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We calculate the effect of a static electric field on the critical temperature of a s-wave one band superconductor
in the framework of proximity effect Eliashberg theory. In the weak electrostatic field limit the theory has no free
parameters while, in general, the only free parameter is the thickness of the surface layer where the electric field
acts. We conclude that the best situation for increasing the critical temperature is to have a very thin film of a
superconducting material with a strong increase of electron-phonon (boson) constant upon charging.

DOI: 10.1103/PhysRevB.96.064509

I. INTRODUCTION

In the last decade, electric double layer (EDL) gating has
come to the forefront of solid state physics due to its capability
to tune the surface carrier density of a wide range of different
materials well beyond the limits imposed by solid-gate field-
effect devices. The order-of-magnitude enhancement in the
gate electric field allows this technique to reach doping levels
comparable to those of standard chemical doping. This is
possible due to the extremely large specific capacitance of
the EDL that builds up at the interface between the electrolyte
and the material under study [1–5].

EDL gating was first exploited to control the surface
electronic properties of relatively low-carrier density systems,
where the electric field effect is more readily observable.
Field-induced superconductivity was first demonstrated in
strontium titanate [6] and zirconium nitride chloride [7,8], and
subsequently on other insulating systems such as perovskites
[9] and layered transition-metal dichalcogenides [10–16].
Significant effort was also invested in the control of the
superconducting properties of cuprates [17–25], although in
this class of materials the mechanism behind the carrier density
modulation is still debated [25].

More recently however, several experimental studies have
been devoted to the exploration of field effect in supercon-
ductors [26] with a large (�1 × 1022 cm−3) native carrier
density. The interplay between two different ground states,
namely superconductivity and charge density waves, was
explored in titanium and niobium diselenides [27–29]. The
thickness and gate voltage dependence of a high-temperature
superconducting phase were studied in iron selenide, both in
thin-film [30] and thin flake [31,32] forms. The effect of the
ultrahigh interface electric fields achievable via EDL gating
were also probed in standard BCS superconductors, namely
niobium [33] and niobium nitride [34,35].

*giovanni.ummarino@polito.it

With the exception of the work of Ref. [29] on niobium
diselenide, all of these studies have been performed on
relatively thick samples (�10 nm) with a thickness larger
than the electrostatic screening length. These systems are thus
expected to develop a strong dependence of their electronic
properties along the z direction (z being perpendicular to the
sample surface). As a first approximation, this dependence
can be conceptualized by schematizing the system as the
parallel of a surface layer (where the carrier density is
modified by the electric field) and an unperturbed bulk.
The two electronic systems can be expected to couple via
superconducting proximity effect, resulting in a complicated
response to the applied electric field that goes well beyond a
simple modification of the superconducting properties of the
surface layer alone [35] and is strongly dependent on both the
electrostatic screening length and the total thickness of the film.

So far, the only quantitative assessment of this phenomenon
has been reported in the framework of the strong-coupling
limit of the BCS theory of superconductivity [35]. A proper
theoretical treatment for field effect on more complex ma-
terials, which can be described only by means of the more
complete Eliashberg theory [36,37], is lacking. Given the ris-
ing interest in the control of the properties of superconductors
by means of surface electric fields, the development of such
a theoretical approach would be very convenient not only to
quantitatively describe the results of future experiments, but
also to determine beforehand the experimental conditions (e.g.,
device thickness) most suitable for an optimal control of the
superconducting order via electric fields.

In this work, we use the Eliashberg theory of proximity
effect to describe a junction composed by the perturbed surface
layer (Tc = Tc,s), where the carrier density is modulated
(with a doping level per unitary cell x), and the underlying
unperturbed bulk (Tc = Tc,b). Here s and b indicate “surface”
and “bulk”, respectively (see Fig. 1). Under the application of
an electric field, Tc,s �= Tc,b and the material behaves like a
junction between a superconductor and a normal metal in the
temperature range bounded by Tc,s and Tc,b. If the application
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FIG. 1. Scheme of an EDL-gated superconducting thin film. The
layer of adsorbed ions and the surface layer where the carrier density
is perturbed (dark green region) compose the EDL. The unperturbed
bulk of the film is indicated in light green color. For both layers, we
indicate the relevant parameters of the proximity Eliashberg equations
(see text for details). Parameters in red, black, and white indicate the
free parameters of the model, data obtained from the literature, and
the output of the DFT calculations, respectively. Parameters in yellow
are obtained from these by simple calculations.

