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1 Motivations and preliminaries

The relevance of the Poisson process in modeling random occurrences of events
in time and space in the applied sciences is well-known. In fact, it is widely
used for a good compromise between realistic representation of the phenomena
and mathematical tractability of the model. The Poisson process also satis-
fies several properties and has a manageable structure that can be adapted
to more general counting models. However, it is also well known that certain
random occurrences of events in time cannot be properly described by Pois-
son processes. Indeed, in many cases the assumption of independence between
increments is not realistic at all, as well as the assumption of memoryless prop-
erty for the time intervals between occurrences. In particular, the assumption
of finite expectations of these random intervals should be rejected in many
disciplines, like, e.g., in software reliability or in earth sciences (climatology,
hydrology, etc). For this reasons, several alternatives to Poisson processes may
be taken into account, even if typically certain suitable processes are less math-
ematically tractable.

Among others, a possible alternative to Poisson processes is represented by
a Mixed Poisson process, i.e. the process N = {N(t), t ∈ R+

0 } whose marginal
distributions can be expressed as

P[N(t) = k] =

∫ ∞
0

P[N (α)(t) = k] dU(α), t ∈ R+
0 , (1)

where N (α)(t), t ∈ R+
0 , is a Poisson process with intensity α, and where U(·) is

a distribution with support contained in R+ (cf. Chapter 4 of Grandell, 1997, or
Chapter 8.5 of Rolski et al., 1999). Note that here, and throughout the paper,
R+ denotes the set of strictly positive real numbers and R+

0 = R+∪{0}, while
N = {0, 1, . . .} and N+ = {1, 2, . . .}.

Specifically, if U(·) is a gamma distribution then the resulting process N
is termed binomial counting process, or Pascal process, or Pólya-Lundberg pro-
cess.

From now on we deal with the special case when U(·) = Uλ(·) is an expo-
nential distribution with mean λ ∈ R+, for which the process N will be said
a Geometric counting process with intensity λ, according to the terminology
used by Cha and Finkelstein (2013), who studied dependence properties of its
increments in the general case of non constant intensities. Note that this termi-
nology should not be confused with the notion of geometric process discussed,
for instance, in Lam (2007) and Finkelstein (2010).

The following characterization of the Geometric counting process is easy
to prove (see, e.g., Rolski et al., 1999).

Property 1 For fixed λ ∈ R+, the Geometric counting process with constant
intensity λ satisfies the following properties:

1. N(0) = 0;

2. P[N(t+s)−N(t) = k] =
1

1 + λs

(
λs

1 + λs

)k
=: pk(s), ∀ s, t ∈ R+

0 , k ∈ N.
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N(t) N(λ)(t)
Geometric counting process Poisson process

E[N(t)] λt λt
Var[N(t)] λt(1 + λt) λt

Cov[N(s), N(t)] λs(1 + λt) λs
Cov

[
N(s),

(
N(t)−N(s)

)]
λ2s(t− s) 0

r[N(s), N(t)]

√
s(1 + λt)

t(1 + λs)

√
s

t

Table 1 Results for the Geometric counting process and for the Poisson process, both with
parameter λ ∈ R+, for t, s ∈ R+, with s < t.

Since the marginal probability distribution of N is expressed as a mixture
of the distribution of the Poisson process N (α)(t) with exponential mixing
distribution, the results listed in Table 1 can be easily verified (where r[·, ·]
denotes the correlation coefficient). For suitable comparison, Table 1 also shows
the analogous results for the Poisson process N (λ)(t). We remark that the
process N is overdispersed, and that its increments are not independent but
positively correlated. Moreover, for fixed λ ∈ R+, the following asymptotic
result holds (cf. Proposition 4.2 of Grandell, 1997):

N(t)

λt

d−→ X as t→∞,

where X is exponentially distributed with mean 1, whereas for the Poisson

process one has N(λ)(t)
λt

p−→ 1 as t→∞.

Other useful properties of N will be recalled in the next section. Some of
them are similar to those satisfied by the Poisson process, with suitable math-
ematical tractability. Moreover, the inter-times of N are distributed according
to modified Pareto distributions, thus such process is appropriate to be ap-
plied in those fields where random occurrences between events have infinite
expectations, and are not independent.

The purpose of this paper is oriented toward several lines. First, we aim to
provide a brief survey of this particular family of processes, describing the re-
lated distributions and main properties, and by using a direct approach based
on the assumption of geometric distribution for the increments. We present
proofs of these properties which are alternative to those already available in
the literature. The second aim is to provide a simulation procedure for the
Geometric counting process. It will be used to obtain estimates of some in-
stances of the first-passage-time densities for the process under investigation,
whereas we provide the exact results in the presence of monotone nonincreas-
ing boundaries. The third aim is to study further characteristics, including
conditions for aging properties and stochastic comparisons of shock models
where shocks occur according to the Geometric processes. Finally, we purpose
to provide examples of applications of such processes in seismology, software
reliability, and other applied fields.
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The paper is organized as follows. In Section 2 we provide the joint dis-
tributions of the increments of the Geometric counting process, and discuss
the relevant properties of its marginal and conditional distributions, as well
as the joint distributions of arrivals and of inter-times. In Section 3 we recall
simulation procedures for the Geometric counting process. Section 4 is devoted
to analyze the first-passage-time problem of such process through two types
of boundaries: in the case of monotone nonincreasing boundaries we provide
closed-form expressions for the relevant functions, whereas in the remaining
case we estimate the first-passage-time densities via a simulation-based ap-
proach. Further characteristics, comparison results and aging properties for
compound Geometric processes and shock models based on such processes are
discussed in Sections 5 and 6. Finally, examples of applicative fields where Ge-
ometric counting processes can be used are discussed in Section 7, also with
examples of applications of the results provided in Section 6.

2 Background on useful distributions

Aiming to develop an approach in which the joint laws of the increments of the
process N follow a multivariate geometric distribution, for ease of reference
we recall here the definition of multivariate geometric distributions as stated
in Sreehari and Vasudeva (2012).

Definition 1 Let m ∈ N+. Given the set of parameters {p1, . . . , pm} satisfy-
ing pi ∈ R+, i = 1, . . . ,m and

∑m
i=1 pi < 1, the integer-valued random vector

(N1, . . . , Nm) is said to be distributed according to a Multivariate Geometric
distribution (MG distribution) with parameters p1, . . . , pm, and we will write
(N1, . . . , Nm) ∼MG(p1, . . . , pm), if, for all k1, . . . , km ∈ N,

P[(N1, . . . , Nm) = (k1, . . . , km)] =

( ∑m
i=1 ki

k1, . . . , km

) m∏
i=1

pkii

(
1−

m∑
i=1

pi

)
.

In the case m = 1 we will write N ∼ G(p) if N has geometric distribution
such that P[N = k] = p(1− p)k for all k ∈ N.

Hereafter the following notation will be used for the sets of multidimen-
sional vectors of increasing times:
Tm+1 = {(t0, t1, . . . , tm) ∈ Rm+1 : 0 ≤ t0 < t1 < . . . < tm},
T 0
m+1 = {(t0, t1, . . . , tm) ∈ Rm+1 : 0 = t0 < t1 < . . . < tm},
T +
m+1 = {(t0, t1, . . . , tm) ∈ Rm+1 : 0 < t0 < t1 < . . . < tm}.

2.1 Joint distribution of the increments

Let N = {N(t), t ≥ 0} be a Geometric counting process defined as mentioned
in the previous section. For every interval of time (t, t + s] the increments of
process N should be geometrically distributed with parameter 1

1+λs . Hence,
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one can immediately observe that, fixed m ∈ N+ and given (t0, . . . , tm) ∈
Tm+1, it should be

N(ti)−N(ti−1) ∼ G
(

1

1 + λ(ti − ti−1)

)
∀ i = 1, 2, . . . ,m,

and

N(tm)−N(t0) =

m∑
i=1

(
N(ti)−N(ti−1)

)
∼ G

(
1

1 + λ(tm − t0)

)
.

In other words, it is required for the m-dimensional random vector(
N(t1)−N(t0), N(t2)−N(t1), . . . , N(tm)−N(tm−1)

)
(2)

to have geometrically distributed margins. Moreover, the sum of two, or more,
of its components should still be geometrically distributed, with parameter
given by the sum of the corresponding parameters. Consequently, vector (2)
should have the MG distribution recalled in Definition 1, thus(
N(t1)−N(t0), N(t2)−N(t1), . . . , N(tm)−N(tm−1)

)
∼MG(p1, p2, . . . , pm)

where, with easy computations, one has that the parameters p1, p2, . . . , pm are
defined as

pi =
λ(ti − ti−1)

1 + λ(tm − t0)
, i = 1, 2, . . . ,m,

with

1−
m∑
i=1

pi =
1

1 + λ(tm − t0)
.

Hence, the following property for processes considered in Property 1 is imme-
diately proved.

Proposition 1 Given a Geometric counting process N with intensity λ ∈ R+,
the joint distribution of its increments is given by

pk(t) := P
[(
N(t1)−N(t0), N(t2)−N(t1), . . . , N(tm)−N(tm−1)

)
= k

]
=

( ∑m
i=1 ki

k1, k2, . . . , km

) ∏m
i=1

(
λ(ti − ti−1)

)ki
[1 + λ(tm − t0)]1+

∑m
i=1 ki

(3)

for all k = (k1, k2, . . . , km) ∈ Nm and t = (t0, t1, . . . , tm) ∈ Tm+1.

