can refer to these companion papers for more 
details regarding the sites and analysis results. 
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Figure 7.3. Locations and characteristics of the surface wave acquisitions 
performed at Mirandola (after Garofalo et al. 2016b) and position of the 

boreholes. 

7.2    Surface wave testing methods 

This section deals exclusively with surface wave methods. All teams at 
Mirandola processed the fundamental mode of the Rayleigh waves dispersion 
curve. Some teams have also analyzed higher or effective modes, while others 
included Love wave analysis (Table 7.2). Another popular choice was the 
combination of the recovered information from both active and passive seismic 
data, as also reported in Table 7.2 (see Section 4.2.2.2).  
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Table 7.2. Processing and inversion strategies adopted by each team at 
Mirandola (after Garofalo et al. 2016b). 

 
Only a subset of VS profiles that clearly identified a marked impedance contrast 

at depth are considered for GRAs and extensively presented in Passeri et al. (2019). 
This selection criterion resulted in 12 profiles from surface wave tests. 

The Experimental Dispersion Curves (EDCs) corresponding to the selected 
subset of test results are shown in Figure 7.4. The legend also shows the 
identification letters used in Passeri et al. (2019) (e.g., MUV stands for MU, as 
reported in Garofalo et al. 2016a, b, and V for the profile V, as reported in Passeri 
et al. (2019)). Most analysts estimated the dispersion of Rayleigh waves within a 
frequency band of about 1-20 Hz. Dispersion estimates in terms of Coefficients of 
Variation (i.e., COVs) typically range between 5% and 10% (Garofalo et al. 2016b). 
The variability shows a rapid increase at higher and lower frequencies. For the high-
frequency band, this observation is likely associated with lateral variability in the 
deep part of the deposit. In the low-frequency band, the resolvable frequency limits 
are due to the geometry of the array and the quality of the data. The experimental 
frequency band is wider for the teams who combined active and passive data, while 
it is slightly narrower for who relied solely on active or passive data.  

Note that the EDC obtained by the University of Texas at Austin (i.e., UT, U) 
is highlighted in black dots and is shown along with the standard deviation of the 
phase velocity (i.e., 𝜎𝑉𝑅 , see Section 5.2) (Griffiths et al. 2016a). The solution of 
this team was chosen as base-case for the application of the geostatistical model 
described in Section 6.2. 
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Figure 7.4. Experimental Dispersion Curves obtained by different teams 
at the site of Mirandola. 

Figure 7.5 shows the selected VS profiles from surface wave tests for GRAs as 
interval (Figure 7.5a) and harmonic average (Figure 7.5b) profiles (see 4.1). The 
base-case profile from UT is highlighted in thick black. None of the analysts of the 
surface wave tests identified the thin, low-velocity soil layer at about 75 m that is 
reported by the invasive profiles detailed in Garofalo et al. (2016a). However, the 
surface wave profiles do not present velocity spikes, as is the case for most of the 
invasive profiles. Moreover, the surface wave profiles are generally in intra-method 
(i.e., within the class of geophysical method, surface waves or invasive) agreement, 
as extensively discussed in Garofalo et al. (2016b).  

Figure 7.5 also shows a VS profile obtained by Laurenzano et al. (2017) in a 
work separate from the InterPACIFIC project. The VS profile shown corresponds 
to the best match of the small-strain, linear viscoelastic Theoretical Transfer 
Function (TTF) with the small-strain Empirical Transfer Function (ETF) (Baise et 
al. 2011) (see the introduction to Chapter 3). Laurenzano et al. (2017) processed a 
3-sensor (surface, 31 m depth, and 126 m depth) down-hole array data at Mirandola. 
The ETF (called the  ‘experimental interferometric function’ by Laurenzano et al. 

2017) was obtained by processing 25-recorded seismic events in the North-East part 
of Italy between June 2014 and October 2015, with magnitudes ranging between 
2.1 and 3.7 and hypocentral depths ranging from 5.2 km and 57.2 km. The authors 
considered the VS profile resulting from a CH test as a reference and they build up 
a set of compatible constant velocity layers models, with layer thickness determined 
from the stratigraphic profile and VS values varying within arbitrary wide bounds. 
For each model, Laurenzano et al. (2017) then computed the TTF and compared it 
with the experimental one. Further details about the signal processing and specific 
procedures are discussed in Laurenzano et al. (2017). This VS soil profile has the 
best match with the ETF site signature; hence, it will be referred to as ‘TTF-best’ 
and represents an essential independent reference.  
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The VS profiles in Figure 7.5 indicate that there is generally a good agreement 
between the profiles obtained from surface wave tests and the TTF-best soil profile. 
However, the TTF-best profile by Laurenzano et al. (2017) shows a velocity 
inversion at shallow depths that is not identified by any surface wave test. 

 

Figure 7.5. Profiles at Mirandola selected for the Ground Response 
Analyses, a) interval velocity profiles, and b) harmonic average profiles. 

At this point, the reader should imagine possessing only the solution obtained 
by the UT (EDC and VS profile), the base-case. So far, both in the scientific 
community and engineering practice for critical facilities, the management of EUs 
and AVs was conducted with the procedures explained in Section 4.3.  

The first method prescribes to create profiles (i.e., upper/lower range profiles) 
shifted by a value of VS logarithmic standard deviation (i.e., assuming an inter-layer 
perfect correlation, see Section 4.3.1). In this study, the minimum value of 0.25 
prescribed by EPRI (2013) is applied to the UT’s profile (Passeri et al. 2019). Figure 
7.6a shows that the upper/lower range interval velocity profiles generally bracket 
the values for the surface wave VS experimental profiles. However, Figure 7.6b 
illustrates the dramatic alteration of the harmonic average profiles obtained by the 
upper/lower range profiles. The essential change is clear, for example, by looking 
at the VS,30 values. The base-case (i.e., UT’s) profile has a VS,30 = 213 m/s, the lower 
range profile has a VS,30 = 166 m/s (i.e., even different soil class for NEHRP and 
EC8), and the upper range profile has a VS,30 = 274 m/s. 

Figure 7.6 also shows 1000 profiles obtained by the standard Toro model 
(TM95) around the UT’s base-case profile. This method is prescribed by EPRI 
(2013) for the management of AVs in shear wave velocity profiles (see Section 
4.3.2). In the present study, the logarithmic standard deviation of the base-case 
profile is assumed as suggested by Stewart et al. (2014a) (see Figure 6.24). The 
Poisson’s model parameters are assumed equal to the ones suggested by Toro, as 

for the parameters of the inter-layer correlation model. The lognormal distribution 
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of the halfspace depth is included in the randomization with a logarithmic standard 
deviation equal to 0.1. Note that this value is in agreement with the statistical 
analyses performed in Passeri et al. (2019) for Mirandola. In this case, both the 
interval velocity and harmonic average profiles are entirely out of range, compared 
to the experimental results. Note that this is true even if the reduced 𝜎ln(VS) proposed 
by Stewart et al. (2014a) is adopted (an almost doubled value is suggested in Toro 
(1995)). This is due to the randomization of the interval velocities and the 
unavoidable parasite uncertainties introduced by this type of randomization (Li & 
Asimaki 2010, Griffiths et al. 2016b, Teague & Cox 2016, Teague et al. 2018). 

The last set of 1000 profiles presented in Figure 7.6 is obtained from the new 
geostatistical model around the UT’s solution (in gray). These randomizations are 

based on the harmonic averaged velocity, VS,Z, as discussed in Section 6. Also in 
this case, the model is adopted in the “blind” form (i.e., assuming suggested and 

non-site-specific model parameters, as described in Section 6.2.1). This choice is 
made to replicate the typical applications of the randomization models in 
engineering practice, where the user typically does not have the data of different 
and repeated measurements at the site. Moreover, this choice assures consistency 
with the parameters adopted for the Toro model for a rigorous comparison. The 
results of this second randomization excellently reproduce the EUs and AVs 
experimentally estimated at Mirandola, especially as harmonic average profiles 
(Figure 7.6b). The randomized profiles show VS,Z functions with a controlled 
deviation from the base-case.  

Note that the term “controlled” is used to say that the user can increase or 

decrease the uncertainties. The variability of the obtained randomized profiles can 
be calibrated (see Section 6.2.1), but the geostatistical model always assures a 
fundamental consistency that does not exist for the TM95. This is in agreement with 
the observations presented throughout the dissertation. The geostatistical model is 
able to randomize the VS profiles independently of the nature of the uncertainties. 
For these reasons, the identification and quantification steps show their crucial role 
before the management step in the IQM methodology. However, note that the 
analyses conducted with the parameters based on the PSWD simultaneously 
manage EUs and AVs. 
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Figure 7.6. Profiles at Mirandola selected for the Ground Response 
Analyses including the upper/lower range profiles, the profiles generated by 
the Toro model, and the profiles generated by the new geostatistical model as 

a) interval velocity profiles, and b) harmonic average profiles. 

