
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(31stcycle)

Control Plane in Software Defined
Networks and Stateful Data Planes

By

Abubakar Siddique Muqaddas

Supervisor:
Prof. Paolo Giaccone

Doctoral Examination Committee:
Prof. Franco Callegati, Università degli studi di Bologna
Prof. Francesco Musumeci, Politecnico di Milano

Politecnico di Torino

2019

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Abubakar Siddique Muqaddas
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my family: my parents, my wife, my brother
and my grandparents.

With their duas, Alhamdulillah, I achieved which I could never hope to do so...

Acknowledgements

First and foremost, I would like to thank Almighty Allah; all my achievements are
due to Him.

I would like to extend my sincere gratitude to my supervisor Prof. Paolo Giaccone
for his guidance throughout my Masters thesis and Ph.D research. I learned from
his way of research, questioning every little nuance of the work at hand, leading to
exceptional and quality work. His acumen and immense knowledge helped me gain
the direction in our work. Indeed, the research skills I have learned from him will
help throughout my life.

I would like to thank Prof. Andrea Bianco for his valuable comments and insights.
I am grateful to him for providing an opportunity to carry out research at the High
Performance Networks (HPN) group at the University of Bristol.

I would like to thank Miquel Garrich Alabarce, for his constant drive and extreme
determination in realizing our idea. Indeed, the basic knowledge that I have received
about the optical networks is due to him.

I express my gratitude to Prof. Reza Nejabati and Prof. Dimitra Simeonidou for
hosting me at the HPN group.

I would really like to thank Ahsan Mahmood and Tianzhu Zhang, who motivated
me and provided an exceptional company during my research. I would also like to
thank German Sviridov and Janvi Palan for their collaboration.

I also thank Navdeep Uniyal, Dimitris Gkounis, Thierno Abdourahmane Diallo
and Anderson Bravalheri, for being the best colleagues, and supporting me during
my stay at HPN group.

Lastly, I express my gratitude to my parents, wife, brother and grandparents, who
were supportive and kept me motivated throughout my Ph.D.

Abstract

Legacy telecommunication networks are complex to configure due to the strict cou-
pling of data plane and control plane. In this regard, Software Defined Networking
(SDN) is a disruptive technology, which decouples the data plane and control plane,
and offers a programmable data plane controlled by a logically centralized SDN
controller. This simplifies the network control and provides a complete network
view at the SDN controller. One of the key applications of SDN is 5G networks
where it is utilized in conjunction with Network Function Virtualization (NFV) to
provide end-to-end network service orchestration. 5G networks are being introduced
to cope with increasing bandwidth, massive connectivity and low latency demands.
SDN is thus advantageous to 5G since it can be used to provision dynamic network
connectivity in an automated way. SDN has come a far away since the inception of
OpenFlow in 2008, however there are multiple avenues in the scope of SDN to be
further investigated. This thesis specifically investigates the control plane of SDN,
specifically the various interfaces present in the SDN control plane. Additionally, we
present the concept of replicated states in a stateful data plane in the scope of SDN.

As a first contribution, we investigate the east-west interface which carries
inter-controller traffic among SDN controllers, so that the SDN controllers have a
consistent view of the network. We quantify the impact of the network related data
stores (topology, flows and hosts) on the traffic exchanged among a cluster of ONOS
controllers. We empirically derive the throughput equation for the inter-controller
traffic as a function of the network topology (number of switches and links). We
also present the impact of network flows on the inter-controller traffic, the amount
of inter-controller traffic based on flow backup for some commercial OpenFlow
switches is reported. Furthermore, we also discuss the impact of the host store;
where we provide a lower and upper bound on the amount of traffic exchanged
between the controllers due to addition of a host in the network.

vi

As a second contribution, in the scope of south-bound interface of an SDN
controller, we propose a novel approach using time-synchronized operations (TSO)
using timestamps in south-bound extensions in software-defined elastic optical net-
works. We present an end-of line-scenario in which lightpath rerouting is inevitable
to provision a new lightpath. We analytically show that TSO operations executed
simultaneously reduce the lightpath disruption time by a minimum of 75% while
rerouting, instead of an asynchronous (ASY) approach, which consists of multiple
operations executed separately. Moreover, we present an experimental validation
of our approach, where both techniques (ASY and TSO) exhibit close network
performance indicators (e.g. OSNR, power budget, spectrum tilt) after the lightpath
swapping.

As a third contribution, we utilize the north-bound interface of an SDN controller
to provision network connectivity between VNFs in a network service in both
inter-domain and intra-domain network service orchestration. For the inter-domain
case, we present the 5G UK Exchange (5GUKEx), which is a lightweight network
orchestration platform. While integrating various operator platforms, 5GUKEx
instantiates network services across different operator domains (islands) and stitches
the network services using a common inter-domain network infrastructure. We
experimentally demonstrate that the 5GUKEx is lightweight, since it delegates the
resource orchestration to the islands. For the intra-domain case, we extend the
ETSI-compliant Open Source MANO (OSM) with a Transport-API based WAN
Infrastructure Manager (WIM) connector. This allows connectivity between VNFs
running on different PoPs over a heterogenous network.

As a fourth contribution, we present the concept of replicated states in a stateful
data planes. We present the argument that instead of using a single state variable
which causes congestion and increase of network traffic, replicas of the state must be
used to reduce the amount of traffic. We present an ILP formulation of the optimal
placement of state replicas and routing of flows through the closest state copy. To
solve for larger network topologies, this is accompanied by a heuristic.

Contents

Acronyms xi

1 Introduction 2

1.1 Software Defined Networking . 2

1.1.1 SDN Architecture Overview 3

1.1.2 Benefits and Applications 5

1.2 Structure of thesis . 6

1.2.1 Inter-controller traffic in distributed ONOS controllers . . . 6

1.2.2 Time-Synchronized Operations for Software-defined Elastic
Optical Networks . 8

1.2.3 Inter and intra-domain network service orchestration 8

1.2.4 Replicated states in stateful data plane 10

I Control Plane in SDN 11

2 Inter-controller traffic in distributed ONOS controllers 13

2.1 Motivation . 13

2.1.1 Our contributions . 15

2.1.2 Organization of the chapter 15

2.2 Distributed SDN controllers . 16

viii Contents

2.2.1 CAP theorem . 16

2.2.2 Consistency in distributed SDN controllers 17

2.2.3 Distributed ONOS . 18

2.3 Methodology for inter-controller traffic analysis 21

2.3.1 Implementation approaches for consistency models 23

2.4 Distributed Topology Store . 24

2.4.1 Transient behavior in the linear topology with 2 controllers . 26

2.4.2 Scenario with 2 controllers 27

2.4.3 Scenario with 3 controllers 32

2.4.4 Inter-controller traffic in real ISP topologies 35

2.5 Distributed Flow Store . 37

2.5.1 Experimental methodology 38

2.5.2 Experimental results . 40

2.6 Distributed Host Store . 43

2.6.1 Methodology . 43

2.6.2 Experimental results for 2 controllers 44

2.6.3 Experimental results for 3 controllers 46

2.7 Related work . 48

2.8 Summary . 50

3 Time-synchronized operations for software-defined elastic optical net-
works 52

3.1 Motivation . 53

3.1.1 Our contributions . 54

3.1.2 Organization of the chapter 55

3.2 An end-of-line scenario: non-continuous vacant FS 55

3.3 Time-synchronized operations for EON 57

Contents ix

3.4 Analytical evaluation of TSO . 60

3.5 Experimental validation of TSO 64

3.5.1 Optical network test-bed overview 65

3.5.2 Experimental setup . 66

3.5.3 Experimental results and discussion 69

3.6 Related work . 73

3.6.1 Time-synchronized operations in Electronic Packet
Networks . 74

3.6.2 Time synchronized operations in optical networks 76

3.6.3 Discussion of TSO in SDN 77

3.7 Summary . 78

4 Inter-domain and intra-domain network service orchestration 79

4.1 Introduction . 79

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator . 80

4.2.1 Motivation . 80

4.2.2 Multi-Domain Orchestration: State of the Art 82

4.2.3 5GUK Exchange Architecture 83

4.2.4 Inter-island Network Service Deployment Procedure 85

4.2.5 Implementation and Performance Evaluation 87

4.2.6 Conclusions and Future Work 90

4.3 VNF Chaining across Multi-PoPs in OSM using Transport API . . . 91

4.3.1 Introduction . 91

4.3.2 T-API as WIM North-bound API 93

4.3.3 Architecture for WIM Integration in NFV MANO 94

4.3.4 Implementation and Experimental Demonstration 95

4.3.5 Conclusion and Future Work 96

x Contents

4.4 Summary . 97

II Stateful Data Planes 99

5 Replicated states in stateful data planes 101

5.1 Introduction . 101

5.1.1 Organization of the chapter 103

5.2 State replication in stateful SDN 103

5.2.1 Stateful data planes . 103

5.2.2 SNAP programming abstraction 104

5.2.3 State replication . 105

5.3 Optimal state replication problem 108

5.3.1 Constraints in the optimization problem 111

5.3.2 Computational complexity 115

5.4 Approximation algorithm for single state replication 116

5.4.1 Performance comparison 118

5.5 Asymptotic analysis for unwrapped Manhattan topology 124

5.5.1 Methodology . 124

5.5.2 Results . 130

5.6 Related work . 131

5.7 Summary . 132

6 Conclusion 133

Appendix A Stateful replication ILP model 137

A.1 Computational complexity . 137

References 141

Acronyms

ABW Available bandwidth
AQMP Advanced Queuing Messaging Protocol
ASY Asynchronous
B&S Broadcast-and-select
DISCO Distributed Multi-domain SDN Controllers
EFSM Extended Finite State Machines
eMBB Enhanced Mobile Broadband
EON Elastic Optical Networks
EPN Electronic packet networks
FAs Federation Agents
FMs Federation Managers
FS Frequency slots
GMPLS Generalized Multi-Protocol Label Switching
IA-NC Intelligent Agent NETCONF
IDCM Inter-Domain Connectivity Manager
ILP Integer Linear Programming
IoT Internet of Things
LLDP Link Layer Discovery Protocol
LPH Fast lightpath hopping
LXC Linux containers
MANO Management and Orchestration
MbB Make-before-Break
MdOs Multi-domain Orchestrators
MEMS Micro-Electro-Mechanical systems
mMTC Massive Machine Type Communications

xii Acronyms

N-NC Native-NETCONF
NBI North Bound Interface
NFV Network Function Virtualization
NFVO NFV Orchestrator
NIB Network Information Base
NS Network service
NSDs Network Service Descriptors
NSM Network Service Manager
NSR Network Service Record
OBS One-big switch
ODL OpenDaylight
OF OpenFlow
ONOS Open Network Operating System
OPP Open Packet Processor
OS Operating System
OSM Open Source MANO
OSNR Optical signal-to-noise ratio
OTCC Open Transport Configuration & Control
OXC Optical cross connect
OXM OpenFlow Extensible Match
PCE Path Computation Element
PoPs Point-of-Presence
PTP Precision Time Protocol
QoS Quality of Service
RMT Reconfigurable Match Tables
RO Resource Orchestrator
ROADMs Reconfigurable optical add/drop multiplexers
RSA Routing and spectrum assignment
SDN Software Defined Networking
SMF Single mode fiber
T-API Transport API
TSO Time-synchronized operations
uRLLC Ultra Reliable Low Latency Communications
VIM Virtual Infrastructure Manager
VM Virtual Machine

Acronyms xiii

VNF Virtual Network Function
VNFDs VNF descriptors
VR Viewstamped Replication
WAN Wide-Area Networking
WDM Wavelength division multiplexed
WIM WAN Infrastructure Manager
WSS Wavelength selective switch

Acronyms 1

Chapter 1

Introduction

Legacy telecommunication networks are complex and hard to reconfigure. In this
case, Software Defined Networking (SDN) is a major innovation which has various
benefits over the legacy networks. This thesis focuses on novel applications and
analysis of the various interfaces as part of the SDN control plane, along with a novel
proposal of utilizing replicated states in stateful SDN data planes.

This chapter introduces the concept of SDN, its architecture including the various
control plane interfaces. Furthermore, the structure of this thesis is presented while
briefly introducing the work conducted for each interface of the SDN controller and
the stateful data planes.

1.1 Software Defined Networking

As mentioned, legacy telecommunication networks are complex to manage. For
implementing a network-wide policy, each device needs to be configured separately
in its own vendor-specific way, which is quite tedious and leads to high OPEX [1].
Furthermore, they are not able to sustain dynamic network behaviour and increasing
load challenges, which is a distinct feature of the upcoming 5G networks. Another
challenge that the legacy networks inhibit is the tight coupling of the control plane
and data plane. Here, the control plane refers to the mechanism which decides
the network policy, i.e., where to forward the traffic. The data plane consists of
the network devices which actually forward the traffic based on the control plane
decisions. This tight coupling of the control plane and data plane reduces flexibility

1.1 Software Defined Networking 3

and increases the difficulty of implementing new network protocols and technologies.
This challenge has been answered in the form of SDN.

In the last decade, SDN has emerged as a promising technology in telecom-
munication networks [1][2]. It has challenged the legacy control of networks by
introducing the logically centralized SDN controller, which being essentially the
“brain” of the network, has an entire view of the network under control. The control
plane is decoupled from the network devices and the control logic is shifted to an
SDN controller, while still allowing the network devices to forward the traffic. This
creates the concept of a programmable data plane, where the data plane consists of
simple forwarding devices and the forwarding policy is programmed onto the data
plane by the SDN controller. In the following, the architecture of SDN is described.

1.1.1 SDN Architecture Overview

East-West interface

South-bound
interface

North-bound interface

Network Applications

SDN Controller

Data Plane

SDN Controller

Control
Plane

Fig. 1.1: SDN architecture

The architecture of SDN is depicted in Fig. 1.1. Here, we highlight some
important components of the SDN architecture relevant for the thesis.

4 Introduction

Control Plane

• SDN controller: SDN controller is the “brain” of the network. All the control
logic related to enforcing network policies is embedded in it. It has the
entire view of the network and provides a logically centralized control over
the data plane, courtesy of the south-bound interface which is connected to
data plane. It provides necessary abstraction of the data plane for the policy
makers and network developers to enforce their relevant network policy via
network applications utilizing the north-bound interface of the SDN controller.
Examples of SDN controllers are ONOS [3] and OpenDaylight (ODL) [4].

• South-bound interface: This interface connects the control plane (SDN con-
troller) to the data plane. It allows the SDN controller to enforce network
policies on the data plane using well established south-bound protocols. SDN
controller receives network related events from the data plane via this in-
terface. Some well known south-bound protocols are OpenFlow [2] and
NETCONF [5].

• North-bound interface: This interface is offered by the SDN controller to
developers for their network applications which, for example, may range from
basic packet forwarding to advanced multi-layer network slice provisioning.
The SDN controller abstracts the low-level information about the data plane
and offers its holistic network view to the network applications using the north-
bound interface. The network applications can in turn use the north-bound
interface to implement their selected policy on the data plane.

• East-West interface: A logically centralized SDN controller refers to the fact
that there can be multiple distributed SDN controllers; however they all have
the same consistent view of the network. This is enabled by the the east-west
interface on which the SDN controllers exchange information about the data
plane and network applications among each other. Furthermore, multiple SDN
controllers are required in the network for redundancy; consequently one SDN
controller is a master for a data plane device and other SDN controller(s) may
act as backup slave controller(s).

1.1 Software Defined Networking 5

Programmable data plane

The programmable data plane consists of many network elements which forward
traffic, be it wired or a wireless network. The forwarding policy of the data plane
is dictated by the SDN controller, hence the word “programmable”. A data plane
network element typically consists of the traffic forwarding mechanism along with a
software agent which talks to the SDN controller via the south-bound interface. A
modification of the conventional SDN data plane is the stateful data plane.

• Stateful data plane: It consists of memory inside a data plane switch which
allows to maintain persistent states. This allows the data plane to perform
complex in-network per-packet processing without relying on the SDN con-
troller to make decisions. This improves the reactivity time by reducing
latency, which was previously caused by the interaction with the SDN con-
troller. The data plane switches can now take local decisions based on their
internal states. Examples of stateful data plane are P4 [6] and Open Packet
Processor (OPP) [7].

1.1.2 Benefits and Applications

The biggest advantage that SDN offers is the logically centralized view over the
entire network; almost all of the applications which can benefit from SDN are due to
this fact. The entire view of the network can offer simple implementation of network
policies which are too complex to implement using legacy networks. A network
developer can dictate his/her policy using the SDN controller and this policy is im-
plemented over the entire network. This characteristic of SDN enables simultaneous
control over various heterogeneous networks, spanning various technological do-
mains (wired electronic packet/optical or wireless). Additionally, with combination
of a programmable data plane, an SDN controller can provision connectivity while
optimizing the network resources.

SDN is one of the key technologies in the upcoming 5G networks [8]. 5G
networks are being developed as the next revolution in the telecommunications
network, to cope with increasing demand for bandwidth and connectivity for an
enormous number of devices. This entails the three key abilities of 5G: enhanced
mobile broadband (eMBB) with data rates up to 10 Gbps to end users, ultra reliable

6 Introduction

low latency communications (uRLLC) with round trip times as low as 1 ms, and
massive Machine Type Communications (mMTC) e.g., Internet of Things (IoT) [9].
Since 5G supports massive number of connected devices, this will require dynamic
and flexible network service provisioning; consequently the legacy network control
systems are not able to sustain this. SDN thus offers a promising alternative, since
it can provide automated network control and the ability to dynamically change
the behavior of network devices as a response to the increasing/decreasing network
service requests.

Another concept arising in 5G networks is Network Function Virtualization
(NFV) [10]. In this concept, Virtual Network Functions (VNFs), which may run in
Virtual Machines (VMs), containers or micro services are used to perform specific
network related functions e.g., firewall, intrusion detection systems, load balancer
etc. VNFs are easier and much flexible to deploy in commodity hardware, instead
of setting up a specific hardware-based network middlebox. In this regard, the
combination of SDN and NFV can provide virtualized network services on demand;
where VNFs, as part of a network service, are interconnected leveraging SDN
capabilities.

1.2 Structure of thesis

The focus of this thesis is the novel applications and analysis of the control plane
of SDN, where its chapters focus on the innovative work involving the various
interfaces present in an SDN controller as well as the stateful data plane. A sketch of
the thesis organization is shown in Fig. 1.2. It refers to the control plane interface of
an SDN controller as well as the data plane and corresponding chapter in the thesis.
Furthermore, we briefly introduce the work conducted in the thesis.

1.2.1 Inter-controller traffic in distributed ONOS controllers

Chapter 2 is related to the east-west interface.

In distributed SDN architectures, the network is controlled by a cluster of multiple
controllers. This distributed approach permits to meet the scalability and reliability
requirements of large operational networks. Despite that, a logical centralized view

1.2 Structure of thesis 7

East-West interface

South-bound interface
Chapter 3: Time-synchronized operations in software-defined elastic optical networks

Data plane Chapter 5: Replicated states in stateful data planes

North-bound interface
Chapter 4: Inter-domain and intra-domain network service orchestration

Chapter 2: Inter-controller traffic in
distributed ONOS controllers

SDN Controller SDN Controller

Fig. 1.2: Structure of the Thesis

of the network state should be guaranteed, enabling the simple development of
network applications. Achieving a consistent network state requires a consensus
protocol, which generates control traffic among the controllers whose timely delivery
is crucial for network performance. This control traffic between the controllers is
exchanged using the East-West interface as shown in Fig. 1.2.

We focus on the state-of-art ONOS controller, designed to scale to large networks,
based on a cluster of self-coordinating controllers. In particular, we study the
inter-controller control traffic due to the adopted consistency protocols. Based on
real traffic measurements and the analysis of the adopted consistency protocols,
we develop some empirical models to quantify the traffic exchanged among the
controllers, depending on the considered shared data structures, the current network
state (e.g., topology) and the occurring network events (e.g., flow or host addition).
Our models provide a formal tool to be integrated into the design and dimension
the control network interconnecting the controllers. Our results are relevant for the
proper design of large SDN networks, in which the control plane is implemented
in-band and cannot exploit dedicated network resources.

8 Introduction

1.2.2 Time-Synchronized Operations for Software-defined Elas-
tic Optical Networks

Chapter 3 is related to the south-bound interface.

Elastic Optical Networks (EON) have been proposed as a solution to efficiently
exploit the spectrum resources in the physical layer of optical networks. More-
over, by centralizing legacy Generalized Multi-Protocol Label Switching (GMPLS)
control-plane functionalities and providing a global network view, SDN enables ad-
vanced network programmability valuable to control and configure the technological
breakthroughs of EON.

Here, we present our proposal of time-synchronized operations (TSO) to mini-
mize disruption time during lightpath reassignment in EON. TSO have been recently
standardized in SDN south-bound protocols NETCONF and OpenFlow; and here we
discuss its implementation in optical networks. Subsequently, we update our analyti-
cal model considering an experimental characterization of the WSS operation time.
Then, we present an experimental validation of TSO for lightpath reassignment in a
five-node metropolitan optical network test-bed. Results validate the convenience
of our TSO-based approach against a traditional asynchronous technique given
its reduction of disruption time while both techniques maintain a similar network
performance in terms of optical signal-to-noise ratio and optical power budget.

1.2.3 Inter and intra-domain network service orchestration

Chapter 4 is related to the north-bound interface.

We target network orchestration, which is the provisioning of a network ser-
vice consisting of VNFs connected in a chain where the networking between the
VNFs hosted at different Point-of-Presence (PoPs) is done using an SDN controller.
Specifically, a service orchestrator, which is responsible for instantiating the network
service, requests the SDN controller’s north-bound interface to provision connectiv-
ity between the different PoPs. Our contribution has covered both inter-domain and
intra-domain network orchestration as detailed below.

1.2 Structure of thesis 9

Inter-domain network orchestration

5G networks envisage to support a range of vertical industries, circumventing any
potential barriers from converging various network technologies and administrative
domains. Current solutions, such as the Management and Orchestration (MANO)
standards and systems, which simultaneously orchestrate both network and compute
resources using SDN and NFV respectively, focus only on provisioning services
within single administrative domains. There is also lack of standards for end-to-end
multi-domain coordination and sustainable multi-domain solutions that can use exist-
ing MANO systems. This is important to enable operators that control programmable
infrastructures to collaborate with each other. In this thesis, we present the 5GUK
Exchange (5GUKEx), a novel hierarchical architecture to enable end-to-end orches-
tration and coordination with minimum overhead in complexity and performance
while also allowing operators to maintain full control of their infrastructure and
integrate using their existing MANO systems. The key idea to allow operators to
use their existing MANO systems for the single domain orchestration and building a
multi-domain API is based on standardized models of service catalogs that MANO
systems implement to coordinate the end-to-end service orchestration and intercon-
nection. We build a prototype of the 5GUKEx and evaluate its performance through
emulations showing that the 5GUKEx introduces minimum overhead.

Intra-domain network orchestration

As mentioned, 5G networks are ushering a new era of telecommunications, realizing
network services which have high bandwidth and low latency demands. Furthermore,
with the advent of NFV, VNFs are replacing hardware based network functions.
VNFs are more flexible and can be deployed close to the customer at the edge
to provide low latency services. However, VNFs hosted at different data centers
within a single administrative domain need to be chained to create an end-to-end
network service. Low latency inter-data center communication can be provisioned
using optical networks which are controlled using a WAN Infrastructure Manager,
which is essentially an SDN controller. Here, MANO systems play a vital role
which permit simultaneous orchestration of compute and network resources. In this
thesis, we experimentally demonstrate the integration of Transport API based WAN

10 Introduction

Infrastructure Manager with Open Source MANO (OSM), for NFV orchestration
over optical networks within a single administrative domain.

1.2.4 Replicated states in stateful data plane

Chapter 5 is related to the stateful data plane.

As briefly mentioned in Sec. 1.1.1, in stateful SDN data planes, switches hold
some local state and can take local decisions. This is advantageous since only relying
on the SDN controller in a stateless data plane can increase the delay in making
decisions. This is highly important in mission critical applications where e.g., the
data plane can reroute the traffic using an alternative route and not wait for the SDN
controller to compute an alternative route and install forwarding rules on the devices;
where the latter is a slower process.

We discuss the recently proposed SNAP framework [11], which jointly addresses
the placement of the local states and the flow routing problem to minimize the total
network data traffic while guaranteeing that all flows traverse the switches storing
the flow related states. However SNAP assumes one single copy of each state: this
limits the scalability of SNAP in case of states with a global scope. To overcome this
limitation, we extend SNAP to support state replication, i.e. distribution of multiple
copies of the same state across the available programmable switches. TODO: The
following has been changed after Reviewer 1 comments. We provide the problem
formalization to find the optimal placement of state replicas and the minimization of
the total traffic in the network; this includes the data traffic and the state synchro-
nization among the state replicas. We propose an approximation algorithm to solve
the problem in large networks for a single state replication. We show the beneficial
effect of state replication in a set of benchmark graphs.

Part I

Control Plane in SDN

Chapter 2

Inter-controller traffic in distributed
ONOS controllers

Part of the work presented in this chapter has been published in:

• A. S. Muqaddas, P. Giaccone, A. Bianco and G. Maier, “Inter-controller traffic
in ONOS clusters for SDN networks”. In: IEEE International Conference on
Communications (ICC). May 2016, pp. 1–6.

• A. S. Muqaddas, P. Giaccone, A. Bianco and G. Maier, “Inter-Controller
Traffic to Support Consistency in ONOS Clusters”. In: IEEE Transactions on
Network and Service Management 14.4 (Dec. 2017), pp. 1018–1031.

2.1 Motivation

A naïve centralized approach for SDN is based on a single controller managing all
network switches. Even if this simplifies the network management and the devel-
opment of network applications, it poses severe limitations to network scalability
and reliability. Indeed, a single centralized controller is a single point of failure.
Moreover, a single controller may not be able to handle a large number of switches,
because communication load and processing overhead for the controller increases
with the number of switches. Finally, in very large networks (as in WANs), switches
can be physically very far from the controller, and due to the propagation delays,
flow modifications in switches can experience large latency.

14 Inter-controller traffic in distributed ONOS controllers

Distributed SDN controllers face all the above impairments. Multiple instances
of the controller manage the whole network, which is divided into different domains,
each of them under the control of one controller instance. Distribution of the con-
troller functions over multiple physical servers improves the robustness of the control
plane, by providing backup control resources for each network node. Furthermore,
large networks can be handled, because the switch control is distributed among
the controllers and the processing load can be balanced. Finally, being the control
servers also geographically distributed across the network area, they can reduce the
switch-to-controller delay, thus improving the controller reactivity as perceived by
the network nodes.

However, a logical centralized view of the network state must be guaranteed also
with distributed controllers, to ease the development of advanced network applica-
tions. This transparent behavior for the network operator/programmer comes at the
cost of keeping all the shared data structures synchronized among the controllers
by means of some consensus protocol. For example, the same network topology
must be known at each controller to take correct routing decisions. However, since
each controller is responsible for a subset of switches, it is of paramount importance
to distribute any data plane related event in a timely fashion to keep the same state
among the controllers and avoid possible misbehaviors (e.g., routing loops, firewall
leaks), as highlighted in [12].

In large SDN networks (as SDWANs), the control plane distributed among
the controllers is implemented in-band, without the possibility of relying on a
dedicated out-of-band high-performance network as the data center scenarios [13].
This poses technical challenges in designing the control network, which does not
only interconnect the switches to controllers, but also supports the communication
between controllers. Due to the complexity of the adopted consensus protocols,
the reactivity of the controllers as perceived by the switches depends also on the
bandwidth and delays experienced in the inter-controller communication. This fact
advocates a proper design and plan of the network supporting the control traffic, in
particular guaranteeing adequate bandwidth for the inter-controller traffic.

We focus on the control traffic exchanged among the controllers, which is often
neglected in the literature. We consider the state-of-art ONOS controller [14], which
is supported by a large community of network operators and vendors. Differently
from the initial versions of well-known ODL project [4], ONOS has been designed

2.1 Motivation 15

specifically to cope with reliability and scalability issues arising in large ISP/WAN
networks. It natively supports a distributed version of the controller, running on a
cluster of servers.

2.1.1 Our contributions

We run an experimental testbed which includes a cluster of ONOS controllers and
evaluate the amount of traffic exchanged among the controllers. Since the traffic
depends on the specific updates committed on the shared data structure, we address
our problem by analyzing the impact of each update for all the shared data structures
(i.e. topology, flow and host stores) that manage the network state. Thanks to tailored
experiments, we evaluate the exact amount of traffic in function of the specific
event or change of state in the network and thus we develop some empirical models
of the ONOS inter-controller traffic. Our results are general in terms of network
topology and partition of the network into different controller domains. The adopted
methodology is also general and provides experimental guidelines to extend our
results to an arbitrary number of SDN controllers.

2.1.2 Organization of the chapter

The remainder of this chapter is organized as follows. Sec. 2.2 introduces the general
architecture of distributed SDN controllers and describes the two main consistency
models adopted to synchronize the data structures. We concentrate on the specific
distributed architecture of ONOS and describe the two main protocols to achieve
the consensus on the data structures. In Sec. 2.3, we present the methodology we
adopt to quantify the impact of network related events on the inter-controller traffic
for a general distributed cluster of SDN controllers. The subsequent three sections
are devoted to investigate the impact of updates occurring in different shared data
structures. Indeed, in Sec. 2.4, we concentrate on the store describing the network
topology. The experimental data allows us to devise a set of empirical models to
estimate the throughput of the inter-controller traffic, which we expect to hold for
a broad set of topologies (Properties 1 and 2). In Sec. 2.5, we concentrate on the
store describing the flow tables and investigate the impact of flow modifications in
the switches. Finally, in Sec. 2.6 we concentrate on the store recording the hosts

16 Inter-controller traffic in distributed ONOS controllers

Domain
Controller A Domain

Controller B

East-west traffic

SDN network

Cluster of controllers

SDN Controller A SDN Controller B

Fig. 2.1: Distributed SDN architecture with a single cluster of two controllers.

attached to the network switches. In Sec. 2.7 we discuss some related work, and
finally in Sec. 2.8, we summarize the work presented in this chapter.

2.2 Distributed SDN controllers

Fig. 2.1 shows a distributed SDN architecture with two controllers managing a
single network divided in two domains. The traffic is exchanged directly among the
controllers through the east-west interface [15], which is in addition to the north-
bound interface (providing the APIs to interact with the controller at application
level) and the south-bound interface (running a standard control protocol to manage
the switching devices, as OpenFlow), both available in any SDN controller.