Remark 1 It is not hard to see that the distribution of increments for spaced
intervals of N is identical to that of contiguous intervals. Indeed, for instance
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making use of (3), for (t0, t1, t2, t3) ∈ T4 and k1, k3 ∈ N we have

P[N(t1)−N(t0) = k1, N(t3)−N(t2) = k3]

=

+∞∑
k2=0

p(k1,k2,k3)(t0, t1, t2, t3)

=

+∞∑
k2=0

(
k1 + k2 + k3
k1, k2, k3

)
(λ(t1 − t0))k1(λ(t2 − t1))k2(λ(t3 − t2))k3

[1 + λ(t3 − t0)]1+k1+k2+k3

=

(
k1 + k3
k1

)
(λ(t1 − t0))k1(λ(t3 − t2))k3

[1 + λ(t3 − t0)]1+k1+k3

+∞∑
k2=0

(
k1 + k2 + k3

k2

)
(λ(t2 − t1))k2

[1 + λ(t3 − t0)]k2

=

(
k1 + k3
k1

)
(λ(t1 − t0))k1(λ(t3 − t2))k3

[1 + λ((t3 − t2) + (t1 − t0))]1+k1+k3
,

where use of the following binomial formula has been made:

+∞∑
r=0

(
r + k

r

)
xr =

(
1

1− x

)k+1

, |x| < 1; k ∈ N.

The following general formula for the distribution of the increments of N for
spaced intervals can be proved or by reasoning as above, or by making use of
Eq. (3) in Sreehari and Vasudeva (2012). For it, let (t0, t1, . . . , t2m+1) ∈ T2m+2

and (k1, . . . , km) ∈ Nm. Then:

P[N(t2i+1)−N(t2i) = ki, i = 1, 2, . . . ,m]

=

( ∑m
i=1 ki

k1, k2, . . . , km

) ∏m
i=1[λ(t2i+1 − t2i)]ki[

1 + λ[
∑m
i=1(t2i − t2i−1)]

]1+∑m
i=1 ki

. (4)

For the joint distribution of the process at different times, from (3) it is
easy to verify that given a Geometric counting process with intensity λ ∈ R+,
for all (t0, t1, . . . , tm) ∈ Tm+1 and all integers 0 ≤ k0 ≤ k1 ≤ . . . ≤ km we have

P
[
N(t0) = k0, N(t1) = k1, . . . , N(tm) = km

]
=

(
km

k0, k1 − k0, . . . , km − km−1

)∏m
i=1

(
λ(ti − ti−1)

)ki−ki−1

[1 + λtm]1+km
.

For instance, as immediate consequence of the above expression one obtains
the results for N(t) shown in Table 1.

2.2 Distribution of arrivals and inter-times

Let Ti, i ∈ N+, denote the arrival times of a Geometric counting process N,
and let Xi = Ti − Ti−1, i ∈ N+, be the inter-times, with T0 = 0. Explicit
expressions for the joint density of the arrival times and of the corresponding

6



inter-times are described hereafter. (See also Rolski et al., 1999, where some
of the following expressions are provided.)

From Property 1 it is immediate to observe that the univariate distribution
of Ti, i ∈ N+, is given by

FTi(t) := P[Ti ≤ t] = P[N(t) ≥ i] =

(
λt

1 + λt

)i
, t ∈ R+

0 , (5)

with probability density function

fTi(t) = i

(
λt

1 + λt

)i−1
λ

(1 + λt)2
, t ∈ R+

0 . (6)

Concerning the vector Tm = (T1, T2, . . . , Tm), one can immediately obtain
that, for (t1, t2, . . . , tm) ∈ Tm, it holds

FTm(t1, t2, . . . , tm) = P[T1 > t1, T2 > t2, . . . , Tm > tm]

= P[N(t1) = 0, N(t2) ≤ 1, . . . , N(tm) ≤ m− 1]

=
∑

(k1,k2,...,km)∈A

pk(0, t1, t2, . . . , tm), (7)

where probabilities pk(t) are defined in (3), while A is the set

A =
{

(k1, k2, . . . , km) ∈ Nm :

r∑
i=1

ki ≤ r − 1, ∀ r = 1, 2, . . . ,m
}
. (8)

Proposition 2 For all t = (t1, . . . , tm) ∈ Rm such that 0 < t1 < . . . < tm we
have

fTm(t) =
m! λm

[1 + λtm]m+1
≡ m!

(tm)m
pm(tm), (9)

whereas fTm(t) = 0 otherwise.

We remark that the joint density of Tm has been provided in Albrecht
(2006) and references therein. A different approach finalized to compute the
density (9) is proposed in Appendix A, and involves the survival function (7).

Recalling that, for x1, . . . , xm ∈ R+
0 ,

fXm(x1, x2, . . . , xm) = fTm(x1, x1 + x2, . . . , x1 + x2 + . . .+ xm),

from (9) one immediately obtains the joint density of the vector Xm = (X1, X2,
. . . , Xm) of the inter-times of the counting process N as given in McFadden
(1965), for x1, . . . , xm ∈ R+

0 :

fXm(x1, x2, . . . , xm) =
m! λm

[1 + λ
∑m
i=1 xi]

m+1
≡ m!

(tm)m
pm

( n∑
i=1

xi

)
. (10)

Note that the function pm(·) used in the last terms of (9) and (10) corre-
sponds to the geometric probability mass introduced in point 2 of Property 1.
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Making use of (10) we get the marginal density for all inter-times Xi,

fXi(x) =
λ

(1 + λx)2
, x ∈ R+

0 , i ∈ N. (11)

We recall that a random variable Y is said to have a Pareto (Type I) distri-
bution with parameters α, β ∈ R+, shortly Y ∼ Pareto(α, β), if it has density

fY (y) =
βαβ

yβ+1
, y ∈ (α,∞).

Hence, from density (11) it is not hard to see that Xi has a modified Pareto
distribution, in the sense that

Xi =st
Y − 1

λ
(12)

where Y ∼ Pareto(1, 1), and =st means equality in law.
It is worth pointing out that, due to (11), the inter-times of the Geometric

counting process N have non-finite expectations.
Counting processes with inter-times having Pareto distributions or, more

generally, non-finite expectations, have been applied in a variety of fields of en-
gineering and environmental sciences. For example, applications may be found
in geophysics (see Benson et al., 2007), in climatology (Lavergnat and Golé,
1998), in network modeling (see, e.g., Cai and Eun, 2009, or Gordon, 1995),
in modeling for internet traffic (see Clegg et al., 2010, and references therein).
Thus, the Geometric counting process can be proposed as a valuable alterna-
tive to the Poisson process in disciplines where exponential distribution has
been observed to be not appropriate to describe time between occurrences of
random phenomena (see, e.g., Paxson and Floyd, 1995, were critics to the ex-
ponential model are raised in the field of network models). See Pradhan and
Kundu (2016) for discrimination problems and Bayesian model selection crite-
rion for the Geometric and the Poisson distribution. We also recall Kozubowski
and Podgórski, K (2009), where can be found other references on Negative Bi-
nomial processes and a survey on techniques for simulation and estimation of
their parameters.

2.3 Conditional distributions

Since the process N has non-independent increments, one can be interested in
the relationships between each inter-time and the history of the process up to
the last arrival, i.e., in the distribution ofXm conditional onX1, X2, . . . , Xm−1,
for any m = 2, 3, . . .. Obviously, the corresponding conditional density can be
immediately obtained from Eq. (10) as follows:

fXm|X1,X2,...,Xm−1
(xm|x1, x2, . . . , xm−1) =

mλ(1 + λ
∑m−1
i=1 xi)

m

(1 + λ
∑m
i=1 xi)

m+1
, (13)
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for x1, x2, . . . , xm ∈ R+
0 . It is interesting to note that the distribution of Xm

conditional onX1, X2, . . . , Xm−1 actually depends on the sum of the past inter-
times. In fact, Mixed Poisson processes satisfy the Markov property (see, e.g.,
Grandell, 1997). Moreover, the instantaneous jump rate of N depends on time
and on the number of occurred jumps, being P[N(t+h)−N(t) |N(t) = k]/h→
(k+1)/(λ+t) as h→ 0+. Hence, recalling that Tm−1 = X1+X2+ . . .+Xm−1,
from (13) one has the conditional density:

fXm|Tm−1
(x|t) =

mλ(1 + λt)m

[1 + λ(t+ x)]m+1
, x, t ∈ R+

0 . (14)

The corresponding conditional survival function, for m ∈ N+, is:

FXm|Tm−1
(x|t) =

(
1 + λt

1 + λ(t+ x)

)m
, x, t ∈ R+

0 . (15)

From (14) and (15) we obtain the failure rate function

hXm|Tm−1
(x|t) =

fXm|Tm−1
(x|t)

FXm|Tm−1
(x|t)

=
mλ

1 + λ(t+ x)
, x, t ∈ R+

0 , (16)

which represents the intensity that the m-th inter-time of N has duration close
to x given that it is larger than x, and given that the (m−1)-th arrival occured
at time t, for m ∈ N+.

We recall that the stochastic intensity of N is provided by (see, for intance,
Aven and Jensen, 2013)

λt = lim
h→0+

P[N(t+ h)−N(t) = 1|Ft− ], t ∈ R+
0 ,

where Ft− represents the history of the process prior to time t. Clearly, λt can
be interpreted as the (conditional) expected number of increments per unit
of time at time t given the available information at that time. Since λt can
be viewed as the failure rate of [XN(t−)+1 = t− TN(t−)|TN(t−)], from (16) we
immediately get the stochastic intensity

λt =
[N(t−) + 1]λ

1 + λt
, t ∈ R+

0 , (17)

which shows how the previous history affects the occurrence of events. An
analogue expression has been obtained in Cha (2014) for Pólya processes whose
mixing variable has Gamma distribution.