of the electric field increases (decreases) Tc,s , then the surface
layer will be the superconductor (normal metal) and the
bulk will be the normal metal (superconductor). We perform
the calculation for Pb since all the input parameters of the
theory are well known in the literature for this strong-coupling
superconductor [36].

II. MODEL: PROXIMITY ELIASHBERG EQUATIONS

In general, a proximity effect at a superconductor/normal
metal junction is observed as the opening of a finite su-
perconducting gap in the normal metal together with its
reduction in a thin region of the superconductor close to
the junction. In our model we use the one band s-wave
Eliashberg equations [36,37] with proximity effect to calculate
the critical temperature of the system. In this case we have
to solve four coupled equations for the gaps �s,b(iωn) and
the renormalization functions Zs,b(iωn), where ωn are the
Matsubara frequencies. The imaginary-axis equations with
proximity effect [38–42] are

ωnZb(iωn) = ωn + πT
∑
m

�Z
b (iωn,iωm)NZ

b (iωm)

+�bN
Z
s (iωn), (1)

Zb(iωn)�b(iωn) = πT
∑
m

[
��

b (iωn,iωm) − μ∗
b(ωc)

]

×�(ωc − |ωm|)N�
b (iωm) + �bN

�
s (iωn),

(2)

ωnZs(iωn) = ωn + πT
∑
m

�Z
s (iωn,iωm)NZ

s (iωm)

+�sN
Z
b (iωn), (3)

Zs(iωn)�s(iωn) = πT
∑
m

[
��

s (iωn,iωm) − μ∗
s (ωc)

]

×�(ωc − |ωm|)N�
s (iωm) + �sN

�
b (iωn),

(4)

where μ∗
s(b) are the Coulomb pseudopotentials in the surface

and in the bulk, respectively, � is the Heaviside function,
and ωc is a cutoff energy at least three times larger than the
maximum phonon energy. Thus we have

�s(b)(iωn,iωm) = 2
∫ +∞

0
d��α2

s(b)F (�)/[(ωn−ωm)2+�2],

(5)

�s(b) = π |t |2Adb(s)Nb(s)(0), (6)

and thus �s

�b
= dbNb(0)

dsNs (0) ,

N�
s(b)(iωm) = �s(b)(iωm)/

√
ω2

m + �2
s(b)(iωm), (7)

and

NZ
s(b)(iωm) = ωm/

√
ω2

m + �2
s(b)(iωm), (8)

where α2
s(b)F (�) are the electron-phonon spectral functions,

A is the junction cross-sectional area, ds and db are the
surface and bulk layer thicknesses respectively, such that
ds + db = d (where d is the total film thickness), and Ns(b)(0)
are the densities of states at the Fermi level EF,s(b) for the
surface and bulk material. Since we only consider electrostatic
perturbations to the system, we assume the transmission matrix
|t |2 = 1 as we expect the interface between the surface and
bulk layers to be nearly ideal. This assumption is supported
by our experimental findings on niobium nitride [35], where
the experimental doping dependence of Tc turned out to be
compatible with a high interface transparency.

The electron-phonon coupling constants are defined as

λs(b) = 2
∫ +∞

0
d�

α2
s(b)F (�)

�
(9)

and the representative energies as

ln(ωln,s(b)) = 2

λs(b)

∫ +∞

0
d� ln �

α2
s(b)F (�)

�
. (10)

The solution of these equations requires 11 input parameters:
the two electron-phonon spectral functions α2

s(b)F (�), the two
Coulomb pseudopotentials μ∗

s(b), the values of the normal
density of states at the Fermi level Ns(b)(0), the shift of
the Fermi energy �EF = EF,s − EF,b that enters in the
calculation of the surface Coulomb pseudopotential (as shown
later), the thickness of the surface layer ds , the total film
thickness d, and the junction cross-sectional area A. The values
of d and A are experimental data. The exact value of ds , in
particular in the case of very strong electric fields at the surface
of a thin film, is in general difficult to be determined a priori
[35]. Thus we leave it as a free parameter of the model, and we
perform our calculations for different reasonable estimations
of its value, as we discuss in detail in Sec. IV.