To understand the role of the traffic exchanged by the controllers, we start by
describing an important result in the theory of distributed systems.

2.2.1 CAP theorem

Consistency of shared data in distributed systems is a well known and deeply in-
vestigated property. This property is achieved with quite complex protocols and
algorithms [16]. The consistency dilemma is explained thoroughly using the famous
CAP theorem [17] which states the impossibility of enjoying the following three

2.2 Distributed SDN controllers 17

properties at the same time: Consistency, i.e. all the data reads access the latest
written version of the data; Availability, i.e. all data is accessible and can be updated;
Partition, i.e. the system is tolerant to node partitions.

Even if the proof of the CAP theorem is complex, a convincing scenario to
understand this property is a storage system with the data replicated locally in two
servers connected through a communication link. If availability and consistency are
required at the same time (CA case), i.e. each server should be able to update the
local data and access the most recent version of it, network partitions are not allowed,
since the two servers must always be able to communicate an update to the other.
Similarly, if availability and tolerance to partitions is required (AP case), i.e. each
server should be able to update the local copy of the data, then consistency cannot be
guaranteed anymore when partitions occur. Finally, if consistency and tolerance to
partitions is required (CP case), i.e. the servers must access the most recent version
of the data even in the case of partitions, availability cannot be guaranteed since
each server cannot update the local copy in case of partitions. Depending on the pair
of required guarantees (CA, AP or CP) in a distributed system, a large number of
consistency protocols and algorithms have been devised and implemented so far.

2.2.2 Consistency in distributed SDN controllers

In a distributed SDN scenario, consistency means that all the controllers view the
same network state, e.g., have the same local copy of the network topology and of
the node/link availability state in their shared data structures. Any change of state
occurring on each controller (due to, for example, new flow setups, link failures)
must be promptly propagated to the other controllers according to one consistency
protocol. If the controllers have an inconsistent view, the network policies may not
run correctly and this can lead to potential network misbehaviors (as routing loops,
packet drops, firewall leaks). For example, consider Fig. 2.1; if the communication
between the east-west interfaces is not available, the control network is partitioned.
In this case if there is a change in topology in controller B’s domain, then it will
not be propagated to controller A. Consequently controller A could take routing
decisions based on an older view of the network topology in controller B’s domain
that could lead to unexpected behaviors.

18 Inter-controller traffic in distributed ONOS controllers

In the theory of distributed systems, many consistency models have been defined.
We concentrate here on just two of them, which have a direct application in SDN
networks.

Eventual consistency model

This model provides a weak form of consistency, in sense that data modifications on
a certain controller will be eventually propagated on all the other controllers. This im-
plies that, for some time, some controllers may read values different from the actual
updated ones; but after some time, all the controllers will have the updated values,
given that they are able to communicate. This model is typically employed in dis-
tributed systems requiring high availability. The anti-entropy protocol, implemented
in ONOS and described in Sec. 2.2.3, supports this consistency model.

Strong consistency model

This model ensures that each controller always reads the most updated version of
the data. If certain data are not yet updated to all (or most of) the controllers, then
they are not allowed to be read, thereby favoring consistency instead of availability.
The RAFT consensus protocol, implemented in ONOS and described in Sec. 2.2.3,
supports this consistency model.

The controllers exchange some control traffic, denoted as inter-controller traf-
fic, through their east-west interfaces, to synchronize their shared data structures.
The adopted consistency model heavily affects the inter-controller traffic, whose
evaluation and modeling is the main contribution of our work.

2.2.3 Distributed ONOS

We now focus on the specific distributed architecture of ONOS controller, which
allows to achieve a large scalability and availability, thanks to a distributed cluster of
controllers. Each controller in the cluster is responsible of managing the switches
under its domain, and updating their state on the distributed data stores. Each
switch can connect to multiple ONOS controllers for reliability, but only one will
be its master with full control on it in terms of read/write capabilities on the switch

2.2 Distributed SDN controllers 19

forwarding tables. The other controllers are denoted as slaves and one of them takes
the control of a switch whenever the master controller fails. Anytime a cluster of
controllers is set up, each controller interacts with all the other controllers, thus the
controllers are always logically connected in a full mesh according to a peer-to-peer
approach, using a specific TCP port (9876) for their interaction. The controllers send
and accept keep-alive messages to/from other controllers to monitor the other cluster
members.

Two consistency protocols are implemented in v1.4.0 (Emu) and v1.8 (Ibis -
Dec. 2016) versions of ONOS [18] to manage the distributed stores, each protocol
tailored to guarantee a specific level of consistency.

Anti-Entropy Protocol

It is based on a simple gossip algorithm in which each controller chooses at random
another controller in the cluster every 5 seconds and then sends a message, containing
the timestamp of each entry, to compare the actual content of its store with the other
one. After the synchronization messages are exchanged and the stores are updated
based on the timestamp of each entry (i.e. more recent updates supersede the older
ones), the two controllers become mutually consistent. This ensures that all the
controllers achieve consensus according to an eventually consistent model. However,
in parallel with the above scheme, whenever an update occurs in the store managed
by a controller, this is immediately broadcasted to all the other controllers in the
cluster.

RAFT Protocol

It is a recently proposed scheme [19] which provides strong consistency in ONOS.
A RAFT implementation requires a cluster of nodes (i.e. controllers in our scenario)
each having a database termed as the “log” which is replicated in all the nodes: each
update is appended to this shared data structure. The consistency is coordinated by a
leader node in the cluster, which is responsible for receiving update requests from all
the other nodes and then relaying log updates to the other nodes. Once the majority
of the followers have acknowledged the update, this is actually committed to the
log. In the case of network partitions, only the side with the majority of the nodes is
able to update the log, thus avoiding contemporary and conflicting updates in two

20 Inter-controller traffic in distributed ONOS controllers

different network partitions. All the updates on the distributed stores are tracked
using logical timestamps, which allow to reconcile conflicts based on the most recent
updates.

In ONOS, multiple instances of RAFT protocol run simultaneously. The data
structures in the distributed stores are partitioned into shards, where each shard is
managed by a different RAFT instance. Partitioning is aimed at improving scalability.
The total number of partitions is N +1 where N is the number of controllers in an
ONOS cluster. The partitions are termed as p0, p1, . . . pN . Partition p0 encompasses
all the controllers in the cluster and is just for temporary storage, which is reset if
the controller shuts down. For durable storage, the data is partitioned into N shards.
The number of controllers that participate in each partition is min(3,N), i.e. each
shard is shared among not more than 3 controllers. The partition p holding the value
corresponding to a given key k within a data structure is chosen with a simple hash
map h(·) as follows:

p = [h(k) mod N]+1 (2.1)

Stores are the actual distributed data structures in ONOS. Each store is based on
either the Anti-Entropy protocol, RAFT protocol or both. In particular, the main
ONOS stores are:

• Mastership store, which keeps the mapping between each switch to its master.
It is managed by RAFT protocol.

• Network topology store, which describes the network topology in terms of
links and switches; consistency is achieved using the anti-entropy protocol.

• Flow store, which is responsible for backing flows of each switch from the
master controller to the slave controller on detecting a change in the flow table.
The details of the adopted consistency model are discussed in Sec. 2.5.

• Host store, which maintains the list of the network hosts. It is managed by
RAFT protocol.

• Application store, which manages the inventory of applications, and adopts
the anti-entropy protocol.

• Intent store, which manages the inventory of intents using the anti-entropy
protocol. Intents are part of the ONOS Intent framework used by applications

2.3 Methodology for inter-controller traffic analysis 21

to define which policy is operating on the network, without the details of how
the data plane must be actually programmed.

• Component configuration store, which stores system-wide configurations for
various software components in ONOS. It adopts the anti-entropy protocol.

• Network configuration store, which is used to store network configurations
inserted into ONOS via the north-bound (e.g., REST API) or the south-bound
API (e.g., OpenFlow). It adopts RAFT consensus algorithm.

• Security mode store, which manages permissions granted to applications using
RAFT protocol. Instead, security violations are managed using the anti-entropy
protocol.

Of all these distributed stores, the ones which are related to the data plane
behavior are network topology store, flow store and host store, where each of them
will be investigated in dedicated sections (Secs. 2.4-2.6). The other distributed stores
are specific of each application and are neglected as part of the experimental work in
order to keep our results general.

2.3 Methodology for inter-controller traffic analysis

For prototyping and testing, a test setup based on a standalone Ubuntu 14.10 server
machine is used. A cluster of ONOS version 1.4.1 controllers runs in a set of
Linux containers (LXC) [20] hosted on the server machine as shown in Fig. 2.2.
LXC was chosen since containers are lighter on the CPU than virtual machines and
do not show undesired background traffic, thus allowing to easily identify all the
traffic generated by each instance of the controller. Notably, the adopted choice of
the operating system (OS) virtualization is transparent for the controller instances,
and thus our results hold for any other virtualization system compatible with the
considered ONOS distribution.

We adopt Mininet-2.2.1 to emulate a network topology consisting of OpenFlow
compliant software switches. Each switch is associated to one master controller and
all the other slave controllers.

As shown in Fig. 2.2, three logical network topologies are created using virtual
bridges available in Linux:

22 Inter-controller traffic in distributed ONOS controllers

E
ast-W

est V
irtual B

ridge
North-bound Virtual Bridge

Controller C
NB-API

SB-API

South-bound Virtual Bridge

Test APP

LXC

Controller B
NB-API

SB-API
Controller A

NB-API

SB-API

Mininet

Fig. 2.2: Single-host testbed to investigate inter-controller traffic for distributed SDN
controllers.

1. North-bound Virtual Bridge, connecting the controllers to our test application
through the north-bound interfaces of the controllers;

2. South-bound Virtual Bridge, connecting the network emulated with Mininet to
the controllers;

3. East-West Virtual Bridge, connecting directly the controllers to each other.

The use of separate virtual bridges simplifies traffic capture and management. We
run Wireshark as a sniffer to capture the inter-controller traffic between any pair of
controllers by capturing all the TCP traffic on the interface of a controller towards
the other controller(s). ONOS uses port 9876 for the inter-controller communication,
thus it is simple to identify such traffic. The total inter-controller traffic is sampled
every Ts = 0.1 s to compute the throughput. The throughput samples are averaged
through a sliding window of Tw = 10 s.

In each experiment, we start the controllers and then we wait until the initial
transient phase ends. Here, the initial transient phase of the inter-controller is the
initial exchange of all data stores between the controllers over the east-west interface
until they are consistent with each other (which is marked by the observance of
steady state traffic; more detail in Sec. 2.4). For our experiments, we wait for a

2.3 Methodology for inter-controller traffic analysis 23

time of 120s, after starting the LXC containers hosting the ONOS controllers, to
allow for the initial transient phase to end and reach a steady-state throughput as
mentioned at the end of Sec. 2.3.1; where this steady state throughput is known as
the Zero Throughput with further explanation in Sec. 2.4.1. Then, appropriate events
are generated either on the south-bound interface through the terminal commands
available in Mininet, or on the north-bound interface using our test application,
which leverages the APIs exposed by the controller. To repeat an experiment, we
restart by rebooting the LXC container for each SDN controller, to avoid residual
data due to previous experiments. The reboot procedure is necessary since affecting
the “tombstone” inter-controller traffic, as explained further in Sec. 2.4.

2.3.1 Implementation approaches for consistency models

The specific implementation of the shared data structures across the controllers and
the adopted consistency model have significant impact on the inter-controller traffic.
We categorize the inter-controller traffic as a combination of the following types of
updates:

• incremental updates, or full updates: this feature describes the actual informa-
tion that is exchanged among controllers. In the case of incremental updates,
only the differences with respect to the previous updates are exchanged. Since
incremental updates must rely on a coherent update of the previous states, the
approach is typically employed by a strong consistency model. Instead, in
the case of full updates, the whole data structure is exchanged. Full updates
are typically exchanged for eventually consistent data structures, due to the
unreliable state coherence among data structures.

• periodic updates, or event-driven updates: this feature describes when the
updates are issued. Periodic updates are generated periodically over the time,
whereas event-driven updates are triggered by specific change of states or
events.

All the four combinations of the two above features are possible in practice, as shown
later in Secs. 2.4-2.6.

The overall inter-controller traffic is due to the superposition of the synchro-
nization of different data structures, each of them with a specific feature. Thus, to

24 Inter-controller traffic in distributed ONOS controllers

Transient
Event

T
h
ro

u
g
h
p
u
t

Time

Fig. 2.3: Transient phase detection

understand the traffic due to a specific data structure, we specifically modify the
data on just a single data structure, generating carefully crafted events in the test
application or in the Mininet topology.

We measure the traffic due to each update event in terms of amount of data or
throughput. For the first case, we measure the additional traffic generated during
the transient phase. For the second case, we just evaluate the derivative of the
cumulative amount of exchanged traffic. Notably, the transient phase is identified as
included between two periods of steady-state throughput values, as shown in Fig. 2.3.
Interestingly, as shown in Sec. 2.4, the throughput after the transient phase may be
different from the initial one.

2.4 Distributed Topology Store

We evaluate the traffic exchanged among the ONOS controllers due to the network
topology store. Our results are general since we expect them to hold for a broad set
of topologies with arbitrary partition of the network into controller domains. To
highlight the role of the topology, we adopt a time-variant topology in which the
number of active switches and active edges changes with the time. By measuring the
variation of the inter-controller traffic, we are able to understand the detailed effect
of modifications in the topology store.

We consider two main scenarios, both shown in Fig. 2.4: the first one with 2
controllers and the second one with 3 controllers belonging to the same cluster. We

2.4 Distributed Topology Store 25

Sniffer
Mininet

ONOS
Controller A

ONOS
Controller B

(a) 2 ONOS controllers

Sniffer

Mininet

ONOS
Controller A

ONOS
Controller B

ONOS
Controller C

(b) 3 ONOS controllers

Fig. 2.4: Experimental testbed

denote with A, B and C the instances of the controller, running within the same
controller cluster. Let S be the total number of switches in the network topology and
L be the corresponding number of (bidirectional) links. We adopt some simple test
network topologies to highlight the individual contribution of each network element
(switch or link) and thus obtain general results holding for a broad set of topologies.
In the isolated topology we have S isolated switches without links (L = 0). In the
linear topology, S switches are connected linearly (L = S−1) as shown in Fig. 2.5. In
the star topology, S−1 switches are connected to the same central switch (L = S−1)
as shown in Fig. 2.6. We repeat all the experiments 20 times and compute the 98%
confidence intervals.

Fig. 2.5: Linear topology

The inter-controller traffic generated among the controllers due to the topology
store is periodic with full updates. This is due to the adoption of anti-entropy protocol
for maintaining consistency in network topology store. Another contribution is
periodic with incremental updates and it is due to the Link Layer Discovery Protocol
(LLDP) packets sent for the topology discovery received on the south-bound interface.
LLDP is used by the SDN controller to discover links in the network topology.
The SDN controller periodically sends LLDP packets using OpenFlow Packet_Out
messages to the OpenFlow devices registered with the controller. The devices then
flood the LLDP through all its ports. The adjacent devices receive the LLDP packet

26 Inter-controller traffic in distributed ONOS controllers

Fig. 2.6: Star topology

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 50 100 150 200 250 300 350

Zero Throughput 1

Transient 1
Steady State

Zero Throughput 2

Transient 2

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Time [s]

Fig. 2.7: Traffic from controller A to B by adding and removing a linear topology
S = 4, L = 3

and forward it to the SDN controller via an OpenFlow Packet_In message. The
controller upon receiving the OpenFlow Packet_In can discover the link by checking
the contents of the received message.

2.4.1 Transient behavior in the linear topology with 2 controllers

In Fig. 2.7 we show the communication throughput from controller A to controller
B for a linear topology with S = 4, with all the switches managed by controller
A. We start with no topology (S = 0, L = 0) added to controller A; at time 120s
the linear topology is added (S = 4, L = 3); at time 240s the linear topology is
removed. At the beginning of the experiment we observe an initial communication
of 63 kbps (denoted as Zero Throughput 1). When the linear topology is added, after
a short transient phase, the traffic reaches 88 kbps. When the network is removed,

2.4 Distributed Topology Store 27

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

A→B

Curve Fitted
Lower Conf
Mean
Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

B→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 2.8: Intercontroller traffic, where isolated topology is associated to controller A
(master) in the scenario with 2 controllers

the throughput reaches 78 kbps (denoted as Zero Throughput 2). This value is
different from the initial one at the beginning of the experiment, and it is due to the
exchanged “tombstone” traffic. Tombstone traffic is due to the anti-entropy protocol
and refer to devices, links and hosts which have been removed from the active
topology. The reason for it is to react faster to network partitions. Indeed, in the
case of temporary network partitions, keeping tombstones minimizes the variation
in the internal topology store, and thus the allocation/deallocation of memory for
the internal data structures. Notably, after each experiment, the LXC container is
rebooted so that no tombstone traffic persists in the observed traffic.

2.4.2 Scenario with 2 controllers

We investigate the traffic exchanged by controllers A and B in steady state for
different sizes of the topology, in which all the switches are under A’s control.
Fig. 2.8 shows the throughput from A→ B and vice versa, when an isolated topology
is added to controller A. We show also the confidence intervals and one linear curve
fitting the experimental measurements. Similarly, Fig. 2.9 shows the throughput when
a linear topology is added to controller A. Both graphs show that the throughput is
increasing linearly in both communication directions. This is coherent with the linear
growth of the internal data structures, based on hash tables. Moreover, the throughput
for A→ B is larger than B→ A. If we consider that the topology store is distributed
with the anti-entropy protocol, we should expect a symmetric behavior. Instead at

28 Inter-controller traffic in distributed ONOS controllers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

A→B

Curve Fitted
Lower Conf
Mean
Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

B→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 2.9: Intercontroller traffic, where linear topology is associated to controller A
(master) in the scenario with 2 controllers

controller A, the topology is periodically refreshed (even if not changing) through
the LLDP packets received on the south-bound interface for topology discovery.
This causes an update on the topology store, which generates additional traffic from
A to B and causes the asymmetry. In addition, port and flow statistics gathered
periodically by controller A are also sent to B.

Due to the internal data structures, whose memory occupancy grows linearly
with the number of elements (nodes and links), we can assume that the exchanged
traffic B in each direction is proportional to the size of the topology store:

B = S ·bs +L ·bl +b0 (2.2)

where we used the notation in Table 2.1. By applying (2.2) to the linear topology
(L = S−1) and to the isolated topology (L = 0) considered in our experiments, we
can write the following system of equations, assuming that A is master controller of
all the switches in the network; and where BI and BL are the throughputs in case of
isolated and linear topologies respectively:

BL
A→B = S ·bs

A→B +(S−1) ·bl
A→B +b0

BL
B→A = S ·bs

B→A +(S−1) ·bl
B→A +b0

BI
A→B = S ·bs

A→B +b0

BI
B→A = S ·bs

B→A +b0

(2.3)

2.4 Distributed Topology Store 29

Table 2.1: Notation for traffic in the scenario with 2 controllers x and y

Symbol Meaning
B generic unidirectional throughput
b0 generic zero throughput
bs average unidirectional throughput per switch
bl average unidirectional throughput per intra-domain link
bd average unidirectional throughput per inter-domain link,

(shared also by target controller for 3 controller scenario)
be average unidirectional throughput per inter-domain link,

(external to target controller for 3 controller scenario)
BI

x→y throughput from x to y in isolated topology
BL

x→y throughput from x to y in linear topology
B⋆

x→y throughput from x to y in star topology
bs

x→y average throughput from x to y per switch
bl

x→y average throughput from x to y per intra-domain link

This system can be solved by measuring BL
x→y, BI

x→y, for any x,y ∈ {A,B} (x ̸= y)
and b0 and thus estimating the remaining unknown values of per-link and per-switch
throughput.

Based on our measurements, we observe always a constant value of zero through-
put equal to b0 = 62.46 kbps (obtained with 3.6% accuracy at 96% confidence level)
for the both directions, given our measurements. Thus, solving the system in (2.3),
we obtain experimentally:

bl
A→B = 1.63 kbps bl

B→A = 0.11 kbps (2.4)

bs
A→B = 4.65 kbps bs

B→A = 0.80 kbps (2.5)

So far all the network switches have been associated to the same controller.
In order to extend our model to a broad set of topologies, arbitrarily partitioned
among two controller domains, we need to evaluate the effect of inter-domain links,
i.e. connecting one switch in one domain with another in the other domain. We
consider the star topology in Fig. 2.10, in which we vary the number of switches and
consequently the number of inter-domain links. Now the observed throughput in
one direction is obtained by summing the following contributions: BI for 1 switch to
model the switch in controller A’s domain; BI for S−1 switches to model the S−1

30 Inter-controller traffic in distributed ONOS controllers

ONOS
Controller A

ONOS
Controller B

Fig. 2.10: Scenario with a star topology

Domain
Controller A

Domain
Controller B

ONOS
Controller A

ONOS
Controller B

Fig. 2.11: Notation depicting the network topology in the scenario with 2 controllers

switches in B’s domain; S−1 times the average throughput per inter-domain link bd

as shown in (2.6) using the values from (2.4)-(2.5).

B⋆
A→B = 1 ·4.65+(S−1) ·0.80+(S−1)bd

B⋆
B→A = (S−1) ·4.65+1 ·0.80+(S−1)bd

(2.6)

Using the same methodology before and exploiting the estimated values obtained
so far, we estimate that the average throughput per inter-domain link is

bd = 0.63 kbps (2.7)

By combining the results so far and the estimated throughput in Equations (2.4)
to (2.7), we can claim the following, by referring to the notation in Table 2.2:

2.4 Distributed Topology Store 31

Property 1 In an arbitrary network managed by a ONOS cluster of 2 controllers A
and B, the traffic exchanged from controller x to controller y is:

Bx→y = 62.46+4.65 ·Sx +1.63 ·Lx +0.80 ·Sy+0.11 ·Ly+0.63 ·Lxy [kbps] (2.8)

for x = A and y = B, or for x = B and y = A.

Let BTOT = BA→B +BB→A be the total exchanged traffic among the two controllers.
Referring to the notation in Table 2.2 and depicted in Fig. 2.11, we compute:

BTOT = BA→B +BB→A

= 62.46+4.65 ·SA +1.63 ·LA +0.80 ·SB +0.11 ·LB +0.63 ·LAB

+62.46+4.65 ·SB +1.63 ·LB +0.80 ·SA +0.11 ·LA +0.63 ·LAB

= 124.92+5.45(SA +SB)+1.74(LA +LB)+1.26 ·LAB

+1.74 ·LAB−1.74 ·LAB

= 124.92+5.45(SA +SB)+1.74(LA +LB +LAB)

−0.48 ·LAB (2.9)

Using the notation from Table 2.2 in (2.9), we claim:

Corollary 1 In an arbitrary network managed by a ONOS cluster of 2 controllers A
and B, it holds

BTOT = 124.92+5.45 ·S+1.74 ·L−0.48 ·LAB [kbps]

Thus, the total inter-controller traffic grows linearly with respect to the number of
switches and links in the topology.

We validated the above formulas by considering multiple scenarios, including
full mesh topologies, ring topologies, irregular topologies. All the experimental
results have been always compatible with the model prediction of Property 1 within
98% confidence interval.

32 Inter-controller traffic in distributed ONOS controllers

Table 2.2: Notation describing the network topology in the scenario with 2 controllers.
Let x and y be the 2 controllers, with x,y ∈ {A,B}.

Symbol Meaning
Sx number of switches in controller x’s domain

S = Sx +Sy total number of switches in the network
Lx number of intra-domain links in controller x’s domain
Lxy number of inter-domain links

L = Lx +Ly +Lxy total number of links in the network

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

A→B or A→C

Curve Fitted
Lower Conf
Mean
Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

B→A, C→A or B↔C

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 2.12: Intercontroller traffic when isolated topology is added to controller A in
the scenario with 3 controllers

2.4.3 Scenario with 3 controllers

The methodology adopted in the previous scenario is now extended to the 3 con-
trollers scenario using the configuration shown in Fig. 2.4. We start by adding
the topology to controller A. For symmetry, the throughput BA→B = BA→C; as no
topology is added to controllers B and C, similarly BB→A = BB→C = BC→A = BC→B.
Fig. 2.12 shows the throughput from A to B and vice versa, when an isolated topology
is added to controller A.

Fig. 2.13 shows the throughput when a linear topology is added. As compared
to Fig. 2.8 and 2.9, the throughput values in the 3-controller case are lower than
the 2-controller case. This is due to the anti-entropy protocol: periodically, each
controller randomly selects another controller to synchronize the network topology.
Say the synchronization rate for each controller is λ . Thus the average contribution
of this process on each link is 3λ/6 = λ/2, since 6 possible links are present with

2.4 Distributed Topology Store 33

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

A→B or A→C

Curve Fitted
Lower Conf
Mean
Upper Conf

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Number of switches (S)

B→A, C→A or B↔C

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 2.13: Intercontroller traffic when linear topology is added to controller A in the
scenario with 3 controllers

3 controllers. Instead, in the case of 2 controllers, the average contribution was
2λ/2 = λ . Thus, a reduction of a factor 2 in the throughput due to the enti-entropy
is expected. In the figure, the reduction is much lower, due to the lower impact of
this protocol with respect to the topology updates sent by the master controller of
a switch and caused by LLDP packets, as explained in Sec. 2.4.2. Globally, the
throughput in each direction is still proportional to the size of the topology store.
Following the assumption while deriving (2.2) and considering that the topology is
only added to controller A, the following system of equations can be written with
the notation in Table 2.1:

BL
A→B = S ·bs

A→B +(S−1) ·bl
A→B +b0

BL
B→A = S ·bs

B→A +(S−1) ·bl
B→A +b0

BI
A→B = S ·bs

A→B +b0

BI
B→A = S ·bs

B→A +b0

which can be solved numerically. The zero throughput between any two controllers
here is b0 = 47.81 kbps (obtained with 4.15% accuracy at 98% confidence level).

34 Inter-controller traffic in distributed ONOS controllers

Thus, we obtain:

bl
A→B = bl

A→C = 1.43 kbps (2.10)

bl
B→A = bl

B→C = bl
C→A = bl

C→B = 0.06 kbps (2.11)

bs
A→B = bs

A→C = 4.43 kbps (2.12)

bs
B→A = bs

B→C = bs
C→A = bs

C→B = 0.46 kbps (2.13)

To extend our empirical model to a broad set of topologies, arbitrarily partitioned
among the two controller domains, the star topology in Fig. 2.10 is considered
albeit with 3 controllers and no switch added to controller C, in which we vary the
number of switches and thus the inter-domain links. In this scenario, the amount of
throughput originating from each controller to the other two controllers is different,
since different number of switches are added to each controller. Hence, here BB→A =

BB→C ̸= BC→A = BC→B. Furthermore, the average unidirectional throughput per
inter-domain link in this case is bd for controllers A and B, but it is be for controller
C, since the links are external to it but of inter-domain type. Now the observed
throughput in one direction is obtained by summing the following contributions: BI

for 1 switch to model the switch in A’s domain; BI for S−1 switches to model the
S−1 switch in B’s domain; S−1 times the average throughput per inter-domain link
bd and S−1 times the average throughput per external inter-domain link be.

Using the same methodology before, and exploiting the estimated values obtained
so far, we are able to estimate that the average throughput per inter-domain link as:

bd = 0.77 kbps be = 0.15 kbps (2.14)

By combining the results so far and the estimated throughput in Equations (2.10)
to (2.14), we can claim the following:

Property 2 In an arbitrary network managed by a ONOS cluster of 3 controllers A,
B and C, the traffic exchanged from controller x to controller y is:

Bx→y = 47.81+4.43 ·Sx +1.43 ·Lx +0.46 · (Sy +Sz)+

0.06 · (Ly +Lz)+0.77 · (Lxy +Lxz)+

0.15 ·Lyz [kbps] (2.15)

2.4 Distributed Topology Store 35

Table 2.3: Notation describing the network topology in the scenario with 3 controllers.
Let x, y be two distinct controllers, with x,y ∈ {A,B,C}.

Symbol Meaning
Sx number of switches in controller x’s domain

S = SA +SB +SC total number of switches in the network
Lx number of intra-domain links in controller x’s domain
Lxy number of inter domain links between x and y

L = LA +LB +LC total number of links in the network
+LAB +LBC +LAC

LID total number of inter-domain links in the network

for any selection of distinct controllers x,y,z ∈ {A,B,C} (i.e. such that x ̸= y, x ̸= z
and y ̸= z).

Let BTOT = BA→B+BA→C+BB→A+BB→C+BC→A+BC→B be the total exchanged
traffic among the 3 controllers. Referring to the notation in Table 2.3 and using the
similar methodology used to derive (2.9), we can claim:

Corollary 2 In an arbitrary network managed by a ONOS cluster of 3 controllers,
the total traffic exchanged among the 3 controllers is

BTOT = 286.86+10.7 ·S+3.10 ·L+0.28 ·LID [kbps]

where LID = LAB+LBC+LAC. Thus, also in this scenario, the total traffic appears to
be proportional to the number of switches and the number of edges in the topology.

2.4.4 Inter-controller traffic in real ISP topologies

To prove the wide applicability of our approach, we apply the empirical models
of Property 1 (for 2 controllers) and Property 2 (for 3 controllers) to 262 real ISP
network topologies obtained from the Internet Topology Zoo [21] to obtain the
inter-controller traffic in case of a distributed ONOS cluster managing the whole ISP
network. The number of nodes and edges in each ISP is shown in Fig. 2.14 and show
a high variety, even if in most of the cases the topology graph is not dense. This is
reasonable, since for a large (in term of geographical distance) ISP, dense graphs
are expensive and this fact advocates a careful design of the in-band communication
network to support inter-controller traffic.

36 Inter-controller traffic in distributed ONOS controllers

 1

 10

 100

 1000

 0 50 100 150 200 250

N
o
d
es

/E
d
g
es

ISP

Nodes
Edges

Fig. 2.14: Size of the network topologies considered for the inter-controller traffic in
real ISP topologies

In order to obtain results regarding the inter-controller traffic that are independent
from the controller chosen as the master for each switch, we evaluate the maximum
and minimum value of the inter-controller traffic by assuming (without loss of
generality) that each switch in the ISP topology is connected to a single controller
denoted as A. This is because the contribution to the inter-controller traffic for a
controller is maximum when all the switches are in controller A’s domain (i.e. SA = S,
LA = L, SB = LB = 0), as when applying (2.8), the coefficients for SA and LA are
larger. Conversely, this assumption minimizes the traffic generated by controller
B towards A. A similar argument can be used in (2.15) to show that the upper and
lower bounds can still be obtained by associating all the switches to controller A.