Another interesting result for Geometric counting processes, corresponding
to a similar result for Poisson processes, is the following expression for the
conditional distribution of the process N. Indeed, making use of Eq. (3), for
0 < s < t and k = 0, 1, . . . , n one has (cf. Theorem 6.1 of Grandell, 1997)

P[N(s) = k|N(t) = n] =
p(k,n−k)(0, s, t)

p(n)(0, t)
=

(
n

k

)(s
t

)k (
1− s

t

)n−k
,

9



i.e., the process at time s < t, given N(t) = n, has binomial distribution with
parameters s/t and n.

Because of the lack of independence among increments, a different expres-
sion, with respect to the case of Poisson processes, is obtained when s > t. In
fact, recalling (3), for the Geometric counting process N we have, for k, n ∈ N
and 0 < t < s,

P[N(s)−N(t) = n|N(t) = k] =

(
n+ k

k

)(
1 + λt

1 + λs

)k+1(
λ(s− t)
1 + λs

)n
, (18)

which is a negative binomial distribution. Hence, the conditional mean is

E[N(s)−N(t)|N(t) = k] =
λ(s− t)
1 + λt

(k + 1), for k ∈ N, 0 < t < s.

Further generalizations of these formulas, dealing with joint distributions of
the process at different times, may be given by means of Eq. (4) and Theorem
2.5 in Sreehari and Vasudeva (2012). For example, applying Eq. (4) in Sreehari
and Vasudeva (2012) one can obtain, for k, n ∈ N, and s, t ∈ R+, s < t,

P[N(s) = n|N(t)−N(s) = k] =

(
n+ k

k

)(
1 + λ(t− s)

1 + λt

)k+1(
λs

1 + λt

)n
.

3 Simulation of Geometric counting process

In this section we discuss a simulation procedure for the Geometric counting
process.

From (14), and recalling (12), one has that the inter-times of N conditioned
on last arrivals can be represented in terms of modified Pareto distributions
as

[Xm|Tm−1 = t] =st
Ym − (1 + λt)

λ
, with Ym ∼ Pareto(1 + λt,m), (19)

for all m ∈ N+ and t ∈ R+
0 . This representation can be applied to provide a

first tool for simulations of the process, sampling from random variables having
Pareto distributions whose parameters are defined from previous sampling.
The corresponding simulation procedure is based on the fact that a random
variable Y ∼ Pareto(α, β) is generated by Y = F−1Y (U), where U is uniformly
distributed in (0, 1), and where

F−1Y (u) = α (1− u)−1/β , 0 < u < 1 (20)

is the quantile function of Y . Hence, a simulation procedure for the arrival
times T1, T2, . . . , Tn of process N can be specified as follows.
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Simulation procedure for n arrival times
1. input(λ, n)
2. T0 = 0
3. for m = 1 to n
4. begin

5. U = rand(0, 1) [[simulate an uniform variate in (0, 1)]]
6. Y = (1 + λ · Tm−1) · U−1/m [[simulate Y ∼ Pareto(1 + λTm−1,m)]]
7. X = ((Y − 1)/λ)− Tm−1 [[simulate [Xm|Tm−1]]]
8. Tm = Tm−1 +X
9. end

10. output(T1, T2, . . . , Tn)

Note that steps 6 and 7 of the simulation procedure are founded on Eqs. (20)
and (19), respectively. Simulated sample-paths of N, obtained by means of the
above sketched procedure, are provided in Fig. 1 for different values of λ.

As for the case of Poisson counting processes, is it possible to provide a
simple algorithm able to simulate Geometric counting processes by condition-
ing on the number of arrivals up to a fixed time t > 0. In fact, by making use
of the joint density of the arrivals in (42), and by conditioning with respect to
N(t) = n, it is easy to verify that for every fixed t ∈ R+ it holds

fT1|N(t)=1(u) =
1

t
, 0 ≤ u ≤ t,

or, more generally (see Theorem 6.3 of Grandell, 1997),

f(T1,...,Tn)|N(t)=n(u1, . . . , un) =

∫∞
t
f(T1,...,Tn,Tn+1)(u1, . . . , un, v)dv

P[N(t) = n]
=
n!

tn

for 0 < u1 < u2 < . . . < un < t, whereas f(T1,...,Tn)|N(t)=n(u1, . . . , un) = 0
otherwise. It means that, as for Poisson processes, the conditional distribution
of the first n arrivals of N, given that N(t) = n, is the same of the order
statistics from an n-sized sample of independent uniformly distributed random
variables having support [0, t]. Thus, simulations of Geometric processes can
be similarly provided sampling from a geometrically distributed variable at
first, and then sampling from a set of uniformly distributed random variables.

An application of the simulation procedure will be provided hereafter.

4 First-crossing-time problems

4.1 Geometric process

In this section we analyze some first-crossing-time problems for the Geometric
counting processes. Let us consider a continuous function t 7→ βk(t), where
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Fig. 1 Simulated sample-paths of N(t) stopped at the 21-th arrival time, for λ = 0.5, 1, 2,
4 (from bottom to top).

βk(t) ≥ 0 for all t ∈ R+
0 , and βk(0) = k, for a fixed k ∈ N+. We define the

first-crossing time of N through the boundary βk(t) as

Tβk = inf{t > 0 : N(t) ≥ βk(t)}. (21)

Similarly as in Proposition 7.1 of Di Crescenzo et al. (2015) we have the
following result for the survival function of (21).

Proposition 3 If βk(t) is monotone nonincreasing in t, then the first-crossing
of N through βk(t) is certain, and for all t ≥ 0

P[Tβk > t] =

bβk(t)−c∑
j=0

pj(t) = 1−
(

λt

1 + λt

)bβk(t)−c+1

, (22)

where bx−c denotes the largest integer smaller than x.

As an immediate consequence of Proposition 3 we obtain the closed-form
results concerning the first-crossing time of N through a constant boundary.
Indeed, if βk(t) = k ∈ N+, from (22) we get, for all t ≥ 0,

P[Tk > t] = 1−
(

λt

1 + λt

)k
, γk(t) =

kλktk−1

(1 + λt)k+1
, (23)

where γk(t) = −dP[Tk > t]/dt is the first-crossing-time density. It is worth
pointing out that Tk =st max{X1, . . . , Xk}, where the Xi’s are i.i.d. random
variables having Lomax distribution, i.e. P[X1 ≤ t] = λt

1+λt , t ≥ 0. Moreover,
note that Tk possesses a power-law distribution, in the sense that P[Tk > t] ∼
L(t) t−1, where L(t) is a slowly varying function, i.e. limt→∞ L(r t)/L(t) = 1
for any r > 0, so that the moments of Tk are infinite. Fig. 2 shows some plots
of the functions given in (23).

Another example concerns the linear decreasing boundary βk(t) = k − t.
Some instances of the corresponding first-crossing-time survival function are
provided in Fig. 3, obtained by means of Eq. (22).

Further instances of interest arise when the boundary βk(t) does not satisfy
the assumption of Proposition 3. In this case we estimate the first-crossing-time

12



Fig. 2 First-crossing-time survival functions given in (23), for constant boundary βk(t) = k,
with (a) k = 5 and (b) k = 10, for λ = 1, 2, 3, 5, 10 (from top to bottom). The corresponding
densities are given respectively in (c) and (d), from bottom to top near the origin.

density via histograms obtained by means of extensive simulations performed
by use of MATHEMATICA R©, resorting to the procedure exploited in Section
3. As example, we first consider the case of increasing boundary βk(t) = log(t+
1)+2. (Here and in the remainder of the paper, ‘log’ means natural logarithm.)
In this case the histograms exhibit changes of shapes for t = exp(k − 2)− 1,

with k = 3, 4, . . ., i.e., when the boundary takes integer values (see Fig. 4).
Another example deals with the periodic boundary βk(t) = log(t + 1) + 2,
where the shape of the histograms reflects the periodicity of the boundary (cf.
Fig. 5).

In all cases the obtained functions possess long tails, this being in agree-
ment with the nature of the inter-times of the Geometric counting process.

For brevity, we limit ourselves to mention that the first-passage time of N
through a linear increasing boundary can be studied by means of a renewal-
based iterative procedure, similarly as shown in Section 7.1 of Di Crescenzo et
al. (2015) for the iterated Poisson process.

13



Fig. 3 First-crossing-time survival functions (22) for the linear boundary βk(t) = k − t,
with (a) k = 5 and (b) k = 10, for λ = 1, 2, 3, 5, 10 (from top to bottom).

Fig. 4 Histogram estimating the first-crossing time density through the boundary βk(t) =
log(t + 1) + 2, for (a) λ = 1 and (b) λ = 2, obtained by 105 simulated sample paths of N.
The sample mean and sample deviation standard are (a) x = 156.9, s = 16 383.7 and (b)
x = 51.6, s = 3 037.7.

Fig. 5 As Fig. 4, for the boundary βk(t) = 2 sin(πt/5) + 7. The sample mean and sample
deviation standard are (a) x = 60.3, s = 1 686.6 and (b) x = 31.1, s = 952.3.

4.2 Compound Geometric process

First-crossing-time problems are of interest also for suitable extensions such
as the compound Geometric counting process, defined as

Z(t) =

N(t)∑
n=1

Wn, t ∈ R+
0 ,

14



where N(t) is the Geometric counting process with intensity λ, and where
{Wn}n∈N+ is assumed to be a sequence of independent absolutely continuous
random variables with support R+. Consider the first-crossing time of Z(t)
through a constant level k, namely

TZk = inf{t > 0 : Z(t) ≥ k}, k ∈ N+.

