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Abstract

In this work we have performed an extensive CFD simulation campaign with
the purpose of studying particle transport and deposition in different catalytic
systems and under different conditions. Two types of geometric models repre-
senting different porous media were created. The first is a number of random
packings of spheres created via rigid body simulations: this approach was tested
in previous studies and was proved to result in realistic packings, validated in
their geometric features and fluid dynamic behaviour. The second is a regular
arrangement of spheres, which was also successfully employed in previous works
to study fine particles dispersion.

Using these random packings, simulations of particle deposition have been
performed at different operating conditions. In the first part we calculated val-
ues of particle deposition efficiency and compared our results with the classical
filtration theory, highlighting the criticalities in the use of the simplified models
upon which the theory is based. In the second part we have studied the effect of
polydisperse particle populations: this is also missing in the classical filtration
theory, which always considers the transport of particles with uniform diam-
eter. Thus, we have performed population balance modelling simulations for
particle deposition, employing the quadrature method of moments (QMOM):
as an accompanying technical addition, a study on the accuracy of the appli-
cation of EQMOM in these systems is offered. Even more clearly in this case,
the results show that the description of polydisperse populations has a very
noticeable effect on the macro-scale description, which would dramatically im-
prove the understanding of particle transport and deposition in filtration and
catalytic processes.

Keywords: catalytic reactors, filtration, particle deposition, Blender,
OpenFOAM, QMOM
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1. Introduction

Catalytic reactors are of central importance in chemical engineering, as they
represent one of the two main steps in virtually any process, together with prod-
uct separation. The process of filtration, especially relevant to the latter, is also
strictly connected to catalytic processes, especially in automotive applications5

regarding catalytic [1] and particulate filters [2, 3, 4], or in other systems as a
downstream [5] or separate unit operation [6]. For the most part, the study of
a filtration or catalytic process deals with treating a geometrical system where
there is a discernible microstructure, which could be an arranged (regular) or
random medium. Both types have been studied extensively: random media10

can be granular bed reactors [7, 8, 9], or catalytic foams [10, 11, 12]; struc-
tured porous media are also being studied [13, 14]. The detailed study of the
small-scale physics in structured reactors is also becoming very important in
the investigation of transport of a dispersed phase (e.g.: bubbles) in multiphase
systems [15, 16, 17]15

The presence of this microstructure makes the study of these systems, and
porous media in general, an inherent multi-scale problem, presenting a chal-
lenge in the connection of the models relevant to both scales. The problem
is compounded by the manifest difficulty in the experimental investigation of
these systems, especially at the scale of the pore: in-depth observations are very20

difficult when not outright impossible, and yet it is transport phenomena taking
place at the micro-scale having the greatest impact on the systems macroscopic
(e.g.: reactor-scale) behaviour. The employed modelling simplifications have
usually involved sweeping assumptions in the structure of fluid flow in the re-
actors. In the case of filtration, as it will be described in the next section, the25

classical models which are still used as a relevant modelling reference propose a
very simplified description of the structure of a porous medium. In this context,
the necessity of detailed mathematical modelling of both fluid flow and mass
transport at the pore-scale, and the relation of these results to the relevant
macroscopic scale through an upscaling procedure, becomes clear.30

For this reason, in this work we have performed an extensive computational
study, composed of several distinct simulation campaigns, each tackling a differ-
ent aspect in which the classical descriptions are lacking. First we present the
method by which we generated our random packings, which has been proven
to result in realistic and validated geometric structures. To ensure the accu-35

racy of the proposed CFD results, a study regarding the technical and con-
ceptual aspects of the simulation was performed: informations regarding the
grid convergence of the results are offered together with an analysis of the cor-
rect representative elementary volume (REV) for the phenomena under study.
Then, we performed simulations on both random and structured porous media.40

In the first case we have studied filtration of particles in their different depo-
sition mechanisms and compared our results with the theoretical predictions,
highlighting the issues with the constitutive equations obtained by the classical
description. Then, we approached the investigation of the transport and depo-
sition of polydisperse particles, which is completely missing from the available45
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filtration laws. Especially in this case the results put in evidence how correctly
tracking the transport of a realistic polydisperse population dramatically im-
proves the description of its evolution, and has a great effect on the description
of the system at the macroscopic scale.