Typically, the bulk values of α2
bF (�), μ∗

b, Nb(0), and EF,b

are known and can be found in the literature. Thus, we assume
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that we need to determine only their surface values. In the
next section we will use density functional theory (DFT) to
calculate α2

s F (�), �EF , and Ns(0).
The value of the Coulomb pseudopotential in the surface

layer μ∗
s can be obtained in the following way: In the Thomas-

Fermi theory, the dielectric function is [43] ε(q) = 1 + k2
TF
q2 and

the bare Coulomb pseudopotential μ is the angular average of
the ratio between the screened electrostatic potential V (q) and
ε(q):

μ = 1

4π2h̄vF

∫ 2kF

0

V (q)

ε(q)
qdq. (11)

Since [44] V (q) = 4πe2

q2 it turns out that

μ = k2
TF

8k2
F

ln

(
1 + 4k2

F

k2
TF

)
. (12)

Hence we write

μb = a2
b

2
ln

(
1 + 1

a2
b

)
, (13)

with ab = 2kTF,b/kF,b. Since ab can be calculated by numeri-
cally solving Eq. (13), and by remembering that the square of
Thomas-Fermi wave number kTF,b(s) is proportional to Nb(s)(0),
we have

a2
s = a2

b

(
Ns(0)

Nb(0)

)/(
1 + �EF

EF,b

)
(14)

and thus

μs = a2
s

2
ln

(
1 + 1

a2
s

)
. (15)

The new Coulomb pseudopotential [44] in the surface layer is
thus

μ∗
s (ωc) = μs

1 + μs ln[(EF,b + �EF )/ωc]
. (16)

We note that, usually, the effect of electrostatic doping on μ∗ is
very small and can be neglected. We can quantify the effect on
Tc of this small modulation of μ∗ by computing it in the case
of maximum doping x = 0.40 and very thin film (d = 5 nm),
i.e., when the effect is the largest. As discussed in the next sec-
tion, the unperturbed Coulomb pseudopotential is μ∗(x = 0)
= 0.14164, while for the maximum doping Eqs. (12)–(16)
give μ∗(x = 0.4) = 0.14048. If we use ds = dTF we find,
respectively, Tc = 7.3770 K for the bulk (unperturbed) value
of the Coulomb pseudopotential and Tc = 7.3768 K for
the surface value of the Coulomb pseudopotential. Thus,
if we consider the Coulomb pseudopotential to be doping
independent we underestimate the critical temperature of a
�Tc|�μ∗ = −0.0002 K (�Tc|�μ∗/Tc = 0.0027%).

However, a possible critical situation can appear when the
applied electric field is very strong and the Thomas-Fermi
approximation does not hold anymore. In such a case, μ∗
becomes ill-defined as the Thomas-Fermi dielectric function
is no longer strictly valid for very large electric fields.
Nevertheless, the true dielectric function ε(q) should still be a
function of the ratio kTF/kF [45], which—in the free-electron
model—is independent of the normal density of states at the

Fermi level. Thus, Eq. (11) should still be able to describe the
behavior of the system as a first approximation.