Since Z(t) has increasing trajectories, and noting that the distribution Z(t)
has an atom at 0 and an absolutely continuous component over R+, for k ∈ N+

we have

P[TZk > t] =

∫
[0,k)

dP[Z(t) ∈ dx] =

∞∑
n=0

pn(t)F
(n)
W (k), t ∈ R+

0 , (24)

where pn(t) is the distribution of N(t) ∼ G((1 + λt)−1), with F
(n)
W (k) =

P[W1 + . . .+Wn ≤ k], for n ∈ N+, and F
(0)
W (k) = 1. Hereafter we obtain closed

form expressions of the first-crossing-time survival function (24).

Example 1 Let Wn be exponentially distributed with hazard rate νn, n ∈ N+.

(a) If νn = 1, n ∈ N+, then F
(n)
W is an Erlang cumulative distribution

function, i.e. F
(n)
W (k) = 1− e−k

∑n−1
i=0 k

i/i!. Hence, from (24) we obtain

P[TZk > t] = 1− λt

1 + λt
exp

{
− k

1 + λt

}
, t ∈ R+

0 .

(b) If νn = n, n ∈ N+, then F
(n)
W follows a generalized exponential distri-

bution, i.e. F
(n)
W (k) = (1− e−k)n. In this case, due to (24) one has

P[TZk > t] =
ek

ek + λt
, t ∈ R+

0 .

Some plots of the survival function of TZk are shown in Figure 6. In both
cases the crossing occurs a.s., and TZk possesses an heavy-tailed distribution,
with E[TZk ] = +∞. Clearly, in case (b) the survival function exhibits a heavier
tail since the summands Wn are stochastically smaller and smaller as n grows.

5 Further Properties

In this section we point out further properties of Geometric counting processes,
which are of general interest in applied fields like reliability or actuarial theory.
Some of them will be applied in the sequel. In the following, given a function
g(·) defined on N, we set ∆g(n) := g(n+ 1)− g(n) for n ∈ N.

The first property deals with independent Geometric counting processes
with different intensities.
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Fig. 6 The survival function of the first-crossing times analyzed in the two cases of Example
1, for λ = 0.5, 1, 2, 5 (from top to bottom), with k = 5.

Proposition 4 Let {g(n); n ∈ N} be any sequence of real numbers. Let Nλ(t)
and Nµ(t) be two independent Geometric counting processes with intensities λ
and µ, respectively. Then, if λ, µ ∈ R+, with λ < µ, then for any fixed t ∈ R+

the following property holds:

E[g(Nµ(t))]− E[g(Nλ(t))] = E[∆g(ZNλ(t),Nµ(t))] (µ− λ)t, (25)

where ZNλ(t),Nµ(t) has the following probability distribution, for all n ∈ N,

P[ZNλ(t),Nµ(t) = n] :=
P[Nµ(t) > n]− P[Nλ(t) > n]

(µ− λ)t

=
1

(µ− λ)t

[(
µt

1 + µt

)n+1

−
(

λt

1 + λt

)n+1
]
. (26)

Proof We recall a result given in Section 7 of Di Crescenzo (1999). Let X
and Y be non-negative integer-valued random variables satisfying P[X ≥ n] ≤
P[Y ≥ n] for all n ∈ N and E(Y ) < ∞, and let Z = ZX,Y be a non-negative
integer-valued random variable having probability mass function

P[Z = n] =
P[Y > n]− P[X > n]

E(Y )− E(X)
, n ∈ N.

If E[g(X)] and E[g(Y )] are finite, then E[∆g(Z)] is finite and

E[g(Y )]− E[g(X)] = E[∆g(Z)] [E(Y )− E(X)].

Using the above result for the Geometric counting processes, with X = Nλ(t),
Y = Nµ(t) and Z = ZNλ(t),Nµ(t), t ∈ R+, the thesis thus follows.

From (26) is not hard to see that ZNλ(t),Nµ(t) has the same distribution of
Nλ(t) +Nµ(t).

A result similar to Proposition 4 can be proved by considering two inde-
pendent Geometric counting processes, with the same intensities, evaluated at
different times.
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We point out that the property stated in Proposition 4 does not hold for
the Poisson process.

Let us now deal with the notions of stochastic monotonicity and stochastic
convexity, whose definitions are recalled here (see Shaked and Shanthikumar,
1988, or Ch. 8 of Shaked and Shanthikumar, 2007, for further details, examples
and applications of these notions).

Definition 2 Let {X(θ), θ ∈ Θ} be a family of random variables, where Θ is
an ordered set. The family is said to be

– stochastically increasing, denoted {X(θ), θ ∈ Θ} ∈ SI, if E[φ(X(θ))] is
increasing in θ for all increasing functions φ;

– stochastically convex, denoted {X(θ), θ ∈ Θ} ∈ SCX, if E[φ(X(θ))] is
convex in θ for all convex functions φ;

– stochastically increasing and convex, denoted {X(θ), θ ∈ Θ} ∈ SICX, if
{X(θ), θ ∈ Θ} ∈ SI and E[φ(X(θ))] is increasing convex in θ for all in-
creasing convex functions φ.

Hereafter we show that Geometric counting processes satisfy the above
recalled notions. To this purpose, here and in the following we denote by
Nλ(t) the process at fixed time t, when it is appropriate to emphasize the
dependence on parameter λ ∈ R+.

Proposition 5 For any fixed t ∈ R+ the Geometric counting process Nλ(t)
satisfies the following properties:
(a) {Nλ(t), λ ∈ R+} ∈ SI;
(b) {Nλ(t), λ ∈ R+} ∈ SCX;
(c) {Nλ(t), λ ∈ R+} ∈ SICX.

Proof We recall that for any fixed t ∈ R+ one has Nλ(t) ∼ G
(

1
1+λt

)
, this

easily implying that Nλ(t) is increasing in λ in the usual stochastic order (see
Definition 3(ii) below), so that statement (a) holds.

The proof of (b) can be obtained from Proposition 4, by assuming that the
function g(·) in (25) is convex, and thus ∆g(·) is increasing. It thus follows
that the mean E[∆g(ZNλ(t),Nµ(t))] is increasing in λ and µ. Hence, due to (25)
we have that E[g(Nλ(t))] is convex in λ ∈ R+ for all convex functions g and
for any fixed t ∈ R+. This shows that {Nλ(t), λ ∈ R+} is stochastically convex
in λ ∈ R+ for any fixed t ∈ R+.

From point 2 of Property 1, for any fixed t ∈ R+ and for all k ∈ N one
has

∑∞
`=k P[Nλ(t) ≥ `] = (λt)k(1 + λt)1−k, this being an increasing convex

function in λ ∈ R+. The proof of the statement (c) thus follows from Theorem
8.A.10(a) of Shaked and Shanthikumar (2007).

Various applications of Proposition 5 will be given in Section 6.

The next property of Geometric counting processes concerns the total posi-
tivity of its distribution and of its integral over (0, t). Recall that a nonnegative
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measurable function h(x, y) is said to be Totally Positive of order 2 (shortly,
TP2) in (x, y) ∈ X × Y, with X ⊆ R and Y ⊆ R, if∣∣∣∣h(x1, y1) h(x1, y2)

h(x2, y1) h(x2, y2)

∣∣∣∣ ≥ 0 for every x1 ≤ x2 and y1 ≤ y2.

See, e.g., Joag-Dev et al. (1995) for further details. For the sake of simplicity, we
remind here the basic composition property for TP2 functions (Karlin, 1968),
which asserts that the bivariate measurable function

h(x, y) =

∫
Θ

φ(x, θ)ψ(θ, y)dθ

satisfies TP2 if both φ and ψ are TP2 (in (x, θ) and (θ, y), respectively).

The following result will be used in the proof of Theorem 5 to obtain various
stochastic comparisons.

Proposition 6 For a Geometric counting process N, both functions pk(t) =

P[N(t) = k] and
∫ t
0
pk(s) ds =

∫ t
0
P[N(s) = k] ds are TP2 in (t, k) ∈ R+

0 ×N+.

Proof Let 0 ≤ s ≤ t and 0 ≤ k1 ≤ k2. It is easy to see that∣∣∣∣pk1(s) pk2(s)
pk1(t) pk2(t)

∣∣∣∣ =
( λt

1 + λt

)k1( λs

1 + λs

)k1[( λt

1 + λt

)k2−k1
−
( λs

1 + λs

)k2−k1]
≥ 0

where the inequality is due to monotonicity of x/(1+x) in x ≥ 0. Hence, pk(t)
is TP2 in (t, k). Concerning the second assertion, it follows from the basic
composition property of TP2 functions, just observing that∫ t

0

pk(s) ds =

∫ ∞
0

1[0,t](s)pk(s) ds,

where 1[0,t](s) = 1 if s ∈ [0, t] and it vanishes otherwise, so that it is TP2 in
(s, t).

Remark 2 From point 2 of Property 1, with a direct calculation it can be
verified that for any k ∈ N one has:∫ t

0

pk(s) ds = t
(λt)k

k + 1
2F1(k + 1, k + 1; k + 2;−λt), t ∈ R+

0 ,

where

2F1(a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!

is the Gauss hypergeometric Function, and (a)n is the Pochhammer symbol.
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6 Comparison results and aging properties

In many applied probability contexts, such as reliability or actuarial theory,
counting processes are often considered to model occurrences of shocks or
claims. In this section, we provide some applications in these fields of the prop-
erties listed in previous sections, dealing with comparisons of random quanti-
ties and lifetimes modeled through Geometric counting processes. To this aim,
hereafter we recall various useful definitions of aging properties, stochastic or-
ders and related notions (see, e.g. Shaked and Shanthikumar, 2007). Note that
prime (′) means derivative, and the terms decreasing and increasing are used
in non-strict sense.

