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ABSTRACT

In quantum mechanics, the eigenvalues and their corresponding probabilities specify the expectation value of a
physical observable, which is known to be a statistical property related to large ensambles of particles. In contrast
to this paradigm, we demonstrate a unique method allowing to extract the expectation value of a single particle,
namely, the polarisation of a single protected photon, with a single experiment. This is the first realisation of
quantum protective measurements.

Keywords: foundations of quantum mechanics, quantum optics, quantum metrology, single photons, expecta-
tion value, protective measurements

1. INTRODUCTION

Despite its success in predicting experimental results, there is no consensus about the foundations of quantum
mechanics.1–8

In this framework, measurement plays an undisputed and fundamental role,9 since it’s the process in which
some of the distinctive traits of the quantum world with respect to the classical one appear, e.g. the collapse
of quantum states due to a strong (projective) measurement. This collapse causes the impossibility to measure
non-commuting observables onto the same quantum state. In the last decades, new quantum measurement
paradigms emerged, e.g. weak measurement, introduced in10,11 and firstly realized in,12–14 in which the coupling
strength between quantum state and measurement system is weak enough to prevent the quantum state collapse
at the cost of extracting only a small amount of information from a single measurement. Weak measurements
outcomes can be ”anomalous” (imaginary and/or unbounded) values, being the imaginary part related to the
disturbance of the measuring pointer during the measurement.15 This behavior inspired significant analysis on
quantum measurement and its meaning,16–19 foundational problems,20 macrorealism21 and contextuality.22,23

In quantum metrology and quantum technologies development, they allow high-precision measurements (at
least in presence of specific noises24), as the tiny spin Hall effect14 or small beam deflections,25 and quantum states
characterisation.26 In addition, the absence of wave function collapse in weak measurements allows performing
sequential measurements of non-commuting observables onto the same quantum state.27

A second example of innovative measurement paradigm is represented by Protective Measurement. Orig-
inally proposed within the debate on the reality of the wave function,28 Protective Measurement was deeply
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studied in many theoretical works29–34 and recently realized for the first time.35 It links the weak interaction
typical of weak measurements with some protection mechanism of the measured state. Although a hot debate
topic from the quantum foundations perspective,36–43 protective measurements have demonstrated exceptional
measurement capability, giving the possibility of extracting the quantum expectation value of an observable by a
single measurement on a single (protected) particle,35 a task forbidden in the traditional quantum measurement
framework. Indeed, complete description of a quantum system allows predicting just the (eigen)values spectrum
and related probabilities for the measurement as outcomes of a measured observable. To each observable A and
quantum state |ψ〉 we can associate a definite number, called expectation value: 〈A〉 = 〈ψ|A |ψ〉 =

∑
i piai,

where pi is the probability to obtain the outcome ai as a result of the measurement of A. The expectation
value is a statistical property of the system, meaning that it can be extracted only by repeated measurements
over an ensamble of identical systems. Here, we show that, in some special cases, the expectation value can
be extracted by performing only a single measurement, thanks to the measurement procedure called protective
measurement.28,44

2. THEORY

Let us suppose that we want to measure the expectation value of an observable A. To do so, we use the von
Neumann protocol, in which measuring an observable A in a state |ψ〉 requires an interaction Hamiltonian

Hint = gA⊗ P (1)

that couples the measured system to the measuring device by means of the coupling constant g, where P is the
momentum conjugate to the pointer variable Q releated to the device. The initial distribution of our system
with respect to the pointer Q is φ0(q) = e−q/2σ. In the traditional projective measurement framework, the final
pointer state is in a superposition of φi(q) = φ0(q − gai) wavefuncions, with ai being the eigenvalues of A. For
strong interactions (g/σ >> 1), the eigenstates of A are distinguishible, thus it is possible to statistically obtain
the expectation value of A ( 〈A〉 =

∑
i piai, being pi the ratio of ai outcomes obtained).