2. Governing equations50

2.1. Physical description at the scale of the pore

As introduced at the beginning of the manuscript, the objective of this work
is to obtain a close understanding of the physical behaviour of the system by
a first-principles approach: in the case of packed beds and porous media in
general, this means obtaining the solution to the relevant transport equation
at the scale of the medium pores. As such, the first step is the solution of the
Navier-Stokes equations,

ρu · ∇u = −∇p+ µ∇2u

∇ · u = 0 , (1)

where ρ is the density of the fluid (kg m−3), u is the effective velocity (m s −1), p
is the pressure (kg m−1 s−2), and µ is the fluid dynamic viscosity (kg m−1 s−1).
The relevant dimensionless number is the Reynolds number, where the char-
acteristic length is taken to be equal to the average diameter of the grains55

constituting the packed bed Dg, so Re = ρUDg/µ. The characteristic velocity
U is instead simply the superficial velocity, calculated as U = uε 1, where ε is
the packed bed porosity.

In this work we want to investigate the transport and deposition of fine
and ultra-fine species, and when modelling suspensions of colloidal or at most60

micron-sized particles, it is possible to work under the hypothesis of one-way
coupling, which is to assume that the particles motion follows the fluid stream-
lines without affecting it in kind. As such, we represent the particles in an
Eulerian framework as a scalar quantity, namely their concentration in the fluid
phase, c (mol m−3). To obtain this quantity, using the flow field obtained from65

the solution of Eq.1, the classical advection-diffusion equation is solved, which
reads

∂c

∂t
+ u · ∇c = D∇2c . (2)

Here, the coefficient D is the particles molecular diffusion coefficient (m2 s−1),
which was obtained via the well known Stokes-Einstein equation asD = kBT/(3πµdp),
where dp is the dispersed particle diameter (m), T the fluid temperature (K), and70

kB the Boltzmann constant (m2 kg s−2 K−1); it has to be noted that the systems

1Also, the scalar quantity u is the volume integral of the x-component of u, taking x to be
the main flow direction.
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under consideration are isothermal, and T is thus constant in space. The di-
mensionless Péclet number describing mass transport is given by Pe = DgU/D.
To study the effect of particle sedimentation on their transport and deposition,
a simple modification of Eq. 2 was employed, by adding to its advective term75

the settling velocity of the monodisperse particle population considered. For
particles of diameter dp, it reads:

Used =
gd2p(ρs − ρf )

18µ
, (3)

where g is the gravitational acceleration (m s−2) and the subscripts of the
density terms refer to solid particles and fluid, respectively.

In the second part of this work instead, we studied the transport of poly-80

disperse particles, with the objective of describing the evolution of the particle
size distribution, and the possible effect on deposition efficiency, which will be
compared to the monodisperse case. The dispersed particle population in our
case can be described by a univariate population balance equation, which reads:

∂n(dp)

∂t
+∇ · (u n(dp)) = ∇ · (D∇n(dp)) . (4)

In this balance equation, the transported quantity n(dp) is the number density85

function representing the distribution of the quantity of particles, depending
only on their size dp. It has to be noted that in this initial work we wanted
to consider a simplified form of the population balance equation. The terms
related to possible particle aggregation or breakage are missing, and Eq. 4 in its
current form represents instead a direct parallel of the Eq. 2, comprising only90

the advective and diffusive contributions; the study of first- and second-order
processes (e.g.: breakage of aggregates, or their formation) will be treated in
future works. The solution of the population balance equation was implemented
in the CFD code by integrating it and obtaining a transport equation for the
statistical moments of k-th order of the distribution, mk, which reads:95

∂mk

∂t
+∇ · (ufmk) = Γ0∇2mk−1 , (5)

where the new diffusive coefficient Γ0 = kBT/(3πµ). The implementation and
solution of Eq. 5 in the CFD code is done via the quadrature-based method of
moments (QMOM), which is based on a functional expression of the particle
distribution n(dp) given by a summation of delta functions centered on suitable
nodes of a Gaussian quadrature approximation. Using a modified version of100

this method called EQMOM (as in extended QMOM [18, 19]), it is possible
to reconstruct a smooth number density function, at the cost of the solution
of one additional moment equation with respect to the simple QMOM2. For