Fig. 2.15 shows the average amount of inter-controller traffic for each ISP,
exchanged between pairs of controllers. In the case of 2 controllers, traffic A→ B
and B→ A give the maximum and minimum values. In the case of 3 controllers,
traffic A→ B or A→ C provide the maximum values, whereas B→ A, C→ A or
B↔ C provide the minimum. According to our experiments, as an example, the
maximum inter-controller traffic in the 2-controllers scenario for the 261st ISP is
BA→B = 5029 kbps and the minimum is BB→A = 763.75 kbps. Both values are
practically relevant, since for a generic partitioning of the network in two controller
domains, a bandwidth of about 1-10 Mbps must be guaranteed among the pair of
controllers, just to synchronise the topology store.

2.5 Distributed Flow Store 37

 10

 100

 1000

 10000

 0 50 100 150 200 250

T
h
ro

u
g
h

p
u
t

[k
b

p
s]

ISP

2 controllers: A→B
3 controllers: A→B, A→C
2 controllers: B→A
3 controllers: B→A, C→A, B↔C

Fig. 2.15: Estimated inter-controller traffic, between pairs of controllers, due to the
topology store for realistic ISPs

Similarly in the 3-controller case, as an example, the maximum inter-controller
traffic for the 261st ISP is BA→B = 4668.8 kbps and the minimum is BB→A =

447.73 kbps. Also in this case the actual traffic is practically relevant, since about
1-10 Mbps is again required to support the communication among any pair of
controllers. By comparing the results in Fig. 2.15 referred to different number
of controllers, the traffic reduction is evident for 3 controllers with respect to 2
controllers case, as already observed in Sec. 2.4.3.

2.5 Distributed Flow Store

In ONOS, a copy of each switch’s flow table is maintained in the flow store by its
respective master controller and by the first slave controller, i.e. the new master if
the current master fails. We investigate the impact of modifying the switches’ flow
tables by OpenFlow flow-mod commands.

To synchronize the flow stores within the ONOS cluster, according to the code
available in [22], the following process occurs: every 2 seconds, the master controller
checks for any change in the flow table of each switch under its domain since the
last backup to the slave controller. The change detection is based on comparing the
time when the flows changed in a switch and the time of the last backup to the slave

38 Inter-controller traffic in distributed ONOS controllers

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Time [s]

A→B

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

Time [s]

B→A

Fig. 2.16: Inter-controller traffic, depicting the effect of a single flow addition the
occurring at time 50 s on the synchronization of the flow store

controller. Interestingly, in the case of a single modification of a flow, the whole flow
store of the corresponding switch is copied to the slave controller.

As an example, consider the throughput measurement shown in Fig. 2.16, re-
ferring to the scenario in which a switch is connected to master controller A and
slave controller B. Initially, the switch has 5004 flows installed in it. At around time
50s, one additional flow is installed on the switch, which causes the controller A to
backup the whole flow table (5005 flows) to controller B. This results in a transient
traffic increase, just for the traffic A→ B.

2.5.1 Experimental methodology

We describe here the adopted methodology to calculate data exchanged per flow,
i.e. taking into account the contribution of each individual flow. According to the
previous observations, the flow store backup from the master controller to one slave
controller is a transient phenomenon, thus the inter-controller traffic is event-driven
with full updates, according to the classification in Sec. 2.3.1. By observing the
traffic with the sniffer, we discover that ONOS adds the string “flow-backup” in its
packets when backing the switch flow table. Thanks to this observation, we can
easily isolate the traffic due to the flow table backup.

2.5 Distributed Flow Store 39

Mininet Switch

1.
 R

E
ST

 A
PI

3. Flow Backup

2. South-bound Flow Mod

Sniffer

ONOS
Controller A

(Master)

ONOS
Controller B

(Slave)

Fig. 2.17: Methodology to investigate the effect of flow modifications in the inter-
controller traffic

We adopt the testbed illustrated in Fig. 2.17. The topology consists of one
isolated switch connected to one master and one slave controller. The flows to be
installed are configured on the master controller through the ONOS north-bound
REST APIs (step 1). As a consequence, the flows are installed on the switch via the
controller south-bound interface using OpenFlow (step 2) and then the controller
backups the flow table to the slave controller (step 3).

To obtain general results, we test different types of flows with different versions
of OpenFlow, while varying the number of flows, in order to evaluate the minimum
and the maximum amount of data exchanged per flow. Let F be number of new
added flows whose effect must be analyzed. We start by installing F−1 flows. After
the traffic has reach a steady state, we install a single additional flow, in order to
avoid multiple backups. Thanks to the traffic trace, we calculate the data exchanged
per flow by computing the ratio of observed data on the network (in terms of Ethernet
packet size) by the number of flows in the table.

The amount of per-flow data depends on the adopted “match” and “actions” fields
adopted in the experiments, which in turn, depend also on the specific version of
OpenFlow. ONOS version 1.4.1 supports two versions of OpenFlow: 1.0 [23] and
1.3 [24]. In order to get general results, we devise two types of flow definitions to
be added in the table. Type-1 is forged to be the flow definition with the minimum
size, corresponding to the smallest flow-mod packet (on the south-bound interface)
and thus the minimum inter-controller traffic. Type-2 is instead forged to be the flow
definition with the maximum size. In order to induce a constant synchronization
traffic among the controllers, we generate a new flow by changing the value of just

40 Inter-controller traffic in distributed ONOS controllers

Table 2.4: Types used for OpenFlow 1.0 experiments

(a) Type-1

Field
Match EtherType
Action Output to Controller

(b) Type-2

Field

Match

Input Port
Ethernet Source/Destination
Ethernet Type
IPv4 Source / Destination
IP Protocol Type / DSCP
TCP Source/Destination Port

Action

Output to Controller
Change VLAN ID / PCP
POP VLAN
Change Ethernet Source / Destination
Change IPv4 Source / Destination

one matching field. For OpenFlow 1.0, we configure Type-1 flow definitions by
just setting the EtherType matching field and a basic forward action, as shown in
Table 2.4a, and we vary just the EtherType field for each new flow. Instead, we
configure Type-2 flow definitions by setting all the 10 matching fields available in
the REST APIs exposed by ONOS for OpenFlow 1.0 and all the 8 allowed actions,
as shown in Table 2.4b. Similarly, for OpenFlow 1.3, we use the same Type-1
definitions as before, shown in Table 2.5a. Instead, for Type-2 definitions we set all
16 match fields and all the 11 available actions in Table 2.5b. Notably, we exploit
IPv6 fields since they require a larger number of bits for their definitions. In all
Type-2 definitions, we vary the TCP source port field for each new flow.

2.5.2 Experimental results

Fig. 2.18 shows the amount of data exchanged per flow averaged on 10 experiments,
for all the 4 possible cases, combining Type-1 and Type-2 flow definitions with the
two considered OpenFlow versions. As a reminder, this data includes all the packet
overheads starting from the Ethernet PDU. All the graphs show that per-flow data
converge to a fixed value, which can be evaluated for a large enough number of
flows. Table 2.6 compares the inter-controller data for each flow, evaluated for the
fixed value obtained in Fig. 2.18 with the value obtained by observing the size of the

2.5 Distributed Flow Store 41

Table 2.5: Types used for OpenFlow 1.3 experiments

(a) Type-1

Field
Match EtherType
Action Output to Controller

(b) Type-2

Field

Match

Input Port
Metadata
Tunnel ID
VLAN ID / PCP
Ethernet Source / Destination / Type
IPv6 Source / Destination / Flow label
IP Protocol Type / DSCP / ECN
TCP Source / Destination

Action

Output to Controller
Change VLAN ID / PCP
POP VLAN
Change Ethernet Source / Destination
Change Tunnel ID
Change IPv6 Source / Destination
Change TCP Source / Destination

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
er

-f
lo

w
 d

at
a

[b
y
te

s]

Number of flows

Type-1 flow definition

OpenFlow1.0
OpenFlow1.3

 250

 300

 350

 400

 450

 0 1000 2000 3000

P
er

-f
lo

w
 d

at
a

[b
y
te

s]

Number of flows

Type-2 flow definition

OpenFlow1.0
OpenFlow1.3

Fig. 2.18: Inter-controller data exchanged for each flow

corresponding flow-mod packet (including the Ethernet PDU for fair comparison).
As the “match” and “action” fields increase from Type-1 to Type-2, the size of per-
flow data increases for both OpenFlow versions. By comparing the two right-most
columns, the inter-controller data exchanged for each flow appears comparable with
the size of the corresponding flow-mod packet. The difference is due to the different

42 Inter-controller traffic in distributed ONOS controllers

Table 2.6: Experimental results due to the modification of flow store

OpenFlow Flow Per-flow exchanged data [bytes]
Version Type OpenFlow packet Inter-controller data

1.0
Type-1 146 110
Type-2 218 304

1.3
Type-1 154 110
Type-2 458 409

internal format1 and the packet overheads. Type-1 always corresponds to 110 bytes
for each flow in the inter-controller traffic due to the same internal representation in
ONOS, whereas Type-2 shows a different size depending on the OpenFlow version
due to the different match and action fields that are exploited. Thanks to the larger
number of available fields, each flow can require up to 409 bytes to be synchronized
across the other controllers.

To understand the practical impact of the above experimental results, we observe
that the adopted full update scheme in the flow store may generate large synchroniza-
tion traffic among the controllers, especially when the flow table is large. Thus, we
now evaluate the maximum traffic generated in some commercial switches assuming
that (i) the flow table is full, (ii) at least one flow modification occurs every 2 seconds,
(iii) OpenFlow 1.0 Type-2 flow definitions are adopted in each flow update. Thus,
a table update is triggered every 2 seconds, requiring the exchange of the full flow
table, and each flow entry corresponds to 304 bytes, based on the results of Table 2.6.
We consider the physical OpenFlow 1.0 switches analyzed in [25] with the maximum
number of flow rules specified in Table 2.7, where we also show the numerical results
for the worst-case inter-controller traffic due to flow updates evaluated based on the
previous assumptions. Notably, the bandwidth required to backup the flow table is in
the order of Mbps which is relevant, due to just one flow update every 2 seconds.

The above experimental results can be used to compute the inter-controller
traffic due to the changes in a flow table for a network, with an arbitrary number of
controllers and domains. For this purpose, the master and the first slave controller of
each switch must be known, along with the information regarding the existing flows
in the switch.

1OpenFlow adopts Extensible Match (OXM) representation [24] to allow variable “match” field
in the south-bound.

2.6 Distributed Host Store 43

Table 2.7: Maximum inter-controller traffic generated in some commercial OpenFlow
switches due to flow store updates

Commercial Switch
Maximum Maximum
flow rules inter-controller traffic [Mbps]

Dell PowerConnect 8132F 750 0.91
HP ProCurve 5406zl 1500 1.83
Pica8 P-3290 2000 2.43

2.6 Distributed Host Store

We describe the impact of the presence of hosts in the network on the inter-controller
traffic. Events generated due to hosts in data plane have a transient effect on the
inter-controller traffic. This is due to the fact that host information is exchanged
among the controllers in a strongly consistent manner backed by RAFT consensus
protocol; thus we classify this traffic as event-driven with incremental updates.

2.6.1 Methodology

The event according to which a host is added to a switch controlled by ONOS
impacts on two data structures. First, an additional port is added to the data structure
representing the switch in the topology store. Second, the information about the
new host is recorded in the host store. Thus, the inter-controller traffic is affected
by two different protocols: the anti-entropy for the topology store, generating pe-
riodic and full updates, and RAFT for the host store, generating event-driven and
incremental updates. In order to distinguish between the two contributions, we adopt
the following methodology.

We exploit the north-bound REST APIs to connect multiple hosts (distinguished
by different MAC addresses) to the same port of the switch. In such a way, we avoid
adding a new port to the switch for each new host. We actually define a dummy
switch at which all the hosts are connected, and in this way we avoid to use Mininet
as network emulator. We proceed by simultaneously adding a batch of hosts to the
same dummy switch. By evaluating the traffic increment due the transient phase
induced by the hosts addition, we evaluate the average amount of data exchanged
between the controllers for each new added host. The experiments are carried out
for 2 and 3 controllers. Each experiment is repeated 100 times.

44 Inter-controller traffic in distributed ONOS controllers

2.6.2 Experimental results for 2 controllers

We start by considering the scenario with 2 controllers. Fig. 2.19 shows the result
of inter-controller data per host, with the hosts added to controller A. The results
depend on the specific role of the controller (leader or follower of the corresponding
shard) that acts as master of the switch at which the hosts are added. Notably, this
role cannot be set a priori and changes randomly for each experiment. By changing
the number of added hosts in a batch the results are the same, thus our numerical
results appear to be reliable. By observing the inter-controller data for each host
(denoted as D) for different number of hosts that are added in batch, we identify
three different behaviors which depend on the roles of the controllers in managing
the shards:

• Case 1: Controller A is the leader of all shards of the host store. From the
graphs, DA→B ≈ 1000 bytes and DB→A ≈ 500 bytes.

• Case 2: Controller B is the leader of all shards of the host store. Both DA→B

and DB→A ≈ 2000 bytes.

• Case 3: Each controller is the leader of at least one shard. DA→B ≈ 1500 bytes
and DB→A ≈ 1200 bytes.

Recall that controller A is always master of the switch to which the hosts are added.
The different data values obtained in the 3 scenarios are explained in the following
paragraphs. The results in Fig. 2.19 are grouped based on the above cases.

Case 1 and 2 are the most interesting as they give an upper and lower bound
respectively to the per-host data. In case 1, controller A is master and manages
directly the host updates received from the switch. Controller A is also the leader for
all the shards and thus directly updates the follower controller B, which corresponds
to the minimum amount of exchanged data. This is clear from the protocol behavior
as shown in Fig. 2.20a: once the leader receives information about the host from
REST API, it sends this to the follower. The follower adds this instruction to its log
and sends a message to the leader that it is updated. The leader then sends a “commit
done” message to the follower to end this transaction.

Instead in case 2, controller B is the leader of all the shards. Thus when a host is
added to the switch whose master is controller A, acting as follower for the host store,

2.6 Distributed Host Store 45

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

256 Hosts

A→B
B→A

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

1024 Hosts

A→B
B→A

Fig. 2.19: Per-host data exchanged as part of inter-controller traffic between 2
controllers, all hosts added to the switch whose master controller is A

REST API (Host)
Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller
(Follower)

(a) All hosts added to the leader controller

REST API (Host)
Update (Host)

Append (Host)

Append done

ONOS
Controller
(Leader)

ONOS
Controller
(Follower)

Commit done

(b) All hosts added to the follower controller

Fig. 2.20: Scenario with 2 controllers for distributed host store

then A must update the leader B first before anything is committed, as shown in the
protocol diagram in Fig. 2.20b. After B is notified, the same sequence of messages is
observed as in Fig. 2.20a. The additional messages exchanged in case 2 explain the

46 Inter-controller traffic in distributed ONOS controllers

larger traffic with respect to case 1. Observe now that the actual experimental values
are not consistent if only a single message was added in case 2 (denoted “Update
host” in Fig. 2.20b). For example in case 1, the follower sends around 500 bytes per
host to the leader while in case 2, it sends around 2000 bytes. This can be explained
as the Network Configuration Subsystem (i.e. a ONOS internal module) is involved
whenever a host is added to a controller. When a controller receives a host to be
updated, the Network Configuration Subsystem does a read operation on a strongly
consistent data structure backed by RAFT. This read operation is done on the leader.
If the controller is itself the leader, the read operation is served locally as in case 1.
Instead, the read operation is served remotely by the leader in case 2. This adds extra
messages to the inter-controller traffic, which amounts to extra data exchanged per
host.

2.6.3 Experimental results for 3 controllers

We now consider the scenario with 3 controllers. Since the results in the previous
scenario with 2 controllers depend heavily on the role of the controllers, we adopt
the following methodology, in order to just find an upper and lower bound on the
inter-controller traffic.

In each experiment, we start all the containers with ONOS controllers and then
check if one specific controller is by chance the leader of all partitions of all the data
structures, by following the logs of the leader election phase in RAFT consensus
protocol; otherwise the containers are rebooted. The 3-controller cluster includes
a leader and two follower controllers F1 and F2. Two specific cases are adopted to
achieve a lower and upper bound on amount of data exchanged per host:

• Case 1: All hosts are added to the switch whose master is the leader controller.

• Case 2: All hosts are added to the switch whose master is one follower
controller (assume F1).

Similarly to the scenario with 2 controllers, case 1 produces the minimum amount of
inter-controller traffic due to host addition, whereas case 2 the maximum one.

The data exchanged for each host update is shown in Fig. 2.21. The results show
that, regardless of the role of the controllers, the minimum amount of data for each

2.6 Distributed Host Store 47

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

Case 1

Leader → Follower F1
Leader → Follower F2
Follower F1 → Leader
Follower F2 → Leader

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

P
er

-h
o
st

 d
at

a
[b

y
te

s]

Experiment Number

Case 2

Fig. 2.21: Per-host data exchanged as part of inter-controller traffic among 3 con-
trollers, all hosts added to the leader (case 1) or to one follower (case 2)

flow is around 500 bytes and the maximum one is around 2000 bytes, coherently
with the previous scenario. To understand the actual values, we observe the protocol
diagrams for the RAFT messages for the two cases, as reported in Figs. 2.22 and 2.23.
Case 1 for 3 controllers achieves the same amount of data for each flow than in
the 2 controllers case. This is because the data structure is updated in the same
manner. Case 2 on the other hand has a different behavior. Fig. 2.21 shows that the
data between the leader and F1 is same as that of case 2 for 2 controllers; on the
contrary, the data between leader and F2 is equivalent to add a host to the leader.
This is due to the fact that the Network Configuration Subsystem comes into play
in the communication between leader and F1, since F1 does a read operation while
accessing the leader. This read operation is not done on the communication between
the leader and F2. The traffic between the two followers F1 and F2 in all cases does
not vary as all the read and write operations in RAFT are done through the leader.

Notably, in the RAFT implementation of ONOS, no more than 3 controllers
constitute a partition. Thus the lower and upper bound of data exchanged per host
within a partition computed in the previous section are expected to hold in general,
independently from the number of controllers in the cluster.

48 Inter-controller traffic in distributed ONOS controllers

REST API (Host)

Append (Host)

Append done

Commit done

Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller

(Follower 2)

ONOS
Controller

(Follower 1)

Fig. 2.22: Scenario with 3 controllers and all hosts added to the leader controller

Append (Host)

Append done

Commit done

Append (Host)

Append done

Commit done

ONOS
Controller
(Leader)

ONOS
Controller

(Follower 2)

ONOS
Controller

(Follower 1)
REST API (Host)

Update (Host)

Fig. 2.23: Scenario with 3 controllers and all hosts added to the follower controller
F1

2.7 Related work

The need of a distributed SDN architecture has been thoroughly advocated in litera-
ture, since it provides resiliency and scalability as compared to a centralized single
controller implementation. Onix [26] is a type of distributed SDN controller which
uses partitioning to introduce scalability in distributed SDN. In Onix, although the
network topology information known as Network Information Base (NIB) is fully
replicated on all the cluster nodes, in a way similar to the topology store in ONOS,
yet the information such as forwarding state of devices and link utilization levels are
partitioned among controllers, similarly to what RAFT does in ONOS.

Consistency issues in distributed SDN data plane have been highlighted in
reference [12], which extended the classic CAP theorem for distributed systems.
Reference [12] discusses examples of network policies operating under network

2.7 Related work 49

partitions and highlights the advantages of an in-band control plane in distributed
SDN controllers. Indeed, out-of-band control information among the controllers
may provide less resilience than in-band control one. The intuitive idea is that,
for pure in-band control, only in case of data plane partitions the controllers are
actually partitioned. Instead, in case of out-of-band control plane, it may happen
that the data plane is fully working whereas the control plane is partitioned, creating
inconsistency problems. Our work is strongly motivated by the need to understanding
deeply the bandwidth required to implement an efficient transportation of in-band
control information, and this is crucial for network planning purposes.

Recently, authors in [27] proposed a centralized in-band synchronization ap-
proach to achieve a consistent behavior across distributed controllers. Coherently
with the motivations of our work, the authors advocate the use of in-band control
signaling and highlight the importance of achieving consistency among the con-
trollers. They propose a new set of atomic primitives to ensure consistency, and
our proposed experimental methodology could be applied also to their consistency
system to evaluate the actual inter-controller traffic due to in-band synchronization.
Such evaluation is currently neglected in their work.

The importance of preserving consistency in shared data structures across SDN
controllers was highlighted by authors in [28]. In contrast to ONOS as well as Onix,
only a global strongly consistent key-value based data store is employed, since it can
provide acceptable performance as well as fault-tolerance. The data store is based on
replicas which employ state machine replication using a combination of Paxos (a well
known consistency algorithm) and Viewstamped Replication (VR). Similar to RAFT,
all operations are coordinated using a leader acting as the primary replica which
handles all the read and write operations. While comparing the performance, the
authors state that existing strongly-consistent data stores implementing the Paxos/VR
protocols can perform as good as an eventually consistent data store in Onix for
some applications, but the cost of latency is inevitable as a strongly consistent data
store is involved.

DISCO (Distributed Multi-domain SDN Controllers) [29] discusses specifically
the inter-controller traffic, which is given by two contributions: (i) delegating func-
tions among various agents such as controller reachability, monitoring and relay-
ing inter-controller link health, new controller domain discovery or reservation
of inter-domain flow setup and teardown (ii) operating a Messenger module for

50 Inter-controller traffic in distributed ONOS controllers

inter-controller communication based on an Advanced Queuing Messaging Protocol
(AQMP) used by the agents. An interesting mechanism in DISCO reconfigures the
inter-controller links to abandon congested or slow links and use other controllers as
relays for inter-controller communications, which is absent in ONOS.

Notably, references [28] and [29] do not evaluate the cost in terms of bandwidth
needed to support the proposed consistency schemes, and our methodology can be
adapted to address such issue in both scenarios.

The work in reference [30] investigated the synchronization cost due to the ex-
change of inter-controller traffic among controllers by analyzing the synchronization
delay. This delay consists of the time taken by a controller to detect an event in
its domain till the time a different controller becomes aware of it. There exists a
trade-off between the synchronization delay and the amount of synchronization data.
Different network applications may require faster coordination among controllers
at the expense of higher synchronization data exchange rate and vice versa. In
contrast, our work focuses on the inter-controller traffic due to network events, while
neglecting the delay to achieve consistency. Nevertheless, our empirical models
enable a proper planning of the network supporting the control plane, and thus allow
to control the corresponding delay performance.

Finally, our approach is perfectly complementary to the work in reference [31],
since the latter work focused on the OpenFlow traffic exchanged by ONOS controller
with the switches on the south-bound interface. Thus, by combining the results in
reference [31] with the results of our work (i.e. the control traffic exchanged among
the controllers), it is possible to properly plan and design the whole transport network
supporting the overall control plane in a cluster of ONOS controllers.

2.8 Summary

We considered a distributed SDN architecture in which a cluster of ONOS 1.4
controllers, manages all network devices. We focused our investigations on the
traffic exchanged between the controllers, which is mainly due to the consensus
protocols enabling a consistent view of the network state.

We adopted an experimental testbed based on a cluster of 2 and 3 ONOS con-
trollers and evaluated experimentally the inter-controller traffic due to different

2.8 Summary 51

shared data structures and to different network configurations and events. We in-
vestigated specifically all the distributed stores that describe the network state (i.e.
topology, host and flow stores) and derived some quantitive models to estimate the
inter-controller traffic under very general conditions. Even if the results are specific
of the considered version of the controller, our methodology is general and can be
applied to other versions of ONOS and to different SDN controllers from ONOS. As
a future work, we plan to apply our methodology to a larger number of controllers
adopting the latest version of ONOS.

Thanks to our experimental results, a network designer can design and plan
carefully the network infrastructure that support the inter-controller data plane. This
is of paramount importance for network operators running large SDN networks, like
SDWANs, where the control data is typically in-band and share the same resources
devoted to the customers.

Chapter 3

Time-synchronized operations for
software-defined elastic optical
networks

Part of the work presented in this chapter has been published in:

• A. Bravalheri, M. G. Alabarce, A. S. Muqaddas, P. Giaccone and A. Bianco,
“Experimental validation of time-synchronized operations for software-defined
elastic optical networks”. In: IEEE/OSA Journal of Optical Communications
and Networking 10.1 (Jan. 2018), pp. A51–A59.

• M. Garrich, A. S. Muqaddas, P. Giaccone and A. Bianco, “On the importance
of time-synchronized operations in Software-Defined electronic and optical
networks”. In: 2017 19th International Conference on Transparent Optical
Networks (ICTON). July 2017, pp. 1–4.

• A. S. Muqaddas, M. Garrich, P. Giaccone and A. Bianco, “Exploiting Time-
Synchronized Operations in Software- defined Elastic Optical Networks”. In:
Optical Fiber Communication Conference. Mar. 2017, pp. W4J.6.

3.1 Motivation 53

3.1 Motivation

Traffic volumes in carrier networks keep growing dramatically, driven by the prolifer-
ation of high-bandwidth services and applications. To address this challenge, Elastic
Optical Networks (EON) enable an efficient use of spectrum resources valuable to
extend the lifetime of already deployed optical fibers [32]. EON performs flexible fre-
quency allocation in the network using reconfigurable optical add/drop multiplexers
(ROADMs) [33] and bandwidth-variable transmission techniques [34]. In particular,
EONs use the spectrum resources of the data plane following the guidelines reported
in the ITU-T Recommendation G.694.1 from 2012 [35]. However, the migration
from classical wavelength division multiplexed (WDM) fixed-grid spectrum allo-
cation towards flexible EON may require notable long-term investments [36] or
gradual migration of the wavelength selective switch (WSS) equipment [37]. More-
over, telecom operators face operational challenges in order to manage such a diverse
multi-technology scenario which may also include multi-vendor equipment interop-
erability issues [38]. In more detail, [38] reports a demonstration of interoperability
between multi-vendor optical equipment with the need to adapt several interfaces
just to perform an experimental end-to-end resource provisioning. Indeed, these
operational challenges may endanger the potential deployment of next-generation
flexible-rate transponders and EONs [39].

To address these challenges, novel SDN approaches [40] enable advanced control
and configuration features suitable for the breakthrough technologies of the EON
data plane. Although legacy GMPLS/Path Computation Element (PCE) architectures
already offered a fully separated control plane from the data plane, SDN enhances
network programmability via open programmatic interfaces, reduces vendor lock-in
issues, and permits innovation and evolution of the network infrastructure [1]. In
particular, academic initiatives to control optical components recently proposed open
YANG models [41] for EON [42]. In this research direction, YANG models have
been proposed for monitoring functionalities in EONs [43] and specific models to
manage sliceable transponders [44]. More recently, specific NETCONF protocol
features and YANG models have also been proposed to address optical network
failure issues [45]. On the industrial side, the recent OpenROADM standardization
initiative [46], proposes an interface for multi-vendor ROADM access and con-
figuration based on YANG models. More specifically, OpenROADM targets the

54 Time-synchronized operations for software-defined elastic optical networks

disaggregation of traditionally proprietary ROADM systems and SDN-enablement
of traditionally fixed ROADMs.

In the EON data plane, routing and spectrum assignment (RSA) schemes allocate
lightpaths ensuring that a set of frequency slots (FS) are continuous throughout the
routing path [47]. Connections in EON are established (and removed) dynamically,
thus potentially leaving sparse FS that become difficult to use by the RSA to reduce
blocking probability. This fragmentation problem has been recently addressed
with hitless defragmentation techniques able to reallocate the lightpath frequencies
without traffic disruption. Examples are the push-pull technique [48], which allows
spectrum retuning only over contiguous vacant FS from the source to the destination
frequency; and the hop-retuning technique [49], which strictly requires a number
of photodetectors equal to the number of FS. Due to system complexity, the former
technique is usually preferred over the latter. However, even with RSA schemes
combined with push-pull [50], high-load scenarios may drive the network towards
the so called “end-of-line situations” limiting the potential benefits of EON [51].
End-of-line situations are defined by [51] as cases in which a lightpath obstructs push-
pull spectrum defragmentation or non-continuous vacant FS contribute to network
blocking. These situations require lightpath rerouting to exploit the remaining
capacity not being used by existing RSA and defragmentation techniques, albeit in a
non hitless manner.

In this context, SDN could be exploited to address this challenge. In particu-
lar, time-synchronized operations (TSO), have been recently proposed in the form
of southbound protocol extensions to coordinate distributed operations simultane-
ously [52]. Indeed, TSO are gaining interest in the research community as an
SDN feature capable to improve network performance [53] and to develop novel
applications [54].

3.1.1 Our contributions

In this chapter, we present our proposal [55] of TSO for EON to address end-of-line
situations efficiently performing lightpath rerouting to minimize the disruption time.
We discuss the implementation of our proposal using the existing protocols, and
we show the benefits in a test scenario comparing performance against traditional
asynchronous operations [56]. We present the experimental validation of TSO for

3.2 An end-of-line scenario: non-continuous vacant FS 55

lightpath reassignment in a five-node metropolitan optical network test-bed. We
compare the network performance in terms of optical signal-to-noise ratio (OSNR)
and optical power budget between our TSO-based approach and the traditional
asynchronous technique. We observe that both techniques maintain a similar network
performance, thus validating the convenience of the TSO-based approach given its
reduction of disruption time. After presenting the experimental validation, we review
some recent literature on TSO applicability in both electronic and packet optical
networks.

3.1.2 Organization of the chapter

The remainder of this chapter is organized as follows. Sec. 3.2 presents an end-of-
line scenario in optical networks, which involves disruption of lightpaths to reroute
them. Sec. 3.3 elaborates on time-synchronized operations for EON. Sections 3.4
and 3.5 present the analytical evaluation and experimental validation of our TSO-
based solution respectively. Sec. 3.6 discusses relevant related work and Sec. 3.7
summarizes the chapter.