Things change when protective measurements45 are involved. They combine a weak von Neumann coupling46

(g/σ << 1) to a “protection” mechanism preserving state from (small) decoherence due to the von Neumann
interaction. Such protection can be implemented by means of an adiabatic potential (passive protection), when
the state is in a nondegenerate energy eigenstate,47 or via quantum Zeno effect (active protection).48 In the
second case, the protection consists of a projection onto the initial state |ψ〉 in cascade to the weak interaction,
i.e.:

Πψ = |ψ〉〈ψ| (2)

this leads us to:

|ψ〉 〈ψ|exp (−iHint)|ψ〉 |φ(q)〉 ≈ |ψ〉 |φ(x− g 〈A〉)〉 (3)

for g/σ << 1.

Hence, the expectation value of the measured observable can be extracted directly from a measurment of the
pointer. Furthermore, the measured state |ψ〉 is not changed by the protective measurement procedure.49

In the following, we experimentally demonstrate how protective measurements allow to obtain 〈A〉 not as a
statistical average, but as a reading of a measurement device coupled to a single system.

2.1 Our implementation

In our experiment, we produce single photons prepared in the quantum states |ψ(θ)〉 = cos(θ) |H〉 + sin(θ) |V 〉,
where H(V ) is the horizontal(vertical) polarisation. In our scheme, we want to measure the expectation value
of the polarisation A = |H〉〈H| − |V 〉〈V | of these single photons.

Our implementation of protective measurement consists in a series of weak von Neumann couplings, in which
the polarisation A is weakly coupled to the transverse momentum P of the photon, each followed by the protection
Πψ.



Without protections, we can imagine this procedure as an optical Stern-Gerlach experiment50 in whichK weak
interactions result into a strong interaction (with strenght g′ = Kg), completely separating the two polarisation
components. In this case, the expectation value of the polarisation is calculated with the statistical formula:

〈A〉 =
NH −NV
NH +NV

(4)

where NH(V ) is the number of counts observed in the region corresponding to the horizontal(vertical) polarisation.

On the other hand, when the active protection carried out by the projector Πψ is implemented, the combined
effect of theK steps of weak interaction and protection causes a shift of the pointer proportional to the expectation
value of the polarisation 〈A〉. For this reason, the expectation value can be extracted from the position of each
photon impinging on the measurement device:

〈A〉 =
x− x0
a

(5)

with a = g′/2 and x0 = xH+xV

2 , being xH (xV ) the center of the horizontally-(vertically-)polarised photon
distribution in the non-proteted case.

While, in the non-protected case, the expectation value can be extracted statistically only by measuring an
ensamble of identical photons, in the protected case each photon carries information about the expectation value
of its polarisation, allowing to extract the polarisation expectation value even by a single experiment on a single
photon.

(a) Stern-Gerlach like measurements: the photons fall
in one of the two regions corresponding to the H and V
polarisations.

(b) Protective measurements: the photons fall in region
whose center is located proportionally to the expectation
value of the polarization.

Figure 1: Projective vs protective measurement

3. EXPERIMENT

3.1 Setup

The experimental setup (Fig.2)can be divided in two part: the single photon generation stage and the preparation
and measurement stage. In the first one, a Ti:Sapphire mode-locked laser at 796 nm, frequency-doubled by
second armonic generation (SHG), enters a LiIO3 non-linear crystal, where type-I parametric down-conversion
occurs.51 This way, we obtain a heralded single photon source52 in which an idler photon (λi = 920 nm),
properly filtered and coupled to a single mode fiber (SMF), heralds the presence of its correlated signal photon
(λs = 702 nm). Such heralded photon is filtered, SMF-coupled and addressed to the preparation and measurement
stage. Here, the single photon is collimated in a gaussian spatial distribution and then prepared in the polarisation
|ψ(θ)〉 = cos(θ) |H〉 + sin(θ) |V 〉 by a polarising beam splitter followed by a half-wave plate. The protective
measurement protocol is realised by K interaction-protection steps. In our implementation, the weak interaction
is performed by a pair of thin birefringent crystals: the first one creates a small shift between the two orthogonal
polarisation components, while the second one compensates the phase and the temporal walk-off introduced by
the first crystal. The protection, instead, is carried by a thin-film polariser projecting the single photon onto the
initial state |ψ(θ)〉. Ideally, protective measurements are composed of an infinite number of steps, i.e. K →∞.