Further confirmation of the problems with both the methods proposed in EPRI 
(2013) is given in Figure 7.7. This Figure shows the comparison of the Theoretical 
Dispersion Curves (TDCs) with the EDCs also shown in Figure 7.4. Note that the 
dispersion curves corresponding to the VS profile randomized following the EPRI 
randomization do not match the EDC. This is a similar problem to the mismatch of 
the harmonic average velocity shown in Figure 7.6b, as expected. Indeed, the 
relationship between the VS,Z, and the VR was discussed and demonstrated in 
Section 6.1.1. These two functions differ for a simple linear transformation. For this 
reason, the inadequacy of using the upper/lower range profiles and the profiles from 
the TM95 randomization also results in problems matching the TDCs. At the same 
time, the TDC calculated from the profiles randomized with the new geostatistical 
model are in excellent agreement with the EDC (i.e., site signature) of the base-case 
(i.e., UT’s). 



 

242 
 

 

Figure 7.7. Experimental Dispersion Curves obtained by different teams 
at the site of Mirandola and Theoretical Dispersion Curves calculated from 
the set of profiles available for the subsequent Ground Response Analyses, 
included the solution obtained from the work by Laurenzano et al. (2017). 

At this point of the study, five classes of profiles are available for the GRAs 
(Figure 7.6): 

1. 12 experimental profiles from the different participants of the InterPACIFIC 
project obtained using the surface wave dataset; 

2. 1 TTF-best profile obtained by Laurenzano et al. (2017) that primarily 
respects the experimental information of the ETF; 

3. 2 upper/lower range profiles obtained from the EPRI (2013) provisions 
around the UT’s solution for the management of the EUs; 

4. 1000 profiles randomized around the UT’s solution adopting the TM95 and 

standard (i.e., non-site-specific) model parameters (suggested by EPRI for 
the management of AVs); 

5. 1000 profiles randomized around the UT’s solution adopting the new 

geostatistical model and standard (i.e., non-site-specific) model parameters. 

Frequency-domain GRAs are conducted using SHAKEVT (Lasley et al. 2014), 
which has been previously verified against DEEPSOIL (Hashash et al. 2015) and 
STRATA (Kottke & Rathje 2009). Both Linear visco-Elastic (LE) and EQuivalent 
Linear (EQL) analyses are conducted (see 3.1.2.4).  

For the LE analyses, only the suggested Darendeli’s small strain damping (Dmin, 
3.1.2.6) is used. Viscoelastic behavior is also assigned to the halfspace, with 
damping set at 0.5%. The density of each layer is estimated considering the 
stratigraphy.  
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The EQL analyses are performed using a shear strain ratio of 0.65. The modulus 
reduction and damping curves of Darendeli (2001) are used (see Section 3.1.2.2) 
using the soil information from the borehole logs in Mirandola. Additional details 
regarding the IMs are given in the following. The LE analyses are first used to 
evaluate the linear response of each VS profile. This response is evaluated using the 
TTFs, as also illustrated in Figure 6.4 and Figures A93-163. EQL analyses are then 
performed, and results are given in terms of the 5% damped pseudo-Spectral 
Acceleration (SA) Response Spectra (RS) and Amplification Functions (AFs) (i.e., 
the ratio of the pseudo-spectral acceleration at the surface to the pseudo-spectral 
acceleration of the IM).  

When performing GRAs and evaluating the effects of soil nonlinearity, it is 
essential to account for the effects of input ground motion characteristics, as 
discussed in 3.1.2.3. In order to represent ground motions with varying intensity, 
duration and frequency content, two suites of ground motions selected and scaled 
by Griffiths et al. (2016b) have been used. These include one suite for a target 
moment magnitude (MW) earthquake of 6.0 and another for MW = 7.5. The 
procedures used to obtain the input ground motions for an MW = 7.5 earthquake are 
explained in detail below. Similar procedures were used for the MW = 6.0 ground 
motions.  

A target spectrum for the selection of input motions was determined from the 
ground motion prediction equation of Boore & Atkinson (2008), assuming an MW 
= 7.5 earthquake, a Joyner-Boore distance of 15 km, and an average VS in the top 
30 m (VS,30) of 760 m/s. The Pacific Earthquake Engineering Research Center 
strong-motion database was used to develop a library of 80 time histories recorded 
at sites with VS,30 between 500 and 1,500 m/s, distances between 5 and 80 km, and 
MW between 7.0 and 8.0. Using the library of 80 motions, the computer program 
SigmaSpectra (Kottke & Rathje 2008) was used to select and scale eight time 
histories that, on average, matched the shape of the target response spectrum 
(Griffiths et al. 2016b). To investigate how different input motion intensities affect 
the nonlinear response of the VS profiles, these eight input time histories were each 
further scaled to Peak Ground Accelerations (PGAs) of 0.1 and 0.5 g. Similarly, 
eight additional input ground motions were fit to a target spectrum for an MW = 6.0 
event in order to investigate the impact of frequency content on the site response 
estimates. Only the eight MW = 6.0 input motions scaled to 0.1 g, and the eight MW 
= 7.5 input motions scaled to 0.5 g are used herein for EQL analyses. 

In addition to the scaling operations described above, the input time histories 
have also been adjusted in order to account for the variable halfspace stiffness 
indicated by each of the VS profiles (Passeri et al. 2018a). These modifications have 
been performed in order to permit a consistent comparison between the responses 
of profiles with different reference conditions. An adaptation of the method 
proposed by Boore (2013) (see also Boore and Brown 1998 and Boore 2003) has 
been used. The amplification/deamplification factor is estimated using the quarter 
wavelength method and is given by:  

 



 

244 
 

𝐴(𝑓(𝑧)) = √
𝑍𝑆

𝑍(𝑓)̅̅ ̅̅ ̅̅
(Eq. 7.1) 

 
where 𝑍𝑆 is the reference halfspace condition impedance (i.e., the product of density 
and shear wave velocity, see Equation 4.8) and 𝑍(𝑓)̅̅ ̅̅ ̅̅  is an average of near-surface 
seismic impedances. In Boore (2003a) 𝑍(𝑓)̅̅ ̅̅ ̅̅  is a function of frequency because it 
represents a time-weighted average from the surface to a depth equivalent to a 
quarter wavelength. For this study, it is possible to assume a constant velocity below 
the column-halfspace interface, hence 𝑍(𝑓)̅̅ ̅̅ ̅̅ = 𝑍𝑏, where 𝑍𝑏 is the impedance at the 
halfspace of each VS profile. 
Moreover, 𝑍𝑆  represents the ‘rock reference condition’ of the Boore and Atkinson 

ground motion prediction equation used for the IMs selection (VS=760 m/s). For 
simplicity, the densities of soil and rock are assumed equal. Since 𝑍𝑏 is assumed to 
be frequency-independent, the modification of the IMs is reduced to a constant 
factor 

𝐴 = √
760

𝑚
𝑠

𝑉ℎ
(Eq. 7.2) 

 
that is applied to modify the IM suites for each VS profile. Interestingly, if a 
halfspace velocity of 𝑉ℎ = 1500𝑚

𝑠
 is used in Equation 7.2, the simplified 

amplification/deamplification factor is approximately equal to the ratios of NEHRP 
site factors for class B and class A, which is equal to 0.8 (Seyhan & Stewart 2014). 

7.2.1    Linear viscoelastic response 

Linear, viscoelastic analyses were conducted for each VS profile of the five 
classes. Figure 7.8 shows a comparison of the surface-to-halfspace (‘outcrop’ 

motion) TTFs. The Figure also includes the average HVSR (see Section 4.2.2.3) 
resonant frequency peak (f0) measured around the site during the InterPACIFIC 
project (Prof. Brady R. Cox, personal communication and Mascandola et al. 
(2019)).  

The amplitudes of the linear, viscoelastic TTF are likely too high because 
laboratory Dmin values were used in the calculations. These lab-based Dmin values 
only account for material damping. They do not account for other factors that 
contribute to apparent damping in situ, such as radiation damping and 
backscattering (Zalachoris and Rathje 2015). However, comparable TTF amplitude 
values among the 12 VS surface wave profiles (i.e., Class-1) were obtained, except 
for profiles IST2Q, PUS, and MUV, which have either stiffer halfspace or a more 
significant depth to halfspace than the other VS profiles. Also, the TTF calculated 
from the profile suggested by Laurenzano et al. (2017) (i.e., Class-2) is in agreement 
with the surface wave profiles and, in particular, with the UT’s solution (i.e., the 

base-case of the exercise). 
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Figure 7.8 also compares the fundamental elastic resonant frequencies obtained 
from the TTFs for the five classes of profiles. Observe that the f0 values for all of 
the Class-1 VS profiles are consistent with the resonant frequency obtained using 
HVSR (except for the VS profiles IST1I, GEOMM, and INGVR that present slightly 
different values). As opposed to the TTF amplitudes, profiles IST2Q, PUS, and MUV 
show a good agreement in terms of f0. The same observation is valid for the first 
resonant frequency of the profile suggested by Laurenzano et al. (2017). 