3.2 An end-of-line scenario: non-continuous vacant
FS

In this section, we provide an example of end-of-line situation to illustrate the need
for lightpath rerouting to better exploit the remaining optical spectrum resources.
Then, we detail the traditional asynchronous technique commonly employed in non
SDN-enabled networks to address these situations

Fig. 3.1 shows an example of end-of-line situation due to non-continuous vacant
FS in a network. The sample topology in the example consists of 5 nodes: A, B, C,
D and E, which are connected by 5 links, assuming 6 FS per link (number of FS
chosen to simplify the explanation). Initially, assume that there are 4 lightpaths in
the network:

• L1: from A to D via C, requiring 2 FS

• L2: from A to D via C, requiring 3 FS

56 Time-synchronized operations for software-defined elastic optical networks

• L3: from A to D via B, requiring 3 FS

• L4: from E to D via B, requiring 2 FS

Thus 1 FS is available in both A-B-D and A-C-D paths. Let us assume a new
lightpath requests 2 FS from A to D. Note that defragmentation would not increase
the available FS in each link to accommodate this new lightpath. Therefore, either
this new request is rejected or existing lightpaths need to be rerouted. The latter case
is preferred, as shown in Fig. 3.2, because it reduces the network blocking probability.
Rerouting in Fig. 3.1 requires swapping lightpaths to achieve the configuration in
Fig. 3.2.

B

D

A
CE L1 & L2L3

L4
B

D
2

C

D

3
L3 L4

2 3
L1 L2

Path Spectrum

Fig. 3.1: Topology with lightpaths in an end-of-line scenario

B

D

C

D

Path

B

D

A
CE L2 & L3L1 &L5

L4 2

3
L3

L4
2

3

L1

L2

Spectrum

2
L5

Fig. 3.2: Re-routing to accommodate a new lightpath

We define as asynchronous (ASY) approach the technique that executes the
operations asynchronously as depicted in Fig. 3.3a. The ASY approach addresses
the end-of-line situation shown in Fig. 3.1 to achieve the network state in Fig. 3.2
performing the following four operations. First, L3 is disrupted sending tear-down
requests to all the nodes. Second, L1 is rerouted from A-C-D to A-B-D with two
commands tear-down and setup for its migration. Third, L3 is now setup in its
new route A-C-D. Finally, the new lightpath L5 can be allocated on A-B-D and
the network state depicted in Fig. 3.2 is achieved. Note that this operation of
lightpath swapping implies a non-negligible disruption time for both L1 and L3.

3.3 Time-synchronized operations for EON 57

Nonetheless, it worthwhile mentioning that differently from the sequence illustrated
in Fig. 3.3a, the reassignment of L1 could be performed without any disruption
time just by implementing Make-before-Break (MbB) technique as specified in
RSVP-TE [57]. In particular, given that spectrum resources are made available using
overprovisioning in the A-C-D path by tearing down L3, L1 can be setup in this new
route before tearing down its initial allocation in A-B-D. However, note that MbB
for L1 does not reduce the disruption time for L3.

3.3 Time-synchronized operations for EON

In this section, we present our proposal [55] of TSO for EON which leverage on
recently provided features in SDN. Simultaneous operations can be coordinated using
timestamps within industry-standard southbound configuration messages. In the case
of lightpath swapping, our approach operates as shown in Figs. 3.3b and 3.3c.

In case of NETCONF, time extensions to the protocol have been recently pub-
lished as an RFC [58]. The SDN controller sends a scheduled-RPC message to the
optical node to execute an operation at a specific time. Note that NETCONF does not
provide the capability to bundle operations natively. Therefore, one command per op-
eration is issued and scheduled using timestamps in a sequential manner accounting
for the configuration time as shown in Fig. 3.3b (i.e. four operations same as ASY).
We refer to this implementation as Native-NETCONF (N-NC). Indeed, similarly as
for the ASY case, the commands required to reroute L1 could be inverted (i.e., setup
before tear down) implementing the MbB approach so that L1 does experiences a
negligible disruption time. Nonetheless, an Intelligent Agent can be implemented
either at the SDN controller or at the optical node that processes NETCONF (IA-NC)
messages to group several operations into a single configuration [59].

In case of OpenFlow (OF), two features are included in its latest version 1.5 [60]:
a bundle of operations can be executed simultaneously [40], and this bundle can be
scheduled for execution at a given time, as shown in Fig. 3.3c. The scheduling of the
bundle depends on the node with the maximum sum of the configuration time plus
the half round trip time (RTT). In Fig. 3.3c, we assume that this is the case of the
destination node and it starts to execute the bundle of operations at time TX and it
acknowledges the SDN controller at time TY after it finishes its configuration. Given
that all other nodes have a configuration time smaller than the destination node, their

58 Time-synchronized operations for software-defined elastic optical networks

SDN Controller

L1
Disruption

Source Destination

Intermediate

L3
Disruption

(a) Asynchronous operations (ASY)

Time TX

SDN Controller

L1
Disruption

L3
Disruption

Source Destination

Intermediate

(b) Native-NETCONF (N-NC)

L1 & L3
Disruption

SDN Controller

Legend:
Single Command
ACK
Bundle Session
Configuration

Source Destination

Intermediate

Time TX

Time TY

Device with
max config time +

RTT/2

(c) OpenFlow (OF)

Fig. 3.3: Asynchronous vs. TSO-based approaches in NETCONF and OpenFlow.
Source node corresponds to A, intermediate nodes correspond to B and C, and
destination node corresponds to D, respectively, in Figs. 3.1 and 3.2.

configuration can be done within the time interval between TX and TY . By doing
so, the smaller configuration times in other nodes compared to the maximum case
(destination node in Fig. 3.3c) become transparent to the disruption time. Indeed, this
relaxes the requirement of full time-synchronization for the OF approach. Bundling

3.3 Time-synchronized operations for EON 59

commands in OF requires opening a session by the SDN controller to the optical
node with a bundle-open message. Thereafter, multiple commands are sent to the
optical node to be added to the bundle. This is followed by a bundle-commit message
to specify the time at which the bundle should be executed. Note that bundling
network operations by means of the OF bundling feature differs from launching an
application (e.g., script file or program) at the SDN controller that issues multiple
commands to a given network node. For instance, multiple WSS configurations for
different spectrum filtering patterns could be merged into a single WSS filtering
pattern modification within a bundle. However, the approach using the multiple-
command application would update the WSS filtering pattern upon receiving each
command separately. It is worthwhile mentioning that OF and IA-NC cause the
same disruption as both implementations permit to bundle several operations as a
single configuration. Hence, we refer to them as OF/IA-NC while evaluating their
performance.

The temporal accuracy of the time-synchronized approach depends on the max-
imum value of two contributions. On the one hand, we consider the worst-case
configuration time of all optical nodes involved in the reconfiguration. This time
depends on several factors including the common coexistence of data-plane devices
from different vendors in carrier-grade optical networks, the dependence of the con-
figuration time on current load of the agent at the optical node, aging issues or other
random behaviors. However, this worst-case configuration time can be estimated
with some error considering the average reconfiguration time with respect to the
load [59, 61] (see Fig. 3.4(b)); given a particular vendor, different firmware/software
implementation and control plane protocols. On the other hand, worst-case syn-
chronization error among devices needs to be taken into account. To this end, local
clocks at the optical nodes as well as the SDN controller can be synchronized with
a common reference clock using Precision Time Protocol (PTP), or an improved
version named ReversePTP [62]. Indeed, the accuracy of up to 1 µs provided by
ReversePTP makes its contribution to the TSO inaccuracy negligible compared to
optical configuration times which are in the order of seconds [59, 61]. Furthermore,
GPS can also be used as backup for the reference clock to enable TSO.

In summary, the efficiency of the TSO approach improves with better time
accuracy and better knowledge of the reconfiguration time. In this chapter, given that
all the schemes under analysis (ASY, N-NC, OF) are affected by these worst-case

60 Time-synchronized operations for software-defined elastic optical networks

considerations, the current conclusions hold. Consequently, we leave further analyses
on these two problems outside the scope of our work.

3.4 Analytical evaluation of TSO

In this section, we evaluate the disruption time of ASY, N-NC and OF/IA-NC,
considering the lightpath swapping scenario of Sec. 3.2.

We assume that each node i has a constant configuration time ci regardless of the
operation. The ASY approach is composed of four operations:

• Tear down L3

• Tear down L1

• Setup L1

• Setup L3

Each operation lasts for top time as shown in (3.1).

top = max
i
(RT Ti + ci) (3.1)

where RT Ti is the Round Trip Time between the SDN controller and node i.
Thus, the total disruption time experienced by lightpath L3 is shown in (3.2).

tASY = 4× top−min
i
(RT Ti/2) (3.2)

where the second term is subtracted because the disruption starts when the nearest
node receives the tear-down message from the controller. The N-NC approach
concatenates four operations, similar to ASY. Hence, the disruption time for N-NC
case is shown in (3.3).

tN−NC = 3max
i
(ci)+max

i
(ci +RT Ti/2) (3.3)

3.4 Analytical evaluation of TSO 61

where the second term is due to the last operation in which the controller receives
an ACK. The OF/IA-NC permits simultaneous operations, thus the disruption lasts
for tOF/IA−NC as shown in (3.4).

tOF/IA−NC = max
i
(ci +RT Ti/2) (3.4)

Fig. 3.4: (a) System modules for WSS control in the optical network test-bed. (b)
Time required for a single WSS operation vs. the number of wavelengths. Empty
squares report manufacturer specifications (upper bound for the WSS hardware
configuration time) and solid squares report experimental measurements of a com-
plete operation cycle, i.e., service time (average of ten experiments in two WSS
devices)[59, 61].

In order to evaluate the impact of the configuration time of the WSS devices on
the lightpath disruption time, we review the reported experimental results [59, 61].
In particular, an SDN controller makes use of a standard protocol (e.g., a REST
interface) to communicate with the firmware of the WSS (Fig. 3.4(a)). Leveraging on
YANG models, the SDN controller can issue specific requests to the firmware of the
WSS. For example, the attenuation of any given WSS device at any desirable position
of the optical spectrum can be arbitrarily set by the controller. Fig. 3.4(b) reports
the time that is required to perform a change of attenuation in the WSS device as a
function of the number of wavelengths for which the attenuation is being adjusted.
More specifically, the empty squares report the time requirement as specified by the
WSS device manufacturer. The solid squares report the time required to complete
the operation inclusive of the control signaling, the firmware execution time and
the WSS operation. (The signaling propagation time between the SDN controller

62 Time-synchronized operations for software-defined elastic optical networks

and the optical node is negligible.) During the experiment, the applied attenuation
for a given group of wavelengths is changed from maximum to minimum and vice
versa. The number of wavelengths being switched is varied. Results reported in
Fig. 3.4(b) are the average of ten experiments in two WSS devices and exhibit a
linear dependence on the number of channels to be configured with minimal standard
deviation (confidence intervals using vertical lines are not reported for the sake
of legibility) as in [61]. The curve indicates that the time required to complete
the adjustment of the WSS-applied attenuation is proportional to the number of
wavelengths for which the attenuation is being adjusted.

Considering the above reported experimental results that characterize the WSS
operation time, Fig. 3.5 shows the disruption time as a function of maxi(ci) ∈ [3,7]
and number of wavelengths ∈ [1,80] with constant RT T . Note that the proportional
dependence between the configuration time required by a WSS and the number of
wavelengths it is required to adjust permits the double x-axis depicted in Fig. 3.5.
OF and IA-NC outperform ASY and N-NC as they bundle all the operations in
a single configuration instead of four, thus reducing the disruption time by 75%
in this case. The difference between ASY and N-NC is minimal and cannot be
observed in Fig. 3.5. This is due to the fact that N-NC, as shown in (3.3), includes
the term RT T/2; whereas ASY, as per (3.1) and (3.2), includes the round trip time
as 3.5×RT T . Thus the difference of RT T between ASY and N-NC is 3×RT T ,
which amounts to 30ms in Fig. 3.5 and is thus negligible as compared to the overall
disruption time.

Finally, Fig. 3.6 explores the disruption time for a constant ci = 50ms, ∀i, small
enough to observe the impact of the maxi(RT Ti). Note that a ci = 50ms is consistent
with Micro-Electro-Mechanical systems (MEMS) technology employed in fiber
switches [63][64]. As in the previous analysis, the bundling feature in OF and IA-
NC reduces the communication rounds between the optical nodes and the controller,
thus reducing the disruption time due to RT T . Consequently, as RT T increases, the
reduction grows from 75% to 83.3% when comparing OF and IA-NC against ASY.
Furthermore in this case, N-NC performs better than ASY but worse than OF/IA-NC.
Figs. 3.5 and 3.6 show that the disruption time reduction of 75% is minimum.

Different configuration time for ASY/N-NC vs OF/IA-NC Note that Fig. 3.4(b)
implies that the configuration time ci for OF/IA-NC (in (3.4)) may be more than ASY

3.4 Analytical evaluation of TSO 63

 0

 5

 10

 15

 20

 25

 30

 3 3.5 4 4.5 5 5.5 6 6.5

 1 20 40 60 80

75%

reduction

D
is

ru
p
ti

o
n
 T

im
e

[s
]

Configuration time [s]

Number of wavelengths

ASY
N-NC
OF/IA-NC

Fig. 3.5: Disruption time for variable number of wavelengths with RT T = 10 ms

 0

 150

 300

 450

 600

 0 20 40 60 80 100

75% reduction

83.3%

reduction

D
is

ru
p

ti
o
n

 T
im

e
[m

s]

Max RTTi [ms]

ASY
N-NC
OF/IA-NC

Fig. 3.6: Disruption time for two different scenarios

and N-NC (in (3.2)-(3.3)); since more number of wavelengths are simultaneously
configured in the WSS in the OF/IA-NC case. However, still in this case, OF/IA-NC
outperforms ASY and N-NC due to bundling of operations; consequently involving
more number of wavelengths per WSS operation. For e.g., if a WSS operation
requires 1 wavelength, it takes 3 seconds according to Fig. 3.4(b), however with just
an increment of 25% in time i.e., 4 seconds, 20 wavelengths can also be configured in

64 Time-synchronized operations for software-defined elastic optical networks

a single WSS operation. To further elaborate on this situation, consider the example
of the scenario shown in Fig. 3.1, however this time, we scale all the FS by 10. This
means that the capacity of each link is 60 FS. In this case, the lightpaths will have
following requirements:

• L1: from A to D via C, requiring 20 FS

• L2: from A to D via C, requiring 30 FS

• L3: from A to D via B, requiring 30 FS

• L4: from E to D via B, requiring 20 FS

Assuming all the nodes use the same WSS with configuration time according
to Fig. 3.4. In this way, we can neglect the RTT for comparison. This implies the
following configuration time per operation for ASY and N-NC:

• Tear down L3: requires 30 channels ≈ 4.61 s

• Tear down L1: requires 20 channels ≈ 4.12 s

• Setup L1: requires 20 channels ≈ 4.12 s

• Setup L3: requires 30 channels ≈ 4.61 s

• Total ≈ 17.46 s

Whereas in OF/IA-NC case, 30 channels need to be configured in all paths, hence
it requires≈ 4.61 s, which is a reduction of 73.60% as compared to ASY/N-NC case.
This is due to the bundling of commands as discussed earlier.

3.5 Experimental validation of TSO

In this section, we first provide an overview of the five-node metropolitan optical
network test-bed where the experiments are performed. Then, we detail the experi-
mental setup that emulates the end-of-line scenario shown in Fig. 3.1. Finally, we
report and discuss the experimental results.

3.5 Experimental validation of TSO 65

3.5.1 Optical network test-bed overview

p1

1

5

3

42

Firmware components
Manufacturer protocol

ROADM detail
Inputs

Drops Adds

Outputs
1

2

3

1

2

3

ROADM

KEY:

EDFA

SplitterWSS

100-km link
Single Mode
Fiber (SMF)

REST

Lightpath rerouting application
(ASY and TSO-based)

p1

p2

p2

Fig. 3.7: General architecture for the SDN-enabled test-bed.

The experimental results of this chapter are obtained using an SDN-enabled five-
node metropolitan optical network test-bed located at CPqD [59]. More specifically,
the network test-bed comprises 4 ROADMs of degree 3 and a central ROADM
of degree 4 interconnected to form a partial mesh topology using 100-km single
mode fiber (SMF) links as shown in Fig. 3.7. The ROADM node architecture
is broadcast-and-select (B&S) using one splitter per input port and one WSS per
output port. In particular, the WSS devices are from Finisar and belong to its
ROADMs & Wavelength Management product portfolio. More specifically, 1×5
Flexgrid® WSSs1 acquired in 2010 are used in the central ROADM, whereas 1×4
Flexgrid® WSSs2 acquired in 2012 are used in the ROADMs at the edges of the
network. EDFAs are placed at each input and output port to compensate for span and
node losses. No physical dispersion compensation modules are used. The transmitter
is composed of 80 continuous wave (CW) lasers with 50 GHz channel spacing. Each

1Product Code: 10WSPA05ZZL. Discontinued product. Preliminary version of the cur-
rent 1×9 and 1×20 WSS devices detailed in https://www.finisar.com/roadms-wavelength-
management/10wsaaxxfll3

2Product Code: EWP-AA-104-96F-ZZ-L https://www.finisar.com/roadms-wavelength-
management/ewp-aa-010x-96f-zz-l

66 Time-synchronized operations for software-defined elastic optical networks

CW is modulated by four multiplexed lines of 32 Gb/s (PRBS 231−1), obtaining 80
128-Gb/s DP- QPSK orthogonal channels. Transmission impairments and non-linear
effects are assumed to be compensated at the receiver (out of the scope of this thesis).

3.5.2 Experimental setup

In order to investigate the approaches described in Sections 3.2 and 3.3 for introduc-
ing new connections in an end-of-line situation, two experimental tests are carried
out using the metropolitan optical network test-bed. Both tests consist of configuring
the network to present an initial state and after it requiring the establishment of a
new lightpath.

In the first experiment, the SDN controller is configured to sequentially send
commands corresponding to setup and tear-down operations for each individual
lightpath, according to the ASY approach. By contrast, in the second experiment, the
SDN controller is configured to send only one command for each piece of equipment,
reconfiguring all the lightpaths simultaneously, according to the TSO approach. The
messages sent by the SDN controller is done using RESTCONF [65]. It is based
on REST API to configure the parameters of a device defined in the YANG model,
using the same datastore concepts defined for NETCONF.

During the tests, a set of lightpaths Ln similar to those shown in Fig. 3.1 and
Fig. 3.2 are defined, although, the branched topology is replaced by a plain one, with
all lightpaths starting at node 1 for simplicity. The set of lightpaths are routed in the
test-bed through two link-disjoint physical paths composed by the outermost nodes
of the test-bed. In particular, as shown in Fig. 3.7, p1 traverses nodes 1, 3 and 4; and
p2 traverses nodes 1, 2 and 4. Table 3.1 shows detailed information of each lightpath.

Note that when the DWDM 80-channel comb is launched into the network, the
WSS at the first ROADM is used to filter undesired (interleaved) channels in order to
generate a 40-channel scenario. This spacing is used to observe the noise power, thus
the OSNR can be precisely estimated. Fig. 3.8 shows the sample optical spectrum,
where inter-channel spacing is 100 GHz due to filtering interleaved channels. The
number of channels of each lightpath can be calculated by (3.5) using the central
frequencies of first and last channel from Table. 3.1 and the channel spacing of 100
GHz as shown in Fig. 3.8.

3.5 Experimental validation of TSO 67

Table 3.1: Lightpath characteristics before (top) and after (bottom) the introduction
of L5. The listed channels are represented by the central frequency.

No. Channels Physical Path First Channel (f f irst) Last Channel (flast)

L1 13 p2 192.8 THz 194.0 THz
L2 20 p2 194.1 THz 196.0 THz
L3 20 p1 192.8 THz 194.7 THz
L4 13 p1 194.8 THz 196.0 THz

L1 13 p1 193.5 THz 194.7 THz
L2 20 p2 194.1 THz 196.0 THz
L3 20 p2 192.1 THz 194.0 THz
L4 13 p1 194.8 THz 196.0 THz
L5 13 p1 192.2 THz 193.4 THz

100 GHz

Optical Spectrum
50 GHz

100 GHz
First Channel Last Channel

Fig. 3.8: Sample of the optical spectrum in the experiment to illustrate number of
channels per lightpath

Number of channels =
flast− f f irst

100 GHz
+1 (3.5)

In the first experiment, the sequence of the SDN controller actions start at six
different moments (likewise Fig. 3.3a):

t0 – establish initial state

t1 – tear-down L3

t2 – tear-down L1

t3 – setup L1

t4 – setup L3

68 Time-synchronized operations for software-defined elastic optical networks

t5 – setup L5

On the other hand, in the second experiment, the sequence of the SDN controller
actions start at two different moments (likewise Fig. 3.3b):

t0 – establish initial state

t1 – reroute lightpaths

After each action of the SDN controller, the optical spectra and powers for all
nodes of the network are measured with an optical spectrum analyzer (OSA) at
6 monitoring points as shown in Fig. 3.9. The average OSNR and spectrum tilt
(maximum difference of power among all channels) are also calculated at the last
node of the physical paths. Since the first node of the path is used to select the
input channels, the acquisition is performed after the WSS of this node, and due to
the node architecture, the measured power corresponds to 3/40 of the WSS output
power. For the other nodes, the acquisition is performed before the WSS, and due
to the node architecture the measured power corresponds to 1/6 of the amplifier
output power. Therefore, different power levels between the first ROADM and the
subsequent ones are expected due to the different monitoring points inside the B&S
architecture. Finally, it is worth mentioning that the attenuation performed at the
WSSs is only applied to route the channel signals across the network, and is not
applied to equalize each individual signal power. This choice is meant to better
explore the physical layer implications in terms of power tilt across the C-band, and
enables us to properly focus on the performance of the TSO-based approach against
the traditional asynchronous technique. Future works may combine the current
proposal in simultaneous operation with equalization techniques.

Note that here, we report the physical layer in terms of the optical signal perfor-
mance instead of the disruption time experienced by the lightpaths while performing
the lightpath swapping. This is influenced by the fact that in the experiment, the
quality of all optical signals is measured after every operation to ensure that it is
performed successfully; where 6 operations are involved in the ASY case and 2
operations are involved in the TSO case. As mentioned previously, to check the
optical signal performance, the OSA is used to observe the spectrum at 6 different
monitoring points at each ROADM (with more details in reference [66], which
uses the same testbed). This also includes an optical cross-connect (i.e., optical

3.5 Experimental validation of TSO 69

100-km link
Single Mode
Fiber (SMF)

KEY:

EDFA

Splitter

WSS

Node 1

p1

p2

Node 2

Node 3

Node 4

Monitoring point

Fig. 3.9: Optical signal monitoring points in the topology

fiber switch) which is used at the input of the OSA to get the spectrum from all
monitoring points. Different monitoring points are required so that during and after
each operation, the quality of optical signal is checked to verify the success of the
operation; however this takes a considerate amount of time since the OSA needs to
sweep all the frequencies under observation. For instance, assume an OSA measure
takes tOSA seconds. Consequently, given that there are 6 monitoring points in the
testbed, after any operation, at least 6× tOSA seconds are required. Hence we focused
on the quality of the lightpath at the receiver in terms of the power, OSNR and the
spectrum tilt. Future works may thoroughly investigate the reduction in the lightpath
disruption time in an experimental fashion.

3.5.3 Experimental results and discussion

Figs. 3.10 and 3.11 show the optical spectrum of the signal received at the last node
of each optical path, for both approaches in the initial and final states. In all charts,

70 Time-synchronized operations for software-defined elastic optical networks

−40

−20

0

Po
w

er
(d

B
m

)
p1 - Initial State

ASY TSO

192 193 194 195 196
Frequency (THz)

−40

−20

0

Po
w

er
(d

B
m

)

p1 - Final State

L1 L3 L4 L5

Fig. 3.10: Optical spectrum of the received signal at the last node of p1, before (top)
and after (bottom) the introduction of L5 for both techniques.

the curve for the TSO-based approach virtually overlaps the curve for the ASY
technique. This result was already expected, since the channel configuration is the
same, regardless of the technique, before and after the rerouting procedure. Interest-
ingly, the optical power for the individual channels changes after the techniques are
applied, as noticeable in the spectral region around 195 THz. These changes are a
consequence of the non-linear dynamic behavior of the optical amplifiers whose gain
profile depends on the input spectrum shape as a whole, but not only on the input
power. A power tilt variation between initial and final states can be observed (but
not between the two approaches), since no flattening technique is used neither in the

3.5 Experimental validation of TSO 71

−40

−20

0

Po
w

er
(d

B
m

)
p2 - Initial State

ASY TSO

192 193 194 195 196
Frequency (THz)

−40

−20

0

Po
w

er
(d

B
m

)

p2 - Final State

L1 L2 L3

Fig. 3.11: Optical spectrum of the received signal at the last node of p2, before (top)
and after (bottom) the introduction of L5 for both techniques.

amplifiers nor in the WSSs, and this power tilt also changes after the introduction of
the lightpath L5.

The impression that the chosen technique do not impact in the system perfor-
mance in terms of signal quality, as suggested by the previous figures, is confirmed
by Table 3.2, where performance indicators for the final state of the network are
compared. The indicators for both techniques are hardly distinguishable.

Fig. 3.12 illustrates the changes in the optical power for all nodes, after each
action of the SDN controller (here represented by the aforementioned time instants
tn). The optical power measured in the first node is 10 dB lower than the other nodes
because it is acquired in a different monitoring point, with a different split ratio as

72 Time-synchronized operations for software-defined elastic optical networks

Table 3.2: Comparison of the two methodologies showcasing total power, average
channel OSNR and spectrum tilt measured at the final node of the physical paths
after the rerouting procedure.

ASY TSO
p1 p2 p1 p2

Power (dBm) 4.66 2.81 4.62 2.80
OSNR (dB) 28.11 27.00 28.11 26.98
Tilt (dB) 17.44 16.95 17.47 16.96

previously mentioned. As the total number of optical channels increases with the
introduction of L5 and not all the optical amplifiers are operating under saturation
condition, an overall power increasing is experienced between the initial and final
states of the experiments. Moreover, during the first experiment, the optical power
initially decreases in the first node, due the two consecutive tear-down operations,
but raises again with the setup operations. The curves for subsequent nodes follow
this shape, with the exception of node 4 for p1, clearly due to a saturated amplifier.

t0 t1 t2 t3 t4 t5

−15

−10

−5

0

5

Po
w

er
(d

B
m

)

ASY

p1 node 1
p1 node 3
p1 node 4

p2 node 1
p2 node 2
p2 node 4

t0 t1

TSO

Fig. 3.12: Power fluctuations in each node of the test-bed during the rearrangements
for both techniques.

Finally, Fig. 3.13 illustrates the changes in the OSNR of the received signal in
the last node after the actions of the SDN controller. In a contrary way to the power

3.6 Related work 73

behavior, the overall OSNR trend decreases despite of the intermediary increase
in the first experiment. This is also a result of the non-linear dynamic behavior of
the amplifier, because with low total input power (i.e., low number of channels) its
performance in terms of OSNR improves.

t0 t1 t2 t3 t4 t5

27

28

29

30

O
SN

R
(d

B
)

ASY

p1
p2

t0 t1

TSO

Fig. 3.13: Average OSNR variation during the rearrangements for both techniques.

3.6 Related work

The utilization of TSO is gaining interest in the research community on SDN. One
of its applications is our work, as described in previous sections. This section
reviews other works which involve TSO in electronic packet and optical networks. In
Section 3.6.1, we survey several initiatives in electronic packet networks that employ
TSO to improve network performance and enhance monitoring functionalities, thanks
to timed network updates. In Section 3.6.2, we review TSO in optical networks
that enable a novel security application and our work to reduce lightpath disruption
time. We discuss TSO implementation requirements including clock availability in
network elements in Section 3.6.3.

74 Time-synchronized operations for software-defined elastic optical networks

3.6.1 Time-synchronized operations in Electronic Packet
Networks

In this section, we review three initiatives that employ TSO in electronic packet
networks (EPN).

TSO in EPN for flow swapping

SDN provides a global-network view to enable advanced traffic engineering policies.
This may require two apparently contradictory objectives: frequent path modifi-
cations while avoiding misbehaviors (e.g., packet losses, outages, routing loops).
A conventional way to meet these objectives is to ensure spare network capacity.
However, this may not be possible in case of high load conditions.

In this context, Mizrahi and Moses [52] propose and implement a TSO approach,
referred to as TIME4, to efficiently manage the existing network capacity. Specif-
ically, they target a flow swapping scenario in which no other rearrangement is
possible and non-synchronous approaches may disrupt existing flows. An example
based on [52] is illustrated in Fig. 3.14, where four un-splittable and fixed-bandwidth
flows F{1. . . 4} traverse switch A. Each link in the network has unit capacity. In case a
new flow request F5 arrives either from D or E to A, F2 and F4 need to be swapped to
accommodate F5. In this example, TSO minimize the temporary congestion while not
requiring extra network capacity and bandwidth modifications to the existing flows.
Simultaneous and synchronous operations are required in the involved switches using
time extensions that have been recently standardized in OpenFlow 1.5 by ONF [60]
and in NETCONF by IETF [58].

Potential failure scenarios are discussed in [52] which include several switches
failing to perform a synchronous operation or controller commands not reaching
the destination switches. For these cases, the authors propose the use of TCP as
reliable transport protocol for the TSO commands, or simply sending TSO messages
sufficiently in advance of the execution time.

3.6 Related work 75

F1=0.45

F2=0.35

F3=0.35

F4=0.45

F1=0.45

F2=0.35

F3=0.35

F4=0.45

A

B

A

Before reconfiguration After reconfiguration

F5=0.3

C

D E D E

B C

F5=0.3

Fig. 3.14: Flow swapping example

TSO in EPN for consistent network updates

Network states evolve with time and it is of paramount importance to keep consistent
states between the controller(s) and the network devices, to avoid misbehaviors [67].
Two approaches are commonly used to provide network consistency in the case of
state updates. On the one hand, ordered updates are based on sequential operations
performed so that no intermediate steps generate network anomalies. This approach
requires long reconfiguration times to avoid inconsistency and prevent rapid network
updates. On the other hand, two-state updates involve packet tagging by the switches
in order to identify whether packets belong to a pre-state or to a post-state update. By
doing so, switches are capable to identify which set of packet matching rules need to
be applied. The latter approach temporarily requires duplicate rules in the switches
until no packet belonging to the pre-state update remains in the network. Thus, extra
memory needs to be available in the switches’ memory to hold duplicate rules.

Mizrahi et al. [68] address this challenge with a theoretical and experimental
analysis using TSO to preserve a given level of consistency during network updates.
Their implementation of TSO can be applied to improve the scalability in terms of
update duration in both approaches and in terms of extra allocated memory only
in the two-state update case. Consequently, a trade-off arises between the desired
level of consistency and the achieved scalability. In both approaches, TSO can
be scheduled closer in time but at the cost of brief inconsistency periods. For the

76 Time-synchronized operations for software-defined elastic optical networks

two-state approach, limiting the memory resources for the flow table could improve
scalability, but increase the inconsistency period.