III. CALCULATION OF α2
s F(�), �EF , AND Ns(0)

DFT calculations are performed within the mixed-basis
pseudopotential method (MBPP) [46]. For Pb a norm-
conserving relativistic pseudopotential including 5d semicore
states and partial core corrections is constructed following
the prescription of Vanderbilt [47]. This provides both scalar-
relativistic and spin-orbit components of the pseudopotential.
Spin-orbit coupling (SOC) is then taken into account within
each DFT self-consistency cycle (for more details on the
SOC implementation see [48]). The MBPP approach utilizes
a combination of local functions and plane waves for the basis
set expansion of the valence states, which reduces the size of
the basis set significantly. One d type local function is added
at each Pb atomic site to efficiently treat the deep 5d potential.
Sufficient convergence is then achieved with a cutoff energy of
20 Ry for the plane waves. The exchange correlation it treated
in the local density approximation (LDA) [49]. Brillouin
zone (BZ) integrations are performed on regular k-point
meshes in conjunction with a Gaussian broadening of 0.2 eV.
For phonons, 16 × 16 × 16 meshes are used, while for the
calculations of density of states and electron-phonon coupling
(EPC) even denser 32 × 32 × 32 meshes are employed.

Phonon properties are calculated with the density-
functional perturbation theory [50,51] as implemented in the
MBPP approach [52], which also provides direct access to
the electron-phonon coupling matrix elements. The procedure
to extract the Eliashberg function is outlined in Ref. [48].
Dynamical matrices and corresponding EPC matrix elements
are obtained on a 16 × 16 × 16 phonon mesh. These quantities
are then interpolated using standard Fourier techniques to
the whole BZ, and the Eliashberg functions are calculated
by integration over the BZ using the tetrahedron method
on a 40 × 40 × 40 mesh. SOC is consistently taken into
account in all calculations including lattice dynamical and
EPC properties. It is well known from previous work that
SOC is necessary for a correct quantitative description of both
the phonon anomalies and EPC of undoped bulk Pb [48].

Charge induction is simulated by adding an appropriate
number of electrons during the DFT self-consistency cycle,
compensated by a homogeneous background charge to retain
overall charge neutrality. Electronic structure properties and
the Eliashberg function are calculated for face-centered cubic
(fcc) Pb with the lattice constant a = 4.89 Å as obtained
by optimization for the undoped case. For doping levels
considered here, we found that to a good approximation charge
induction does not change the band structure but merely
results in a shift of EF . In a previous study, the variation
of the EPC was studied as function of the averaging energy
[53]. The present approach goes beyond this analysis by
taking into account explicitly the effect of charge induction
on the screening properties, which modifies both the phonon
spectrum and the EPC matrix elements.

Finally we point out that, since this DFT approach sim-
ulates the effect of the electric field by adding extra charge
carriers to the system together with a uniform compensating
countercharge (Jellium model [54]), it is unable to describe
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inhomogeneous distributions caused by the screening of the
electric field itself. A more complete approach has been
developed in Ref. [55], and requires the self-consistent solution
of the Poisson equation; however, this method is currently
unable to compute the phonon spectrum of the gated material,
making it unsuitable for the application to the proximity
Eliashberg formalism.

IV. RESULTS AND DISCUSSION

We start our calculations by fixing the input parameters for
bulk Pb according to the established literature. We set Tc,b to its
experimental value [36] Tc,b = 7.22 K. The undoped α2

bF (�)
gives a corresponding electron-phonon coupling λb = 1.5596.
Assuming a cutoff energy ωc = 60 meV and a maximum
energy ωmax = 70 meV in the Eliashberg equations, we are
thus able to determine the bulk Coulomb pseudopotential
to be μ∗

b = 0.14164 to obtain the exact experimental critical
temperature Tc,b.

In Fig. 2(a) we show the calculated electron-phonon spec-
tral functions α2F (�) resulting at the increase of the doping
level x. Specifically, we plot the curves corresponding to x =
0.000,0.075,0.150,0.300,0.400 e−/unit cell. We calculate the
spectral functions up to x = 0.4 e−/cell because for larger
values of doping an instability emerges in the calculation
processes. We can see the phonon softening evidenced by
a reduction of ωln with increasing doping level. The increase
of the carrier density gives rise to two competing effects: the
value of ωln (i.e., the representative phonon energy) decreases
while the value of electron-phonon coupling constant λ

increases [see Fig. 2(b)]. In the Eliashberg theory, the critical
temperature is an increasing function of both ωln and λ. This
can be easily visualized by the well-known, approximated
Allen-Dynes formula [56]:

Tc = ωln

1.2
exp

(
1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

)
, (17)

which features a linearly increasing dependence on ωln. Hence,
this could result in either a net enhancement or suppression of
Tc, depending on which of the two contributions is dominant.
Consequently the ideal situation for obtaining the largest
possible critical temperature in an electric field doped material
is to have a strong increase of λ and ωln concurrently. In the
case of Pb the contribution from the increase of λ is dominant
over that from the reduction of ωln, giving rise to a net increase
of the superconducting critical temperature [as we report in
Fig. 2(c)]. In addition, in Table I we summarize all the input
parameters of the proximity Eliashberg equations as obtained
from the DFT calculations.