The previous observations are not valid for the profiles suggested by EPRI 
(2013) for the management of EUs and AVs (i.e., Class-3 and Class-4).  The 
upper/lower range profiles exhibit f0 values well outside the range of the measured 
VS profiles. The scaling of the base-case profile produces a consequent inacceptable 
scaling of both TDCs (Figure 7.8. Comparison of the five classes of profiles as 
Theoretical Transfer Functions. The experimental resonant frequency obtained by 
the HVSR test is also indicated. Interestingly, the amplitudes of the TTFs are 
preserved, as the impedance contrasts are also linearly scaled. 

The profiles obtained with the TM95 show scattered amplitude peaks 
concerning the base-case profile. This is further evidence that these profiles do not 
reproduce well the small strain (i.e., elastic) soil behavior and the site signature 
corresponding to the resonant frequency of the site (i.e., HVSR f0). In this context, 
the VS profiles are altered, and the viscoelastic response reflects the results of the 
randomization. 

On the contrary, the profiles obtained randomizing the base-case UT’s solution 

with the new geostatistical model (i.e., Class-5) show consistent results. The 
agreement is confirmed for both resonant frequencies and amplitude peaks. The 
parameter that mainly controls the obtained variability is 𝜎ln(ttS,z)(𝑧) (see 6.2.1.1) 
and could be increased by the user. However, the geostatistical model will always 
ensures a control of the randomized profiles, thanks to its characteristics, as 
discussed in Section 6.2. 

The observations above are also valid for Figure 7.9, where the first resonant 
frequency of the TTF for each of the 1000 realizations is plotted. Note that these 
viscoelastic resonant frequencies are a fundamental signature of the profile, and 
should be in accordance with the independent experimental site signatures (i.e., 
HVSR peak and the resonant frequency of the ETF). Also, the asymmetric scatter 
of the results is due to the lognormal distribution that is behind the randomization 
process (i.e., logarithmic distribution seen on a linear scale). 
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Figure 7.8. Comparison of the five classes of profiles as Theoretical 
Transfer Functions. The experimental resonant frequency obtained by the 

HVSR test is also indicated. 

 

Figure 7.9. Comparison obtained for the first resonant frequencies of the 
theoretical transfer functions for each of the 1000 profiles of Class 4 and 

Class 5 profiles. 

7.2.2    Equivalent linear analyses 

The EQL-GRA results for the 0.1 g IMs suite are presented in Figure 7.10 for 
the five classes of profiles presented in Section 7.2. Acceleration Response Spectra 
at the ground surface (RS) are shown in Figure 7.10a. Figure 7.10b shows the same 
results in terms of Amplification Functions (AFs). 
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For the Class-1, profiles IST2Q, PUS, and MUV showed unusual halfspace 
characteristics and TTF amplitude peaks; however, the EQL response is in line with 
the other surface wave profiles. The results obtained for the profile in Laurenzano 
et al. (2017) show lower responses compared to Class-1 profiles regarding both RS 
and AFs. This is due to the high strains induced in the soft layer identified at depths 
of 5 to 10 m. This low-velocity layer converged at high damping values that 
effectively place limits on the responses, as also demonstrated in Zalachoris & 
Rathje (2015) and Passeri et al. (2019). 

The Class-3 and Class-4 profiles show evident inconsistencies with the GRA 
results of the measured profiles and the base-case UT’s profile, as expected from 

the viscoelastic results. In particular, the peak frequencies of the upper/lower range 
profiles do not match with the peak frequencies of the base-case VS profile. This is 
in accordance with other insights in the literature regarding the use of assumed 
upper/lower bound VS profiles to account for epistemic uncertainty propagation in 
GRAs (Griffiths et al. 2016b, Teague & Cox 2016, Passeri et al. 2019) and with the 
results shown in Figure 7.8. In that Figure, these profiles showed inconsistency with 
the experimental site signatures (i.e., HVSR and ETF peaks), the surface wave VS 
profiles and the UT’s base-case profile. Also, note that the upper/lower range base-
case profiles do not provide consistent bounds to the uncertainty for both RS and 
AFs. The range of spectral accelerations for these profiles is close to that of the 
measured profiles at short periods but is more significant at intermediate periods. 

A similar inadequacy can be seen for the class-4 profiles (i.e., TM95-based). In 
this case, the variability of the results is even more significant, regarding both SA 
and AFs. However, this class of profiles seems to better reproduce the resonance 
periods (i.e., the “shape” of the spectrum), compared to the results of the base-case 
profile. This evidence is not confirmed looking at Figure 7.10b, where the 
variability of the calculated AFs is overwhelming. From both Figure 7.10a and 
Figure 7.10b, the reader can glimpse a higher density of lower responses (i.e., 
unconservative mean response, compared to the base-case). 

On the contrary, the GRA results obtained from the Class-5 profiles have AFs 
and SAs that are compatible with the AFs of the 12 measured profiles (Class-1 
profiles). The variability of the response around the base-case is controlled and 
limited to shapes (i.e., frequencies) consistent with the experimental data. This 
means that the dynamic behavior of the base-case profile is preserved, reproducing 
a level of EUs and AVs in line with the experimental information. 
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Figure 7.10. Results of the Equivalent Linear Analyses conducted for the 
five classes of profiles and the 0.1 g scaled input motions, a) Surface Response 

Spectra and b) Amplification Functions. 

The EQL-GRA results for the higher intensity IMs suite are reported in Figure 
7.11. The variabilities in the VS profiles propagated to spectral accelerations and 
amplification functions are more substantial than for the low-intensity ground 
motion suite (Figure 7.10). Profiles IST2Q, PUS, and MUV of the Class-1 still 
produce RS results in good agreement with the global response.  

The response of the TTF-best profile still shows lower estimates, compared to 
the other classes of profiles. For this strong intensity IMs suite, the incompatibility 
of the upper/lower range base-case VS profiles and the profiles obtained from the 
TM95 increased. The GRAs show anomalous results, both in terms of frequency 
content and amplitudes, plotting significantly outside of the experimental area for 
the entire range of periods both in terms of spectral accelerations (Figure 7.11a) and 
amplification functions (Figure 7.11b). Note that the scattering of the results 
increased due to the nonlinearity of the response (Griffiths et al. 2016b, Teague & 
Cox 2016, Passeri et al. 2019). 

On the other hand, the compatibility of the results obtained by the Class-5 
profiles is also confirmed for these high-strain responses. The new geostatistical 
model presented in Section 6.2 provides a reasonable reproduction of the EUs and 
AVs of the base-case profile.  
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Figure 7.11. Results of the Equivalent Linear Analyses conducted for the 
five classes of profiles and the 0.5 g scaled input motions, a) Surface Response 

Spectra and b) Amplification Functions. 

7.2.3    Discussion 

This last section illustrates the results of the EQL analyses performed in Section 
7.2.2 as mean (presented in natural scale, but calculated in logarithmic values) and 
logarithmic standard deviations of the surface RS and the AFs (i.e., both the 
assumed as lognormally distributed). We first discussed in Chapter 2 how these 
quantities are essential for performing hazard-consistent one-dimensional ground 
response analyses for ground motion predictions (Stewart et al. 2014a). 

Figure 7.12 shows the results in terms of logarithmic mean RS at the surface. 
This Figure includes the results obtained with the base-case UT’s profile, the two 

methods suggested by EPRI (2013), and the geostatistical model proposed in 
Section 6.2. The results from the upper/lower range profiles demonstrate the 
alteration of the dynamic response introduced with this method, particularly for the 
high-intensity IMs suite. Figure 7.12c reports an entirely aliased response spectrum, 
compared to the base-case (i.e., both for periods and amplitudes).  

The results obtained from the profiles randomized with the TM95 show 
dangerous unconservative results, for both intensity inputs. This was apparent from 
Figure 7.10 and Figure 7.11, and it is here confirmed. The lower responses are due 
to the large number of soft profiles generated by TM95. These profiles lead to a 
high-strains concentration, especially for shallow depths that produces high-
damping levels at convergence. 

On the other hand, Figure 7.12a-c shows the mean response by the new 
geostatistical model is consistent with the mean response of the best-estimated 
profile. Figure 7.13 shows the same results as amplification functions, confirming 
the observations presented for the RS. 
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Figure 7.12b-d and 7.12b-d report the logarithmic standard deviations of the 
surface RS and AFs for the class-4 and class-5 profiles (i.e., 1000 profiles for each 
class), as also presented in Bazzurro & Cornell (2004a), Kwok et al. (2008), Stewart 
& Kwok (2008), Li & Asimaki (2010), Rathje et al. (2010), Papaspiliou et al. 
(2012a), Kaklamanos et al. (2013b), Rodriguez‐Marek et al. (2014), Kaklamanos et 
al. (2015), Teague & Cox (2016). These Figures confirm the presence of parasite 
uncertainties introduced with the TM95. These uncertainties are not realistic, but 
only represent the product of a biased randomization model that is not empirically-
based and adherent with the reality. As expected, both the 𝜎ln(SA) and 𝜎ln(AF) 
dramatically increase with the nonlinear response. 