2It must be noted that the use of this method carries a number of practical caveats which
means it is not applicable a priori in every system: we devote Appendix A to an expansive
analysis of the numerical accuracy in the use of EQMOM for the systems under investigation
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the interested reader, we refer to the detailed and in-depth explanation of the
theory of the method of moments and of these computational techniques found105

in [20]. Perhaps, the most important point to note for a conscious interpretation
of the results is that no reconstruction method is guaranteed to return the
exact distribution to an arbitrary degree of accuracy. The EQMOM specifically,
given a set of N quadrature nodes employed, will at most return a smooth and
continuous distribution possessing the same 2N + 1 first moments: however,110

this still represents a noticeable advantage in the cases where an analyisis of the
full density function is valuable, as is the present one. Moreover, it has to be
noted that this is not the only method which can be used for the purpose of
reconstructing the number density function and, depending on the case, other
methods may be more appropriate. For example, methods based on higher115

order polynomial reconstruction [21] or on the maximization of the Shannon
entropy [22] are also widely used. In this work we used the EQMOM only as
a final post-processing step, to reconstruct the shape of the distribution found
at the outlet of the computational domain and compare it to the the injected
particle distribution, with the objective of calculating the deposition efficiency120

η, which is the upscaled parameter employable in reactor-scale equations which
we obtain from the simulations pore-scale results, as it will be explained in the
next section.

2.2. Upscaling pore-scale results

The equation expressing the transport and reaction of particles at the macro-125

scopic scale is the following (for simplicity, expressed in 1D):

∂C̃

∂t
+ U

∂C̃

∂x
(D

∂C̃

∂x
)− kdC̃ , (6)

where C̃ is the macroscale concentration and kd is the reaction rate coeffi-
cient. In this work we will refer to the framework regarding particle filtration,
which describes fine particles deposition in packed beds (and porous media in
general), as was already done in other works dealing with fines deposition [3, 4],130

and for which an established theoretical foundation exists [23, 24]. Particle
deposition in a porous medium, usually studied under the assumption of clean-
bed filtration (i.e.: the first phase of filtration activity, before cake formation) is
treated as a sequence of two steps. First, the dispersed particles are transported
from the bulk of the carrying fluid to the surface of the solid grain (often called135

a collector), and this is quantified by the particle deposition efficiency η0:

η0 =
I

U C0
πD2

g

4

(7)

where C0 is the bulk particle concentration and U the fluid velocity approaching
the collector, and I indicates the total molar flux toward the collector. Then,

in this work.
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another phenomenon has to take place on the surface of the grain, at the spa-
tial scale of the dispersed particle: particle attachment. This depends on the140

physico-chemical conditions of the fluid and collector surface, affecting the bal-
ance between the repulsive and attractive forces between the particle and the
solid grain; this balance is usually quantified by the attachment efficiency α
which represents the probability of a particle of undergoing successful attach-
ment (or conversely being repulsed), and whose value 0 < α ≤ 1 [25, 26]. The145

total collector efficiency η = η0α is the product of these two factors, and using
the simplifying assumption of clean bed filtration, meaning an unitary proba-
bility for particle attachment, this is reduced to η = η0. Thus, it is possible
to relate the quantity η0, linked to pore-scale physics and thus obtainable from
micro-scale simulations, to the macroscopic parameter kd, in this way [27]:150

kd =
3

2

U

Dg

1− ε
ε

η0 . (8)

In our work, we will use a modified form of this relation to obtain the value
of deposition efficiency from the results of our CFD simulations, in the form of
particle concentration values at the outlet of the domain, which reads:3