Having determined the response of the superconducting
properties of a homogeneous lead film to a modulation of
its carrier density, we can now consider the behavior of the
more realistic junction between the perturbed surface layer
and the unperturbed bulk. In order to do so, however, it is now
mandatory to select a value for the thickness of the perturbed
surface layer. Close to Tc, the superfluid density is small [57]
and the screening is dominated by unpaired electrons. Thus,
a very rough approximation would be to set ds equal to the
Thomas-Fermi screening length dTF, which for lead can be
estimated to be 0.15 nm [58]. However, we have recently

(a)

(b)

(c)

FIG. 2. (a) Calculated Pb electron-phonon spectral function for
five different values of charge doping (electrons/unitary cell): 0.00
(violet solid line), 0.075 (blue solid line), 0.15 (green solid line),
0.30 (orange solid line), and 0.40 (red solid line). We also show
the experimental electron-phonon spectral function determined via
tunneling measurements [60] (black solid line). All curves are
shifted by a constant offset equal to one. (b) Calculated values
of electron-phonon coupling constants λ (green diamonds) and
representative energies ωln (brown pentagons) versus charge doping.
(c) Calculated critical temperature versus charge doping for a system
without proximity effect. Symbol colors correspond to those used in
(a). All dash-dotted lines act as guides to the eye.

shown [35] that this assumption might not be satisfactory in
the presence of the very large electric fields that build up in
the electric double layer. Indeed, our experimental findings on
niobium nitride indicated that the screening length increases
for very large doping values [35]. However, it is reasonable to
assume the exact entity of this increase to be specific to each
material. Thus, while the qualitative behavior can be expected
to be general, the exact values of ds determined for niobium
nitride cannot be directly applied to lead.

In order not to lose the generality of our approach, we
calculate the behavior of our system for three different choices
of the behavior of ds . We start by expressing ds = dTF[1 +
m�(x − x0)], where m is a dimensionless parameter indicating
how much ds expands beyond the Thomas-Fermi value for
large doping levels, and x0 is the specific doping value at
which this increase in ds takes place. By selecting x0 = 0.2, we
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TABLE I. Input parameters calculated by DFT and Tc calculated by Eliashberg theory without proximity effect.

x (e−/cell) λ ωln (meV) N (0) states/(eV spin) �EF (meV) μ∗ Tc (K)

0.000 1.5612 4.8431 0.25866 0.00 0.14164 7.2200
0.075 1.5582 4.8432 0.25754 108.42 0.14136 7.2197
0.150 1.6137 4.7176 0.25611 218.77 0.14116 7.3165
0.300 2.0237 4.2175 0.26770 435.07 0.14074 8.2862
0.400 2.5392 3.5668 0.27833 571.62 0.14048 8.9406

allow the upper half of our doping values to bring the system
beyond the Thomas-Fermi approximation. We then perform
proximity-coupled Eliashberg calculations for m = 0,1,4 and
five different film thicknesses d = 5,10,20,30,40 nm, always
assuming the junction area to be A = 10−7 m2. Note that
the case m = 0 of course corresponds to the case where the

(a)

(b)

FIG. 3. (a) Calculated critical temperature versus charge doping
for five different values of film thickness d = 5 nm (orange stars),
d = 10 (blue down triangles), d = 20 nm (red circles), d = 30 nm
(green up triangles), and d = 40 nm (black squares) with surface
layer thickness ds = dTF. (b) Calculated critical temperature versus
film thickness for four different charge doping (electrons/unitary cell):
0.075 (black squares), 0.150 (red circles), 0.300 (green up triangles),
and 0.400 (blue down triangles) with ds = dTF. The two graphs are
in semilogarithmic scale [log(Tc − 7.218)].

material satisfies the Thomas-Fermi model for any value of
doping: in this case, the model has no free parameters.