Definition 3 (i) Let X be an absolutely continuous random variable with
support R+, having differentiable probability density function f(x), cumula-
tive distribution function F (x) = P(X ≤ x), survival function F (x) = 1−F (x),
and failure rate function hX(x) = f(x)/F (x). We say that X is

– increasing (decreasing) likelihood ratio, in short ILR (DLR), if f(x) is
log-concave (log-convex) or, equivalently, if f ′(x)/f(x) is decreasing (in-
creasing) in x ∈ R+;

– increasing (decreasing) failure rate, in short IFR (DFR), if F (x) is log-
concave (log-convex) or, equivalently, if hX(x) is increasing (decreasing) in
x ∈ R+;

– increasing (decreasing) failure rate in average, in short IFRA (DFRA), if
− 1
x logF (x) is increasing (decreasing) in x ∈ R+;

– new (worst) better than used, in short NBU (NWU), if F (x + t) ≤ (≥)
F (x)F (t) for all x, t ∈ R+.

(ii) Moreover, if Y is an absolutely continuous random variable with support
R+, having differentiable probability density function g(x), cumulative distri-
bution function G(x), survival function G(x), hazard rate function hY (x) =
g(x)/G(x), and reversed hazard rate function rY (x) = g(x)/G(x), then we say
that X is smaller than Y

– in the likelihood ratio order, denoted by X ≤lr Y , if f(x)g(y) ≥ f(y)g(x)
for all x < y, with x, y ∈ R+;

– in the hazard rate order, denoted by X ≤hr Y , if G(x)/F (x) is increasing
in x ∈ R+, or, equivalently, if hX(x) ≥ hY (x) for all x ∈ R+;

– in the reversed hazard rate order, denoted by X ≤rh Y , if G(x)/F (x) is
increasing in x ∈ R+, or, equivalently, if rX(x) ≤ rY (x) for all x ∈ R+;

– in the usual stochastic order, denoted byX ≤st Y , if F (x) ≤ G(x) ∀ x ∈ R+

or, equivalently, if E[φ(X)] ≥ E[φ(Y )] for all increasing functions φ for
which the expectations exist;

– in the increasing convex order, denoted by X ≤icx Y , if
∫∞
x
F (y)dy ≤∫∞

x
G(y)dy ∀ x ∈ R+ or, equivalently, if E[φ(X)] ≥ E[φ(Y )] for all increas-

ing and convex functions φ for which the expectations exist;
– in the increasing concave order, denoted by X ≤icx Y , if

∫ x
0
F (y)dy ≤∫ x

0
G(y)dy ∀ x ∈ R+ or, equivalently, if E[φ(X)] ≥ E[φ(Y )] for all increasing

and concave functions φ for which the expectations exist;
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– in the mean inactivity time order, denoted by X ≤mit Y , if
∫ x
0
F (y)dy/∫ x

0
G(y)dy is increasing in x ∈ R+, or, equivalently, if E[x −X|X ≤ x] ≥

E[x− Y |Y ≤ x] for all x ∈ R+.

(iii) Let (X1, X2) and (Y1, Y2) be random vectors with joint distribution func-
tions F and G, respectively, and suppose that F and G have the same uni-
variate marginals. If F (x1, x2) ≤ G(x1, x2) for all x1, x2 ∈ R, then we say that
(X1, X2) is smaller than (Y1, Y2) in the PQD (positive quadrant dependent)
order, denoted by (X1, X2) ≤PQD (Y1, Y2).

The notions in point (i) of Definition 3 are listed from the stronger to the
weaker. Moreover, for the stochastic orders given in (ii) similar definition can
be provided in the case of integer-valued variables X and Y . We also recall
that among these orders the following implications hold:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icx Y,

X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤icv Y ⇒ X ≤mit Y.

Also note that the likelihood ratio order is one of the strongest stochastic orders
considered in the literature to compare non negative random variables (see,
e.g., Shaked and Shanthikumar, 2007, for details, properties and applications
of stochastic orders in general).

The first application of the results stated previously and pointed out in this
section follow from (14) and (15), and deals with comparisons among inter-
times of the Geometric counting process. Recalling the failure rate (16) and the
stochastic intensity (17) we can easily see that [Xm|Tm−1 = t] is increasing in
t and is decreasing in m according to the hazard rate order. However, hereafter
we shall prove that such monotonicity properties hold even for the stronger
likelihood ratio order.

Proposition 7 For all m = 2, 3, . . . the m-th inter-time of process N is in-
creasing in the last arrival according to the likelihood ratio order, i.e.,

[Xm|Tm−1 = t1] ≤lr [Xm|Tm−1 = t2] for 0 ≤ t1 ≤ t2.

Proof From (14) we have that the ratio fXm|Tm−1
(x|t1)/fXm|Tm−1

(x|t2) is de-

creasing in x ∈ R+
0 , for all t1 ≤ t2. The proof thus follows from the definition

of the likelihood ratio order.

We remark that, since the likelihood ratio order implies the usual stochastic
order, as a corollary of Proposition 7 one can obtain Theorem 1 of Cha and
Finkelstein (2013).

Let us now consider two further comparison results involving the likelihood
ratio order. The proofs are similar to that of Proposition 7, thus are omitted.

Proposition 8 The conditional inter-times Xm of process N are decreasing
in m according to the likelihood ratio order, i.e., for fixed t ∈ R+

0 ,

[Xm|Tm−1 = t] ≥lr [Xm+1|Tm = t] for m = 2, 3, . . . . (27)
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It should be pointed out that Proposition 8 strengthens the well known
fact that Pólya-Lundberg processes satisfy the positive contagion property,
i.e., that the stochastic inequality (27) holds for the usual stochastic order ≥st

(see, e.g., Rolski et al., 1999).

In the following proposition we write X
(λ)
m to emphasize the dependence

on parameter λ.

Proposition 9 For all m = 2, 3, . . . the m-th inter-time of process N is de-
creasing in λ ∈ R+ according to the likelihood ratio order, i.e., for fixed t ∈ R+

0 ,

[X(λ1)
m |Tm−1 = t] ≥lr [X(λ2)

m |Tm−1 = t] for 0 < λ1 ≤ λ2.

Remark 3 We remark that the density of arrival times Ti in (6) is TP2 in
(i, t) ∈ N+ × R+

0 . The proof is similar to that of Proposition 6. Moreover, for
i = 1 such density is DLR, i.e., it satisfies negative aging, whereas for i ≥ 2 it
is not ILR neither DLR, having reversed bathtube failure rate. Furthermore,
for all i ∈ N+ the density fTi(t) is DRFR, as one can easily verify.

Hereafter, we provide some applications of Proposition 5 of interest in
insurance contexts, where total claim amounts are considered, or in reliability,
where cumulative damage shock models are used to describe accumulated wear
along time. To this aim, given a family of random variables {Wj , j ∈ N+}, for
any fixed t ∈ R+ let us consider the compound sum

Sλ(t) =

Nλ(t)∑
j=1

Wj , λ ∈ R+. (28)

Moreover, for fixed t ∈ R+ we denote by SΛ(t) the mixture of Sλ(t) with
respect to a given random variable Λ taking values in R+, so that P[SΛ(t) ∈
B] =

∫
R+ P[Sλ(t) ∈ B] dFΛ(λ) for any Borel set B. The first immediate ap-

plication of Proposition 5 provides simple comparison criteria among random
sums defined as in (28) when the corresponding mixing random parameters
are stochastically ordered.

Theorem 1 Let {Wj , j ∈ N+} be a family of i.i.d. random variables that are
independent from Nλ(t), for any fixed t ∈ R+ and λ ∈ R+. Given two random
variables Λ1 and Λ2 both taking values in R+, one has:

Λ1 ≤st [≤cx,≤icx] Λ2 ⇒ SΛ1
(t) ≤st [≤cx,≤icx] SΛ2

(t) ∀ t ∈ R+.

Proof From Proposition 5 and use of Theorems 1.A.6, 3.A.21 and 4.A.18 in
Shaked and Shanthikumar (2007) one has NΛ1(t) ≤st [≤cx,≤icx] NΛ2(t). The
proof of the assertion immediately follows recalling the closure property under
random sums for these stochastic orders (see Theorems 1.A.4, 3.A.13 and 4.A.9
in Shaked and Shanthikumar, 2007, respectively).
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An example of application of Theorem 1 is provided in Section 7.4 below.
The previous statement can be generalized by introducing dependence

among the counting process and the summands. In this case, given now a
family of random variables {Wλ,j , j ∈ N+}, for any fixed t ∈ R+ let us define
the compound sum

Zλ(t) =

Nλ(t)∑
j=1

Wλ,j , λ ∈ R+. (29)

Moreover, for fixed t ∈ R+ we denote by ZΛ(t) the mixture of Zλ(t) with
respect to a given random variable Λ taking values in R+. Note that for the
random sum ZΛ(t), defined as in (29), it is not assumed independence be-
tween number of summands and summands, because of the common random
parameter Λ. Thus these sums can be used to model, for example, total claim
amounts where both number of claims and their values can depend on a com-
mon random environment.

Theorem 2 For all λ ∈ R+, let {Wλ,j , j ∈ N+} be a family of i.i.d. random
variables that are independent from Nλ(t), for any fixed t ∈ R+. Moreover,
assume that for all j ∈ N+ the family {Wλ,j , λ ∈ R+} is increasing in λ ∈ R+

in the usual stochastic order. Given two random variables Λ1 and Λ2 both
taking values in R+, one has:

Λ1 ≤st Λ2 ⇒ ZΛ1
(t) ≤st ZΛ2

(t) ∀ t ∈ R+.