TSO in EPN for accurate bandwidth monitoring

Megyesi et al. [53] propose the usage of TSO in an SDN-enabled network to improve
the measurement of the available bandwidth (ABW). ABW is defined as a dynamic
metric to account for the instantaneous amount of traffic that can be added to a
path without disrupting other flows. An updated knowledge of the ABW can be
exploited by the network operator for agile traffic engineering applications, like
highly dynamic routing, traffic consolidation and adaptive video.

Traditional techniques to measure ABW follow two approaches. Active tech-
niques involve pro-actively sending probe packets in the network causing temporary
congestion to infer the ABW. Passive techniques may use multiple measurement
points in the network and require synchronization of the measurements, thus are
rarely used. Authors point out that these techniques are scenario dependent, have
limited accuracy and long convergence times.

The major contribution in [53] is an SDN-based ABW measurement application
that exploits the global view of the network. An analytical model and an experimental
evaluation are reported to address the inaccuracy of the ABW measurements when
using the aforementioned application. Inaccuracy occurs because switches are polled
by the SDN controller asynchronously and without information regarding the precise
sampling time. Subsequently, the authors claim that inaccuracy can be avoided if
adopting TSO, and they propose an ad hoc extension of the OpenFlow header to
support TSO. In particular, the counter values in the flow tables of the switches are
reported to the controller with the corresponding timestamp.

3.6.2 Time synchronized operations in optical networks

In this section we review two recent approaches that exploit TSO in optical networks.

3.6 Related work 77

TSO in optical networks for security

Li et al. [54] propose a novel SDN-based security application for optical networks,
referred to as fast lightpath hopping (LPH), to prevent eavesdropping and jamming.
LPH combines a set of multiple precomputed lightpaths by the SDN controller and
TSO among multiple optical nodes. In particular, multi-lightpath computation is
performed solving an Integer Linear Programming (ILP) problem, which considers
both wavelength and timeslot allocation and minimizes the total number of shared
physical links among the lightpaths. Subsequently, the data flow hops among these
multiple lightpaths in a sequential manner, as dictated by the SDN controller. TSO,
implemented as modifications in the OpenFlow header, enable the synchronization
between the involved optical nodes in the LPH procedure. Authors experimentally
demonstrate the LPH application in a 4 node testbed, achieving a hop frequency of 1
MHz with acceptable bit error rate.

TSO in elastic optical networks to reduce disruption time for lightpath swap-
ping

This is our work as described in previous sections.

3.6.3 Discussion of TSO in SDN

As noticed in the previous sections, TSO enable a number of novel applications and
permit the enhancement of network performance. However, it is important to em-
phasize that TSO should be considered as a tool which needs to be jointly used with
existing techniques to improve performance, to better address existing challenges
or to develop new applications. For instance, in EON a challenging scenario occurs
when a set of lightpaths present spectrum inter-dependency, preventing parallel
defragmentation [69]. Thus, to achieve defragmentation this dependency needs to be
broken following a sequence of lightpath rearrangements, which leads to disruption.
In this case, TSO can be employed to improve the sequential defragmentation by
reducing the disruption time, as discussed in Section 3.2.

78 Time-synchronized operations for software-defined elastic optical networks

3.7 Summary

This chapter reviewed our proposal of TSO in software-defined elastic optical net-
works. In particular, we employed TSO to minimize disruption time during lightpath
reassignment in EON and we discussed the SDN implementation details with NET-
CONF and OpenFlow exploiting their specific time-extensions. Then, we analytically
elaborated that a joint combination of synchronization and bundling operations pro-
vides benefits in terms of minimizing the lightpath disruption when swapping is
required. Specifically, the TSO-based approaches OF and IA-NC outperform the
ASY and N-NC implementations.

Subsequently, we extended the TSO-based proposal with an experimental vali-
dation in a five-node metropolitan optical network test-bed. We developed an SDN
application that emulates the operations required by the ASY approach to compare
its performance against the TSO-based approach. Our reported results validated
the convenience of the TSO-based approach against a traditional ASY technique
given its reduction of disruption time while both techniques exhibited close network
performance indicators (e.g., OSNR, power budget, spectrum tilt) after preforming
the lightpath swapping.

Finally, we reviewed recent literature on TSO and discussed its applicability.
Regarding electronic packet networks, we highlighted how TSO can improve network
performance by efficiently using the available capacity and by managing consistency
during network updates. Moreover, TSO can improve the precision of bandwidth
monitoring in OpenFlow-based switches. For optical networks, TSO enable lightpath
hopping among different routes relevant for a novel security application. Finally, we
reviewed our recent proposal that exploits TSO and bundling operations to achieve
disruption time reduction during spectrum reallocation.

Chapter 4

Inter-domain and intra-domain
network service orchestration

Part of the work presented in this chapter has been published in:

• D. Gkounis, N. Uniyal, A. S. Muqaddas, R. Nejabati and D. Simeonidou,
“Demonstration of the 5GUK Exchange: A Lightweight Platform for Dynamic
End-to-End Orchestration of Softwarized 5G Networks”. In: 44th European
Conference on Optical Communication. Sept 2018, pp. TuDS.14.

• A. Bravalheri, A. S. Muqaddas, N. Uniyal, R. Casellas, R. Nejabati and
D. Simeonidou, “VNF Chaining across Multi-PoPs in OSM using Transport
API”. In: Optical Fiber Communication Conference. March 2019. pp. W1G.7.

4.1 Introduction

Due to the upcoming advent of 5G, the demand of network services, having strict
requirements such as high bandwidth, ultra-low latency and massive connectivity, is
increasing. To sustain these requirements, the network services need to be deployed
on a programmable infrastructure to automate and simplify the deployment proce-
dure. This involves utilizing both network and compute resources simultaneously
which is known as network service orchestration and is typically performed by a
MANO system. Here, each network service (NS) consists of a chain of network

80 Inter-domain and intra-domain network service orchestration

functions; where for deployment agility, these network functions are virtualized,
known as VNFs which can run on commodity hardware, as described in more detail
in Sec. 4.2.1.

This chapter presents the usage of north-bound interface of an SDN controller
to chain VNFs for both inter-domain and intra-domain network orchestration cases.
In Sec. 4.2, the 5G UK Exchange (5GUKEx) is presented, which performs network
service orchestration among different administrative domains (inter-domain) while
using SDN to provision network connectivity between the domains. Sec. 4.3 presents
VNF chaining in case of a single administrative domain (intra-domain), where the
SDN controller, as part of the WAN Infrastructure Manager (WIM), connects the
VNFs running in multiple PoPs over an optical network infrastructure. Finally,
Sec. 4.4 summarizes the chapter.

4.2 5G UK Exchange: Light-weight inter-domain net-
work orchestrator

4.2.1 Motivation

5G networks are expected to support a large variety of vertical applications, e.g., smart
cities, manufacturing, health, etc., that have diverse and strict requirements. To meet
the 5G KPIs such as high bandwidth, ultra-low latency and massive connectivity,
there is a need for using compute resources and applying deployment restrictions,
e.g., at the edge close to end users, at the core network or even across operator
domains. The 5G application demands have made the network operators realize that
network technologies and architectures should be programmable and agile to support
a wide variety of use cases [70]. Therefore, network operators investigate the adop-
tion of NFV, SDN and MANO as 5G enablers. Network functions run as software
on commodity servers in the form of VNFs, facilitating the deployment and scaling
while also decreasing operational costs and improving performance. In turn, network
equipment can be programmed on demand using SDN, allowing better management
of available network resources. The joint coordination of SDN and NFV is assigned
to a MANO platform, that performs end-to-end management of network services
and infrastructure resources within the various network segments of an operator,

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator 81

e.g., core, metro, access. This complies with the vision for 5G [70][71] that aims to
build a single end-to-end platform over heterogeneous network segments. To this
end, organizations such as IETF and ETSI have created standards and guidelines for
those systems [72], and open source communities have emerged such as OSM [73],
Open Baton [74], SONATA [75] and ONAP [76].

A 5G platform is also anticipated to support multi-operator services which cur-
rently experience best effort connectivity and interconnections that fail to consider
the service needs. To fulfill the full vision for 5G, orchestration across operator
domains should also be performed so services get the required end-to-end Quality of
Service (QoS) and can be deployed based on their requirements bypassing any oper-
ator boundaries. Collaboration and coordination for end-to-end orchestration among
operators can even become desirable from the operators’ perspective. Consider,
for example, a scenario where one operator does not possess a point of presence
in a remote location which is critical to a service with stringent SLAs end-to-end.
Upon an agreement with another operator, the end-to-end service can be quickly
managed and orchestrated in an automatic way, generating earnings for both parties.
Having operators to collaborate combining various available 5G technologies and
services, a diverse feature-rich environment can be created that supports innovative
and profitable end-to-end 5G services. However, operators would prefer to hide any
underlying infrastructure information, e.g., network configurations, that can harm
their business and to avoid restrictions on selecting underlying SDN, NFV and other
technologies. Another challenge is the lack of a common standardized API among
MANO systems that could lead to a “plug-n-play” multi-domain architecture and
facilitate the introduction of multiple operator networks.

In this section, we present the 5GUKEx, a novel architecture that aims to enable
orchestration of end-to-end network services across multiple administrative domains.
In 5GUKEx, the orchestration in each domain is performed by existing MANO
systems allowing the operators to be flexible on their underlying implementation and
hide any confidential infrastructure information. The MANO systems of each domain
connect directly with the 5GUKEx and expose standardized service catalogs [72]
which abstract any critical domain information. This allows the 5GUKEx to be a
lightweight orchestrator, that sits on top of the MANO systems, to build a common
API across the domains and create multi-domain services by combining services
offered by the operators. The 5GUKEx performs service brokering, assigning the
complex task of resource orchestration to each domain, and dynamic interconnection

82 Inter-domain and intra-domain network service orchestration

of the running services across the domains, keeping the complexity and performance
overhead to a minimum. We implement a prototype and evaluate the performance of
the 5GUKEx through emulations, showing its lightweight nature.

Organization of the section

The remainder of this section is organized as follows. We first describe the current
work in multi-domain orchestration in Sec. 4.2.2. Next, we detail the 5GUKEx
architecture in Sec. 4.2.3 and how the 5GUKEx deploys an end-to-end multi-domain
service in Sec. 4.2.4. After, we discuss the implementation and performance evalua-
tion of the 5GUKEx in Sec. 4.2.5. Finally we conclude this chapter in Sec. 4.2.6.

4.2.2 Multi-Domain Orchestration: State of the Art

The ETSI NFV standardization group has created the baseline architecture and
related standards to enable the development of NFV MANO systems [72]. Most
well supported open source MANO systems, such as OSM [73], Open-Baton [74]
and SONATA [75], implement the ETSI NFV MANO models for describing the
VNFs and Network Services (NSes). However, they are designed to work in a single
network domain environment, since there is also a lack of standards that either model
the multi-domain NSes or define the interfaces in a multi-MANO communication.

There are also a few works that focus on the area of the multi-domain orchestra-
tion for 5G. 5GEx [77] relies on a peer-to-peer interaction of multiple Multi-domain
Orchestrators (MdOs), each one administered by an operator, to deploy services end-
to-end. Each MdO further interacts with domain orchestrators which consist of SDN
or NFV technologies that are responsible for the orchestration of a network segment
within an operator domain. X-MANO [78] creates a cross-domain Management and
Orchestration platform. The X-MANO architecture introduces Federation Agents
(FAs) which provide resource availability in a domain to the Federation Managers
(FMs). The FMs can in return work in a peer-to-peer manner with other FMs if
needed to orchestrate the network services across multiple FMs.

Both these solutions work in a peer-to-peer manner and they introduce multiple
components for both multi-domain service and resource orchestration. In 5GUKEx,
we introduce a thin hierarchical multi-domain orchestration layer which builds

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator 83

on top of existing MANO systems and performs only service orchestration and
interconnection, whereas resources are managed and controlled by the individual
operators. The proof-of-concept [79] shows the feasibility of this approach.

4.2.3 5GUK Exchange Architecture

Network Service Composer

Network Service Manager

Network Service Broker

Inter-domain
Connectivity Manager

Island
Orchestrator

5GUKEx
Network Service

Catalogue

Island2 InfrastructureIsland1 Infrastructure Interconnection Infrastructure

Island Proxy
Island

Orchestrator

Network Service
Catalogue

Island Proxy

Fig. 4.1: The 5GUK Exchange Architecture

The architecture of the 5GUKEx is illustrated in Fig. 4.1. It assumes that the
5G networks, we call them Islands, are individually orchestrated by ETSI-based
Island Orchestrators, e.g., OSM, OpenBaton, etc., and are connected to the 5GUKEx
exposing their network service catalogues. The 5GUKEx is a lightweight hierarchical
inter-domain orchestration platform that performs mostly service orchestration. It
delegates the heavyweight resource orchestration to the Island Orchestrators and
interconnects the NSes across the islands, chaining together the running NSes in the
individual islands. The 5GUKEx contains multiple components which are detailed
as follows.

Island Proxy

It runs on top of the Island Orchestrators and serves as an intermediary between
the 5GUKEx and the island orchestrator. The requests from the 5GUKEx to the
islands are received by the island proxy and forwarded to the island orchestrator, and

84 Inter-domain and intra-domain network service orchestration

the responses follow the opposite direction. The proxy handles the deployment and
termination of running network services on the local islands. Furthermore to the
5GUKEx, it exposes the Network Service Catalogues, i.e., the available network
services at the local island in the form of ETSI MANO Network Service Descriptors
(NSDs) and optionally, the VNF descriptors (VNFDs), during the registration of an
island.

Network Service Broker

It interacts with the Island Proxy, implementing a common API among all the Island
Orchestrators, based on the ETSI MANO NSDs/VNFDs and their elements. It
receives island registration messages containing NSDs and optionally VNFDs from
the Island Proxies to uniquely register the islands and passes the information to the
Network Service Manager (NSM). The Network Service Broker is invoked from the
NSM during the instantiation, deployment, termination and monitoring processes of
network services (NSes) that span across multiple islands, which we call inter-island
NSes. It receives inter-island NS requests from NSM, identifies and then contacts the
relevant islands to perform network service orchestration on each island. Moreover,
it aggregates island responses that are part of the same inter-island NS request and
forwards them to the NSM.

Inter-Domain Connectivity Manager (IDCM)

This module handles both the control plane connectivity between the islands and
the 5GUKEx and the network service connectivity over the Interconnection Infras-
tructure leveraging an SDN controller to program the network elements. A newly
registered island to the 5GUKEx provides information to the IDCM about the physi-
cal connections of the island to the data plane of the 5GUKEx. The IDCM stores the
information and uses it to enable the control plane communication of the 5GUKEx
with the Island Proxy. This information is also used during an inter-island service
deployment, when the NSM triggers the IDCM passing the network endpoints of
a running service on each island. The IDCM combines the network endpoints and
the physical connectivity information to enable dynamic network service intercon-
nection among the islands. The IDCM stores the information about the provisioned

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator 85

service interconnection to be able to terminate it later during an inter-island service
termination process.

Network Service Manager (NSM)

The NSM is responsible for the life-cycle management of an inter-island NS. It
stores the NS catalogues of the registered islands that the Network Service Composer
can access them. It interacts with the Broker for requesting an inter-island NS
deployment in the islands and getting island responses about the deployment status
and the network endpoints used by the running services which then the IDCM uses
to dynamically interconnect the services. Using similar steps of interaction, the NSM
can terminate a running inter-island NS.

Network Service Composer

The composer enables users of the 5GUKEx to create inter-island NSes by combining
the available NSes of the islands. The composition results in templates of inter-island
services that the user can choose to deploy. A deployment request invokes the NSM
and further involves a series of steps that is detailed in Section 4.2.4.

4.2.4 Inter-island Network Service Deployment Procedure

As discussed before, the 5GUKEx provides means for the end-user to deploy an
end-to-end network service encompassing different operator domains. As shown
in Fig. 4.2, this procedure consists of the end-user first selecting different network
services of different islands to compose an inter-island NS on the Network Service
Composer module on the 5GUKEx. Then, the end-user requests the instantiation of
the inter-island service, triggering the 5GUKEx to instantiate on the corresponding
islands the individual network services which are part of the composed inter-island
NS. The islands verify if they have enough local resources, e.g., compute, storage
and memory, to deploy and start the individual network service. If there are available
resources, each island creates a Network Service Record (NSR) and then sends the
information to the 5GUKEx to signal that the request can be fulfilled. When the
5GUKEx receives the responses from all the relevant islands, it informs the user that

86 Inter-domain and intra-domain network service orchestration

5G
U

K
 E

xc
ha

ng
e

Is
la

nd
1 P

ro
xy

Is
la

nd
N
 P

ro
xy

In
te

rc
on

ne
ct

io
n

In
fra

st
ru

ct
ur

e
t in

st
t de

p
t ac

t

E
nd

 U
se

r

In
st

an
tia

tio
n

D
ep

lo
ym

en
t

Ac
tiv

at
io

n
Le

ge
nd

In
st

an
tia

tio
n

D
ep

lo
ym

en
t

Ac
tiv

at
io

n

Fig. 4.2: Network Service Deployment Procedure in the 5GUK Exchange

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator 87

the islands are ready to deploy the inter-island NS end-to-end. The instantiation time
is referred as tinst .

Once the user chooses to deploy the inter-island NS, the 5GUKEx contacts the
islands to deploy the previously instantiated NSR. Upon receiving the deployment
message by the 5GUKEx, the local island proceeds to deploy the network service
using the island orchestrator. Once the service is being activated, the local island
provides information to the 5GUKEx about the network endpoints to be used at the
island gateway. Once the endpoints are received from all the islands, the IDCM mod-
ule of the 5GUKEx creates the underlying data plane network service interconnection
across the islands. After the inter-island service interconnection is provisioned, the
deployment procedure is finished and the end-user is notified. The time for deploying
an inter-island service is referred as tdep. Meanwhile, the network service activation
is carried out by the local islands and takes tact time i.e., from the time that a service
is deployed until it becomes active.

4.2.5 Implementation and Performance Evaluation

We have built the 5GUKEx in Python, based on the 5GUKEx architecture shown
in Fig. 4.1. To enable the IDCM to dynamically control the interconnection infras-
tructure among the islands, we have used the ODL SDN controller. We have also
built the common inter-domain API of the 5GUKEx considering OSM as the Island
Orchestrator at each island.

Setup

To evaluate the performance of the 5GUKEx, we emulate the 5GUKEx and 4 islands.
We use 5 Dell PowerEdge T360 servers, each equipped with Intel Xeon E5-2680
CPU with 56 cores and 64GB of RAM running Ubuntu 16.04 as operating system.
One server hosts the 5GUKEx and each of the remaining servers emulates a local
island; each island consists of the ETSI NFV-compliant OSM as the local island
orchestrator and OpenStack for management of the compute resources. Each server
also hosts an instance of the ODL controller which controls the network resources of
each island. We use two Corsa DP2100 OpenFlow switches [80] for the network data
planes of the islands and the 5GUKEx, which are interconnected. To emulate the
network resources of the islands, a Corsa SDN switch is shared among the islands

88 Inter-domain and intra-domain network service orchestration

by reserving dedicated ports per island. For the interconnection infrastructure of
the 5GUKEx, the second Corsa switch is used. All the islands have identical server,
switch port and switch bridge configurations.

VNF11 VNF1n VNFN1 VNFNn

Island 1 Network Service Island N Network Service

Inter-Island Network Service

Fig. 4.3: VNF chain spanning multiple islands

Experiment

We use the 5GUKEx to instantiate and deploy inter-island network services across
multiple islands and measure the instantiation tinst , deployment tdep and activation
tact times. Each island exposes the same NSDs and VNFDs that the user composes to
form an inter-island service by selecting a number of NSDs from multiple islands. A
network service at each island consists of n connected VNFs and the network services
of the islands are stitched to each other by the inter-island network infrastructure
using L2 connectivity to create an inter-island network service. This results in an
inter-island network service that chains together multiple VNFs across multiple
islands as shown in Fig. 4.3. Each VNF consists of a CirrOS [81] which is a minimal
Linux image used here as a baseline VNF.

To evaluate the performance of the 5GUKEx and its promise for lightweight
inter-domain orchestration, we perform two measurement campaigns. Since the
5GUKEx delegates the resource orchestration to the local islands, we first measure
the local island orchestration time (tact) and then we measure and compare with the
inter-island coordination and interconnection times.

Results

We first deploy an NS consisting of n connected CirrOS VNFs at each local island
without using the 5GUKEx to measure the local island network service activation

4.2 5G UK Exchange: Light-weight inter-domain network orchestrator 89

time tact . We run the tests for 20 times and the results are shown in Table 4.1 with
95% confidence. The time taken for a service to be active is at least 27.10 seconds
for the case of a network service consisting of one VNF per island.

Table 4.1: Network Service Activation Time at each Island

Number of VNFs
n per Island

Time till
activation [sec]

1 27.10 ± 1.04
2 43.25 ± 1.40
3 64.66 ± 2.24
4 89.59 ± 1.56

 0

 1

 2

 3

 4

 2 3 4

T
im

e
(s

ec
)

Number of islands

tinst: 1 VNF

tinst: 2 VNFs

tinst: 3 VNFs

tinst: 4 VNFs

tdep: 1 VNF

tdep: 1 VNFs

tdep: 1 VNFs

tdep: 1 VNFs

Fig. 4.4: 5GUKEx Instantiation and Deployment Times

We then deploy from the 5GUKEx an inter-island network service that consists
of the same network service as before, now deployed at multiple islands. We run
sets of 20 tests, modifying the number of VNFs per NS and the number of islands
used on the inter-island service in each set; and we measure the instantiation tinst

and deployment tdep times along with their 95% confidence intervals, as shown in
Fig. 4.4. In contrast to the activation time tact , the tinst and tdep times are minimal.
The tact for a network service containing four VNFs per island requires 89.59 seconds,

90 Inter-domain and intra-domain network service orchestration

whereas the deployment from the 5GUKEx even across four islands takes only about
4 seconds. This is due to the fact that the 5GUKEx performs service orchestration
and minimal network (re)configurations of the inter-island network infrastructure and
because it delegates the performance-heavy orchestration of computational resources
on the local islands. This shows that the 5GUKEx is a thin layer of orchestration
with minimal overhead, consequently contributing towards the sustainability of the
5GUKEx platform. We note that during the current tests, we consider that the islands
have already chosen the network endpoints to use at the gateways of each island,
before the service deployment from the 5GUKEx, to pass the relevant traffic across
their domains. These endpoints are thus only exposed to the 5GUKEx during the
deployment phase to pass them to the IDCM module to interconnect the traffic. We
could also allow dynamic creation of network endpoints to be communicated to the
5GUKEx after the service activation at each island but this would have not affected
much the results, since the service activation is a performance-heavy operation as
shown before.

Regarding the deployment time tdep, we see that it increases when network
services are deployed across more islands. This is due to the fact that more network
flows are installed on the inter-island network switch to steer the relevant traffic
accordingly. Furthermore, we see that tdep remains the same with increasing number
of VNFs per NS deployed at an island. This is due to the nature of the 5GUKEx
being a thin orchestration layer as described earlier. In addition, the instantiation
time tinst is negligible compared to the deployment time tdep. By adding the tdep and
tinst times and comparing them to the tact at each island, we can see that the total
inter-domain orchestration overhead is minimal.

4.2.6 Conclusions and Future Work

In this section, we presented the 5GUK Exchange, a hierarchical multi-operator
platform that aims to orchestrate end-to-end network services in a sustainable manner.
The 5GUKEx builds a multi-operator API that is based on standards, allowing
operators to integrate using their existing MANO systems, to hide any confidential
infrastructure information and to provide flexibility in selecting any underlying SDN,
NFV technologies. By brokering the orchestration of the individual network services
to operators, the 5GUKEx becomes a a lightweight solution in performance and
complexity that performs multi-operator coordination and service interconnection.

4.3 VNF Chaining across Multi-PoPs in OSM using Transport API 91

We presented the architecture of 5GUKEx; we implemented a prototype based on
the service catalogues of the ETSI NFV MANO-compliant OSM and we evaluated
its performance showing that the multi-operator orchestration layer of the 5GUKEx
has minimum operational overhead. As a future work, we plan to integrate to the
5GUKEx NFV MANO systems that are based on TOSCA service catalogues, such as
ONAP. We also plan to introduce layer-3 connectivity in our 5GUKEx deployment,
allowing additional testbeds to integrate and thus enabling the 5GUKEx to become
a solution towards federating 5G testbeds worldwide. Furthermore, we plan to
carry out more experiments to compare the performance of 5GUKEx with other 5G
orchestrators.

Acknowledgment

This work has received funding from the UK in the context of DCMS UK 5G
Testbeds & Trials Programme and EPSRC projects TOUCAN (EP/L020009/1) and
INITIATE (EP/P003974/1) and from the EU in the context of the H2020 projects
Metro-Haul, MATILDA and 5GinFIRE (grant agreements 761727, 761898 and
732497).

4.3 VNF Chaining across Multi-PoPs in OSM using
Transport API

4.3.1 Introduction

There has been recent shift in telecommunications industry towards technologies like
NFV and SDN as mentioned in Sec. 4.2.1. The hardware network equipment is being
replaced by VNFs, which can run in remote datacenters as well as the edge computing
nodes. The constraints in the placement of VNFs within NFV [82] is resulting in an
increase of inter-datacenter traffic, which is forecasted to reach up to 14% of the total
data-center traffic by 2021 [83]. The bandwidth and latency sensitive use-cases like
Augmented/Virtual Reality, 8K 360◦ video transmission etc., where some processing
is done in remote datacenters and other on the edge nodes, will be some of the
contributors to this increase in traffic. The distribution of VNFs across remote and

92 Inter-domain and intra-domain network service orchestration

edge-computing nodes for realizing these use-cases has made it necessary to create
an end-to-end network and resource control. It has also created the need to build the
underlying networks to satisfy the stringent requirements of low latency and high
bandwidth across the cloud and edge computing infrastructure. In order to achieve
these targets, projects like Metro-Haul [84] are creating an ecosystem to provide
high bandwidth, low latency, end-to-end connected and programmable networks.
Such stringent network requirements can only be sustained using optical networks
in the long run [85]. Furthermore, Metro-Haul utilizes ETSI NFV MANO systems
to orchestrate network services over optical metro networks, to create end-to-end
network services.

ETSI NFV MANO standards include the Wide-Area Networking (WAN) Infras-
tructure Manager (WIM) which allows to orchestrate network services over multiple
data-centers in a WAN. However, due to the heterogeneous nature of the underlying
networks aligned with the complexity of end-to-end orchestration, its functionality
and APIs have not been clearly defined yet [86]. In this case, a Transport API
(T-API) [87] based WIM can be used to integrate optical networks within an NFV
MANO system, for network services with VNFs having high-bandwidth and low
latency requirements. T-API has been standardized within the ONF by the Open
Transport Configuration & Control (OTCC) group and is being increasingly adopted
by the industry. Thus, using T-API for integration of optical networks with the exist-
ing NFV-MANO systems allows easier upgrade and operation of existing MANO
systems. Furthermore, T-API simplifies the interdomain networking, encompassing
both electrical domain and optical domains and abstracts the complex underlying
topology.

In this section, we propose and implement an architecture to integrate T-API with
the leading ETSI NFV MANO system i.e. OSM [73] for the first time, which allows
orchestration of VNFs across data-centers over the underlying optical networks.
The whole system including the data plane is demonstrated where the applicability
of T-API as interface towards the WIM is established, using SDN controllers for
multi-domain network orchestration.

4.3 VNF Chaining across Multi-PoPs in OSM using Transport API 93

NFVO

WIM
VIM

VNF

VNF

VNF

VNF

VIM

SDN SDN

WIM Engine WIM Broker

WIM Connector

persistence

Task

Task

T-API to WIM

state
machineNFVO Internal API

Transport Network

Fig. 4.5: Proposed WIM Architecture in the context of ETSI NFV MANO frame-
work [90]

4.3.2 T-API as WIM North-bound API

The choice of T-API as the interface between the OSM and the WIM is motivated
by multiple factors. T-API, as defined by the ONF, has fulfilled its goal of having a
common standardized North Bound Interface (NBI) across multiple network con-
trollers, to be used e.g., by a network orchestrator or applications. It builds on core
models that are technology agnostic (aligned with the ONF Core Information Model,
which defines a common object model for all types of Software Defined Networks,
including components like network resources or service constructs) while allowing
technology-specific extensions for relevant layers. T-API follows a model driven
development: models are defined in UML and automatically translated into YANG
which, in turn, may be automatically validated and stubs generated for common
programming languages. From the point of view of maturity and adoption, it has
been demonstrated in multiple proof-of-concepts, interop events and is supported by
many vendors [88]. It has been adopted by several initiatives and SDOs, such as MEF
OpenCS Optical Transport or, for the latest v2.1 release, the ODTN Project [89]
as the NBI for a controller of an optical disaggregated transport network. Release
2.0 added the ability to take into account node constraints, protection services and
consistent OAM and monitoring, and the latest 2.1 release includes new models for
the photonic layer, with support for flexi-grid network media channels, including
model for the OCH, OTSi, OTSiA, OTSiG, OMS, OTS and Media channels as per
ITU-T G.872 (2017) version 4.

94 Inter-domain and intra-domain network service orchestration

4.3.3 Architecture for WIM Integration in NFV MANO

As shown in Fig 4.5, our proposed architecture conforms to the ETSI NFV MANO
standards [90] focusing on the orchestration on VNFs across multiple data-centers
(PoPs). A request is issued to the NFVO to deploy a NS composed of VNFs
in a multi-PoP environment where the location of each VNF corresponding to
the PoP is specified. With this information, the NFVO requests each underlying
Virtual Infrastructure Manager (VIM) to instantiate the corresponding VNFs and gets
information about the related local virtual networks where they would be attached.
Meanwhile, the NFVO assigns to one or more WIMs the responsibility to create
WAN links by configuring the underlying transport network via T-API.