 

Figure 7.12. Mean response spectra and logarithmic standard deviations 
for a) and b) the low-intensity input motions suite and for c) and d) the high-

intensity input motions suite. 
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Figure 7.13. Mean amplification functions and logarithmic standard 
deviations for a) and b) the low-intensity input motions suite and for c) and 

d) the high-intensity input motions suite. 

7.3 Down-Hole testing methods 

This Section deals with the prototype version of the geostatistical model 
presented in Section 6.3 for Down-Hole tests. Two different companies performed 
DH tests at the site of Mirandola (i.e., Geovision and Solgeo). Each company 
performed the measurements with their own equipment. However, Geovision 
performed the measurements in two directions (East-West, EW, and North-South, 
NS). In addition, the University of Texas at Austin (UT) reinterpreted the 
experimental DH data acquired by Geovision and provided an alternative VS 
estimate. This Section will then present four different solutions. Similarly to the 
analyses performed in Section 7.2, the NS profile obtained by the Geovision 
company was chosen as single deterministic base-case solution for the 
randomization. Note that the work by Garofalo et al. (2016b) included a third 
company who took part in the DH tests. This solution has been discarded in the 
present Section for the unrealistic biases shown in the results. 

Figure 7.14 shows the VS models from DH tests as interval (Figure 7.14a) and 
harmonic average (Figure 7.14b) profiles (see Section 4.1). The DH profiles are 
generally in an excellent intra-method agreement. All the DH tests identified the 
thin, low-velocity soil layer at about 75 m, differently from the profiles discussed 
in Section 7.2 for surface wave methods and reported here in green. Then, the 
solutions by Geovision and UT reached a VS compatible with a bedrock formation 
(VS over 600 m/s) at around 118 m. Figure 7.14 also proposes an inter-method 
comparison, especially in terms of harmonic average profiles. For example, Figure 
7.14b shows higher velocities obtained by the DH tests for the shallower layers, 
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except for three solutions from the surface wave tests that generated a thick first 
layer. This was probably due to a low resolution at high frequencies for the surface 
wave tests. It is clear that the differences in the shallower layers influence also the 
VS,Z at larger depths. This is in agreement with evidences in the literature that 
identified the shallower layers like the ones that mostly control the ground response 
of the entire deposit.  

 
Figure 7.14. Selected DH profiles at Mirandola: a) interval velocity 

profiles, and b) harmonic average profiles. In green, the profiles obtained 
from surface wave methods are also shown (see Figure 7.5). 

As discussed for the surface wave profiles, the reader should now imagine 
possessing only the single deterministic base-case solution (i.e., Geovision NS). 
The first standard procedure for the management of EUs prescribes to create 
profiles shifted by a defined value of VS logarithmic standard deviation. Also in this 
Section, the minimum value of 0.25 prescribed by EPRI (2013) is applied to the 
base-case profile. Figure 7.15a shows the generated upper/lower range interval 
velocity profiles. Figure 7.15b illustrates the dramatic alteration of the harmonic 
average profiles obtained by these profiles, compared to the experimental results. 
This evidence is in total agreement with the results obtained for surface wave 
methods and demonstrates once more the inadequacy of this simplistic approach 
for the management of EUs.  

Figure 7.15 also shows 1000 profiles obtained by the standard Toro model 
around the base-case profile for the management of AVs. Also for these analyses, 
the reduced logarithmic standard deviation of the base-case profile is assumed (see 
Figure 6.24). The Poisson’s model parameters are taken equal to the ones suggested 
by Toro, as for the parameters of the inter-layer correlation model. The lognormal 
distribution of the halfspace depth is included in the randomization with a 
logarithmic standard deviation equal to 0.1. Also in this case, both the interval 
velocity and harmonic average profiles are entirely out of range. This is due to the 
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interval velocities randomization that introduces parasite uncertainties in the 
randomization. 

The last set of 1000 profiles presented in Figure 7.15 (in gray) is obtained from 
the new geostatistical model around the DH base-case solution. Similarly to Section 
6.3, the model is adopted in the prototype version with the same model’s parameters 
used for Acquasanta Terme. This choice here assures a rigorous comparison with 
the 1000 profiles obtained with the TM95. The results of this second randomization 
follow the EUs and AVs experimentally estimated at Mirandola, especially as 
harmonic average profiles (Figure 7.15b). Results in Figure 7.15 can be seen as a 
first validation of the prototype model. 

 
Figure 7.15. Down-Hole profiles at Mirandola including the upper/lower 

range profiles, the profiles generated by the Toro model, and the profiles 
generated by the prototype geostatistical model as a) interval velocity 
profiles, and b) harmonic average profiles. In green, also the solutions 

obtained from surface wave methods are proposed (see Figure 7.6). 

A second validation of the geostatistical model applied to DH testing methods 
is given in Figure 7.16. This Figure shows the comparison of the TDCs calculated 
for the profiles in Figure 7.15. Figure 7.16 also presents the EDCs collected in the 
InterPACIFIC project and discussed in Section 7.2. The dispersion curves 
corresponding to the VS profiles randomized following both the EPRI 
methodologies do not match the TDC of the base-case. On the contrary, the TDCs 
calculated from the profiles randomized with the new geostatistical model are in 
excellent agreement with the TDC of Geovision NS. Note that there is also a good 
comparison between the randomized TDCs and the EDCs obtained with surface 
wave tests. This is a further proof that the inter-method comparison was largely 
satisfactory for Mirandola. Also, the TDCs of the DH profiles shows a good intra-
method agreement also from this different perspective. 
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Figure 7.16. Theoretical Dispersion Curves associated with the DH 

profiles obtained by different teams at the site of Mirandola and calculated 
from the set of profiles from EPRI provisions and from the prototype 

geostatistical model. 

The last validation of the prototype model for DH tests is given in Figure 7.17, 
where the TTFs are compared, similarly to Figure 7.8, also with the results of the 
HVSR test. First, the DH tests show a good agreement with this independent surface 
wave test in terms of first resonance peaks. The inter-method comparison is 
satisfactory also between the DH and the remaining solutions from surface wave 
methods in green. Note that these profiles have higher peaks that are due to the 
stronger impedance contrasts that are typical of the soil model used for the 
inversions. 

Figure 7.17 also includes the results of the different methods for the 
management of uncertainties. Once more, the two methods suggested in the EPRI 
provisions seem to be highly inadequate for the purpose. On the contrary, the 
prototype model applied to the DH test presents results consistent with the base-
case, the other DH tests and the solutions from the surface wave tests.  
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Figure 7.17. a) Comparison of the profiles as Theoretical Transfer 

Functions. The experimental resonant frequency obtained by the HVSR test 
is also indicated. b) Comparison obtained for the first resonant frequencies of 

the Theoretical Transfer Functions. 
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Chapter 8                        
Conclusions and Recommendations 

This brief final Chapter includes three sections. The first summarizes the results 
and the main characteristics of the new proposed geostatistical model. Then, 
Section 8.2 discusses the observations regarding the three main “side products” 

presented in the dissertation; namely, a robust VR,λ-VS,Z relationship, an estimated 
model for the standard deviation of the Rayleigh waves phase velocity, and the 
development of an efficient inversion method with a variable number of layers. 
Section 8.3 presents an overview of future refinements, evolutions and further 
validations of the randomization model along with the possible developments of the 
side products. 

8.1 New geostatistical model 

This research principally focused on the development of a new geostatistical 
model for the independent management of epistemic uncertainties (EUs) and 
aleatory variabilities (AVs) in shear wave velocity (VS) profiles obtained with 
surface wave methods. The primary goal of this model is then to generate a sample 
of experimentally-equivalent VS profiles starting from the single deterministic 
solution that is usually proposed after the inversion process.  

The new randomization model fits into the broad process of Identification, 
Quantification, and Management of EUs and AVs. This methodology represents a 
crucial part of hazard-consistent probabilistic analyses. Particularly, the 
Identification and Quantification represent the crucial steps for the subsequent 
independent management of EUs and AVs by means of the geostatistical model. 
The separation of the two main contributes should be performed upstream from the 
management step. For example, the model’s parameters suggested for surface wave 

testing methods simultaneously reproduce the EUs and AVs. This is due to the 
practical issues in separating the uncertainties in the experimental dispersion curve. 

The IQM method is here aimed at Ground Response Analyses (GRAs). These 
simulation methods include mainly six different sources of uncertainties and 
variabilities. The analyst should always account for these sources of uncertainty, 
which are exhaustively discussed in the dissertation. Notably, recent studies 
demonstrated that the VS profile and the tests used for its estimation play a crucial 
role in contributing to global uncertainties in site response. The dissertation presents 
a full and comprehensive discussion of the specific EUs and AVs associated with 
each type of geophysical test. 