Figure 2: Experimental setup

In our experiment we implement K = 7 interaction-protection steps, the maximun number allowed by our setup
limitations. At the end of these steps, the photons are detected by a spatial-resolving single-photon detector,
i.e. a prototype array of 32× 32 SPADs53(Single-Photons Avalanche Diode).

By removing the thin-film polarisers, the effect of the birefringent crystal pairs series induce the spatial
separation between orthogonal polarisations. Thus, we can perform a traditional (projective) measurement by
counting the photons detected in the spatial-resolving detector sectors corresponding to the two polarisations.
This way, we are able to compare expectation values of A obtained with protective and projective measurements.

3.2 Results

In Fig.3 we compare the results of the two measurements protocols, each performed over the same initial polar-
isation state |ψ(17π/60)〉 = 0.629 |H〉+ 0.777 |V 〉 in a time interval of 1200 s.

Fig.s 3.a,b show the histograms of heralded photons detected with traditional measurement and protective
measurement, respectively. In Fig.s 3.c,d we can see the same distributions contour plots, in order to show the
different spatial sectors of photon-detection between projective and protective measurements.

As in a standard Stern-Gerlach experiment, in the projective case (Fig.s 3.a,c) we have two regions of photon-
detection corresponding to the possible eigenvalues of A. The experimental expectation value 〈A〉 (calculated
with (4)) from these distributions (dark counts subtracted) is 〈A17π/60〉 = −0.21(4), in agreement with the

theoretical value 〈Ath17π/60〉 = −0.208. In the protective case, we find a single photon counts distribution centered

in the position corresponding to the expectation value 〈A17π/60〉 = −0.19(2), in ageement both with the teoretical
value and the projective one.

This result shows that, with protective measurements, it is possible to extract the expectation value of the
measured observable even by performing a single experiment on a single (protected) quantum system. This
property clearly emerges when looking at Fig.s 4.a,b, reporting the results obtained with the two measurement
techniques in a few photons experiment (N = 17 detections for the protective measurement, and N = 14 for the
projective one).

In Fig. 4.a is shown the projective case. The red circles represent the FWHM (Full Width at Half Maximum)
of the two distributions in Fig.s 3.a,c. The first detected photon in the run is signified with a yellow pixel.

In Fig. 4.b (protective case), photons are detectected close to the position corresponding to 〈A〉 (despite the
non-negligible dark count level of our non-ideal SPAD array, likely responsible for the detection events outside
the circles). As in Fig. 4.a, the red circle is the FWHM of the distribution in Fig.s 3.b,d and the white pixel
represents the first detected photon.



(a) Projective measurement counts histogram. (b) Protective measurement counts histogram.

(c) Projective measurement contour plot. (d) Projective measurement contour plot.

Figure 3: Results of the two measurement protocols onto the initial polarisation state |ψ(17π/60)〉 .

(a) Projective case. (b) Protective case

Figure 4: Results of the two measurement protocols with few photons.



We see that, although the white pixel in Fig. 4.b provides a good estimate of 〈A〉, that cannot be said for the
white pixel of Fig. 4.a: this demonstrates the protective measurements capability of extracting the expectation
value 〈A〉 from just few detection events (even one, in the ideal case).

4. CONCLUSIONS

This is the first experimental realisation of protective measurements.35 The experiment shows that a single
photon detection can provide reliable information regarding the expectation value of the measured observable
(polarisation, in our case), supposed to be only a statistical property to be extracted from an ensemble of identical
quantum systems.
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