Proof Due to Proposition 5 we have that Nλ(t) is increasing in λ in the usual
stochastic order, for any fixed t ∈ R+. Moreover, by assumptions {Wλ,j , λ ∈
R+} is increasing in λ ∈ R+ in the usual stochastic order for all j ∈ N+.
Hence, recalling (29), Theorem 1.A.4 of Shaked and Shanthikumar (2007)
implies that, for any fixed t ∈ R+, Zλ(t) is increasing in λ ∈ R+ in the usual
stochastic order, too. The thesis then follows from Theorem 1.A.6 of Shaked
and Shanthikumar (2007).

To provide a result similar to Theorem 2 concerning comparisons in the in-
creasing convex, let us now recall the statement of Corollary 3.3 of Fernández-
Ponce et al. (2008) for the case of one-dimensional form of parameters.

Lemma 1 Consider the family of random variables defined by the compound
sum Zλ =

∑Nλ
j=1Wλ,j, λ ∈ R+, and let the following assumptions hold:

i) for all λ ∈ R+, the sequence {Wλ,j , j ∈ N} is formed by independent random
variables, that are independent from the random variable Nλ;
ii) {Wλ,j , λ ∈ R+} ∈ SICX, for all j ∈ N+;
iii) {Nλ, λ ∈ R+} ∈ SICX;
iv) the sequence {Wλ,j , j ∈ N} is increasing in the usual stochastic order, i.e.
Wλ,j ≤Wλ,k for all j, k ∈ N with j ≤ k, for any λ ∈ R+.

Then, given two random variables Λ1 and Λ2 both taking values in R+, one
has:

Λ1 ≤icx Λ2 ⇒ ZΛ1 ≤icx ZΛ2 ,

where ZΛi denotes the mixture of Zλ with respect to Λi, for i = 1, 2.
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By applying Lemma 1, the following statement easily follows from Propo-
sition 5. We remark that various examples of families of random variables
possessing the SICX property are provided in Chapter 8 of Shaked and Shan-
thikumar (2007).

Theorem 3 Under the same assumptions of Theorem 2, let {Wλ,j , λ ∈ R+} ∈
SICX for all j ∈ N+. Then, given two random variables Λ1 and Λ2 both taking
values in R+, one has:

Λ1 ≤icx Λ2 ⇒ ZΛ1
(t) ≤icx ZΛ2

(t) ∀ t ∈ R+.

Proof Under the given assumptions, we have that the hypothesis i), ii) and iv)
of Lemma 1 are satisfied. Moreover, due to point (c) of Proposition 5 we have
that {Nλ(t), λ ∈ R+} ∈ SICX for any fixed t ∈ R+, and thus the assumption
iii) of Lemma 1 holds. Hence, the thesis follows from Lemma 1.

The comparison results shown in Theorems 2 and 3 are concerning com-
pound sums of the form (29), where both the random summands and the
random number of terms depend on the same parameter λ ∈ R+. Hereafter
we deal with the case in which the parameters of the considered variates are
different, but not independent. Specifically, for any fixed t ∈ R+, let us now
consider the compound sum

Z(λ,θ)(t) =

Nλ(t)∑
j=1

Wθ,j , λ, θ ∈ R+,

where, for all θ ∈ R+, {Wθ,j , j ∈ N+} is a family of random variables that
does not depend on λ. The following statement shows that, whenever the
parameters λ and θ describing the environmental conditions are random, then
the compound sum Z increases in the increasing convex order as the positive
dependence among the two parameters increases in terms of the PQD order.

Theorem 4 For all j ∈ N+, let {Wθ,j , θ ∈ R+} ∈ SI. Then, given two bivari-
ate random vectors (Λ1, Θ1) and (Λ2, Θ2), both taking values in (R+)2, one
has:

(Λ1, Θ1) ≤PQD (Λ2, Θ2) ⇒ Z(Λ1,Θ1)(t) ≤icx Z(Λ2,Θ2)(t) ∀ t ∈ R+,

where, for fixed t ∈ R+ we denote by Z(Λi,Θi)(t) the mixture of Z(λ,θ)(t) with
respect to (Λi, Θi), for i = 1, 2.

Proof We recall that, due to point (a) of Proposition 5, {Nλ(t), λ ∈ R+} ∈ SI
for any fixed t ∈ R+. Hence, the proof follows from Theorem 2.1 of Belzunce
et al. (2006).

An example of application of Theorem 4 will be provided in Section 7.4
below.

Comparison results similar to those described above and based on Proposi-
tion 5 can be proved for processes of interest in other applicative fields, such as
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in population dynamics. Consider, for example, a continuous time branching
process {Sλ(t), t ∈ R+} defined through the composition between a discrete
time Galton-Watson branching process {B(n), n ∈ N}, describing the number
of individuals in a population along generations, and a Geometric counting
process {Nλ(t), t ∈ R+} describing the sequence of random times where new
generations occur. Let D denote an integer-valued random variable having the
same distribution as the number of offsprings of an ancestor. It has been proved
(see Theorem 8.B.17 in Shaked and Shanthikumar, 2007) that {B(n), n ∈ N}
satisfies the SICX property in n if B(0) ≥ 1 a.s., D ≥ 1 a.s. and P[D > 1] > 0.
Moreover, under assumption of independence, the composition of two SICX
parametrized families mantains the SICX property (see Theorem 8.A.17 in
Shaked and Shanthikumar, 2007, for details). Thus, from Proposition 5 it fol-
lows that {Sλ(t) = B(Nλ(t)), t ∈ R+, λ ∈ R+} is SICX in λ for every fixed
value of t. Applying Theorem 4.A.18 in Shaked and Shanthikumar (2007), as
a corollary of this property one has

Λ1 ≤icx Λ2 ⇒ SΛ1
(t) ≤icx SΛ2

(t) for all t ∈ R+,

i.e., the population at any fixed time t ≥ 0 increases in increasing convex order
as the random parameter of the Geometric process increases in the increasing
convex order.

In the next results, we consider and stochastically compare two shock mod-
els with underlying the geometric counting process N, such that the survival
function of the random failure time Si is given by

F i(t) = P[Si > t] =

∞∑
k=0

P i,k pk(t), t ∈ R+
0 , i = 1, 2, (30)

where P i,k = P[Mi > k], k ∈ N, with Mi being the number of shocks causing
the failure of the ith system, i = 1, 2, and where pk(t) = P[N(t) = k] is
the geometric distribution given in point 2 of Property 1. Specifically, if ≤∗
denotes any stochastic order, we show that for the stochastic orders listed in
Definition 3 one has that if M1 ≤∗ M2 then S1 ≤∗ S2. (Note that conditions
such that M1 ≤∗ M2 are provided in Esary et al., 1973, and Pellerey, 1993). It
should be pointed out that similar results have been proved for shock models
governed by the Poisson process (see, e.g., Singh and Jain, 1989).

To this aim, first observe that the survival function of Si has the mixture
representation

F i(t) =

∫ ∞
0

F
(α)

i (t) dUλ(α), t ∈ R+
0 , i = 1, 2, (31)

where Uλ(·) is an exponential distribution with mean λ ∈ R+ and where

F
(α)

i (t) = P[S
(α)
i > t] =

∞∑
k=0

P i,k P[N (α)(t) = k], t ∈ R+
0 , i = 1, 2, (32)
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where N(α) = {N (α)(t), t ∈ R+
0 }, for α ∈ R+, is a Poisson process with

intensity α.
From (31) one immediately has that M1 ≤∗ M2 implies S1 ≤∗ S2 for

all stochastic orders which are closed under mixture. For instance, the above
implication holds for the usual stochastic order ≤st and for the increasing con-
cave order ≤icv, which are closed under mixture (cf. Shaked and Shanthiku-
mar, 2007). Incidentally, also the increasing convex order ≤icx is closed under
mixture, but in this case the result cannot be applied because its definition
involves integrals of P[N (α)(t) = k], which are divergent.

Let us now focus on stochastic orders that are not closed under mixture.

Theorem 5 Let S1 and S2 be the lifetimes of two components described as in
(30). If M1 ≤lr [≤hr,≤rhr,≤mit] M2, then S1 ≤lr [≤hr,≤rhr,≤mit] S2.

Proof First we see the proof of the statement for the case of hazard rate order
≤hr. Recall that M1 ≤hr M2 if the ratio P 1,k/P 2,k is decreasing in k ∈ N, i.e.
if P i,k is TP2 in (i, k) ∈ {1, 2} × N. Since the term pk(t) is TP2 in (k, t), by
Proposition 6, then the TP2 property of F i(t) in (i, t) follows from the basic
composition property. Thus F 1(t)/F 2(t) is decreasing in t, i.e., S1 ≤hr S2.

The proof is similar for the reversed hazard order ≤rh and the likelihood
ratio order ≤lr. For the last one, just observe that the density of Si is

fi(t) =

∞∑
k=1

pi,k fTk(t), t ∈ R+
0 , i = 1, 2,

and that fTk(t) is TP2 in (k, t).
For what concerns the mean inactivity time order ≤mit, recall that M1 ≥mit

M2 if the ratio
∑k
j=0 P1,j/

∑k
j=0 P2,j is decreasing in k ∈ N, i.e., if

∑k
j=0 Pi,j

is TP2 in (i, k) ∈ {1, 2} × N. Then observe that∫ t

0

Fi(s)ds =

∞∑
k=0

Pi,k

∫ t

0

pk(s)ds, t ∈ R+
0 , i = 1, 2,

(where the switch between integral and sum is due to finite value of the inte-

gral). Recalling that
∫ t
0
pk(s)ds is TP2 in (t, s) by Proposition 6, and observing

that it is also decreasing in k, one can prove that
∫ t
0
Fi(s)ds is TP2 in (i, t) by

applying Theorem 2.1 in Joag-Dev et al. (1995) (see also the comment in the
first lines of pag 117 in the quoted reference). The thesis then follows.