The geostatistical model has to overcome the drawbacks of the methods usually 
adopted for scientific and technical applications. Indeed, various authors 
demonstrated the inadequacy of the methods proposed in EPRI (2013) for the 
management of EUs and AVs in VS profiles. These methods are recalled and 



 

258 
 

described in the dissertation, along with various applications presented in the 
literature. The development of a modern method for the independent management 
of EUs and AVs in VS profiles was then required (Stewart et al. 2014). In particular, 
the dissertation builds on the Toro (1995) randomization model aiming at solving 
the limits of this geostatistical model. The essential characteristics of the proposed 
geostatistical model are summarised in the following with a side-by-side 
comparison with the model proposed by Toro (1995). Note that the following 
observations are primary valid in case of surface wave tests. However, the 
flexibility of the model allows expanding its capabilities to other geophysical tests 
(e.g., Down-Hole, tests). 

 
Calibration using a high-quality database 

The new geostatistical model relies on the PSWD (Polito Shear Wave velocity 
Database). This collection of experimental measurements ensures high-quality 
standards. Indeed, the PSWD was compiled after a rigorous selection of the surface 
wave tests performed by the Politecnico di Torino in the past 20 years. Then, a 
systematic reinterpretation of the recorded data was performed for each site with a 
rigorous two-step inversion procedure. After the second round of inversions, a 
homogeneous set of solutions (i.e., the “picture” of the geophysical equivalence) 
for each site was available. These solutions were then used to calibrate the 
empirically-based parameters of the geostatistical model for surface wave methods. 
Each statistical sample (i.e., site) was analyzed separating the elastic halfspace from 
the material above. A set of model parameters is obtained in the dissertation for the 
analysed profiles; these parameters can be used as generic guidance for cases when 
there is insufficient information and/or data about the site under analysis. However, 
a site-specific calibration of the model parameters is always encouraged. The 
PSWD represents the fundamental ingredient for the development of the additional 
“side-products” discussed in Section 8.2. On the same hand, the lack of enough data 
in the database so far prevended a precise calibration of the model for other 
geophysical tests. 

 
Physics-based separation of the primary random variables 

The new geostatistical model is based on a separation of the random variables 
quantifying space and time. This point is likely the most relevant innovation 
introduced compared with existing geostatistical models (e.g., the Toro 1995 
model). The geostatistical model drops the use interval velocities (i.e., the wave 
propagation velocity of a soil layer) and assumes instead a separation between the 
fundamental physical quantities of space and time. The dissertation widely 
presented the inadequacies of using interval velocities in a randomization scheme. 
The interval velocity can be seen as an engineering schematization of the problem 
to be a-posteriori used for numerical analyses. Instead, the harmonic average 
velocity is a more efficient parameter. The use of the harmonic average velocities 
allows a better reproduction of the results of geophysical tests. Indeed, it avoids 
introducing parasite uncertainties (i.e., uncertainties that are not due to the testing 
process, but that result from the selected randomization scheme). The double-
counting of uncertainties results from models that randomize separately interval 
velocities and the depth of interfaces, as proposed in Toro (1995).  
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Site- and test-specific characteristics 

A basic postulate of this dissertation is that the analyst should perform a rigorous 
identification and quantification of EUs and AVs specifically for the site under 
analysis. This recognition is essential for a randomization of VS profiles compatible 
with the specific “boundary conditions” of the case study. The geostatistical model 
is only the last step of a complex methodology. For this reason, an adequate 
identification and quantification of the uncertainties is crucial for the following 
independent randomization process of EUs and AVs. The analyst should account 
for the adopted geophysical test and the spatial scale of the problem, using site-
specific model parameters. At the same time, the geostatistical model for surface 
wave testing methods has specific and physically-based characteristics for this class 
of non-invasive tests. This allows reproducing realistic characteristics for both EUs 
and AVs. Both the site- and test-specific characteristics of the randomization model 
are an advancement with respect to the method proposed by Toro (1995). In that 
case, the randomization model proposed generic parameters clustered by soil 
classification schemes. Also, the architecture of the method did not address the 
specific peculiarities of the specific geophysical test. The extension of the 
geostatistical model to other geophysical tests then requires a special attention to 
the specific characteristics of the method. In particular, the model’s parameters 

suggested for each seismic test should account for the possible separation of the 
two main contributes. This is in line with the observations made in the dissertation. 
For example, a precise distinction is unfeasible for surface wave testing methods, 
then the proposed model’s parameters simultaneously reproduce EUs and AVs. On 

the contrary, a deeper analysis for DH tests can lead to a separate management of 
the uncertainties. In this case, the larger contribution comes from EUs that can be 
precisely evaluated in the regression of the model’s parameters. 

 
A validation of the proposed geostatistical model for surface wave testing 

methods is reported for two case studies. The first regards the application for a site 
included in the PSWD (Accumoli). In this case, the results are in agreement with 
the solutions obtained by the inversion process accounting for the geophysical 
equivalence. The comparison is performed for the Theoretical Transfer Functions 
(TTFs) that controls the dynamic small-strains behavior of the profile. A further 
validation is proposed for a site not included in the database: Mirandola (Italy). This 
site was primarily investigated during the InterPACIFIC project and represents an 
important benchmark for the new geostatistical model. The results obtained after 
the randomization of one base-case are excellent regarding both TTFs and 
EQuivalent Linear (EQL) analyses. 

The dissertation also proposes the development and preliminary validation of 
the geostatistical randomization model applied to DH tests. As already discussed, a 
precise calibration is prevented by the lack of enough experimental data for this 
type of test. However, a first application of the model to two sites gave encouraging 
results. In particular, the model was used with a generic set of parameters for the 
sites of Acquasanta Terme and Mirandola. In both cases, the model shows 
consistent results both in terms of reliability and consistency with the experimental 
evidences. 
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The dissertation highlighted the inadequacies of the approaches usually adopted 
in stardard practice and prescribed by EPRI (2013). Both methods for the 
management of EUs and AVs led to unrealistic results that do not represent the real 
physics of the problem. These limitations can be solved by means of the new 
geostatistical model proposed. 

8.2 Side products 

The three main side products presented in the dissertation are the robust VR,λ-
VS,Z relationship, the regression of the predictive law for the estimation of the 
standard deviation of Rayleigh waves phase velocity, and the development of an 
efficient inversion method with a variable number of layers. 

First, the relationship found between the wavelength 𝜆 and depth 𝑧 is based on 
a simple linear law. This relationship could provide a robust estimation of the VS,30 

and the soil class just by looking at the Experimental Dispersion Curve (EDC). The 
VR,λ-VS,Z relationship should replace the use of the pseudo-depth adopted for the 
analysis of surface wave methods, as it is experimentally verified and links two 
physically consistent variables. The dissertation proposes a VR,λ-VS,Z relationship 
obtained with the refined sample of solutions after the second round of inversions. 
This relationship is also adopted for the layering generation of the geostatistical 
model. 

The processing of the PSWD allowed regressing an equation that estimates the 
experimental Coefficient of Variation (𝐶𝑂𝑉𝑉𝑅) of the Rayleigh wave velocity, 
which allows the computation of the corresponding standard deviations. The 
solution shows a larger uncertainty for low frequencies and a slight increase of 
𝐶𝑂𝑉𝑉𝑅 for high frequencies. This shape of the curve agrees with the main 
characteristics of surface wave testing methods. Indeed, the loss of resolution for 
surface wave methods is associated both with very low or very high frequencies. In 
the first case, it is due to the lack of penetration at large depths, whereas the spatial 
aliasing produces uncertainties at high frequencies. The set of best fitting values for 
the selected double-exponential law are provided in the dissertation. An additional 
set of parameters is provided to obtain a conservative estimate that is applicable for 
cases where there is low confidence in the experimental data. However as 
mentioned before, obtaining site specific data is preferable. 

The second round of the inversions performed for the sites in the PSWD 
allowed the development of a procedure that added a degree of freedom to the 
search of the solutions. This model, referred to as the free-layering model, also 
considers the number of layers as random variables. Ideally, the free-layering model 
represents a forward analysis randomization model, whereas the geostatistical 
model discussed in Section 8.1 is the associated back-analysis randomization 
model. The free-layering model was used in conjunction with the solutions of the 
first round inversions. The free-layering model respected the global characteristics 
of the first set of equivalent profiles, but generating layering distributions with a 
different number of layers. Results show a general decrease of the misfit of the 
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solutions, demonstrating the larger space of investigated solutions by the Monte 
Carlo algorithm. 