In Fig. 3 we plot the evolution of Tc upon increasing
electron doping and assuming that the Thomas-Fermi model
always holds (m = 0 and ds = dTF), for different values of film
thickness. The calculations show that the qualitative increase
in Tc with increasing doping level that we observed in the
homogeneous case is retained also in proximized films of any
thickness [see Fig. 3(a)]. However, the presence of a coupling
between surface and bulk induced by the proximity effect
gives rise to a key difference with respect to the homogeneous

(a)

(b)

FIG. 4. Calculated critical temperature versus charge doping for
five different values of film thickness d = 5 nm (orange stars), d = 10
(blue down triangles), d = 20 nm (red circles), d = 30 nm (green
up triangles), and d = 40 nm (black squares) with surface layer
thickness ds = dTF[1 + m�(x − 0.2)] [(a) m = 1 and (b) m = 4].
The two graphs are in semilogarithmic scale [log(Tc − 7.218)].
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(a)

(b)

(d)

(c)

FIG. 5. (a) Dependence of the doping per unit volume x (red up triangles and diamonds) and surface layer thickness ds (blue up triangles
and diamonds) on the induced carrier density per unit surface �n2D, for two different values of the maximum doping level x0 = 0.3 and
x0 = 0.4 e−/unit cell. (b) and (c) Tc versus induced carrier density per unit surface �n2D for five different film thicknesses [d = 5 nm (orange
stars), d = 10 (blue down triangles), d = 20 nm (red circles), d = 30 nm (green up triangles), and d = 40 nm (black squares)] in the cases
x0 = 0.4 and 0.3 e−/unit cell, respectively. (b) and (c) In semilogarithmic scale [log(Tc − 7.2)]. (d) Tc(x = 0.4) − Tc(x = 0.3) versus induced
carrier density per unit surface �n2D for the five different film thicknesses.

case, namely, a strong dependence of Tc on film thickness
in the doped films. Indeed, the magnitude of the Tc shift with
respect to the homogeneous case is heavily suppressed already
in films as thin as 5 nm. This behavior is best seen in Fig. 3(b),
where we plot the same data as a function of the total film
thickness for all doping levels. As we can see, the increase
of critical temperature drops dramatically with increasing film
thickness. We have not calculated the critical temperature for
monolayer films since the approximations of the model would
no longer apply in this case: in particular the unperturbed
electron-phonon spectral function would be different from the
bulklike one we employed in our calculations [59].

We now consider the effect of the different degrees of
confinement for the induced charge carriers at the surface of
the films. We do so by allowing the perturbed surface layer
to spread further in the depth of the film for large electron
doping, i.e., by increasing the m parameter in the definition
of ds . In Fig. 4 we plot the evolution of Tc with increasing
electron doping and for different film thicknesses, in the two
cases m = 1 (ds is allowed to expand up to 2dTF = 0.3 nm)
and m = 4 (ds is allowed to expand up to 5dTF = 0.75 nm).
We can first observe how a different value of ds does not
change the qualitative behavior of the curves. The evolution

of Tc with increasing electron doping is still comparable to
both the homogeneous case and the proximized films in the
Thomas-Fermi limit. The suppression of the Tc increase with
increasing film thickness is also similar to the latter case.
However, the magnitude of the Tc shift for the same values
of film thickness and doping level per unit cell is clearly the
more enhanced the larger the value of ds . This is to be expected,
as larger values of ds increase the fraction of the film that is
perturbed by the application of the electric field and reduce
the Tc shift dampening operated by the proximity effect. In
principle, for values of m large enough (or film thickness d

small enough) one could reach the limit value ds � d and
recover the homogeneous case where the Tc shift is maximum.