An example of application of Theorem 5 is given in Section 7.3.
One may wonder if similar results can be proved considering two shock

models governed by different counting processes, and identically distributed
numbers Mi of shocks causing the failure of components. Indeed, this is not
satisfied. First, consider the case of two Poisson processes, with intensities α1

and α2. Recalling (32), the probability density of S
(αi)
i can be expressed as a

mixture of Erlang densities:

f
(αi)
i (t) =

∞∑
k=1

pi,k f
(αi)
Tk

(t), t ∈ R+
0 , i = 1, 2, (33)
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Fig. 7 Ratio of densities (a) in (33), for α1 = 1 and α2 = 2, with pi,k given in (34), and
(b) in (35), for λ1 = 1 and λ2 = 2, with pi,k given in (34).

where T
(αi)
k ∼ Erlang(αi, k) are the arrival times of the Poisson processes,

and pi,k = P[Mi = k], k ∈ N+, for i = 1, 2.

Counterexample 1 For the shock models governed by Poisson processes, as-
sume that M1 and M2 are identically distributed, with probability distribution

pi,k = 0.1 · 1{k=1} + 0.9 · 1{k=2}, k ∈ N+, i = 1, 2. (34)

Hence, it is not hard to show that if α1 < α2 then S
(α1)
1 and S

(α2)
2 are not

ordered in the likelihood ratio ordering. Indeed, for instance, (33) yields that

the ratio of densities f
(1)
1 (t)/f

(2)
2 (t) is not monotone in t ∈ R+, as can be seen

in Figure 7(a), for instance.

The same result also holds for the shock models governed by the Geometric
counting process, as shown hereafter.

Counterexample 2 For the shock models governed by Geometric counting
processes, if M1 and M2 are identically distributed, with probability distribution
(34), and if λ1 < λ2, then the random failure times having survival functions
(30) are not ordered in the likelihood ratio ordering. Indeed, for instance, for
λ1 = 1 and λ2 = 2 the ratio of densities f1(t)/f2(t) is not monotone in t ∈ R+,
see Figure 7(b), where the density of Si is

fi(t) =

∞∑
k=1

pi,k fTi(t), t ∈ R+
0 , i = 1, 2, (35)

with pi,k = P[Mi = k], and fTi(t) given in (6).

Hereafter, we provide aging properties for the lifetimes of components de-
scribed as in (30). The proof of this statement follows from (31) and the closure
under mixture of negative aging notions (cf. Barlow and Proschan, 1981).

Theorem 6 Let S be the lifetime of a component described as in (30). If M
is DLR [DFR, DFRA, NWU], then S is DLR [DFR, DFRA, NWU].
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Year Month Day Location Latitude Longitude
1903 5 13 Italy: Palermo 38.100 13.400
1903 7 28 Italy: Northern 44.300 10.000
1905 8 26 Italy: Central 42.100 13.900
1905 9 8 Italy: Monteleone,Tropea 39.000 16.000
1906 9 17 Italy: Sicily 38.000 13.700
1907 2 21 Italy: Sicily 38.000 13.700
1907 10 23 Italy: Ferruzzano 38.133 16.017
1908 12 28 Italy: Messina, Sicily, Calabria 38.170 15.580

...
...

...
...

...
...

Table 2 First lines of the database describing the occurrences of significant earthquakes
registered in Italy in the years from 1900 to 1999 by the National Geophysical Data Center.

Remark 4 The negative aging of components whose lifetime is described as in
(30) is not surprising. In fact, in the particular case where the mixing variable
M is geometrically distributed, with parameter p ∈ (0, 1), and thus it satisfies
the non aging property, one has that the corresponding survival function and
density function result to be, respectively,

FS(t) =
1

1 + pλt
and fS(t) =

pλ

(1 + pλt)2
, t ∈ R+

0 . (36)

Note that this distribution is DLR, thus having negative aging property.

7 Applications

As mentioned in Section 2.2, the Geometric counting processes can be applied
in disciplines where inter-times between occurrences of events have infinite
expectations. In this section we provide two examples of observed occurrences
where such process seems to fit the available data in a satisfactory manner,
and thus it can be appropriately used to model the failures along time. The
first example deals with the occurrences of earthquakes in Italy, while the
second one deals with failures of an electronic switching system. Note that
many other examples of datasets can be found in the literature, where the
Geometric process fits the observed data better than the Poisson process.

7.1 An application in seismology

The raw data considered here consist in the occurrences of significant earth-
quakes registered in Italy in the years from 1900 to 1999 by the National
Geophysical Data Center of the U.S. Department of Commerce, available at
http://www.ngdc.noaa.gov/ngdc.html. The total number of relevant registered
earthquakes in the database is 113, the first lines being shown in Table 2.
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outcomes obs. freq. Geom. Poisson outcomes obs. freq. Geom. Poisson
0 43 49.9 32.3 0 13 15.3 5.2
1 29 24.9 36.5 1 8 10.6 11.8
2 14 13.2 20.6 2 12 7.4 13.3
3 7 7.0 7.8 3 6 5.1 10.0
≥ 4 7 7.9 2.8 4 5 3.5 5.7

≥ 5 6 8.0 4.0

Table 3 Observed and theoretical values of the outcomes used for the χ2 tests of goodness
of fit in the occurrences of earthquakes in Italy, with respect both to Geometric and Poisson
distributions. In the left (right) side are considered intervals of one year (two years).

Starting from the given dataset, it is possible to count the frequency of
earthquakes in each year, obtaining a sample of 100 observations from a count-
ing random variable, and then to provide an estimate of the corresponding dis-
tribution. Assuming a geometric distribution for this variable, the estimated
value for its parameter is p = 0.4695, which corresponds to λ = 1.13 for the
parameter of the Geometric counting process defined in Section 1 (using year
as time unit). A goodness of fit χ2 test for the geometric distribution gives a
p-value greater than 0.76, thus not allowing for rejection of the geometric dis-
tribution hypothesis, while the same test for the Poisson distribution gives a
p-value smaller than 0.004, this leading to rejection of the Poisson distribution
hypothesis (see the left side of Table 3, for details).

A similar analysis can be performed considering time intervals of length two
years, thus considering a number of 50 observations, and counting the number
of earthquakes in each time interval. Assuming a geometric distribution for
this variable, one obtains the estimate p = 0.3067 for the parameter p, which
corresponds, to the same parameter λ = 1.13 for the Geometric counting
process, recalling that now the width of the time interval is 2 years. The
χ2 test for the geometric distribution gives now a p-value greater than 0.27,
thus not allowing for rejection of the geometric distribution hypothesis, while
the same test for the Poisson distribution gives again a p-value smaller than
0.004, this leading again to rejection of the Poisson distribution hypothesis (see
Table 3 for details). Thus, the Geometric counting process seems to be more
appropriate than the Poisson process to describe the occurrences of significant
earthquakes in Italy in the considered time period.

The estimate of the parameter λ of the Geometric counting process can
be used to infer on further occurrences of earthquakes in the same region. For
example, considering the 5-year time interval from year 2000 to year 2004, on
the ground of the 113 earthquakes occurred from 1900 to 1999, by applying Eq.
(18) one can compute the probability of having a fixed number of earthquakes
in Italy, which is reported in Fig. 8. The corresponding expected value is 5.65.
Thus, the true value of 6 registered earthquakes occurred from 2000 to 2004
is well estimated by the Geometric counting process.
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Fig. 8 Estimated probabilities P[N(2004)−N(1999) = k|N(1999) = 113], i.e., of the num-
bers of earthquakes in Italy in years from 2000 to 2004 conditioned on the registered occur-
rences up to year 1999.

7.2 An application in software reliability

In the past decades the Poisson process has been heavily criticized for soft-
ware and electronic reliability modeling (see, e.g., Paxson and Floyd, 1995,
and references therein). The example provided here shows that the Geometric
counting process can be considered as a valid alternative to the Poisson one.
The raw data considered in this example are in the list of data sets available
at http://www.cse.cuhk.edu.hk/ lyu/book/reliability/data.html and analyzed in
Lyu (1996). Specifically, we consider here the data set SS1, describing frequen-
cies of failures of the Brazilian Electronic Switching System TROPICO R-1500
in a time interval of 81 time units (of 10 days each), 30 of them during system
validation phase, 12 during field trials, and the remaining 39 during system
operation. This set of data has been extensively considered in Chapters 10 and
11 of Lyu (1996), as a case study for software reliability growth modeling , as
well as in Bastos Martini et al. (1990) or Kanoun et al. (1991) to introduce
new techniques for software reliability evaluation.

Removing from the dataset the observations of failures referring to the
first 42 time units of system validation and field trials, thus using a set of 39
observations referring to periods of system operation, one can consider 10-day
unit-time intervals. By counting the failure frequencies in these units, we obtain
a sample of 39 observations from a discrete random variable counting the
occurrences of failures. Assuming geometric distribution for this variable, the
estimate of its parameter is p = 0.2635, which corresponds to a parameter λ =
2.7949 for the Geometric counting process defined in Section 1 (using 10 days
as unit of time). A goodness of fit χ2 test for the geometric distribution gives
a p-value greater than 0.79, thus not allowing for rejection of the geometric
distribution hypothesis, while the similar testing for the Poisson distribution
gives a p-value smaller than 0.0001, this strongly leading to rejection of the
Poisson distribution hypothesis. See the left side of Table 4 for details.