η0 =

ln

(
C

C0

)
−3

2

1− ε
ε

L

Dg

, (9)

where L is the total length of the computational domain. Also, a simplificative
assumption has been made, to consider predominance of advective flow over155

diffusion phenomena in the total mass transport, meaning that this relation is
only valid for cases where the system’s Péclet number is greater than a certain
value (≈70 [28]), which represent the majority of the applications of interest.
More details about this derivation, omitted here for brevity, can be found in
the mentioned work by Logan [27]. It has to be mentioned that this classical160

expression for the calculation of deposition efficiency has been shown to be lack-
ing in certain limiting cases[29, 30]. For example, both the case of low Péclet
numbers, or equivalently the need for a very large computational domain (to
describe large scale heterogeneities in the porous medium) could result in an
outflow concentration very close to zero: this results in a conceptual and prac-165

tical mismatch between the length of the computational domain and the length
of the active filter, which the quantity L should represent in Eq. (9), leading to
estimations of η greater than one, which clearly conflicts with its defintion as an
efficiency. Recent works have proposed solutions to these problems, formulating
a more robust upscaling procedure [31] to which we remand the reader for a170

deeper overview of the issues involved in the defition of η and its calculation

3Whereas in the case of the polydisperse particles simulations, the complete particle size
distribution curves at the inlet and outlet (the latter reconstructed with the EQMOM as
described earlier) where used in lieu of C0 and C.
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from micro-scale CFD simulations. In the cases under investigation in this work,
its application is still justified, leading to realistic results.

Then, the deposition process is itself conceptually subdivided in the three
different mechanisms by which particles may reach the surface of the filter solid175

grains. The first is Brownian diffusion, as particles may collide with the col-
lectors due to the random motions to which they are subjected: this is the
dominant mechanism in the case of sub-micron sized particles. Then, particles
with a density larger than that of the carrying fluid may deposit by sedimen-
tation, which is driven by the gravitational acceleration. Lastly, during their180

motion particles may also collide with the solid grains via steric interception,
due to their finite size: this is relevant only for larger particles (i.e.: more then
1 µm). For this reason, we will not consider this last mechanism in the present
study, and we will deal only with transport and deposition of fine and ultrafine
particles. As mentioned earlier, a number of theoretical models exist for the185

prediction of deposition efficiency for a single considered mechanism: namely,
for those relevant in our study, Browian deposition efficiency ηB and sedimenta-
tion efficiency ηG. These constituive equations are based on theoretical models
first proposed by Levich [28], and further modified following studies by Hap-
pel [32]. For brevity, we will not go into the detail of their derivation here:190

we refer the reader to the seminal works by Yao considering all the different
deposition mechanisms [33, 34], and other more recent studies based on these
models [35, 36, 37, 38, 39, 40, 41]. An important point to note is that these the-
oretical predictions are based on very simplified geometric models: Yao’s model
describes a single spherical collector immersed in an unbounded fluid domain195

in creeping flow, where successive corrections involving Happel’s studies involve
an estimation of the influence of other neighboring grains on the collector itself.
Moreover, the depositing particles considered are always of uniform diameter.
The case of Brownian efficiency ηB , based on the Smoluchowski-Levich approx-
imation, results in the equation:200

ηB = 4.04As1/3Pe−2/3 , (10)

where As is a parameter dependent on the medium porosity. The sedimentation
efficiency instead is calculated with a simple relation:

ηG =
Used
U

= NG , (11)

where the ratio between the particles sedimentation velocity and the fluid su-
perficial velocity is historically called the gravity number, NG.

3. Numerical details and results205

In this section we will present all the relevant numerical details of the sim-
ulations we performed. We start from the creation of the two chosen geometric
models for the representation of porous media, then in each of the following
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sections the results obtained for each explored case are presented, with an ac-
companying description of the relative operating conditions. For an extended210

treatment of the appropriateness and accuracy of using the EQMOM for the
analysis of deposition efficiency results for the case of a polydisperse popula-
tion, as discussed in the previous section, we refer the reader to Appendix A.

3.1. Geometric models

The first step for a computational analysis is the choice of the geomet-215

ric model to use in the simulations that will accurately represent the porous
medium. In this work we have chosen two different representations.