In order to realize the aforementioned steps, we propose the introduction of
sub-components inside the NFVO, as indicated in Fig. 4.5. This architecture is
based in the execution of asynchronous tasks to avoid blocking behaviour and
improve the overall network service provisioning time. The WIM Engine has
two responsibilities: firstly, to provide information to the NFVO about the available
WIMs and the characteristics of the connectivity they are able to sustain; and secondly
to specify and schedule a series of tasks that encode the instructions for establishing
WAN links. While each task works as a standalone processing unit, implementing a
state machine upon activation, the WIM Broker coordinates their threaded execution
in a task queue. By tapping into a shared communication mechanism internal to the
NFVO (implemented via either a common database or event stream), tasks can verify
preconditions and fire actions to the external WIMs accordingly. As an example,
special information, such as VNF IP and VLAN segmentation id, might need to be
published by a VIM to the NFVO after its workload is processed. To wait for this
information, the tasks can be suspended, and rescheduling them is the responsibility
of the WIM Broker. Conversely, when all the preconditions are met, a task invokes
commands on a WIM Connector. Although the WIM Connector is designed to
abstract the WIM API permitting protocol-agnostic systems, in this chapter, we
propose the usage of the T-API due to its support to a wide variety of transport
technologies and SDN topologies.

4.3 VNF Chaining across Multi-PoPs in OSM using Transport API 95

4.3.4 Implementation and Experimental Demonstration

We have developed a preliminary implementation of the proposed architecture using
OSM as baseline system to demonstrate and evaluate the use of T-API with MANO
for NFV orchestration over a Multi-PoP infrastructure. This implementation intro-
duces a new WIM subsystem in OSM Resource Orchestrator (RO), containing the
sub-components described in Section 4.3.3. For demonstrating its applicability, a
network service composed by 3 VNFs (Fig. 4.6) was deployed over an an optical
infrastructure. Fig. 4.7 shows the experimental setup, which consists of two Open-
Stack datacenters interconnected by a combination of packet switches and optical
cross connects (OXCs) which are SDN-enabled and managed by a combination of
SDN controllers. On top of the SDN controller, we employ a T-API proxy based on
a T-API 2.0 reference implementation [91]. The T-API proxy exposes two service
endpoints (svc_ep_1 and svc_ep_2), at both edges of the interconnection network
between the datacenters, to OSM. The information about these service endpoints is
added to OSM before network service deployment as part of a port mapping process,
making them available for usage.

VNF-1 VNF-2 VNF-3

Virtual
Link

Virtual
Link

Fig. 4.6: Network Service

At the time of deployment of the network service by OSM, the location of VNFs
is specified, such that the network service spans across multiple datacenters as in
Fig. 4.7. This is followed by OSM deploying the VNFs at the specified datacenters
through the VIMs. In addition to the VNFs, the VIMs also create the network
connected to VNF-2 and VNF-3, which spans outside the datacenter to the transport
network with VLAN A and VLAN B respectively. Once the VNFs and the networks
are created, the VIM sends the VLAN information to the OSM. OSM detects that
the virtual link connecting VNFs 2 and 3 spans multiple datacenters. Once OSM
receives the VLAN information, it uses the pre-defined port mapping to obtain the
T-API service endpoints connected to each datacenter. The T-API service endpoint
(svc_ep) and the VLAN for each datacenter is sent to the T-API proxy to provision a
network between the datacenters. The T-API proxy translates this information into
low-level device specific flow installation using the SDN controller to interconnect

96 Inter-domain and intra-domain network service orchestration

Transport-API
PoP-A (VIM)

VNF-2

Network
Interface

Packet Switch

PoP-B (VIM)

VLAN-B

Network
Interface

VNF-3VNF-1

OXC

λ λ

λ
Packet Switch

OXC OXC

VLAN-A

WIM (Transport API)

SDN
(Packet)

SDN
(Optical)

Legend:

Optical Domain

Electrical Domain

T-API Service Endpoint

svc_ep_1 svc_ep_2

Legend:

Fig. 4.7: Testbed for T-API with OSM

the two VLANs at the either datacenter, as shown by the red line in Fig. 4.7. Fig. 4.8
shows the Wireshark capture of the T-API Create Connectivity Service message that
OSM sends to the T-API proxy during network deployment. It includes the two
T-API service endpoints and the VLANs used at either datacenter, which is used to
provision the end-to-end network between the datacenters.

4.3.5 Conclusion and Future Work

In this section, we presented the integration of standard T-API with OSM, a popular
ETSI based open source MANO system, focusing on the orchestration of VNFs
over multiple PoPs connected over optical networks. The proposed architecture
was validated and demonstrated using a multi-datacenter and multi-domain network
experiment.

Our presented implementation is part of the OSM Release 5. In future, the
upcoming T-API 2.1 photonic extensions will be exploited to improve optical network
orchestration capabilities.

4.4 Summary 97

Fig. 4.8: Wireshark Capture along with Create Connectivity JSON

Acknowledgment

This work has received funding from EPSRC grant TOUCAN (EP/L020009/1) and
EU H2020 Metro-Haul (grant agreements 761727).

4.4 Summary

This chapter presented an application of the North-bound interface of the SDN
controller: inter-domain as well as intra domain network service orchestration. In

98 Inter-domain and intra-domain network service orchestration

both cases, the SDN controller is used to create networks to chain VNFs which are
part of a network service.

In case of the inter-domain network orchestration, we presented the 5G UK
Exchange, which is a light-weight network service orchestrator to deploy inter-
domain network services while offloading the computationally intensive resource
allocation to the individual domains. As shown by results, the instantiation and
deployment times at the 5GUKEx are minimal as compared to the actual activation
time of a network service; this depicts the light-weight nature of 5GUKEx. The
IDCM part of the 5G UK Exchange includes the SDN controller to chain VNFs
hosted at PoPs at different domains.

In case of the intra-domain network orchestration, we extended OSM to interact
with the WIM using Transport-API to orchestrate network services with the connec-
tivity between the VNFs, hosted at different PoPs, using an optical network based
infrastructure. The WIM uses Transport-API as the North-bound interface and uses
the North-bound interface of the individual SDN controllers for both packet and
optical domains to orchestrate an end-to-end service between different PoPs. We
conduct an experimental demonstration of our system where the implemented WIM
connector is an open source contribution to OSM Release 5.

Part II

Stateful Data Planes

Chapter 5

Replicated states in stateful data
planes

5.1 Introduction

In recent years a major shift of paradigm has been observed in SDN with the
introduction of stateful data planes. This interest arose due to the fact that stateful
data planes carry a great potential in filling the performance gaps which arise due to
the complete centralization of control plane in SDN [1][92]. The key enablers of a
programmable data plane are:

• Programmable pipelines which allow to execute arbitrary user-defined code
during packet processing

• Introduction of persistent memories which allow to maintain persistent states
inside switches. These may also be referred to as state variables.

The combination of these two elements provides an additional level of programma-
bility with respect to traditional SDN and a way of defining complex in-network
processing rules. Consequently, the data plane switches can take some decisions
locally without relying on the intervention of an SDN controller [93]. This greatly
improves the reactivity for the vast majority of network applications by removing
latency overhead, previously caused by the interaction with the controller; conse-
quently minimizing the computational burden the controller must undergo in order

102 Replicated states in stateful data planes

to sustain the correct network behavior [94]. At the same time, the presence of per-
sistent memories in the form of state variables enables new fine-grained networking
applications [95] as decisions can now be taken on a per-packet basis contrary to the
per-flow basis which was present in legacy SDN [2].

Following this paradigm shift, numerous works have focused on trying to explore
the novel capabilities provided by stateful data planes by defining frameworks with
the goal of providing deeper network programmability. As an example, authors of
SNAP [11] show that it is possible to implement complex network policies distributed
in the form of State Variables, States for simplicity, across multiple devices; and
define complex per-packet processing rules. SNAP however neglects numerous
aspects related to the scalability and performance issues which inevitably arise when
dealing with network-wide policies. In particular, the authors assume that any given
network policy is constrained to have a unique single copy of a particular state
variable inside the entire network, which forces all flows necessitating that particular
policy to traverse a given set of switches. This inevitably leads to the creation of
bottlenecks and consequently performance degradation for flows satisfying that
particular policy. At the same time, in case of network-critical policies, failure of
even a single device holding the state will eventually jeopardize the integrity of the
entire policy and may lead to the irrecoverable loss of persistent policy-related states.

In order to overcome these issues, in this thesis, we extend previous proposals
by allowing synchronized policy replication among different network devices. Our
proposal directly addresses the limitations related to scalability and fault-tolerance
by introducing replicated state variables across the network. This allows to have
multiple distinct copies of the same state variable inside the network thus providing
opportunities for load balancing. At the same time, although being physically
distributed, thanks to the presence of a synchronization mechanism, different state
variable replicas are allowed to behave as a single replica by sharing common states
among them. Our initial proof of concept [96] shows that the concept of replicated
states can be implemented with state of the art programmable data planes such as P4
and OPP. Following these results, we question what is the optimal trade-off between
network resource utilization and network performance. In order to answer this, we
address optimal placement of states in the network in this chapter. The problem
targets the performance of flows by minimizing the amount of traffic in the network
which consists of both data traffic and synchronization traffic among the replicas.
We formalize the problem in the form of a ILP formulation. The results show that in

5.2 State replication in stateful SDN 103

the case of multiple replicas, it is possible to achieve significantly lower overhead
in terms of network resource utilization as compared to the case of a single state.
Following these results, due to the extreme computational complexity of the ILP
formulation, we present a heuristic for the placement of replicated states. We indicate
that even a simple heuristic based on clustering is able to achieve near-optimal results.

5.1.1 Organization of the chapter

The remainder of this chapter is organized as follows. In Sec. 5.2, we further elaborate
the stateful data planes and state replication. In Sec. 5.3, we present the formalization
of the optimal state replication problem for multiple replicas of the states. In Sec. 5.4,
we propose an approximated algorithm for the single state replication problem and
we show performance trade-offs between data and synchronization traffic depending
on the number of copies of the state. In Sec. 5.5, we present an asymptotic analysis
to compute the required number of state replicas in a network. In Sec. 5.6 we discuss
the related works. Finally, we summarize in Sec. 5.7.

5.2 State replication in stateful SDN

5.2.1 Stateful data planes

Stateful data planes [6][7] introduce the possibility for switches to store persistent
states related to network dynamics. In additional to the introduction of persistent
memories, differently from traditional SDN data planes, switches are also equipped
with programmable logic units which allow network operators to define different
per-packet processing policies. The consequence of this innovation is that switches
are now provided with the possibility of performing local decisions based on their
internal states without any interaction with the SDN controller. This enhancement
opens a wider field of opportunities in respect to standard SDN paradigms such as
the ones based on OpenFlow. Notably new opportunities arise for the definition
of more fine-grained processing policies since by reducing the interaction with the
controller, switches are able to capture network events on a per-packet granularity.

104 Replicated states in stateful data planes

5.2.2 SNAP programming abstraction

Following the increasing need for highly dynamic network services and policies,
multiple frameworks aiming at providing tight control over the way traffic flows are
processed have been proposed. With the introduction of programmable data planes,
numerous traffic processing policies have been pushed directly to the switches.
There has been observed a substantial increase in the complexity of the required
frameworks since resources required for traffic processing are made available across
multiple devices and in much limited quantity. Following this shift of paradigm,
new frameworks able to embed user-defined network programs to the switches have
been proposed [11][97]. Among those frameworks, the most relevant and versatile is
SNAP [11].

In order to cope up with the increase in complexity introduced by the presence
of sparse computational resources across the network, SNAP introduces a one-big-
switch (OBS) model as an abstraction. With such abstraction, the whole network
of switches is seen as a single big switch with a given set of input and output ports
and an aggregate list of available resources for traffic processing. Due to the way the
OBS abstraction is defined, flow routing is described on the basis of I/O port pairs.

When developing a network program or policy, the programmer will be exposed
to a single big switching fabric with a given computational capabilities without
having any knowledge of the actual underlying composition of the network. Instead
of designing network policies from scratch by embedding elements of the policy on
each single device, SNAP provides the programmer a specific programming language.
This language, which is an extension of NetCore [98], allows to express most of the
network functions by means of algebraic expressions and, most importantly, can be
interpreted by SNAP. All network programs are decomposed by SNAP into a xFDD,
an extension of forward decision diagram which incorporates also stateful elements.
xFFD alongside with traffic requirements are fed into SNAP ILP (Integer Linear
Programming) optimizer which then performs embedding of each single element
of the decomposed policy inside single switches and the consequent routing of the
traffic flows requiring particular network policy through switches storing it.

The embedding process embeds both processing logic and stateful elements,
namely state variables. Consequently the routing is chosen to guarantee that flows
traverse all switches where the involved states are located. The order in which traffic

5.2 State replication in stateful SDN 105

traverses the state-holding switches pays a fundamental role as state dependencies
must be preserved in order to correctly reconstruct the xFDD of the original policy.
Thus, internally the routing decisions do not generally follow the shortest path
between the input and output port in the OBS. Yet the SNAP solver still tries to
minimize the total data traffic in the network.

The main limitation of SNAP emerges from the fact that it allows only one unique
position per state variable inside the network. This considerably restrains the routing
of flows and consequently precludes a wide range of optimization techniques such as
load balancing and traffic engineering. Indeed, flows affecting or affected by a state
must be detoured from their shortest path routing in order to traverse the state-holding
switch, ultimately leading to a non-optimal network resource utilization.

5.2.3 State replication

In order to cope up with the limitations of SNAP, we propose to relax the condition
which imposes the uniqueness for each state variable by allowing to replicate state
variables inside the network. In our work we address the optimal placement of
the copies of state variables across the network, given the knowledge of the traffic
demands and of the xFDD, as computed by SNAP compiler. These modifications are
made uniquely at the level of ILP optimizer and do not impact any other functionality
of SNAP. In this way we provide the possibility of having multiple copies of the same
state variable distributed across multiple switches, which reduces the overall traffic
in the network and provides load balancing across multiple state variable copies.

As an example, consider a global counter that must be updated by all flows
and depending on its value, adopt an action targeting all flows. SNAP will place
a single copy of the state variable in a single switch in the topology, likely the
switch in the most “central” position in respect to the network topology as shown
in Fig 5.1a, where the most “central” position refers to a node in a graph with
the highest betweenness centrality. As a consequence, all flows will be forced to
be routed through the only state holding switch and then each forwarded to the
corresponding destination port. In a scenario with subset of flows with a sufficiently
large demand in terms of bandwidth, the ILP solver of SNAP would provide either
an unfeasible solution or would not be able to meet the bandwidth demand of the
flows. With our proposed solution instead, the ILP optimizer will replicate the state

106 Replicated states in stateful data planes

Legend:

Switch

Switch with State Variable

Flows

(a) State placement using SNAP

(b) Replicated States using our solution

Fig. 5.1: State placement in the network

variables across multiple devices leading to a better balance of traffic inside the
network as shown in Fig 5.1b. We claim that by permitting few copies of a state and
carefully distributing them in the network, i.e., a limited level of state replication, the
congestion due to the legacy SNAP approach can be heavily reduced. This comes
at some cost, since copies of the same state must be synchronized by means of an
appropriate mechanism. However, even in the presence of synchronization traffic, the
reduction in the overall traffic overhead in respect to the traditional SNAP approach
remains significant as shown in the results in Sec. 5.4.1.

The choice of an appropriate synchronization mechanism, i.e. of a replication
scheme represents a critical aspect for what concerns the performance of the system
and its implementation complexity.

The CAP theorem [17] states that for a replication scheme out of Consistency,
Availability and Partition tolerance, only two properties can be picked at the same
time. Considering that network failures may occur, partition tolerance cannot be left
out of the design of our replication algorithm, leaving us with two main reference
models: Strong Consistency and Eventual Consistency.

5.2 State replication in stateful SDN 107

Strong consistency A replication algorithm based on strong consistency privi-
leges consistency over availability. This translates into strong guarantees for the
values of replicated items stored at each replica at the cost of big delays during
the manipulation of those items. The increase in latency is caused by the presence
of a complex protocol [19][99] requiring intensive interaction among the replicas
whenever a transaction involving replicated items must be executed. A side effect of
the presence of such complicated replication protocols is a considerable increase in
the synchronization traffic overhead and significant increase in the implementation
complexity.

Eventual consistency On the other hand replication schemes based on eventual
consistency prioritize the availability of the replicated items over the consistency.
This translates into low latencies during the execution of transactions at the cost of
no guarantees over the actual value of replicated items inside each replica. Most of
eventual consistency algorithms are based on gossiping and its variants [100–102]
which incur into small overhead due to the synchronization traffic. At the same
time due to the simplicity of the communication protocol these kind of algorithms
can be easily implemented inside devices providing a limited amount of hardware
resources.

For the particular case considered in this thesis, replicas are composed of switches
with limited amount of hardware resources, thus incapable of executing complex
algorithms. At the same time, the arrival rate of transactions is comparable with
the aggregate arrival rate of packets at any given switch. These considerations
lead to significant issues in implementing a replication algorithm employing strong
consistency. Indeed, the latency given by communication delays among replicas
would require to buffer packets at each switch while waiting for the outcome of the
replication transaction.

For this reason we consider a replication scheme based on eventual consistency
among the replicas of the same state, thus disregarding consistency property in
change of availability and simpler implementation. As already shown in a PoC
implementation [96], this choice leads to low complexity while at the same time is
able to maintain small replication error among replicas.

108 Replicated states in stateful data planes

5.3 Optimal state replication problem

The objective of the state replication problem is to identify the best nodes where to
place the copies of the state and compute the optimal routing, in order to minimize
the traffic on the network and guarantee that all the flow affecting one state variable
will traverse at least one copy with this state. The traffic on the network is not just
due to the data, but also the synchronization to keep consistent copies of the same
state.

We propose a integer linear program (ILP) formalization, with the following
input parameters, as in the original SNAP model. The relevant notation is reported
in Table 5.1.

• Network. Let G = (V,E) be the network graph with N nodes. Let ce be the
capacity of edge e ∈ E.

• Traffic flows. Let F be the set of all the flows. Coherently with [11], we
assume to know the traffic demands in advance: let λ f be the demand of traffic
flow f ∈F , with fs ∈V as source node and fd ∈V as destination node.

• State variables. SNAP compiler, based on the operating network applications,
identifies the sequence of state variables to traverse for each flow, assumed
to be known in advanced coherently with [11]. Let S be the set of all state
variables. Let S f ⊆ S be the ordered sequence of state variables for flow
f ∈F .

• Maximum number of copies. Let Cs ≥ 1 be a given upper bound on the number
of copies for a state variable s, chosen by the network designer. The actual
chosen number of copies while minimizing the state synchronization traffic is
Ĉs ≤Cs

Let H f consist of all possible sequences of state copies for a flow f . E.g.,
if a flow f requires 3 state variables with at most 2 copies each, then H f =

{[111], [112], [121], [122], [211], [212], [221], [222]}. Consider now one sequence
h ∈ H f ; let hs be the specific index of the copy of state s ∈ S appearing in h. E.g.,
assume S f = {A,B,C} and h = [122]. Then hA would be the copy 1 of state A, hB

would be copy 2 of state B and hC copy 2 of state C.

5.3 Optimal state replication problem 109

The main output of the solver is described as follows, and the relevant notation is
reported in Table 5.2:

• Placement of the copies of each state. Let Pscn be a binary variable equal to
1 iff copy c of state s is stored at node n. Note that the optimization problem
might place multiple copies on the same node, but this would correspond to
a single instance of the state. Thus, the actual number of copies Ĉs of state s
across the whole network can be computed as follows1:

Ĉs = ∑
n∈V

1{∑c≤Cs Pscn>0}

• Data traffic routing. Let R f he be a binary variable equal to 1 iff flow f traverses
the sequence of states copies h on edge e. The set of such variables describes
completely the routing of all the flows across the network, taking into account
the constraint for the required sequence of traversed copies. To avoid out-of-
sequence problems, we do not allow flow splitting between different sequences
of copies.

• Synchronization traffic routing. Let R̂snme be a binary variable equal to 1 iff
there are copies of the state variable s on nodes n and m and the flow from
node n to node m traverses edge e. The set of such variables describes the
routing of the synchronization traffic between the different copies of the same
state. Let λ̂s be the traffic generated by each copy of the state to update the
other copies.

In the optimal state replication problem, one possible objective function is to
minimize the total traffic in the whole network, as considered in SNAP [11]:

min ∑
e∈E

∑
f∈F

∑
h∈H f

R f heλ f + ∑
e∈E

∑
s∈S

∑
n∈V

∑
m∈V
n̸=m

R̂snmeλ̂s (5.1)

The first term is the data traffic, obtained by summing all the traffic due to f on all
the possible sequences of state copies and on all the edges. Instead, the second term
is the synchronization traffic between any copy of the same state, summed across all
the states and edges in the graph. Notably, (5.1) corresponds to the same objective

1Let 1{A} be the indicator function of A, equal to 1 iff condition A is true.

110 Replicated states in stateful data planes

Table 5.1: Input Parameters/Sets

Variable Description Range
G network graph
V set of all nodes
E set of all edges
N number of nodes 1, . . . , |V |
F set of all the flows
fs source node for flow f 1, . . . ,N
fd destination node for flow f 1, . . . ,N

EI(n) set of edges entering node n ⊆ E
EO(n) set of edges leaving node n ⊆ E
E(n) set of all edges incident to node n ⊆ E
λ f traffic demand for flow f > 0
ce capacity of edge e > 0
S set of all state variables -
S f set of state variables needed for flow f ⊆ S

H f
set of sequence of state variable copies -needed for flow f where h ∈ H f

Cs max number of copies of state variable s ≥ 1
c c-th copy of state variable s 1, . . . ,Cs
hs copy of state variable s in sequence h ∈ H f 1, . . . ,Cs

λ̂s synch. traffic between any copy of state s > 0

Table 5.2: Output Variables

Variable Description Range

R f he
1 if flow f along sequence of copies h Binarytraverses edge e

R̂snme

1 if synchronization traffic from node n to
Binarynode m containing copies of state variable s

traverses edge e
Pscn 1 if copy c of state s is stored in node n Binary

Pf sce
f flow f on edge e has passed copy c of Binarystate s

X f h 1 if flow f is assigned h ∈ H f Binary

Usn
1 if at least one copy of state variable s is on Binarynode n

Ysnme 1 if R̂snme > 0 Binary

function used by SNAP framework in [11], but without the second term since SNAP
does not include any synchronization traffic.

As an alternative, the objective function can be modified to minimize the maxi-
mum congestion on a link, obtained by summing data and synchronization traffic, as

5.3 Optimal state replication problem 111

follows:
minmax

e∈E

(
∑

f∈F
∑

h∈H f

R f heλ f + ∑
s∈S

∑
n∈V

∑
m∈V
n̸=m

R̂snmeλ̂s

)
(5.2)

5.3.1 Constraints in the optimization problem

We discuss all the constraints considered in the ILP model. In some cases, we will get
products of binary variables, but the corresponding constraint can be easily linearized
with standard techniques.

Data routing constraints

The constraints (5.4)-(5.7) are similar to the constraints for the classic multi-commodity
flow problem. However, our modification consists of assigning a commodity for
each sequence h ∈ H f of state variable copies directly at the source of the flow f , in
order to support the sequence of states required by each flow

We introduce an auxiliary variable, which is an indicator function X f h equal to 1
if sequence h ∈ H f is assigned to flow f ∈F .

X f h = ∑
e∈EO(fs)

R f he− ∑
e∈EI(fs)

R f he (5.3)

Indeed, whenever a particular sequence h is adopted, similar to (5.4), the net outgoing
data traffic from source fs is 1. Notably, the second term considers the special case
in which the flow is re-entering (and leaving) fs in the path to reach the state and
then the destination. We now force only one sequence h to be assigned to flow f .
∀ f ∈F :

∑
h∈H f

X f h = 1 (5.4)

A similar constraint is defined for flow f ’s destination fd , but now the net incoming
flow should be 1. ∀ f ∈F :

∑
h∈H f

(
∑

e∈EI(fd)
R f he− ∑

e∈EO(fd)
R f he

)
= 1 (5.5)

112 Replicated states in stateful data planes

The sum of all the data and synchronization traffic passing an edge must not
exceed its capacity. ∀e ∈ E:

∑
f∈F

∑
h∈H f

R f heλ f + ∑
s∈S

∑
n∈V

∑
n∗∈V
n̸=n∗

R̂snn∗eλ̂s ≤ ce (5.6)

Finally, the standard flow conservation condition must be satisfied at any node.
∀h ∈ H f ,∀ f ∈F :

∑
e∈EI(n)

R f he = ∑
e∈EO(n)

R f he ∀n ∈V \{ fs, fd} (5.7)

Placement constraints

Each copy can only be placed at one switch. ∀s ∈ S, ∀c≤Cs:

∑
n∈V

Pscn = 1 (5.8)

We now constrain the routing to pass through the states; i.e. all the flows de-
pendent on a copy must pass through the node where the copy is located (except at
source fs and destination fd). ∀n ∈V \{ fs, fd},∀ f ∈F ,∀h ∈ H f ,∀s ∈ S f :

∑
e∈EI(n)

R f he ≥ Pshsn +X f h−1 (5.9)

Indeed, if a particular sequence h is adopted for f , then (5.9) becomes ∑e∈EI(n)R f he≥
Pshsn and in the case the node is storing copy hs of state s, then ∑e∈EI(n)R f he ≥
1, which forces at least one R f he variable to be one on the incoming edges to e.
Otherwise, if the sequence h is not adopted for f , then (5.9) becomes a useless
bound.

We now define a variable that tracks the fact that a flow has traversed already a
particular state along its path. For a flow f traversing copy hs of state s, we define
Pf shse = 0 for all the edges along the path before entering the node with copy hs of s,
and Pf shse = 1 for all the edges in the path after hs. It is initialized to zero for all the

5.3 Optimal state replication problem 113

copy sequences h not used. ∀ f ∈F ,∀s ∈ S f ,∀h ∈ H f ,∀e ∈ E:

Pf shse ≤ R f he (5.10)

To model the fact that Pf shse changes from 0 to 1 whenever the flow leaves a node
where the state is stored, it holds: ∀ f ∈ F ,∀s ∈ S f ,∀h ∈ H f ,∀e ∈ E,∀n ∈ V \
{ fs, fd}:

PshsnX f h + ∑
e∈EI(n)

Pf shse = ∑
e∈EO(n)

Pf shse (5.11)

Indeed, only when PshsnX f h = 1 (i.e., node n has copy hs and f exploits h including
it), the net flow of Pf shse entering n is 0 and the corresponding one leaving n is 1.

We now impose that the data flow reaches the destination fd after having traversed
all the states required in h, i.e. Pf shse = 1 for one edge entering fd . ∀ f ∈F ,∀s ∈
S f ,∀h ∈ H f :

Pshs fd X f h + ∑
e∈EI(fd)

Pf shse = X f h (5.12)

So far, the constraints (5.10)-(5.12) force the flows to pass through all the required
state variables, but not necessarily in sequence. We model here the correct sequence
of traversed states, if the flow f has to cross hs ∈ H f of s, followed by copy hs′ ∈ H f

of s′. ∀ f ∈F ,∀s,s′ ∈ S f ,∀h ∈ H f ,∀n ∈V

Pshsn + ∑
e∈EI(n)

Pf shse ≥ Ps′hs′n +X f h−1 (5.13)

Indeed, if either flow f has been assigned sequence h i.e. X f h = 1, or copy hs′ ∈ H f

exists at node n, or copy hs ∈ H f does not exist at node n, then (5.13) becomes

∑e∈EI(n)Pf shse ≥ 1. This forces Pf shse to be 1 before entering node n, which means
that the flow must have traversed hs before entering the node containing hs′ . This
ensures that the flow traverses the correct sequence of states as dictated by h.

Constraint (5.14) ensures that if flow has traversed state variable copy hs on edge
e i.e. Pf s′hs′e = 1, then it must have already crossed state variable copy hs, which
ensures Pf shse = 1. ∀ f ∈F ,∀s,s′ ∈ S f ,∀h ∈ H f ,e ∈ E:

Pf shse ≥ Pf s′hs′e (5.14)

114 Replicated states in stateful data planes

State Synchronization

This traffic is due to the synchronization between any pair of copies of the same state.
Thanks to the routing variable R̂snme, we can model the traffic between any pair of
nodes n and m containing copies of the state variable s and consider its contribution
in the total traffic, as in (5.1) and (5.2), and in the constraint (5.6) regarding the edge
capacity.

Since we assume that multiple copies of the state variable can be hosted on the
same node n; hence to track that there is at least one copy at node n, we define the
variable Usn in (5.15). ∀c ∈Cs, ∀s ∈ S, ∀n ∈V :

Usn ≥ Pscn (5.15)

For the synchronization traffic from node n to node m, the routing variable R̂snme is
treated as a commodity from node n such that Usn = 1 to node m such that Usn = 1.
We constrain the routing to ensure the standard flow conservation equation at the
intermediate node.

We define a new intermediate variable Ysnme which is set to 1 iff R̂snme > 0. This
is ensured using the big-M method [103] as in (5.16) where M is sufficiently larger
than R̂snme. ∀s ∈ S, ∀n ∈V, ∀m ̸= n ∈V, ∀e ∈ E

0≤−R̂snme +MYsnme ≤M−1 (5.16)

Assume R̂snme = 1∀e ∈ EO(n), then Ysmne = 1 from (5.16). In this case, for the
condition M ≥ R̂snme to be true, M must be equal to or greater than the maximum
degree of G as in (5.17), where the maximum degree ∆(G) is the maximum of the
number of edges incident to each node in G as shown in (5.18).

M ≥ ∆O(G) (5.17)

∆O(G) = max
n∈V
|E(n)| (5.18)

We require the egress synchronization flow from a state copy containing node
to use only one outgoing edge. This can be done by exploiting Ysnme as in (5.19).