8.3 Recommendations for Future Research 

The geostatistical model presented in the dissertation for surface wave methods 
should be validated by different users for real applications. Some details of the 
calibration need further research aiming at finding more adequate functional forms 
(e.g., inter-layer correlation). The presented validations give encouraging results. 
However, the innovations of the present research gain value only if independent 
users can easily adopt the geostatistical model for different case studies. For these 
reasons, the geostatistical model should be shared with academics and professionals 
and likely implemented in a GRA software for an automatic procedure. 

In addition, the geostatistical model should be extended to different geophysical 
tests rather than only surface wave testing methods. An example for DH tests is 
already presented in the dissertation and needs ulterior research to be refined and 
calibrated by means of a dedicated part of the PSWD. 

The VR,λ-VS,Z relationship could give a chance for a direct inversion of the 
experimental data. However, this application should be studied in depth with further 
analyses. Further research should also investigate the influence of the Poisson’s 

ratio on the obtained relationship. The suggested relationship for the EUs and AVs 
included in the EDC regards only the fundamental mode of the EDC. Further 
analyses are needed for an estimation of the standard deviations associated with 
higher modes in the EDCs. The free-layering inversion method gave interesting 
results in this dissertation. However, independent users should validate the 
capabilities of this proposed approach. 

Last but not least; the PSWD could be expanded including more information 
about the investigated sites. Also, other geotechnical tests can be accounted other 
than in situ geophysical tests (e.g., CPTs, SPTs, dynamic and static laboratory 
tests). This can reduce the uncertainties in the interface depths. The implementation 
of an open-access (e.g., web Java-based) and digitalized database of high-quality 
data can be used and shared for scientific and professional purposes. 
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Appendix 

Table A1. List of sites included in the PSWD. 
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Table A1. (continues). 
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Table A1. (continues). 
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Left. Each site is presented with its EDC (phase velocity vs. frequency) and +/- 
one standard deviation error bars (if available, for 52 sites, see Table A1). 

Right. The interval (solid line) and harmonic (dashed line) shear wave velocity 
profile from previous inversions are presented with the same colors of the 
associated EDC. For 39 sites (see A1), also the interval (solid line) and harmonic 
(dashed line) shear wave velocity profile from the invasive test are shown in black 
(line for the DH, stars for CH, and diamonds for SDTM). 

 

 

Figure A1. EDC (left), VS and VS,Z (right) for Accumoli (ID 1).

 
Figure A2. EDC (left), VS and VS,Z (right) for Acquasanta Terme (ID 2). 
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Figure A3. EDC (left), VS and VS,Z (right) for AQA (ID 3). 
 
 

 
Figure A4. EDC (left), VS and VS,Z (right) for Bovisio-L2 (ID 4). 
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Figure A5. EDC (left), VS and VS,Z (right) for Caselle Landi-1 (ID 5). 

 
 

 
Figure A6. EDC (left), VS and VS,Z (right) for Caselle Landi-2 (ID 6). 
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Figure A7. EDC (left), VS and VS,Z (right) for Caselle Landi-3 (ID 7). 
 
 

 
Figure A8. EDC (left), VS and VS,Z (right) for Caselle Landi-5 (ID 8). 

 

Figure A9. EDC (left), VS and VS,Z (right) for Castel di Lama-Campo (ID 9). 
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Figure A10. EDC (left), VS and VS,Z (right) for Castel di Lama-Strada (ID 

10). 

 

Figure A11. EDC (left), VS and VS,Z (right) for CAT (ID 11). 
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Figure A12. EDC (left), VS and VS,Z (right) for Cesana-1 (ID 12). 

 

Figure A13. EDC (left), VS and VS,Z (right) for Cesana-2 (ID 13). 
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Figure A14. EDC (left), VS and VS,Z (right) for CG-Loc. Alle Monache (ID 

14). 

 

Figure A15. EDC (left), VS and VS,Z (right) for CG-Zona industriale (ID 15). 
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Figure A16. EDC (left), VS and VS,Z (right) for CLG (ID 16). 

 

Figure A17. EDC (left), VS and VS,Z (right) for Firenze-Piazza Duomo (ID 
17). 
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Figure A18. EDC (left), VS and VS,Z (right) for Firenze-Uffizi (ID 18). 

 

Figure A19. EDC (left), VS and VS,Z (right) for Firenze-Via di Novoli (ID 19). 
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Figure A20. EDC (left), VS and VS,Z (right) for Fonte del Campo (ID 20). 

 

Figure A21. EDC (left), VS and VS,Z (right) for GEA (ID 21). 
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Figure A22. EDC (left), VS and VS,Z (right) for GMN (ID 22). 

 

Figure A23. EDC (left), VS and VS,Z (right) for GNV (ID 23). 
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Figure A24. EDC (left), VS and VS,Z (right) for GRI-Campo Sportivo-EW (ID 

24). 

 

Figure A25. EDC (left), VS and VS,Z (right) for GRI-Campo Sportivo-NS (ID 
25). 
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Figure A26. EDC (left), VS and VS,Z (right) for Grisciano Conoide (ID 26). 

 

Figure A27. EDC (left), VS and VS,Z (right) for Illica (ID 27). 
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Figure A28. EDC (left), VS and VS,Z (right) for La Salle A (ID 28). 

 

Figure A29. EDC (left), VS and VS,Z (right) for La Salle B (ID 29). 
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Figure A30. EDC (left), VS and VS,Z (right) for La Salle C (ID 30). 

 

Figure A31. EDC (left), VS and VS,Z (right) for La Salle D (ID 31). 
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Figure A32. EDC (left), VS and VS,Z (right) for La Salle E (ID 32). 

 

Figure A33. EDC (left), VS and VS,Z (right) for L’Aquila (il Moro) (ID 33). 
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Figure A34. EDC (left), VS and VS,Z (right) for L’Aquila (Pianola) (ID 34). 

 

Figure A35. EDC (left), VS and VS,Z (right) for L’Aquila (Roio Piano) (ID 35). 
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Figure A36. EDC (left), VS and VS,Z (right) for Massa M.-Cantiere (ID 36). 

 

Figure A37. EDC (left), VS and VS,Z (right) for Massa M.-Parcheggio (ID 37). 
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Figure A38. EDC (left), VS and VS,Z (right) for Mathi-1&2 (ID 38). 

 

Figure A39. EDC (left), VS and VS,Z (right) for Mathi-3 (ID 39). 
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Figure A40. EDC (left), VS and VS,Z (right) for Mirabello-Last-July (ID 40). 

 

Figure A41. EDC (left), VS and VS,Z (right) for Mirabello-Post-May (ID 41). 
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Figure A42. EDC (left), VS and VS,Z (right) for Mirabello-Pre-Feb (ID 42). 

 

Figure A43. EDC (left), VS and VS,Z (right) for Montemonaco (ID 43). 
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Figure A44. EDC (left), VS and VS,Z (right) for NTE (ID 44). 

 

Figure A45. EDC (left), VS and VS,Z (right) for Offida (ID 45). 
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Figure A46. EDC (left), VS and VS,Z (right) for Palmiano-Castel San Pietro 

(ID 46). 

 

Figure A47. EDC (left), VS and VS,Z (right) for PCH (ID 47). 
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Figure A48. EDC (left), VS and VS,Z (right) for Piazza al Serchio (ID 48). 

 

Figure A49. EDC (left), VS and VS,Z (right) for Pieve Fosciana (ID 49). 
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Figure A50. EDC (left), VS and VS,Z (right) for Pisa (ID 50). 

 

Figure A51. EDC (left), VS and VS,Z (right) for PNR (ID 51). 
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Figure A52. EDC (left), VS and VS,Z (right) for Pontremoli-1 Maggio (ID 52). 

 

Figure A53. EDC (left), VS and VS,Z (right) for Pontremoli-ASL 2 (ID 53). 
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Figure A54. EDC (left), VS and VS,Z (right) for Pontremoli-Bocciofila (ID 54). 

 

Figure A55. EDC (left), VS and VS,Z (right) for Pontremoli-Giochi (ID 55). 
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Figure A56. EDC (left), VS and VS,Z (right) for PTT0 (ID 56). 

 

Figure A57. EDC (left), VS and VS,Z (right) for RGS (ID 57). 
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Figure A58. EDC (left), VS and VS,Z (right) for Roccafluvione (ID 58). 

 

Figure A59. EDC (left), VS and VS,Z (right) for Rotella (ID 59). 
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Figure A60. EDC (left), VS and VS,Z (right) for RNS (ID 60). 

 

Figure A61. EDC (left), VS and VS,Z (right) for Saluggia (ID 61). 
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Figure A62. EDC (left), VS and VS,Z (right) for San Severino Marche-1 (ID 

62). 

 

Figure A63. EDC (left), VS and VS,Z (right) for San Severino Marche-2 (ID 
63). 
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Figure A64. EDC (left), VS and VS,Z (right) for Sarno-Connola (ID 64). 

 

Figure A65. EDC (left), VS and VS,Z (right) for Sarno-Santa Lucia (ID 65). 
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Figure A66. EDC (left), VS and VS,Z (right) for Sarno-Tuostolo (ID 66). 