3D random packing The first model is a random packing of uniform
spheres, which was built via rigid-body simulations using the software Blender.
This method was chosen amongst other possible alternativs (e.g. DEM codes)220

for its low computational cost, ease of use and accessibility (it being a free and
open source code). Its effectivess in the creation of realistic packings used in the
context of simulation of chemical reactors was explored and proved in the liter-
ature and previous works [42, 43]. The code performs a rigid-body simulation
by solving Newton’s equations of motion for a system of N spherical bodies 4

225

and the grains are considered hard spheres when it comes to calculating the
interactions between them. This means that there are only instantaneous inter-
actions and any compenetration is impossible. A number of other features of the
solid grains has to be specified in the rigid body simulation, among which the
grains restitution coefficient and their attrition coefficient. These two features230

are very important for the resulting packing structure, having a noticeable effect
on porosity and the presence (or absence thereof) of large-scale heterogeneities
of the packing. More details on the choice of these and other simulation pa-
rameters can be found in a previous work [42], along with their validation with
available experimental data.235

With this setup, the loading of a cylindrical container was simulated, above
which the solid grains are initially placed. Then, an uniform force representing
gravity is applied to all the particles, forcing them to fall inside the container.
The final state of the packing simulation is obtained when all particle motion
stops, which means a balance is reached between the different forces acting upon240

them (i.e. gravity and interaction forces). The details of the container, the num-
ber of particles used in the simulation, and their diameter are found in Tab. 1.
The choice of both the number of grains used and the size of the cylindrical con-
tainer were dependent on the necessity of creating a Representative Elementary
Volume (REV) to use in the CFD simulations. The following sections, before245

the presentation of the actual simulation results regarding deposition efficiency,
will show the procedure for the extraction and validation of the size of this rep-
resentative volume. Figure 1 shows a typical packing obtained with a Blender

4While in this work we have chosen for simplicity to study the case of a packing of uniform
spheres, it is possible to create packings of arbitrary shapes with Blender, as shown in [42].

8



simulation as described here, and the resulting computational domain that can
be extracted from it.250

Container diameter (mm) 2.15
Container heigth (mm) 1.86
Number of solid grains 7800

Diamter of solid grains (µ m) 100

Table 1: Numerical details of the packing created with Blender.

Figure 1: Computer-generated geometric model for the random spheres packing. On the left,
the original cylindrical packing of uniform spheres created with Blender. On the right, the
extracted computational volume used in the simulations.

3D arranged periodic model The second model considered is also three-
dimensional, but a much simpler structure was generated, without recurring to
rigid-body simulations. An arranged packing of spheres was built, with their
spatial positioning following a face-centered cubic (FCC) lattice (referring to the
crystal systems naming nomenclature). This results in a regular and periodic255

geometry characterized by the presence of several planes of symmetry which
can be used to reduce the domain to its fundamental repeating unit and thus
dramatically reduce the computational cost: this is especially important when
dealing with a more complicated physical and modelling setup than the one
required for the simple solution of the advection-diffusion equation, as is the case260

of the solution of the momentum transport equations used for the simulation of
transport of polydisperse particles, treated in the last part of the current work.

While these arranged packings are evidently not realistic for the representa-
tion of randomly packed media, they were successfully employed in the study
of particle dispersion, and their behaviour has been shown to be equivalent to265

that of packed systems exhibiting Fickian dispersion [44].
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Figure 2: Representation of the face-centered cubic model. In evidence, from left to right:
the original arranged structured, the three main planes of symmetry, and finally the actual
reduced structure used in the simulations.

3.2. Grid convergence of the results

A crucial element in the pre-processing step of a CFD simulation is the
generation of the computational mesh, and particularly the attainment of a re-
fined enough mesh for which the results can be considered grid independent.270