5.3 Optimal state replication problem 115

∀s ∈ S, ∀n ∈V, ∀m ̸= n ∈V :

∑
e∈EO(n)

Ysnme ≤ 1 (5.19)

Constraints (5.20)-(5.23) are for the multi-commodity flow problem for the syn-
chronization flows. Specifically, constraints (5.20) and (5.21) are for the originating
flow from the source node m and the sink flow in the destination node m containing
the state copies respectively ∀s ∈ S, ∀n ∈V, ∀m ̸= n ∈V :

∑
e∈EO(n)

Ysnme ≥Usn (5.20)

∑
e∈EI(n)

Ysnme ≥Usm (5.21)

Instead, constraints (5.22)-(5.23) are for the flow conservation at intermediate nodes
∀s ∈ S, ∀n ∈V, ∀m ̸= n ∈V :

∑
e∈EO(n)

Ysnme ≤ ∑
e∈EI(n)

Ysnme +Usn ≤ 1 (5.22)

∑
e∈EI(n)

Ysnme ≤ ∑
e∈EO(n)

Ysnme +Usm ≤ 1 (5.23)

5.3.2 Computational complexity

The computational complexity of the ILP model is derived in Appendix A. It is
shown here below, given if all flows f ∈F require to traverse all state variables
s ∈ S, where each s ∈ S has C number of copies:

O(256max(N2C|S|,|S|N4) ·max(N|S|C|S|, |S|N4)) (5.24)

In case there is only one state variable required by all the flows, (5.24) simplifies
below:

O(256N4
N4) (5.25)

116 Replicated states in stateful data planes

5.4 Approximation algorithm for single state replica-
tion

We address specifically the problem of state replication for a single state variable. To
address the limited scalability of the ILP solver, we propose PLACEMULTICOPIES

algorithm which is computationally scalable and will be shown in Sec. 5.4.1 to
approximate well the optimal solution obtained by the ILP solver for small problem
instances.

The pseudocode of PLACEMULTICOPIES is given in Algorithm 1. It takes as
input the network graph G, the state variable s and the maximum number of copies
Cs of s and the set of flows F affecting s. As an output, the algorithm returns: the
routing variables of the data flows R f he and of the state synchronization flows R̂smne

and the copies placement variables Pscn. The algorithm works through 3 phases:

• Phase 1. The network graph G is partitioned into Cs clusters, in order to
minimize the maximum distance among the elements within a cluster. This
allows to distribute the copies across the whole network in a balanced way,
exploiting the spatial diversity offered by each cluster.

• Phase 2. In each cluster, a copy is placed in the most“central′′node node with
the highest betweenness centrality, in order to minimize the data traffic for
each flow.

• Phase 3. The position of each copy is perturbed at random using a local
search to improve the solution with respect to one obtained in the previous
two phases.

The pseudocode of PLACEMULTICOPIES algorithm is given in Algorithm 1 with
all the mentioned phases. After having initialized the routing and the copy placement
variables (lines 2-4), Phase 1 is executed in line 5 by calling COMPUTEPARTITIONS.
This method solves the k-means clustering problem [104] with k = Cs using the
Lloyd’s algorithm [105] in which the node with the highest betweenness centrality is
chosen as center of the partition.

As part of Phase 2 (lines 6-8), within each subgraph Gc the node n′ with the
highest betweenness centrality is assigned a state variable copy. As a reminder,

5.4 Approximation algorithm for single state replication 117

Algorithm 1 Placement and routing for single state placement and multiple copies
1: procedure [{R f he},{R̂smne},{Pscn}] = PLACEMULTICOPIES(G, s, Cs, F)
2: R f he = 0,∀ f ∈F ,h ∈ H f ,∀e ∈ E ▷ Init routing
3: R̂smne = 0,∀c,g ̸= c≤Cs,∀e ∈ E ▷ Init state sync
4: Pscn = 0,∀c≤Cs,∀n ∈V ▷ Init state s location
5: {Gc}← COMPUTEPARTITIONS(G,Cs,) ▷ Phase 1: Graph partitions {Gc}
6: for c≤Cs do ▷ Phase 2: Copy placement
7: n′← NODEWITHHIGHESTBC(Gc) ▷ Find best candidate in partition Gc
8: Pscn′ = 1 ▷ Store the state copy location
9: Tmin = ∞ ▷ Init minimum traffic
10: for I iteration do ▷ Phase 3: Local search
11: [T ′,{R′f he},{R̂′smne}]← ROUTEFLOWS(F ,{Pscn}) ▷ Route flows through the copies
12: if T ′ < Tmin then ▷ Check if the traffic is smaller
13: Tmin = T ′ ▷ Store current best solution
14: R f he = R′f he R̂smne = R̂′smne, P′scn = Pscn, ∀ f ∈F , ∀h ∈ H f , ∀c,g ̸= c≤Cs, ∀e ∈ E, ∀n ∈V

15: {P′scn}← PERTURBCOPYLOCATION({Pscn}) ▷ Change existing location of state copies
16: return [{R f he},{R̂smne},{Pscn}]

17: procedure [TCURRENT,R′f ce, R̂
′
smne] = ROUTEFLOWS(F ,Pscn)

18: Tcurrent = 0 ▷ Init total traffic
19: for f ∈F do ▷ For each flow
20: minDist = ∞ ▷ Init minimum distance
21: cb← null ▷ Init best copy for current flow
22: Pbest ← null ▷ Path with minimum length for fs→ nc→ fd
23: for c ∈Cs do ▷ For all state copies
24: P = SHORTESTPATH(fs,nc)∪SHORTESTPATH(nc, fd)
25: if P.length < minDist then
26: minDist = P.length ▷ Update minimum distance
27: Pbest ←P ▷ Store path with minimum length
28: cb← c ▷ Store best copy for this flow
29: for e ∈Pbest do ▷ For each edge in the minimum length path
30: R′f cbe = R′f cbe +λ f ▷ Store the routing
31: Tcurrent = Tcurrent +λ f ▷ Store the traffic value
32: for c ∈Cs do ▷ For each cth copy of state variable s
33: for g ̸= c ∈Cs do ▷ For each gth copy of state variable s
34: Pcg← SHORTESTPATH(nc,ng) ▷ Shortest path from nc→ ng
35: for e ∈Pcg do ▷ For each edge in the path nc→ ng
36: R̂smne = R̂smne +α ▷ Store the state sync flow
37: Tcurrent = Tcurrent +α ▷ Update total traffic
38: return [Tcurrent,R′f ce, R̂

′
smne]

betweenness centrality of a node v is proportional to the number of shortest paths
crossing it.

Lines 10 to 15 refer to a local search procedure with I iterations. Within each
iteration, ROUTEFLOWS is used to route flows through the location of the copies
identified in Phase 2, following two sub-paths: one from the flow source node to
the closest copy and one from this copy to the destination node. The procedure
works on the set of flows F and the location of state variables Pscn and returns the
routing variables for data flows R′f ce and for state synchronization R̂′smne, and the
corresponding total traffic T ′ in the network. Lines 19 to 31 route the data flows
from their source fs to the destination fd while traversing the copy cb which has

118 Replicated states in stateful data planes

the minimum path length among all other copies. For each flow, in lines 21 and 29,
the copy cb and the path Pbest traversing it are initialized. Then for each copy (in
lines 23-28), first, the shortest path fs→ nc→ fd is computed. nc is the vertex for
which Pscn = 1. If the path length P.length is less than the previous minimum
minDist in line 25, then the current path P is stored as the best path Pbest and the
current copy c as the best copy cb. In lines 29-31, for each edge in Pbest , the routing
as well as the traffic value is updated. Lines 32 to 37 generate flows from each state
copy c to all the other state copies g for state synchronization using the shortest path.
This includes the synchronization flows R̂scge being updated in line 36 for each edge
in the path Pcg before updating the total traffic in line 37. If T ′ is less than the
previous minimum, then the minimum traffic value and all the decision variables are
updated (lines 13-14). In Phase 3 (line 15), a local search procedure perturbs the
existing state copy locations. This proceeds by randomly selecting one node where a
copy is located and moving it to one of its neighbor nodes. This new solution is then
compared with the current one (line 12) after having evaluated the corresponding
routing and total traffic.

5.4.1 Performance comparison

We evaluate the performance of PLACEMULTICOPIES presented in Sec. 5.4. In
the case of small instances of the problem, we run an ILP solver, coded using IBM
CPLEX Optimizer [106], implementing the model in Sec. 5.3. We computed the
approximation ratio, i.e. the ratio between the total traffic obtained by PLACEMULTI-
COPIES and the one obtained by the ILP solver. We consider two standard topologies
for the network graph: unwrapped Manhattan and Watts-Strogatz:

• Manhattan unwrapped: This is a N×N sized topology in a grid as shown in
Fig. 5.2a.

• Watts-Strogatz [107]: adds a few long-range links to regular graph topologies
that reduce the shortest path between two nodes and emulate a small-world
model with an example shown in Fig 5.2b. It is generated by taking a ring
of n nodes, where each node is connected to k-nearest neighbors. A node is
chosen at random and the edge connected to its nearest clockwise neighbor
is disconnected with probability p and connected to another node chosen
uniformly at random over the entire ring. This was chosen as a test topology

5.4 Approximation algorithm for single state replication 119

since it produces connected graphs having a fixed average degree. Here,
p = 0.1 and average degree of 8 was chosen.

(a) Manhattan unwrapped (b) Watts-Strogatz

Fig. 5.2: Topologies used for performance evaluation of state replication

The local search in PLACEMULTICOPIES runs with I = 1000 iterations. We
utilize random traffic matrices with the number of flows equal to the number of
vertices in the graph, i.e. |F | = N and with unity demands (λ f = 1). The source-
destination pairs for the flows were generated according to two models. In the case
of uniform traffic, all the source nodes were associated to a random permutation of
nodes as destination; thus each node is source and destination of exactly one flow. In
the case of clustered uniform traffic, we partitioned the graph in half and generated a
random permutation between the nodes of the same partition; thus all the flow are
defined within the same partition. All the results were obtained with 1000 different
runs to get very small 95% confidence intervals (in all cases within 4.2% accuracy).

Synchronization rate and number of copies

In Fig. 5.3 we evaluate the effect of varying the number of copies for state s and
of the synchronization rate λ̂s, through the optimal ILP solver. We consider a 4×4
Manhattan graph and set Cs = 7. As expected, when increasing λ̂s, the number of
copies reduces, since the higher costs of synchronization decreases the beneficial
effect of multiple copies on the data traffic. Instead the synchronization traffic is
almost constant, since, for smaller number of copies, their relative distances grows,
to “cover” a larger area of the network. As a term of comparison, we report the
total traffic for one single copy allowed in the network, as considered in the original
SNAP framework. In this case, the total traffic is constant with respect to λ̂s, since
there is no synchronization traffic. By comparing the results obtained with multiple

120 Replicated states in stateful data planes

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

 8

T
ra

ff
ic

C
o
p
ie

s

λ
^

s

Total traffic

Data traffic

Sync traffic

Total traffic − 1 Copy

Number of copies

Fig. 5.3: Optimal traffic and number of copies in a 4×4 Manhattan graph for uniform
traffic, using the ILP solver

copies, the reduction in the total traffic in the network can reach 33% thanks to state
replication.

Fig. 5.4 is used to depict the effect of a very large λ̂s, when the synchronization
traffic has a larger weight than the data traffic in the objective function. At the value
of λ̂s = 6.1, the number of copies used in the network is equal to 1. This shows that
having a very high synchronization traffic is detrimental, and there is a threshold to
which the state replication is beneficial.

Comparison with ILP

Figs. 5.5-5.6 show the approximation ratio for different number of nodes, copies and
different values of λ̂s, under uniform traffic. The two graphs refer to Manhattan and
Watts-Strogatz topologies. The approximation ratio in all cases is always≤ 1.15, thus
PLACEMULTICOPIES approximates well the ILP solution. For larger topologies, we
cannot provide the approximation ratio as the ILP optimization is not computationally
feasible.

5.4 Approximation algorithm for single state replication 121

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6
 0

 1

 2

 3

 4

 5

 6

 7

 8
T

ra
ff

ic

C
o
p
ie

s

λ
^

s

Total traffic − 1 Copy

Total traffic

Data traffic

Sync traffic

Number of copies

Fig. 5.4: An extended version of Fig. 5.3 where λ̂s ranges from 0.0 to 6.1

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20 25 30 35 40

A
p
p
ro

x
im

at
io

n
 R

at
io

Number of nodes

1 Copy

2 Copies λ
^

s ∈ {0.0, 0.25, 0.50, 0.75, 1.0}

3 Copies λ
^

s=0.0

3 Copies λ
^

s=0.25

3 Copies λ
^

s=0.50

3 Copies λ
^

s=0.75

3 Copies λ
^

s=1.00

Fig. 5.5: Approximation ratio of PLACEMULTICOPIES in a Manhattan graph under
uniform traffic.

Number of copies in large topologies

We run PLACEMULTICOPIES algorithm on large topologies. Figs. 5.7-5.8 show
the total traffic normalized to the number of flows for variable-size Manhattan and

122 Replicated states in stateful data planes

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20 25 30 35 40

A
p
p
ro

x
im

at
io

n
 R

at
io

Number of nodes

1 Copy

2 Copies λ
^

s=0.0

2 Copies λ
^

s=0.25

2 Copies λ
^

s=0.50

2 Copies λ
^

s=0.75

2 Copies λ
^

s=1.00

3 Copies λ
^

s=0.0

3 Copies λ
^

s=0.25

3 Copies λ
^

s=0.50

3 Copies λ
^

s=0.75

3 Copies λ
^

s=1.00

Fig. 5.6: Approximation ratio of PLACEMULTICOPIES in Watts-Strogatz graph
under uniform traffic.

Watts-Strogatz topologies, under clustered uniform traffic. We set λ̂s = 0.5. For
comparison, we also report the result of the traffic obtained by routing each flow
from its source to its destination along the shortest path, obliviously of the placement
of the state copies; this provides a lower bound on the total traffic in the network
obtained for the optimal solution of the ILP problem (which cannot be computed in
this case).

As expected, the highest amount of traffic is given by the single copy case, i.e.
SNAP, because of the longer path to reach the state location experienced by all the
flows. Now adding one copy provides a beneficial effect, since the spatial diversity of
2 copies can be exploited to route the flows and minimize the total traffic. The gain is
generally around 30% for Manhattan graph and grows up to 20% in Watts-Strogatz
graph. If increasing again the number of copies from 2 to 3, then the gain is very
limited (around 5%), since the higher spatial diversity is compensated by a higher
synchronization traffic.

5.4 Approximation algorithm for single state replication 123

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

N
o
rm

al
iz

ed
 t

o
ta

l
tr

af
fi

c/
fl

o
w

Number of nodes

ShortestPath
1 Copy
2 Copies
3 Copies

Fig. 5.7: Performance of PLACEMULTICOPIES in Manhattan graph under clustered
uniform traffic

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

N
o
rm

al
iz

ed
 t

o
ta

l
tr

af
fi

c/
fl

o
w

Number of nodes

ShortestPath
1 Copy
2 Copies
3 Copies

Fig. 5.8: Performance of PLACEMULTICOPIES in Watts-Strogatz graph under
clustered uniform traffic

124 Replicated states in stateful data planes

5.5 Asymptotic analysis for unwrapped Manhattan
topology

In this section, we discuss the methodology to compute the required number of
copies, given the size of a graph using asymptotic analysis. In our case, we present
this method for the unwrapped Manhattan topology. We model this problem, similar
to how traffic is routed in an unwrapped Manhattan topology through C copies,
taking as example the PLACEMULTICOPIES algorithm.

5.5.1 Methodology

We assume that the number of copies C is a perfect square, i.e.
√

C ∈ N. Consider
a unit square as shown in Fig. 5.9, representing the boundary of the unwrapped
Manhattan topology containing N nodes with N→∞. The unit square is divided into
individual C squares, with each side having a dimension of 1/

√
C and each having a

center point Pctr
c , where c = 1 . . .C. Pctr

c denotes the location of a state copy in the
network, where Pctr

c (x) and Pctr
c (y) denote the x and y coordinates respectively . The

minimum number of copies can be obtained for the case which minimizes the total
traffic in the topology.

Fig. 5.9: Unwrapped Manhattan topology represented as a unit square

The total traffic is composed of the data traffic and the synchronization traffic.
Given a traffic demand in this scenario, we assume that the traffic is routed in

5.5 Asymptotic analysis for unwrapped Manhattan topology 125

a straight line between two points in the square instead of in a step-wise stair-
like manner. This is due to the fact that we assumed that the graph size is very
large (N→ ∞). To compute the data traffic, we utilize the Monte Carlo method to
compute the average distance traveled between two nodes. Two points with random
coordinates are generated in the unit square which are Psrc and Pdst for source and
destination nodes respectively as shown in Fig. 5.9. The distance from Psrc to the
closest Pctr

c and from Pctr
c to Pdst is added to compute the distance traveled between

the source and destination nodes. These distances are generated for 107 iterations
and are averaged as d̂data for each number of copies. It is shown in Fig. 5.10. This
average distance asymptotically approaches 0.5412 [108].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

d
is

ta
n
ce

Number of copies

d
^

data

d
^

sync

Fig. 5.10: Average distance vs. C for a unit square

The data traffic can be computed by (5.26):

Tdata = λ f ×N× d̂data (5.26)

where we assume that the total number of flows is |F |= N as in previous results.

Similarly for the synchronization traffic, the average distance is computed for
each number of copies c using (5.27). Here, no random points are generated since
the copies have a fixed position in the unit square.

126 Replicated states in stateful data planes

d̂sync(C) =

C
∑

c=1

C
∑

c′=1
c′ ̸=c

√
(Pctr

c (x)−Pc′ctr(x))2 +(Pctr
c (y)−Pc′ctr(y))2

C(C−1)
(5.27)

Using (5.27), the average distance between any two copies d̂sync asymptotically
approaches 0.5221 as shown in Fig. 5.10. The synchronization traffic can be com-
puted by (5.28).

Tsync = λ̂s× d̂sync×C(C−1) (5.28)

Using (5.26) and (5.28), the total traffic for a Manhattan unwrapped topology of
size N is given in (5.29). The right hand side is scaled by

√
N since the distances

d̂data and d̂sync were computed for a unit square, whereas TTOT is for a square with a
side of size

√
N.

TTOT =
√

N(λ f Nd̂data︸ ︷︷ ︸
data traffic

+ λ̂sd̂syncC(C−1)︸ ︷︷ ︸
synchronization traffic

) (5.29)

Note that in (5.29), the rate of synchronization traffic does not depend on the
amount of data traffic traversing state copy based on our model.

For different values of N and λ̂s/λ f where λ f = 1, the number of copies C for
which the minimum TTOT is obtained is given in Fig. 5.11.

Note that for higher values of N, more copies are required to cover the network.
Thus, as N → ∞, then C→ ∞ as well. For higher values of λ̂s/λ f , the number of
copies decreases since more synchronization traffic is required. Fig. 5.11 is shown
as a log-log plot where each line fitted to the points can be represented as shown
in (5.30) ∀λ̂s/λ f .

log10C = m log10 N + k (5.30)

Taking an anti-log on both sides of (5.30) gives (5.31):

5.5 Asymptotic analysis for unwrapped Manhattan topology 127

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
in

im
u
m

 c
o
p
ie

s

Number of nodes

λ
^

s/λf = 0.01

λ
^

s/λf = 0.21

λ
^

s/λf = 0.41

λ
^

s/λf = 0.61

λ
^

s/λf = 0.81

Fig. 5.11: Minimum copies required vs. N for different λ̂s/λ f

C = 10kNm (5.31)

This indicates that the slope of a straight line in Fig. 5.11 is the exponent m and
the y-intercept is the constant k. Using this methodology, the relation of C with N
can be computed using (5.31) by using the values of 10k and m, ∀λ̂s/λ f , given in
Fig. 5.12.

To further generalize (5.12), different λ̂s/λ f , N and the corresponding 10k and
m from Fig. 5.12 are substituted in (5.31). This results in a three dimensional plot
along with the curve-fitted plane as shown in Fig. 5.13.

The curve fitted plane has the form as shown in (5.32).

log10C = x+ y log10 N + z log10

(
λ̂s

λ f

)
(5.32)

where,

128 Replicated states in stateful data planes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
^

s
/λ

f

10
k

m

Fig. 5.12: 10k and m vs. λ̂s/λ f

-20 -1.59

1

2

8 -1

3

7

4

6

5

5 -0.54 3 02

Fig. 5.13: log10(C) vs. log10(λ̂s/λ f) and log10 N

C = 10xNy

(
λ̂s

λ f

)z

(5.33)

5.5 Asymptotic analysis for unwrapped Manhattan topology 129

Using curve fitting, the coefficients of (5.33) were computed and shown in (5.34).

C = 0.47N0.40

(
λ̂s

λ f

)−0.40

(5.34)

For verification, values of λ̂s/λ f are substituted in (5.34) and the coefficient 10k

is computed and compared with the one in Fig. 5.12 as shown in Fig 5.14. The curve
is fitting the points, thus proving that (5.34) is reliable.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
ef

fi
ci

en
t

1
0

k

λ
^

s/λf

10
k

10
k
 computed using (31)

Fig. 5.14: Comparison of original 10k vs. 10k derived from (5.34)

Since the number of copies must be a positive integer number, hence we modify
(5.34) in (5.35).

Ccomp =

0.47N0.40

(
λ̂s

λ f

)−0.40
 (5.35)

(5.35) can be used to compute the number of copies Ccomp required for an
unwrapped Manhattan topology of size N, given N number of flows, with each flow
having a traffic demand of λ f = 1. This methodology can be further extended for
other topologies, using their particular average distances between two points in the
topology.

130 Replicated states in stateful data planes

5.5.2 Results

We present here the results of minimum number of copies required for the unwrapped
Manhattan topology using the optimization model from Sec. 5.3 and the heuristic
PLACEMULTICOPIES as Copt and Cheur respectively, vs. the minimum number
of copies Ccomp obtained using (5.35). Uniform traffic was used as described in
Sec. 5.4.1 with all results obtained with 1000 different runs to get very small 95%
confidence intervals. Figs. 5.15-5.16 show the difference of the computed values
Ccomp from (5.35) for different sizes of the unwrapped Manhattan topology and
different values of λ̂s/λ f , with respect to Copt and Cheur, using the optimization
model and the heuristic respectively. In all the cases, the minimum number of
copies from (5.35) is the same or one copy more than the result obtained from the
optimization or heuristic. This shows that (5.35) can approximate the number of
copies required for unwrapped Manhattan topology.

 0

 1

 2

 3

 0.2 0.4 0.6 0.8 1

C
co

m
p
 −

 C
o
p
t

λ
^

s/λd

3 x 3
4 x 4
5 x 5
6 x 6

Fig. 5.15: Difference of minimum number of copies computed using (5.35) (Ccomp)
vs. optimization (Copt) for unwrapped Manhattan topology

5.6 Related work 131

 0

 1

 2

 3

 0.2 0.4 0.6 0.8 1

C
co

m
p
 −

 C
h
eu

r

λ
^

s/λd

3 x 3
4 x 4
5 x 5
6 x 6
7 x 7
8 x 8
9 x 9
10 x 10
11 x 11

Fig. 5.16: Difference of minimum number of copies computed using (5.35) (Ccomp)
vs. heuristic (Cheur) for unwrapped Manhattan topology

5.6 Related work

The Virtual Network Embedding (VNE) problem finds the optimal placement of
chains of VNFs while providing various optimization metrics. VNE can be closely
mapped to the problem mentioned in this paper, if we consider network functions
to be states and chains to be dependency graphs as computed by SNAP. There exist
multiple ILP formulations and heuristics for VNE (an extensive survey is available
in [109]), some of which are similar to the one proposed in our work. However, to
our best knowledge, none of them consider the possibility of having replicated and
coordinated virtual functions.

As mentioned before, SNAP [11] is a novel network programming abstraction,
which allows to define quite complex network applications for stateful SDN and
solves the problem of how to optimally place the states across the network switches,
taking into account the dependency between states and the traffic flows. By design,
SNAP is limited to just one replica of each state within the network. Our work,
instead, enables multiple replicas of the state, extending the single replica approach
in SNAP.

132 Replicated states in stateful data planes

The most relevant work to the state replication in stateful data planes is Swing
State [110], which introduces a mechanism providing state migrations entirely in the
data plane but, similarly to SNAP, assumes only one state that is on demand migrated
across the network.

Regarding the implementation of stateful SDN, OpenState [111] proposed a min-
imal architectural extension to the OpenFlow data plane and control plane to identify
the flow to which a packet belongs to and to retrieve/update the associated state.
OPP [7] extended OpenState by adding additional features that allow the executions
of Extended Finite State Machines (EFSM) directly in the data plane. FAST [6]
proposes a switch chip implementation based on the Reconfigurable Match Tables
(RMT) model that permits, even if with some limitations indicated by the same
authors, to manipulate some state within its pipeline. Finally, Domino/Banzai [112]
proposes both a domain specific language and a data plane architecture for design-
ing and implementing line-rate stateful processing. To read/write states, a set of
specialized stateful processing instructions are executed within the switch pipeline.

NetPaxos [113] provides application layer acceleration for Paxos protocol by
offloading parts of it to the network. Differently from NetPaxos, our work focuses
on providing a mean for line-rate state replication directly in the data plane.

5.7 Summary

We considered the state replication problem in SNAP and proposed a MILP for-
malization of the optimal placement of the state replicas and of the corresponding
traffic routing, taking into account the synchronization traffic exchanged among the
state replicas. Furthermore, we designed a scalable algorithm to solve the problem
and proved numerically that it can approximate well the optimal solution obtained
through a MILP solver. We numerically showed the beneficial effect of state replica-
tion on reducing the overall traffic in the network. Our asymptotic analysis presented
a methodology to compute the required minimum number of state replicas to cover
an unwrapped Manhattan topology.

Chapter 6

Conclusion

In this thesis, we discuss novel applications and analysis of the SDN control plane
interfaces and optimizing stateful data planes by utilizing replicated states. Specif-
ically, in Part I, we target the SDN control plane; where we analyse the impact
of data plane events on the inter-controller traffic; we propose a novel application
utilizing time-synchronized operations in software-defined elastic optical networks
to reduce lightpath disruption time by using the south-bound protocol extensions;
and we utilize the SDN north-bound interface in the form of inter and intra-domain
network service orchestration. In Part II, we propose using replicated states in a
stateful SDN data plane which reduces the overall traffic in the network as opposed
to a single-state approach.

In Chapter 2, we focus on the east-west interface between distributed SDN
controllers. We begin by emphasizing the importance of the inter-controller traffic
exchanged among the controllers. The inter-controller traffic is used to maintain a
logically centralized view of the network by making the controllers consistent with
each other. For this thesis, we utilize ONOS as the distributed SDN controller. ONOS
includes distributed data stores, which are replicated among all the controllers in a
cluster using the inter-controller traffic. Specifically, we investigate the contribution
to the inter-controller traffic due to the network state, i.e. the topology, flows
and the host store. The topology store is made consistent using an anti-entropy
protocol; where we experimentally demonstrate that the inter-controller traffic due
to the topology store increases linearly as a function of the data plane switches
and links. Since it is based on the anti-entropy protocol which generates periodic

134 Conclusion

traffic, the inter-controller remains increased due to the addition of switches/links.
We empirically derive the bandwidth equation for a 2-controller and 3-controller
scenario which can be used to compute the amount of traffic between the controllers,
based on the number of switches and links in the network topology. The methodology
used to derive the throughput equation can be applied to any number of controllers.
We then investigated the impact of the OpenFlow based flow rules on the inter-
controller traffic. When ONOS detects a change in the flow table of the device, it
sends a replica of the entire flow table of the device to its first slave controller, which
generates a considerable amount of traffic. We reported the maximum inter-controller
traffic generated due to some commercial OpenFlow switches due to the flow store
updates for OpenFlow 1.0 and OpenFlow 1.3. We then assess the impact of host
store on the inter-controller traffic, where the host store is made consistent among
the controllers using a strongly-consistent RAFT consensus protocol. This traffic is
event-driven and exchanged only when there is an addition/removal of hosts. We
provide minimum and maximum bounds on the amount of inter-controller traffic
generated due to the addition of a host per RAFT partition, independently from
the number of controllers in a cluster. Based on these results, a network designer
can carefully design and dimension the network infrastructure which carries the
inter-controller traffic.

In Chapter 3, we focus on the south-bound interface of the SDN controller
while targeting software-defined elastic optical networks. We propose utilizing the
south-bound extensions of OpenFlow and NETCONF protocols which consist of
time-synchronized operations to perform lightpath reassignment while reducing the
disruption time. We begin by highlighting an end-of-line scenario in elastic optical
networks, where the rerouting of lightpaths is inevitable, in order to cater a new light-
path request. The lightpath rerouting can be done either in an Asynchronous (ASY)
approach or using Time-Synchronized Operations (TSO), where we advocate that
TSO reduces the lightpath disruption time. TSO involves simultaneous operations on
optical nodes using timestamps within the south-bound protocols. This is possible
in OpenFlow which natively supports bundling multiple operations to be executed
at a given time. However NETCONF, even though having the ability to execute
operations at a particular time, needs an intelligent agent to execute simultaneous
operations. We analytically depict the performance of TSO vs ASY, and show that
TSO reduces lightpath disruption by a minimum of 75% as compared to the ASY
approach. The analytical performance is followed by an experimental validation

135

of TSO in a five-node metropolitan optical network test-bed, while assuming an
end-of-line scenario. An initial state and the final state of the network is compared
for both ASY and TSO approach in terms of the OSNR, power budget and spectrum
tilt which very close for both approaches.

In Chapter 4, we focus on the north-bound interface of the SDN controller
to provision network connectivity between VNFs as a part of a network service
orchestrated by a Management and Network Orchestration (MANO) system. We
present work conducted for inter and intra-domain network orchestration. For the
inter-domain orchestration, we discuss the 5G UK Exchange (5GUKEx), which
is a lightweight network service orchestration platform. Different operators can
integrate their ETSI-based MANO system to 5GUKEx. They expose their network
services, and 5GUKEx acting as a broker, performs multi-operator network service
instantiation and interconnects the VNF chain in different administrative domains
using its inter-domain connectivity infrastructure. 5GUKEx being a lightweight
platform, only performs network service orchestration and leaves the computationally
intensive resource orchestration to the local operators; in this way the operators do
not need to expose their network infrastructure while preserving their confidentiality.
Furthermore, we experimentally demonstrate the scalability of the 5GUKEx by
emulating operator MANO systems. For the intra-domain orchestration, we extended
the ETSI-compliant Open Source MANO with a Transport-API (T-API) based WIM
connector. This allows OSM to orchestrate network services with VNFs running on
multiple PoPs. Here, we connect the VNFs using a heterogeneous network based
on packet and optical switches. The WAN Infrastructure Manager (WIM) utilizes a
T-API based north-bound API to interconnect the VNFs.