All the calculations we performed so far assume that one
could directly control the induced carrier density per unit
volume x in the surface layer, without an explicit upper limit.
However, this is not an experimentally achievable goal in a
field-effect device architecture. In this class of devices, the
polarization of the gate electrode allows one to tune the
electric field at the interface and thus the induced carrier
density per unit surface �n2D required to screen it. Within
our model, �n2D = ∫ ds

0 �n3Ddz is distributed within a layer
of thickness ds . In general, the determination of the exact
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depth profile of this distribution requires the self-consistent
solution of the Poisson equation [55]; however, as a first
approximation we can consider this distribution to be constant,
obtaining an effective doping level per unit volume simply as
x = �n2D/ds . This procedure allows one to employ the same
DFT-Eliashberg formalism we developed before in order to
simulate a field effect experiment on a superconducting thin
film.

In addition, according to our recent experimental findings
on niobium nitride [35], the surface layer thickness ds is
a monotonically increasing function of the induced carrier
density per unit surface �n2D, while the doping level per
unit volume x saturates for large �n2D. In other words,
the previously defined threshold value x0 for the breakdown
of the Thomas-Fermi approximation now takes on also the
meaning of a maximum achievable doping level. Figure 5(a)
shows the resulting dependence of x and ds on �n2D, for
two different values of the maximum doping level x0 = 0.3
and x0 = 0.4 e−/unit cell. When �n2D is small enough so
that x < x0, the Thomas-Fermi screening holds, ds = dTF is
constant, and x linearly increases with �n2D. As soon as �n2D

becomes large enough that x = x0 is constant [�n2D(x0)], the
Thomas-Fermi screening is no longer valid and ds(�n2D) =
�n2Dx0 increases linearly with �n2D.

In Figs. 5(b) and 5(c) we plot the resulting modulation of
Tc for five different film thicknesses in the cases x0 = 0.4
and 0.3 e−/unit cell, respectively. In both cases we can
readily distinguish between two regimes of �n2D. When
�n2D � �n2D(x0), Thomas-Fermi screening holds and we
reproduce the behavior we observed in Fig. 3(a). In this
regime, the induced carrier density directly modulates x and
thus the electron-phonon spectral function α2F (�). The Tc

modulation is thus a result of a direct modification of the
material properties at the surface, with proximity effect simply
operating a “smoothing” which is more effective the thinner the
film. On the other hand, when �n2D > �n2D(x0), the surface
properties [α2F (�)] are no longer modified by the extra
charge carriers, and the further modulation of Tc originates
entirely from the proximity effect as determined by the increase
in ds .

We can also compare the Tc shifts for different maximum
doping levels x0. Figure 5(d) shows the difference between the
Tc corresponding to x0 = 0.4 and 0.3 e−/unit cell as a function
of the total film thickness, for different values of �n2D. We can
clearly see how Tc is always larger for the films with larger x0,
for any value of film thickness, even if the associated values
of ds are always smaller. This indicates that the maximum
achievable value of x0 is dominant with respect to the increase
of ds to determine the final value of Tc, also in the doping
regime �n2D > �n2D(x0).

Of course, in a real sample we do not expect the transition
between the two regimes to be so clear-cut, as the saturation
of x to x0 would occur over a finite range of �n2D. In
this intermediate region, the modulation of α2F (�) and ds

would both contribute in a comparable way to the final
value of Tc in the film. We stress, however, that in both
regimes the proximity effect is fundamental in determining
the Tc of the gated film. We also note that the proximized
Eliashberg equations are able to account for a nonuniform
scaling of the Tc shift for different values of film thickness,

unlike the models that use approximated analytical equations
for Tc.

V. CONCLUSIONS

In this work we have developed a general method for the
theoretical simulation of field-effect doping in superconduct-
ing thin films of arbitrary thickness, and we have benchmarked
it on Pb as a standard strong-coupling superconductor. Our
method relies on ab initio DFT calculations to compute how
the increasing doping level x per unit volume modifies the
structural and electronic properties of the material [shift of
Fermi level �EF , density of states N (0), and electron-phonon
spectral function α2F (�)]. The Coulomb pseudopotential μ∗
is determined by simple calculations from some of these
parameters. The properties of the pristine thin film (critical
temperature Tc, device area A, and total film thickness d) can
be obtained either from the literature or experimentally from
standard transport measurements. For doping values where the
Thomas-Fermi theory of screening is satisfied, the perturbed
surface layer thickness is constant (ds = dTF) and the theory
has no free parameters.