 

Figure A67. EDC (left), VS and VS,Z (right) for SCR (ID 67). 
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Figure A68. EDC (left), VS and VS,Z (right) for SEL (ID 68). 

 

Figure A69. EDC (left), VS and VS,Z (right) for Settimo Torinese (ID 69). 
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Figure A70. EDC (left), VS and VS,Z (right) for Tarcento-1 (ID 70). 

 

 

Figure A71. EDC (left), VS and VS,Z (right) for Tarcento-2 (ID 71). 
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Figure A72. EDC (left), VS and VS,Z (right) for Tarcento-3 (ID 72). 

 

Figure A73. EDC (left), VS and VS,Z (right) for Tarcento-4 (ID 73). 
 
 

 



 

328 
 

Figure A74. EDC (left), VS and VS,Z (right) for Tarcento-5 (ID 74). 

 

Figure A75. EDC (left), VS and VS,Z (right) for Tarcento-6 (ID 75). 
 
 

 
Figure A76. EDC (left), VS and VS,Z (right) for Tarcento-7 (ID 76). 
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Figure A77. EDC (left), VS and VS,Z (right) for Tarcento-8 (ID 77). 

 

 

Figure A78. EDC (left), VS and VS,Z (right) for Tarcento-10 (ID 78). 
 
 



 

330 
 

 
Figure A79. EDC (left), VS and VS,Z (right) for Tarcento-11 (ID 79). 

 

 

Figure A80. EDC (left), VS and VS,Z (right) for Tarcento-12 (ID 80). 
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Figure A81. EDC (left), VS and VS,Z (right) for Tarcento-15 (ID 81). 

 
 

 
Figure A82. EDC (left), VS and VS,Z (right) for TOR (ID 82). 
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Figure A83. EDC (left), VS and VS,Z (right) for Torre Pellice-Depuratore (ID 
83). 

 
 

 
Figure A84. EDC (left), VS and VS,Z (right) for Torre Pellice-Giardini (ID 84). 
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Figure A85. EDC (left), VS and VS,Z (right) for Torre Pellice-Giochi (ID 85). 
 
 

 
Figure A86. EDC (left), VS and VS,Z (right) for Torre Pellice-Torrente (ID 86). 

 
 



 

334 
 

 

Figure A87. EDC (left), VS and VS,Z (right) for TRF0 (ID 87). 
 
 

 
Figure A88. EDC (left), VS and VS,Z (right) for TRT (ID 88). 
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Figure A89. EDC (left), VS and VS,Z (right) for Venarotta (ID 89). 
 
 

 
Figure A90. EDC (left), VS and VS,Z (right) for Villa Collemandina (ID 90). 
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Figure A91. EDC (left), VS and VS,Z (right) for VRL (ID 91). 
 
 

 
Figure A92. EDC (left), VS and VS,Z (right) for Tarvisio (ID 92). 
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Table A2. Summary of the inversion results after the first-round, the second-
round inversion and after the merging procedure. 

 

  ROUND-1 ROUND-2 FINAL 
RESULTS 

R
A

T
IO

 

ID Site Mmin # of 
profiles Mmin # of 

profiles Mmin # of 
profiles 

 

1 Accumoli 0.046 450 0.034 12384 0.034 12512 

0.74 

2 
Acquasanta 

Terme 0.076 629 0.138 1454 0.076 677 

1.83 

4 Bovisio-L2 0.058 3901 0.052 20802 0.052 23339 

0.9 

5 Caselle Landi-1 0.091 3476 0.073 26687 0.073 28347 

0.81 

6 Caselle Landi-2 0.076 1148 0.063 70605 0.063 71150 

0.83 

7 Caselle Landi-3 0.167 1073 0.090 13946 0.090 13953 

0.54 

8 Caselle Landi-5 0.421 8196 0.265 32655 0.265 33640 

0.63 

9 
Castel di Lama-

Campo 0.075 618 0.076 32232 0.075 31742 

1.01 

10 
Castel di Lama-

Strada 0.082 2098 0.079 58319 0.079 60205 

0.97 

11 CAT 0.743 2826 0.758 14446 0.743 14895 

1.02 

12 Cesana-1 0.113 710 0.160 49897 0.113 27382 

1.42 

13 Cesana-2 0.188 1652 0.224 47446 0.188 25789 

1.19 

14 CG-Loc. Alle 
Monache 

0.294 208 0.291 10229 0.291 10432 

0.99 

17 
Firenze-Piazza 

Duomo 0.559 581 0.905 10543 0.559 1060 

1.62 

18 Firenze-Uffizi 0.163 6875 0.583 13334 0.163 6875 

3.58 

19 
Firenze-Via di 

Novoli 1.578 2315 1.757 34964 1.578 27116 

1.11 

22 GMN 0.085 188 0.078 1320 0.078 1449 

0.91 

24 GRI-Campo 
Sportivo-EW 

0.211 1549 0.178 4918 0.178 5491 

0.84 
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25 
GRI-Campo 
Sportivo-NS 

0.529 687 0.404 205 0.404 310 

0.76 
26 Grisciano 

Conoide 
0.096 111 0.064 23963 0.064 23976 

0.66 
27 Illica 0.106 859 0.100 55149 0.100 55792 

0.94 

28 La Salle A 0.985 53 0.860 3371 0.860 3395 

0.87 

29 La Salle B 0.083 1172 0.086 4906 0.083 5644 

1.03 

30 La Salle C 0.365 13475 0.389 18238 0.365 28697 

1.06 

31 La Salle D 0.159 110 0.163 68768 0.159 64313 

1.03 

32 La Salle E 0.141 151 0.134 17603 0.134 17709 

0.95 

34 LAquila 
(Pianola) 

0.321 1438 0.246 23842 0.246 24067 

0.77 

35 
LAquila (Roio 

Piano) 0.231 1036 0.135 58039 0.135 58060 

0.59 

36 
Massa M.-
Cantiere 0.755 1182 0.597 29313 0.597 29561 

0.79 

37 
Massa M.-
Parcheggio 0.232 217 0.313 380 0.232 320 

1.35 

38 Mathi-1&2 0.689 2379 0.655 102058 0.655 104051 

0.95 

39 Mathi-3 0.496 2775 0.731 41399 0.496 8068 

1.47 

40 Mirabello-Last-
July 

0.043 211 0.042 30936 0.042 31132 

0.99 

41 
Mirabello-Post-

May 0.033 69 0.032 9380 0.032 9433 

0.96 

42 
Mirabello-Pre-

Feb 0.148 5502 0.156 105356 0.148 102689 

1.05 

43 Montemonaco 0.081 4149 0.077 18365 0.077 21821 

0.95 

45 Offida 0.063 1242 0.061 63009 0.061 64036 

0.96 

46 Palmiano-Castel 
San Pietro 

0.122 357 0.047 228 0.047 228 

0.38 

48 Piazza al 
Serchio 

0.484 1447 0.384 32236 0.384 32671 

0.79 

49 Pieve Fosciana 0.335 3589 0.319 111149 0.319 114259 

0.95 
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50 Pisa 0.148 5382 0.176 13851 0.148 8263 

1.19 
52 Pontremoli-1 

maggio 
0.075 771 0.097 4385 0.075 837 

1.29 
53 Pontremoli-ASL 

2 
0.179 110 0.201 8930 0.179 5767 

1.12 

54 
Pontremoli-
Bocciofila 0.411 721 0.442 72114 0.411 62463 

1.07 

55 
Pontremoli-

Giochi 0.243 828 0.226 25535 0.226 26184 

0.93 

58 Roccafluvione 0.306 331 0.225 2406 0.225 2495 

0.74 

59 Rotella 0.023 468 0.024 8166 0.023 7301 

1.05 

60 RNS 0.288 61 0.285 5560 0.285 5620 

0.99 

61 Saluggia 1.941 73 1.477 17441 1.477 17460 

0.76 

62 
San Severino 

Marche-1 1.761 1932 1.242 22575 1.242 22789 

0.71 

63 
San Severino 

Marche-2 0.385 2704 0.399 17535 0.385 16978 

1.04 

69 
Settimo 
Torinese 1.800 143 2.187 110 1.800 183 

1.22 

70 Tarcento-1 0.097 361 0.072 1545 0.072 1639 

0.74 

71 Tarcento-2 0.179 198 0.135 3390 0.135 3423 

0.75 

72 Tarcento-3 1.971 111 2.010 1133 1.971 1145 

1.02 

73 Tarcento-4 0.210 124 0.219 26 0.210 142 

1.04 

74 Tarcento-5 0.508 216 0.501 8396 0.501 8601 

0.99 

75 Tarcento-6 0.172 477 0.168 6844 0.168 7277 

0.97 

76 Tarcento-7 0.032 115 0.030 14421 0.030 14521 

0.95 

77 Tarcento-8 1.119 392 1.060 14735 1.060 15034 

0.95 

78 Tarcento-10 2.553 378 2.454 55638 2.454 55974 

0.96 

79 Tarcento-11 0.476 124 0.233 256 0.233 256 

0.49 
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80 Tarcento-12 0.057 211 0.060 1875 0.057 1774 