As a second step, one can consider time intervals of two units (from unit
44 to unit 81), with 19 observations. By counting the number of failures in
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outcomes obs. freq. Geom. Poisson outcomes obs. freq. Geom. Poisson
0 10 10.3 2.4 0− 2 8 7.5 1.6
1 9 7.6 6.7 3− 5 3 4.5 8.3

2− 3 7 9.7 18.0 6− 8 2 2.8 7.0
4− 5 6 5.3 9.4 9− 11 4 1.7 1.8
≥ 6 7 6.2 2.5 ≥ 12 2 1.7 0.2

Table 4 Observed and theoretical values of the outcomes used for the χ2 tests of goodness
of fit in the occurrences of failures of Switching System TROPICO R-1500, with respect
both to Geometric and Poisson distributions. In the left (right) side we consider intervals of
ten (twenty) days.

each interval, we obtain a new sample from a discrete random variable which
is assumed geometric distributed. Its parameter is estimated by p = 0.1532,
which corresponds to λ = 2.7632 for the Geometric counting process defined
in Section 1 (using 10 days as time unit, and recalling that now the time
interval is of 2 units). The χ2 test for the geometric distribution gives now
a p-value greater than 0.24, thus not allowing for rejection of the geometric
distribution hypothesis. On the contrary, by testing the Poisson distribution
the p-value is smaller than 0.0001, this strongly leading to rejection of the
Poisson distribution hypothesis (see Table 4 for details).

It is worth noting that the hypothesis of Geometric distribution can not be
rejected by considering time intervals of different length, this confirming the
goodness of fit of this model in representing the occurrences of failures along
time. It is remarkable to mention that, as observed also in Lyu (1996), the
inter-times between failures statistically increase as the failures occur (that is,
the reliability increases along time). This fact is actually coherent with the kind
of dependence described in (19), which justify that inter-times stochastically
increases as the time evolves, and as the number of observed failures increases.

7.3 An application to item’s reliability

Consider an item, or a system, that performs a task and is subject to failures
caused by shocks arriving according to a Geometric process N with known
intensity λ. Also, assume that not all shocks are fatal for the item, and denote
by M the number of shocks causing the item’s failure. Let qi = P[M = i|M ≥
i], i ∈ N+, be the probability that the i-th shock causes the failure of the item,
given that it survived the previous i − 1 shocks. Denoting by S the item’s
failure time, according to (30) its survival function is given by

P[S > t] =

∞∑
k=0

Qk pk(t), t ∈ R+
0 , (37)

where Qk = P[M > k] =
∏k
i=1(1 − qi) and pk(t) = P[N(t) = k]. In concrete

applications it is reasonable to assume monotonicity of the sequence {qi, i ∈
N+}. For instance, if the failure risk is increasing with the occurrence of the
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shocks, then we have qi ≤ qi+1 for every i ∈ N+. Under this assumption,
Theorem 5 provides a lower bound to the survival function (37) as follows.
Let q = q1, and denote by S∗ the lifetime of another item subject to the same
shocks of the previous, but whose failure is caused by a geometric random
number of shocks, say M∗ ∼ G(q). Hence, as shown in the first of (36), the
survival function of the second item is

P[S∗ > t] =
1

1 + qλt
, t ∈ R+

0 .

Since by the increasingness of {qi, i ∈ N+} one has M∗ ≤hr M , from Theorem
5 it follows S∗ ≤hr S. For instance, an immediate consequence is

P[S > t+ s|S > s] ≥ P[S∗ > t+ s|S∗ > s] =
1 + pλs

1 + pλ(t+ s)
∀t, s ∈ R+

0 .

7.4 An application in insurance

Consider an insurance company that activates a new policy to cover customers
for certain risks that occur in accordance to a Geometric counting process N,
whose intensity λ ∈ L ⊆ R+

0 depends on the policyholder. Assume that the
claims Wj are independent and identically distributed. Let Λ denote a random
variable taking values in L, and distributed as the parameters λ of the potential
customers interested in the policy. Thus, for a randomly chosen policyholder,
the accumulated claim amount along time is described by a stochastic process
SΛ = {SΛ(t), t ∈ R+

0 } defined as in Theorem 1. Hence, SΛ is the mixture of
processes

Sλ(t) =

Nλ(t)∑
j=1

Wj , t ∈ R+
0 , λ ∈ L

with respect to Λ. Assume that an estimate λ̂ of the mean of Λ is available.
Thus, since λ̂ ≤cx Λ by Theorem 3.A.24 in Shaked and Shanthikumar (2007),
from Theorem 1 one gets the stochastic bound

N
λ̂
(t)∑

j=1

Wj ≤cx SΛ(t).

This relation yields useful inequalities concerning, for example, the variance
or other convex measures of risk, such as stop-loss measures. In the case of the
variance one obtains immediately

Var[SΛ(t)] ≥ Var

Nλ̂(t)∑
j=1

Wj

 = λ̂tE[W 2
j ], t ∈ R+

0 .

Let us now assume that the claims Wj depend on the policyholder, where
such a dependence is described by a parameter θ ∈ T ⊆ R, so that the
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sequence of claims is {Wj,θ; j ∈ N+}. Thus, a pair (λ, θ) of parameters is
associated to any policyholder. Let (Λ,Θ) be a random vector whose distri-
bution characterizes the potential customers interested in the policy. Assume
that the claims Wi,θ are stochastically increasing in θ, and assume that a
positive dependence exists between individual’s parameters λ and θ, i.e. the
vector (Λ,Θ) satisfies (Λ⊥, Θ⊥) ≤PQD (Λ,Θ), where (Λ⊥, Θ⊥) is the version
of (Λ,Θ) with independent component. Hence, one can apply Theorem 4 ob-
taining S(Λ⊥,Θ⊥)(t) ≤icx S(Λ,Θ)(t) for all t ∈ R+

0 .

If θ̂ is an estimate of the mean of Θ, then due to the previous stochastic
inequalities for all t ∈ R+

0 we have

S(Λ,Θ)(t) ≥icx

N
Λ⊥ (t)∑
j=1

Wj,Θ⊥ ≥cx

N
λ̂
(t)∑

j=1

Wj,Θ⊥ ≥cx

N
λ̂
(t)∑

j=1

Wj,θ̂ = S(λ̂,θ̂)(t).

The last stochastic inequality is justified by Theorems 3.A.24 and 3.A.12(d) of
Shaked and Shanthikumar (2007). Thus, for example one obtains that the stop-
loss coverage E

[
|S(Λ,Θ) − a|+

]
of a randomly chosen policyholder is always

bounded from above by E
[
|S(λ̂,θ̂)(t)− a|

+
]
, which can be easily provided for

any a ∈ R+
0 .

8 Concluding remarks

Further generalizations of homogeneous and nonhomogeneous Poisson pro-
cesses based on alternative expressions of the stochastic intensity of the pro-
cess, both for the univariate and the multivariate cases, have been recently
introduced in the literature. For example, a time dependent stochastic inten-
sity is considered in Cha and Finkelstein (2013), while a multivariate version
of Pólya processes recently has been introduced and studied in Cha and Gior-
gio (2016). Also, shock models based on these generalizations (with random
delays for shocks’ effects) have been considered in Cha and Finkelstein (2018).
Possible future developments can be oriented to results similar to those pre-
sented in this paper for such general counting processes and shock models,
with meaningful potential applications in engineering and actuarial sciences.

Appendix. Proof of Proposition 2.2

Fix t = (t1, t2, . . . , tm) ∈ T +
m . From (7) we have

fTm (t) = (−1)m
∑

(k1,k2,...,km)∈A

∂m

∂t1∂t2 · · · ∂tm
p(k1,k2,...,km)(0, t1, t2, . . . , tm). (38)

Recall now that, for k = (k1, k2, . . . , km) ∈ A,

pk(0, t1, t2, . . . , tm) =
( ∑m

i=1 ki

k1, k2, . . . , km

) λ
∑
ki

[1 + λtm]1+
∑
ki

[
tk11 (t2− t1)k2 · · · (tm− tm−1)km

]
,
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and observe that it holds

∂m−1

∂t1∂t2 · · · ∂tm−1

[
tk11 (t2 − t1)k2 · · · (tm − tm−1)km

]
6= 0 (39)

if and only if the term t1t2 · · · tm appears in expansion of the product tk11 (t2−t1)k2 · · · (tm−
tm−1)km . With a straightforward computation of such product, and considering the con-
straints in (8), it is easy to see that the condition

∂m

∂t1∂t2 · · · ∂tm
pk(0, t1, t2, . . . , tm) 6= 0 (40)

is fulfilled if and only if k1 + k2 + . . . + km = m − 1. Recalling that it should be k1 = 0,
and again considering the constrains (8), we have that (40) holds if, and only if, k1 = 0 and
ki = 1 for all i = 2, 3, . . . ,m. In this case we have

∂m−1

∂t1∂t2 · · · ∂tm−1
p(0,1,1,...,1)(0, t1, t2, . . . , tm)

=
∂m−1

∂t1∂t2 . . . ∂tm−1

( m− 1

0, 1, . . . , 1

)
λm−1

∏m
i=2(ti − ti−1)

[1 + λtm]m

= (m− 1)! λm−1 ∂m

∂t1∂t2 . . . ∂tm

∏m
i=2(ti − ti−1)

[1 + λtm]m

=
(m− 1)! λm−1

[1 + λtm]m
. (41)

In conclusion, from (38), (39) and (41), for 0 < t1 < t2 < . . . < tm we have

fTm (t) = (−1)m
∂m

∂t1∂t2 · · · ∂tm
p(0,1,...,1)(0, t1, t2, . . . , tm)

= (−1)m
∂

∂tm

[ ∂m−1

∂t1∂t2 · · · ∂tm−1
p(0,1,...,1)(0, t1, t2, . . . , tm)

]
= (−1)m

∂

∂tm

(m− 1)! λm−1

[1 + λtm]m

=
m! λm

[1 + λtm]m+1
, (42)

while the density is zero whenever t 6∈ T +
m . Finally, this gives (9).
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