Once all the input parameters are known, our method allows
us to compute the transition temperature Tc for arbitrary values
of film thickness d and electron doping in the surface layer
x by solving the proximity-coupled Eliashberg equations in
the surface layer and unperturbed bulk. On the other hand,
if no reliable estimations of the surface layer thickness ds

are available, our method allows one to determine ds(x) by
reproducing the experimentally measured Tc(x). This allows
us to probe deviations from the standard Thomas-Fermi theory
of screening in the presence of very large interface electric
fields.

We also show how, even in the case where the Thomas-
Fermi approximation breaks down and the doping level x

can no longer be increased, the transition temperature Tc of
a thin film can still be indirectly modulated by the electric
field by changing the surface layer thickness ds . For what
concerns artificial enhancements of Tc in superconducting thin
films, we conclude that very thin films (d � ds , in order to
minimize the smoothing operated by the proximity effect) of
a superconductive material characterized by a strong increase
of the electron-phonon (boson) coupling upon changing its
carrier density are required to optimize the effectiveness of the
field-effect-device architecture.

Finally, our calculations indicate that sizable Tc enhance-
ments of the order of ∼0.5 K should be achievable in
thin films of a standard strong-coupling superconductor such
as Pb, for easily realizable thicknesses of ∼10 nm and
doping levels routinely induced via EDL gating in metallic
systems [5,35]. These features may open the possibility
for superconducting switchable devices and electrostatically
reconfigurable superconducting circuits above liquid helium
temperature.

ACKNOWLEDGMENT

G.A.U. acknowledges support from the MEPhI Academic
Excellence Project (Contract No. 02.a03.21.0005).

064509-7



G. A. UMMARINO et al. PHYSICAL REVIEW B 96, 064509 (2017)

[1] T. Fujimoto and K. Awaga, Phys. Chem. Chem. Phys. 15, 8983
(2013).

[2] K. Ueno, H. Shimotani, H. T. Yuan, J. T. Ye, M. Kawasaki, and
Y. Iwasa, J. Phys. Soc. Jpn. 83, 032001 (2014).

[3] A. M. Goldman, Annu. Rev. Mater. Res. 44, 45 (2014).
[4] Y. Saito, T. Nojima, and Y. Iwasa, Supercond. Sci. Technol. 29,

093001 (2016).
[5] D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino,

M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi,
Phys. Rev. Lett. 108, 066807 (2012).

[6] K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura,
T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Mater. 7,
855 (2008).

[7] J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H.
Shimotani, and Y. Iwasa, Nat. Mater. 9, 125 (2010).

[8] Y. Saito, Y. Kasahara, J. T. Ye, Y. Iwasa, and T. Nojima, Science
350, 409 (2015).

[9] K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura,
T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Nanotech.
6, 408 (2011).

[10] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and
Y. Iwasa, Science 338, 1193 (2012).

[11] S. Jo, D. Costanzo, H. Berger, and A. F. Morpurgo, Nano Lett.
15, 1197 (2015).

[12] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler,
K. T. Law, and J. T. Ye, Science 350, 1353 (2015).

[13] W. Shi, J. T. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki,
N. Inoue, Y. Saito, and Y. Iwasa, Sci. Rep. 5, 12534 (2015).

[14] Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu,
S. Kim, Y.-W. Son, D. Feng, S. Li, S.-W. Cheong, X. H. Chen,
and Y. Zhang, Nat. Nanotechnol. 10, 270 (2015).

[15] D. Costanzo, S. Jo, H. Berger, and A. F. Morpurgo,
Nat. Nanotechnol. 11, 339 (2016).

[16] Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. T. Ye, Y.
Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y.
Yanase, and Y. Iwasa, Nat. Phys. 12, 144 (2016).

[17] A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich,
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