1.05 
81 Tarcento-15 0.268 2750 0.262 21885 0.262 24512 

0.98 
83 Torre Pellice-

Depuratore 
1.217 1221 1.233 1992 1.217 3036 

1.01 

84 
Torre Pellice-

Giardini 0.718 1484 0.810 27194 0.718 17228 

1.13 

85 
Torre Pellice-
Parco Giochi 0.399 328 0.351 40732 0.351 40911 

0.88 

86 
Torre Pellice-

Torrente 0.331 10236 0.275 29307 0.275 32848 

0.83 

87 TRF0 0.322 2843 0.274 39019 0.274 40058 

0.85 

89 Venarotta 0.267 8396 0.177 39693 0.177 41517 

0.66 

92 Tarvisio 0.830 841 0.594 39487 0.594 39596 

0.72 

 
Upper-Left. Interval velocity profiles obtained after the second-round 

inversion. In red the minimum misfit profile, in solid black the minimum misfit 
profile obtained from the first-round inversion. Note that if the second-round 
inversion did not obtain a solution with lower misfit, the minimum misfit profile 
remains solid black. In dashed black (if available) the DH test profile, in ‘*’ black 

(if available) the CH test profile, in ‘x’ (if available) the suspension logging test 

profile, in ‘◊’ (if available) the SDTM test profile. 
Upper-Right. Harmonic average velocity profiles obtained after the second-

round inversion. In red the minimum misfit profile, in solid black the minimum 
misfit profile obtained from the first-round inversion. Note that if the second-round 
inversion did not obtain a solution with lower misfit, the minimum misfit profile 
remains solid black. In dashed black (if available) the DH test profile, in ‘*’ black 

(if available) the CH test profile, in ‘x’ (if available) the suspension logging test 
profile, in ‘◊’ (if available) the SDTM test profile. 

Lower-Left. EDCs obtained after the second-round inversion. In red the 
minimum misfit curve, in solid black the minimum misfit curve obtained from the 
first-round inversion. Note that if the second-round inversion did not obtain a 
solution with lower misfit, the minimum misfit EDC remains solid black. 

Lower-Right. Theoretical transfer functions (TTFs) obtained after the second-
round inversion. In red the minimum misfit function, in solid black the minimum 
misfit function obtained from the first-round inversion. Note that if the second-
round inversion did not obtain a solution with lower misfit, the minimum misfit 
function remains solid black. In dashed black (if available) the DH test function, in 
‘*’ black (if available) the CH test function, in ‘x’ (if available) the suspension 

logging test function, in ‘◊’ (if available) the SDTM test function. 
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Figure A93. Final results of the inversions for Accumoli (ID 1). 

 
 

 

Figure A94. Final results of the inversions for Acquasanta Terme (ID 2). 
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Figure A95. Final results of the inversions for Bovisio-L2  (ID 4). 

 
 

 

Figure A96. Final results of the inversions for Caselle Landi-1 (ID 5). 
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Figure A97. Final results of the inversions for Caselle Landi-2 (ID 6). 

 
 

 

Figure A98. Final results of the inversions for Caselle Landi-3 (ID 7). 

 

Figure A99. Final results of the inversions for Caselle Landi-5 (ID 8). 
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Figure A100. Final results of the inversions for Castel di Lama-Campo (ID 
9). 

 

Figure A101. Final results of the inversions for Castel di Lama-Strada (ID 
10). 
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Figure A102. Final results of the inversions for CAT (ID 11). 

 

Figure A103. Final results of the inversions for Cesana-1 (ID 12). 
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Figure A104. Final results of the inversions for Cesana-2 (ID 13). 

 

Figure A105. Final results of the inversions for CG-Loc. Alle Monache (ID 
14). 

 
 

 

Figure A106. Final results of the inversions for Firenze-Piazza Duomo (ID 
17). 
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Figure A107. Final results of the inversions for Firenze-Uffizi (ID 18). 

 
 

 

Figure A108. Final results of the inversions for Firenze-Via di Novoli (ID 19). 
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Figure A109. Final results of the inversions for GMN (ID 22). 

 
 

 

Figure A110. Final results of the inversions for GRI-Campo Sportivo-EW 
(ID 24). 

 

Figure A111. Final results of the inversions for GRI-Campo Sportivo-NS (ID 
25). 
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Figure A112. Final results of the inversions for Grisciano Conoide (ID 26). 

 

Figure A113. Final results of the inversions for Illica (ID 27). 
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Figure A114. Final results of the inversions for La Salle A (ID 28). 

 

Figure A115. Final results of the inversions for La Salle B (ID 29). 

 
 

 

Figure A116. Final results of the inversions for La Salle C (ID 30). 
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Figure A117. Final results of the inversions for La Salle D (ID 31). 

 
 

 

Figure A118. Final results of the inversions for La Salle E (ID 32). 
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Figure A119. Final results of the inversions for L’Aquila (Pianola) (ID 34). 

 
 

 

Figure A120. Final results of the inversions for L’Aquila (Roio Piano) (ID 

35). 

 

Figure A121. Final results of the inversions for Massa M.-Cantiere (ID 36). 
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Figure A122. Final results of the inversions for Massa M.-Parcheggio (ID 37). 

 

Figure A123. Final results of the inversions for Mathi-1&2 (ID 38). 
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Figure A124. Final results of the inversions for Mathi-3 (ID 39). 

 

Figure A125. Final results of the inversions for Mirabello-Last-July (ID 40). 

 
 

 

Figure A126. Final results of the inversions for Mirabello-Post-May (ID 41). 
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Figure A127. Final results of the inversions for Mirabello-Pre-Feb (ID 42). 

 
 

 

Figure A128. Final results of the inversions for Montemonaco (ID 43). 

 

 
Figure A129. Final results of the inversions for Offida (ID 45). 

 
 



 

356 
 

 

Figure A130. Final results of the inversions for Palmiano-Castel San Pietro 
(ID 46). 

 

Figure A131. Final results of the inversions for Piazza al Serchio (ID 48). 
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Figure A132. Final results of the inversions for Pieve Fosciana (ID 49). 

 

Figure A133. Final results of the inversions for Pisa (ID 50). 
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Figure A134. Final results of the inversions for Pontremoli-1 Maggio (ID 52). 

 

Figure A135. Final results of the inversions for Pontremoli-ASL 2 (ID 53). 

 
 

 

Figure A136. Final results of the inversions for Pontremoli-Bocciofila (ID 54). 
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Figure A137. Final results of the inversions for Pontremoli-Giochi (ID 55). 

 
 

 

Figure A138. Final results of the inversions for Roccafluvione (ID 58). 
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Figure A139. Final results of the inversions for Rotella (ID 59). 

 
 

 

Figure A140. Final results of the inversions for RNS (ID 60). 

 

Figure A141. Final results of the inversions for Saluggia (ID 61). 
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Figure A142. Final results of the inversions for San Severino Marche-1 (ID 
62). 

 

Figure A143. Final results of the inversions for San Severino Marche-2 (ID 
63). 
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Figure A144. Final results of the inversions for Settimo Torinese (ID 69). 

 

Figure A145. Final results of the inversions for Tarcento-1 (ID 70). 
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Figure A146. Final results of the inversions for Tarcento-2 (ID 71). 

 

Figure A147. Final results of the inversions for Tarcento-3 (ID 72). 

 
 

 

Figure A148. Final results of the inversions for Tarcento-4 (ID 73). 
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Figure A149. Final results of the inversions for Tarcento-5 (ID 74). 

 
 

 

Figure A150. Final results of the inversions for Tarcento-6 (ID 75). 
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Figure A151. Final results of the inversions for Tarcento-7 (ID 76). 

 
 

 

Figure A152. Final results of the inversions for Tarcento-8 (ID 77). 

 

Figure A153. Final results of the inversions for Tarcento-10 (ID 78). 
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Figure A154. Final results of the inversions for Tarcento-11 (ID 79). 

 

Figure A155. Final results of the inversions for Tarcento-12 (ID 80). 
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Figure A156. Final results of the inversions for Tarcento-15 (ID 81). 

 

 

Figure A157. Final results of the inversions for Torre Pellice-Depuratore (ID 
83). 

 
 

 

Figure 158. Final results of the inversions for Torre Pellice-Giardini (ID 84). 
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Figure A159. Final results of the inversions for Torre Pellice-Giochi (ID 85). 

 
 

 

Figure A160. Final results of the inversions for Torre Pellice-Torrente (ID 
86). 
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Figure A161. Final results of the inversions for TRF0 (ID 87). 

 
 

 

Figure A162. Final results of the inversions for Venarotta (ID 89). 

 

Figure A163. Final results of the inversions for Tarvisio (ID 92). 

 