In Chapter 5, we focus on the stateful data planes in the context of SDN. Stateful
data planes consist of data plane switches which maintain some state of the network.
We emphasize that a stateful data plane improves the reactivity for network appli-
cations, and avoids the latency overhead caused by the interaction with an SDN
controller. We discuss the limitation of SNAP, a previous contribution in the case of
stateful data planes, and our system of replicated states improves upon what SNAP
offers. SNAP introduces a platform which decides the placement of state variables
in the network, and routing flows to traverse the required states. However, SNAP
allows only one unique position per state variable in the network. Our approach
instead, advocates for replicas of the state variable in the network, while catering
for the synchronization between them. In this way, the overall traffic in the network

136 Conclusion

is reduced and there is a better balance of traffic. Our work consists of an ILP
formulation of the optimal placement of state replicas and routing of flows through
the closest state copy. Furthermore, we present a simple heuristic for the placement
of state copies based on a graph-partitioning method. The heuristic performs well,
having an approximation ratio always ≤ 1.15 for smaller network topologies. For
larger topologies, we observe significant decrease of traffic for 2 copies as compared
to a single state variable copy. Moreover, we present an asymptotic analysis to derive
an equation to compute the number of copies required for an unwrapped Manhattan
topology, under certain conditions.

In summary, we presented innovative work using all the interfaces of an SDN
controller; where we analyzed the east-west interface traffic and provided novel
applications utilizing the south-bound and north-bound interface. Also, we presented
the concept of replicated states in a stateful SDN data plane.

Appendix A

Stateful replication ILP model

A.1 Computational complexity

Here, we discuss the computational complexity to solve the ILP model shown in
Sec. 5.3. The complexity to solve an ILP model is O(22v+2

d) [114], which can be
simplified to O(256vd); where v is the number of variables and d is the number of
constraints.

Number of variables

The variables in this case will be derived from Table 5.2. For R f he, the size of set H f

is shown in (A.1), ∀ f ∈F .

|H f |= ∏
s∈S f

Cs (A.1)

Hence, the variables and their quantity is shown in Table A.1. Similarly, the
number of constraints is shown in Table A.2.

The total number of variables using Table A.1 is shown in (A.2).

v = (|E|+1) ∑
f∈F

∏
s∈S f

Cs +N

(
|S|+∑

s∈S
Cs

)
+2N2|E||S| (A.2)

138 Stateful replication ILP model

Table A.1: Number of output variables

Variable Quantity

R f he |E| ∑
f∈F

∏
s∈S f

Cs

R̂snme |E||S|N2

Pscn N ∑
s∈S

Cs

Pf sce |E| ∑
f∈F

∑
s∈S f

Cs

X f h ∑
f∈F

∏
s∈S f

Cs

Usn |S|N
Ysnme |E||S|N2

Assume all flows f ∈F require all state variables s ∈ S, and each state variable
s has C copies. Furthermore, the maximum number of both edges E and flows F is
N(N−1). Using this information, v in (A.2) is upper bounded by:

v≤ N2C|S|+N(|S|+ |S|C)+2N2 ·N2|S| (A.3)

Neglecting terms, (A.3) grows as:

O(N2C|S|, |S|N4) (A.4)

Number of constraints

The total number of constraints using Table A.2 is shown in (A.5).

d = 2|F |+ |E|+[N +1+ |E|(N−1)] ∑
f∈F

∏
s∈S f

Cs +(N +1)∑
s∈S

Cs

+(N +1) ∑
f∈F
|S f −1|∏

s∈S f

Cs +N(N−1)|S|(7+2|E|) (A.5)

Using the same assumptions to derive (A.3), the number of constraints in (A.5)
is upper bounded by:

A.1 Computational complexity 139

Table A.2: Number of constraints

Constraint equation Quantity

(5.3) ∑
f∈F

∏
s∈S f

Cs

(5.4) |F |
(5.5) |F |
(5.6) |E|
(5.7) ∑

f∈F
∏

s∈S f

Cs

(5.8) ∑
s∈S

Cs

(5.9) (N−2) ∑
f∈F

∏
s∈S f

Cs

(5.10) |E| ∑
f∈F

∏
s∈S f

Cs

(5.11) (N−2)|E| ∑
f∈F

∏
s∈S f

Cs

(5.12) ∑
f∈F

∏
s∈S f

Cs

(5.13) N ∑
f∈F
|S f −1| ∏

s∈S f

Cs

(5.14) ∑
f∈F
|S f −1| ∏

s∈S f

Cs

(5.15) N ∑
s∈S

Cs

(5.16) 2N(N−1)|E||S|
(5.19) N(N−1)|S|
(5.20) N(N−1)|S|
(5.21) N(N−1)|S|
(5.22) 2N(N−1)|S|
(5.23) 2N(N−1)|S|

d ≤ 2N2 +N2 +
[
N +1+N2 (N−1)

]
C|S|+(N +1)C|S|

+(N +1)|S|C|S|+N(N−1)|S|(7+2N2) (A.6)

Neglecting smaller terms and constants in (A.6):

3N2 +N3C|S|+N|S|C|S|+ |S|N4 (A.7)

Further simplifying and neglecting smaller terms, (A.7) grows as:

140 Stateful replication ILP model

O(N|S|C|S|, |S|N4) (A.8)

Using (A.4) and (A.8), the complexity of ILP model is:

O(256max(N2C|S|,|S|N4) ·max(N|S|C|S|, |S|N4)) (A.9)

In case there is only one state variable required by all the flows, (A.9) simplifies
below:

O(256N4
N4) (A.10)

References

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Veríssimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-Defined Networking: A Comprehen-
sive Survey. Proceedings of the IEEE, 103(1):14–76, Jan 2015.

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Computer Communi-
cation Review, 38(2):69–74, March 2008.

[3] ONOS website. https://wiki.onosproject.org. Accessed: 17-12-2018.

[4] OpenDaylight website. https://www.opendaylight.org. Accessed: 17-12-2018.

[5] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network Configu-
ration Protocol (NETCONF). RFC 6241, RFC Editor, June 2011.

[6] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In ACM SIGCOMM Computer
Communication Review, 2013.

[7] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, and G. Bianchi.
Implementing advanced network functions for datacenters with stateful pro-
grammable data planes. In 2017 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), pages 1–6, June 2017.

[8] M. Agiwal, A. Roy, and N. Saxena. Next Generation 5G Wireless Networks: A
Comprehensive Survey. IEEE Communications Surveys Tutorials, 18(3):1617–
1655, 2016.

[9] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider. NFV and SDN—Key
Technology Enablers for 5G Networks. IEEE Journal on Selected Areas in
Communications, 35(11):2468–2478, November 2017.

[10] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network Function Virtualization: State-of-the-Art and Research Challenges.
IEEE Communications Surveys Tutorials, 18(1):236–262, 2016.

https://wiki.onosproject.org
https://www.opendaylight.org

142 References

[11] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker. SNAP:
Stateful Network-Wide Abstractions for Packet Processing. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 29–43, 2016.

[12] A. Panday, C. Scotty, A. Ghodsiy, T. Koponen, and S. Shenker. CAP for
networks. In HotSDN, pages 91–96. ACM, 2013.

[13] S. Vissicchio, L. Vanbever, and O. Bonaventure. Opportunities and research
challenges of hybrid software defined networks. ACM SIGCOMM Computer
Communication Review, 44(2):70–75, April 2014.

[14] ONOS 1.4 Wiki. https://wiki.onosproject.org/display/ONOS14/Wiki+Home.
Accessed: 17-12-2018.

[15] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv. Control plane of software defined
networks: A survey. Computer Communications, 67:1 – 10, 2015.

[16] P. Bailis and A. Ghodsi. Eventual Consistency Today: Limitations, Extensions,
and Beyond. Queue, 11(3):20:20–20:32, March 2013.

[17] E. Brewer. CAP twelve years later: How the “rules” have changed. Computer,
45(2):23–29, February 2012.

[18] Downloads - ONOS - Wiki. https://wiki.onosproject.org/display/ONOS/
Downloads. Accessed: 17-12-2018.

[19] D. Ongaro and J. Ousterhout. In Search of an Understandable Consensus
Algorithm. In USENIX Annual Technical Conference, pages 305–319, 2014.

[20] Linux Containers. https://linuxcontainers.org. Accessed: 17-12-2018.

[21] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765–1775, 2011.

[22] ONOS Distributed Flow Rule Store. https://github.com/opennetworkinglab/
onos/blob/onos-1.8/core/store/dist/src/main/java/org/onosproject/store/flow/
impl/DistributedFlowRuleStore.java. Accessed: 17-12-2018.

[23] OpenFlow 1.0 (Wire Protocol 0x01) specification. https://www.
opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf.
Accessed: 17-12-2018.

[24] OpenFlow 1.3 (Wire Protocol 0x04) specification. https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf. Accessed: 17-12-
2018.

[25] M. Kuźniar, P. Perešíni, and D. Kostić. What You Need to Know About SDN
Flow Tables. In Passive and Active Measurement, pages 347–359, 2015.

https://wiki.onosproject.org/display/ONOS14/Wiki+Home
https://wiki.onosproject.org/display/ONOS/Downloads
https://wiki.onosproject.org/display/ONOS/Downloads
https://linuxcontainers.org
https://github.com/opennetworkinglab/onos/blob/onos-1.8/core/store/dist/src/main/java/org/onosproject/store/flow/impl/DistributedFlowRuleStore.java
https://github.com/opennetworkinglab/onos/blob/onos-1.8/core/store/dist/src/main/java/org/onosproject/store/flow/impl/DistributedFlowRuleStore.java
https://github.com/opennetworkinglab/onos/blob/onos-1.8/core/store/dist/src/main/java/org/onosproject/store/flow/impl/DistributedFlowRuleStore.java
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

References 143

[26] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievskiy, M. Zhuy,
R. Ramanathany, Y. Iwataz, H. Inouez, T. Hamaz, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, pages 351–364, 2010.

[27] L.Schiff, S. Schmid, and P. Kuznetsov. In-Band Synchronization for Dis-
tributed SDN Control Planes. SIGCOMM Computer Communication Review,
46(1):37–43, January 2016.

[28] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani. On the
Feasibility of a Consistent and Fault-Tolerant Data Store for SDNs. In 2013
Second European Workshop on Software Defined Networks, pages 38–43,
October 2013.

[29] K. Phemius, M. Bouet, and J. Leguay. DISCO: Distributed multi-domain SDN
controllers. In 2014 IEEE Network Operations and Management Symposium
(NOMS), pages 1–4, May 2014.

[30] F. Benamrane, F. J. Ros, and M. B. Mamoun. Synchronisation cost of multi-
controller deployments in software-defined networks. International Journal
of High Performance Computing and Networking, 9(4):291–298, 2016.

[31] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone. Scalabil-
ity of ONOS Reactive Forwarding Applications in ISP Networks. Computer
Communications, 102(C):130–138, April 2017.

[32] J. P. Fernandez-Palacios, V. López, B. Cruz, and O. G. de Dios. Elastic Optical
Networking: An Operators Perspective. In 2014 The European Conference
on Optical Communication (ECOC), pages 1–3, 2014.

[33] A. Lord, P. Wright, and A. Mitra. Core Networks in the Flexgrid Era. Journal
of Lightwave Technology, 33(5):1126–1135, March 2015.

[34] J. Zhang, Y. Ji, M. Song, Y. Zhao, X. Yu, J. Zhang, and B. Mukherjee.
Dynamic Traffic Grooming in Sliceable Bandwidth-Variable Transponder-
Enabled Elastic Optical Networks. Journal of Lightwave Technology,
33(1):183–191, January 2015.

[35] ITU-T. G.694.1: Spectral grids for WDM applications: DWDM frequency
grid. https://www.itu.int/rec/t-rec-g.694.1, 2012. Accessed: 17-12-2018.

[36] J. L. Vizcaíno, Y. Ye, V. López, F. Jiménez, R. Duque, and P. M. Krummrich.
Cost evaluation for flexible-grid optical networks. In 2012 IEEE Globecom
Workshops, pages 358–363, December 2012.

[37] X. Yu, M. Tornatore, Ming Xia, Yongli Zhao, Jie Zhang, and B. Mukherjee.
Brown-Field Migration from Fixed Grid to Flexible Grid in Optical Networks.
In Optical Fiber Communication Conference, page W1I.4, 2015.

https://www.itu.int/rec/t-rec-g.694.1

144 References

[38] V. López, O. González de Dios, L. M. Contreras, J. Foster, H. Silva, L. Blair,
J. Marsella, T. Szyrkowiec, A. Autenrieth, C. Liou, A. Sasdasivarao, S. Syed,
J. Sun, B. Rao, F. Zhang, and J. P. Fernández-Palacios. Demonstration of
SDN Orchestration in Optical Multi-Vendor Scenarios. In Optical Fiber
Communication Conference, page Th2A.41, 2015.

[39] M. Cantono, R. Gaudino, and V. Curri. Potentialities and criticalities
of flexible-rate transponders in dwdm networks: A statistical approach.
IEEE/OSA Journal of Optical Communications and Networking, 8(7):A76–
A85, July 2016.

[40] A. Giorgetti, F. Paolucci, F. Cugini, and P. Castoldi. Dynamic restoration
with GMPLS and SDN control plane in elastic optical networks [Invited].
IEEE/OSA Journal of Optical Communications and Networking, 7(2):A174–
A182, February 2015.

[41] M. Bjorklund. YANG - A Data Modeling Language for the Network Configu-
ration Protocol (NETCONF). RFC 6020, October 2010.

[42] M. Dallaglio, N. Sambo, J. Akhtar, F. Cugini, and P. Castoldi. YANG Model
and NETCONF Protocol for Control and Management of Elastic Optical
Networks. In Optical Fiber Communication Conference, page W3F.5, 2016.

[43] J. Akhtar. YANG modeling of network elements for the management and
monitoring of Elastic Optical Networks. In IEEE International Conference
on Telecommunications and Photonics, pages 1–5, December 2015.

[44] M. Dallaglio, N. Sambo, F. Cugini, and P. Castoldi. Management of sliceable
transponder with NETCONF and YANG. In International Conference on
Optical Network Design and Modeling, pages 1–6, May 2016.

[45] M. Dallaglio, N. Sambo, F. Cugini, and P. Castoldi. Pre-programming re-
silience schemes upon failure through NETCONF and YANG. In Optical
Fiber Communication Conference, page W1D.3, 2017.

[46] Open ROADM Multi-Source Agreement. http://www.openroadm.org. Ac-
cessed: 17-12-2018.

[47] B. C. Chatterjee, N. Sarma, and E. Oki. Routing and Spectrum Allocation
in Elastic Optical Networks: A Tutorial. IEEE Communications Surveys
Tutorials, 17(3):1776–1800, 2015.

[48] F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi,
N. Sambo, L. Poti, and P. Castoldi. Push-Pull Defragmentation Without
Traffic Disruption in Flexible Grid Optical Networks. Journal of Lightwave
Technology, 31(1):125–133, January 2013.

[49] R. Proietti, C. Qin, B. Guan, Y. Yin, R. P. Scott, R. Yu, and S. J. B. Yoo.
Rapid and complete hitless defragmentation method using a coherent RX LO
with fast wavelength tracking in elastic optical networks. Optics Express,
20(24):26958–26968, November 2012.

http://www.openroadm.org

References 145

[50] R. Wang and B. Mukherjee. Provisioning in Elastic Optical Networks
with Non-Disruptive Defragmentation. Journal of Lightwave Technology,
31(15):2491–2500, August 2013.

[51] S. Ba, B. C. Chatterjee, S. Okamoto, N. Yamanaka, A. Fumagalli, and E. Oki.
Route Partitioning Scheme for Elastic Optical Networks with Hitless Defrag-
mentation. IEEE/OSA Journal of Optical Communications and Networking,
8(6):356–370, June 2016.

[52] T. Mizrahi and Y. Moses. Time4: Time for SDN. IEEE Transactions on
Network and Service Management, 13(3):433–446, September 2016.

[53] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár. Challenges and
solution for measuring available bandwidth in software defined networks.
Computer Communications, 99:48–61, February 2017.

[54] Y. Li, N. Hua, Y. Song, S. Li, and X. Zheng. Fast Lightpath Hopping Enabled
by Time Synchronization for Optical Network Security. IEEE Communication
Letters, 20(1):101–104, January 2015.

[55] A. S. Muqaddas, M. G. Alabarce, P. Giaccone, and A. Bianco. Exploiting
Time-Synchronized Operations in Software-defined Elastic Optical Networks.
In Optical Fiber Communication Conference, page W4J.6, March 2017.

[56] A. Bravalheri, M. G. Alabarce, A. S. Muqaddas, P. Giaccone, and A. Bianco.
Experimental validation of time-synchronized operations for software-defined
elastic optical networks. IEEE/OSA Journal of Optical Communications and
Networking, 10(1):A51–A59, January 2018.

[57] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. RSVP-
TE: Extensions to RSVP for LSP Tunnels. RFC 3209, December 2001.

[58] T. Mizrahi and Y. Moses. Time Capability in NETCONF. RFC 7758, RFC
Editor, February 2016.

[59] M. Garrich, A. Bravalheri, M. Magalhães, M. Svolenski, Xue Wang, Y. Fei,
A. Fumagalli, D. Careglio, J. Solé-Pareta, and J. Oliveira. Demonstration
of dynamic traffic allocation in an SDN-enabled metropolitan optical net-
work test-bed. In International Conference on Optical Network Design and
Modeling, pages 1–6, May 2016.

[60] ONF. OpenFlow Switch Specification, Version 1.5.2 (Wire Protocol 0x06).
Technical report, 2015.

[61] A. Shakeri, X. Wang, M. Razo, A. Fumagalli, M. G. Alabarce, E. Oki, and
N. Yamanaka. Estimating the effect of Wavelength Selective Switch latency
on optical flow switching performance. In IEEE International Conference on
High Performance Switching and Routing, pages 1–6, June 2017.

146 References

[62] T. Mizrahi and Y. Moses. ReversePTP: A Software Defined Networking
Approach to Clock Synchronization. In Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14, pages 203–204,
2014.

[63] Calient MEMS-based optical switches. http://www.calient.net. Accessed:
17-12-2018.

[64] Polatis MEMS-based optical switches. http://www.polatis.com. Accessed:
17-12-2018.

[65] A. Bierman, M. Bjorklund, and K. Watsen. Restconf protocol. RFC 8040,
RFC Editor, January 2017.

[66] Y. Fei, A. Fumagalli, M. Garrich, B. Sarti, U. Moura, N. G. González, and
J. Oliveira. Estimating EDFA output power with an efficient numerical model-
ing framework. In 2015 IEEE International Conference on Communications
(ICC), pages 5222–5227, June 2015.

[67] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstrac-
tions for Network Update. In SIGCOMM’12, pages 323–334, August 2012.

[68] T. Mizrahi, E. Saat, and Y. Moses. Timed Consistent Network Updates. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, pages 21:1–21:14, 2015.

[69] M. Zhang, C. You, and Z. Zhu. On the Parallelization of Spectrum Defragmen-
tation Reconfigurations in Elastic Optical Networks. IEEE/ACM Transactions
on Networking, 24(5):2819–2833, October 2016.

[70] NGMN Alliance. NGMN 5G white paper. Technical report, 2015.

[71] 5GPPP. 5G Vision. https://5g-ppp.eu/wp-content/uploads/2015/02/
5G-Vision-Brochure-v1.pdf. Accessed: 01-10-2018.

[72] ETSI. ETSI, “Network Functions Virtualisation (NFV); Management and
Orchestration” ETSI GS NFV-MAN 001 (V1.1.1). Technical report, 2014.

[73] ETSI OSM. OSM. https://osm.etsi.org. Accessed: 01-10-2018.

[74] Open Baton community. Open Baton: An extensible and customizable NFV
MANO-compliant. http://openbaton.github.io. Accessed: 01-10-2018.

[75] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Martrat,
M. S. Siddiqui, S. van Rossem, W. Tavernier, and G. Xilouris. DevOps for
network function virtualisation: an architectural approach. Transactions on
Emerging Telecommunications Technologies, 27(9):1206–1215.

[76] ONAP Community. ONAP Architecture Overview. http://www.onap.org.
Accessed: 01-10-2018.

http://www.calient.net
http://www.polatis.com
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
https://osm.etsi.org
http://openbaton.github.io
http://www.onap.org

References 147

[77] C. J. Bernardos, B. P. Gerö, M. Di Girolamo, A. Kern, B. Martini, and
I. Vaishnavi. 5GEx: realising a Europe-wide multi-domain framework for
software-defined infrastructures. Transactions on Emerging Telecommunica-
tions Technologies, 27(9):1271–1280, 2016.

[78] A. Francescon, G. Baggio, R. Fedrizzi, E. Orsini, and R. Riggio. X-MANO:
An open-source platform for cross-domain management and orchestration.
In 2017 IEEE Conference on Network Softwarization (NetSoft), pages 1–6,
2017.

[79] D. Gkounis, N. Uniyal, A. S. Muqaddas, R. Nejabati, and D. Simeonidou.
Demonstration of the 5GUK Exchange: A Lightweight Platform for Dy-
namic End-to-End Orchestration of Softwarized 5G Networks. In European
Conference on Optical Communication (ECOC), page TuDS.14, 2018.

[80] Corsa DP2100. https://www.corsa.com/products/dp2100/. Accessed: 20-01-
2019.

[81] CirrOS. CirrOS in Launchpad. https://launchpad.net/cirros. Accessed: 01-10-
2018.

[82] J. G. Herrera and J. F. Botero. Resource Allocation in NFV: A Comprehensive
Survey. IEEE Transactions on Network and Service Management, 13(3):518–
532, 2016.

[83] Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016-2021.
Technical report, 2018.

[84] Metro-Haul EU Project. https://metro-haul.eu. Accessed: 17-12-2018.

[85] D. King, A. Farrel, and N. Georgalas. The role of SDN and NFV for flexible
optical networks: Current status, challenges and opportunities. In 2015 17th
International Conference on Transparent Optical Networks (ICTON), pages
1–6, July 2015.

[86] R. Casellas, R. Martìnez, R. Vilalta, and R. Muñoz. Control, Management,
and Orchestration of Optical Networks: Evolution, Trends, and Challenges.
Journal of Lightwave Technology, 36(7):1390–1402, April 2018.

[87] V. Lopez, R. Vilalta, V. Uceda, A. Mayoral, R. Casellas, R. Martìnez,
R. Muñoz, and J. P. Fernandez Palacios. Transport API: A Solution for
SDN in Carriers Networks. In ECOC 2016; 42nd European Conference on
Optical Communication, pages 1–3, 2016.

[88] OIF-ONF. SDN Transport API Interoperability Demonstra-
tion. https://www.opennetworking.org/wp-content/uploads/2017/02/
OIF-ONF-2016-SDN-T-API-Interop-Demo-whitepaper.pdf, 2017. Accessed:
17-12-2018.

[89] ONF. Open Disaggregated Transport Neworks ODTN project. https://wiki.
onosproject.org/display/ODTN/ODTN. Accessed: 17-12-2018.

https://www.corsa.com/products/dp2100/
https://launchpad.net/cirros
https://metro-haul.eu
https://www.opennetworking.org/wp-content/uploads/2017/02/OIF-ONF-2016-SDN-T-API-Interop-Demo-whitepaper.pdf
https://www.opennetworking.org/wp-content/uploads/2017/02/OIF-ONF-2016-SDN-T-API-Interop-Demo-whitepaper.pdf
https://wiki.onosproject.org/display/ODTN/ODTN
https://wiki.onosproject.org/display/ODTN/ODTN

148 References

[90] ETSI. NFV; Ecosystem; Report on SDN Usage in NFV Architectural Frame-
work - ETSI GS NFV-EVE 005 (V1.1.1), 2015.

[91] ONF. TAPI Reference Implementation). https://github.com/
OpenNetworkingFoundation/TAPI. Accessed: 17-12-2018.

[92] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-
defined networking. IEEE Communications Magazine, 51(2):136–141, 2013.

[93] A. Bianco, P. Giaccone, S. Kelki, N. M. Campos, S. Traverso, and T. Zhang.
On-the-fly traffic classification and control with a stateful SDN approach. In
2017 IEEE International Conference on Communications (ICC), pages 1–6,
May 2017.

[94] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E. Li,
and M. Thottan. Measuring Control Plane Latency in SDN-enabled Switches.
In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, pages 25:1–25:6, 2015.

[95] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani, D. Daly, M. Hira, and
B. Davie. In-band Network Telemetry (INT), 2016.

[96] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, and G. Bianchi.
LODGE: LOcal Decisions on Global statEs in programmable data planes.
In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 257–261, June 2018.

[97] J. McClurg, H. Hojjat, N. Foster, and P. Černý. Event-driven network pro-
gramming. SIGPLAN Notices, 51(6):369–385, June 2016.

[98] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and Run-time
System for Network Programming Languages. SIGPLAN Notices, 47(1):217–
230, January 2012.

[99] L. Lamport. Paxos made simple. ACM Sigact News, 2001.

[100] K. Birman. The promise, and limitations, of gossip protocols. ACM SIGOPS
Operating Systems Review, 41(5):8–13, 2007.

[101] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free repli-
cated data types. In Symposium on Self-Stabilizing Systems, pages 386–400.
Springer, 2011.

[102] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou: replicated
database services for world-wide applications. In Proceedings of the 7th work-
shop on ACM SIGOPS European workshop: Systems support for worldwide
applications, pages 275–280. ACM, 1996.

[103] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming.
Springer Publishing Company, Incorporated, 2015.

https://github.com/OpenNetworkingFoundation/TAPI
https://github.com/OpenNetworkingFoundation/TAPI

References 149

[104] S. E. Schaeffer. Survey: Clustering. Computer Science Review, 1(1):27–64,
August 2007.

[105] K. Ruddel and A. Raith. Graph partitioning for network problems. In Joint
NZSA ORSNZ Conference, number 107, pages 1–10, 2013.

[106] CPLEX Optimizer. https://www.ibm.com/analytics/data-science/
prescriptive-analytics/cplex-optimizer. Accessed: 17-12-2018.

[107] Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’
networks. nature, 393(6684):440, 1998.

[108] B. Gaboune, G. Laporte, and F. Soumis. Expected distances between two uni-
formly distributed random points in rectangles and rectangular parallelpipeds.
Journal of the Operational Research Society, 44(5):513–519, 1993.

[109] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De Meer,
and Xavier Hesselbach. Virtual network embedding: A survey. IEEE Commu-
nications Surveys & Tutorials, 15(4):1888–1906, 2013.

[110] S. Luo, H. Yu, and L. Vanbever. Swing State: Consistent Updates for Stateful
and Programmable Data Planes. In Proceedings of the Symposium on SDN
Research, SOSR ’17, pages 115–121, 2017.

[111] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. OpenState: Program-
ming Platform-independent Stateful Openflow Applications Inside the Switch.
SIGCOMM Computer Communication Review, 44(2):44–51, April 2014.

[112] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet Transactions: High-Level
Programming for Line-Rate Switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, pages 15–28, 2016.

[113] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:
Consensus at Network Speed. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15, pages
5:1–5:7, 2015.

[114] Nimrod Megiddo. Linear programming in linear time when the dimension is
fixed. Journal of the ACM, 31(1):114–127, January 1984.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

	Contents
	Acronyms
	1 Introduction
	1.1 Software Defined Networking
	1.1.1 SDN Architecture Overview
	1.1.2 Benefits and Applications

	1.2 Structure of thesis
	1.2.1 Inter-controller traffic in distributed ONOS controllers
	1.2.2 Time-Synchronized Operations for Software-defined Elastic Optical Networks
	1.2.3 Inter and intra-domain network service orchestration
	1.2.4 Replicated states in stateful data plane

	I Control Plane in SDN
	2 Inter-controller traffic in distributed ONOS controllers
	2.1 Motivation
	2.1.1 Our contributions
	2.1.2 Organization of the chapter

	2.2 Distributed SDN controllers
	2.2.1 CAP theorem
	2.2.2 Consistency in distributed SDN controllers
	2.2.3 Distributed ONOS

	2.3 Methodology for inter-controller traffic analysis
	2.3.1 Implementation approaches for consistency models

	2.4 Distributed Topology Store
	2.4.1 Transient behavior in the linear topology with 2 controllers
	2.4.2 Scenario with 2 controllers
	2.4.3 Scenario with 3 controllers
	2.4.4 Inter-controller traffic in real ISP topologies

	2.5 Distributed Flow Store
	2.5.1 Experimental methodology
	2.5.2 Experimental results

	2.6 Distributed Host Store
	2.6.1 Methodology
	2.6.2 Experimental results for 2 controllers
	2.6.3 Experimental results for 3 controllers

	2.7 Related work
	2.8 Summary

	3 Time-synchronized operations for software-defined elastic optical networks
	3.1 Motivation
	3.1.1 Our contributions
	3.1.2 Organization of the chapter

	3.2 An end-of-line scenario: non-continuous vacant FS
	3.3 Time-synchronized operations for EON
	3.4 Analytical evaluation of TSO
	3.5 Experimental validation of TSO
	3.5.1 Optical network test-bed overview
	3.5.2 Experimental setup
	3.5.3 Experimental results and discussion

	3.6 Related work
	3.6.1 Time-synchronized operations in Electronic Packet Networks
	3.6.2 Time synchronized operations in optical networks
	3.6.3 Discussion of TSO in SDN

	3.7 Summary

	4 Inter-domain and intra-domain network service orchestration
	4.1 Introduction
	4.2 5G UK Exchange: Light-weight inter-domain network orchestrator
	4.2.1 Motivation
	4.2.2 Multi-Domain Orchestration: State of the Art
	4.2.3 5GUK Exchange Architecture
	4.2.4 Inter-island Network Service Deployment Procedure
	4.2.5 Implementation and Performance Evaluation
	4.2.6 Conclusions and Future Work

	4.3 VNF Chaining across Multi-PoPs in OSM using Transport API
	4.3.1 Introduction
	4.3.2 T-API as WIM North-bound API
	4.3.3 Architecture for WIM Integration in NFV MANO
	4.3.4 Implementation and Experimental Demonstration
	4.3.5 Conclusion and Future Work

	4.4 Summary

	II Stateful Data Planes
	5 Replicated states in stateful data planes
	5.1 Introduction
	5.1.1 Organization of the chapter

	5.2 State replication in stateful SDN
	5.2.1 Stateful data planes
	5.2.2 SNAP programming abstraction
	5.2.3 State replication

	5.3 Optimal state replication problem
	5.3.1 Constraints in the optimization problem
	5.3.2 Computational complexity

	5.4 Approximation algorithm for single state replication
	5.4.1 Performance comparison

	5.5 Asymptotic analysis for unwrapped Manhattan topology
	5.5.1 Methodology
	5.5.2 Results

	5.6 Related work
	5.7 Summary

	6 Conclusion
	Appendix A Stateful replication ILP model
	A.1 Computational complexity

	References