This procedure has to be conducted with great care, especially in the case of
three-dimensional random geometries, for which a direct control on the meshing
strategy is impossible. For this reason, here we will treat these more compli-
cated geometries, and refer the reader to other previous works [44] describing
the grid convergence study for the FCC periodic arrangements. The grids, as275

mentioned, were created with the open-source code OpenFOAM, using as a start-
ing geometry a cubic cut extracted from the geometrical center of the packing
generated with Blender, akin to what is shown in Fig. 1 (right). The meshing
process was constituted of two steps performed by the use of two OpenFOAM

meshing utilities: first blockMesh was used to create a (stair-stepped) struc-280

tured cartesian mesh in the inter-granular voids, which was then converted to a
body-fitted mesh representing the actual shape of the spherical grains by using
snappyHexMesh. To obtain the most beneficial trade-off between a smaller mesh
(i.e. less computationally expensive) and the reduction of simulation errors due
to the spatial discretization, a number of different meshes with increasing cell285

number and differing in meshing strategy were created and tested: the details
of these different meshes are found in Tab. 2. The refinement operation was
conducted both by using a smaller cell size for the starting structured mesh (re-
sulting in an uniform refiment), and also refining the cells adjacent to the solid
grains. This was done via a cell splitting operation, transforming one boundary290

cell into an octree partition. The rationale for a refinement on the surface is
simply to expend the most number of cells in the domain zones where it is possi-
ble to expect larger gradients of the properties under study (e.g.: fluid velocity,
particle concentration).

While the study of grid convergence relative to fluid flow have already been295

performed in previous works [42], the accuracy of these setups with respect
to the simulation of particle deposition in random packings still has to be as-
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Case Cells per diameter Surface refinement

I 16 0
II 18 0
III 16 1
IV 18 1
V 20 1
VI 22 1
VII 24 1
VIII 26 1
IX 30 1

Table 2: Different grids examined in the grid convergence study. Cell density expressed as
the ratio between the spherical grain diameter and the cell linear size, with varying levels of
surface refinement (e.g.: with one surface refinement corresponding to one single operation of
cell splitting.)

certained. To this end, simulations of fluid flow and particle transport and
deposition (solving the advection-diffusion equation) were performed on each
of the grids in Tab. 2, on a cubic domain of side equal to 700µm, constituted300

of approximately 350 grains. The operating conditions used to perform this
grid indepence analysis were Re = 2.5 · 10−4 and Pe = 175, corresponding to
a molecular diffusion coefficient D = 1.43 · 10−12 5. In each of these cases, the
Brownian deposition efficiency ηB was calculated, and the results are shown in
Fig.3. As it can be seen, with increasing cell numbers the deposition efficiency305

for the Brownian mechanism present an asymptote starting from the fifth data-
point (mesh V), representing a mesh characterized by a density equal to 20 cells
per diameter, with one subsequent surface refinement. As shown in the work
mentioned previously [42] and [45], this mesh is also sufficient to reach grid
convergence with respect to fluid flow, while it has to be noted that the accu-310

racy may decrease with increasing Péclet number (i.e.: increasing concentration
gradients). This meshing strategy was then employed in all cases, resulting in
a mesh of 19 million cells for a sample containing approximately 1000 grains.
The difference in mesh cell number (and size sample) with respect to the ones
just explored lies in the fact that while the size of this sample is sufficient to315

qualitatively describe a uniform random packing in the terms of the identifica-
tion of the correct meshing strategy to use, it still does not constitute a REV,
as it will be seen in the next section.

3.3. Extraction of the REV

As mentioned, after the identification of a suitable meshing strategy, we320

have identified the representative elementary volume for the system, from which

5For more details about the computational setup and boundary conditions, refer to the
later section about the study of deposition efficiency in the monodisperse case, for they are
common throughout this section and the following related to the identification of the REV.
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Figure 3: Brownian deposition efficiency with increasing mesh refinement, Pe=175.

appropriate results of deposition efficiency can be extracted. The concept of a
representative elementary volume is statistical in nature, and the process for
its identification is connected to the individuation of the minimum volume (i.e.:
sample size) with which it is possible to accurately represent the evolution of a325

physical phenomenon, or its physical structure.
For this purpose, we performed simulations of particle transport and Brow-

nian deposition on a series of computational domains, with the same operating
conditions throughout, Re = 10−2 and Pe = 200. Each of these domains is a
cubic cut as shown in Fig. 1, with increasing size: the smallest domain contains330

approximately 200 grains, while the bigger one contains 1200 grains. Moreover,
to also take into account the randomness of the structure of the packings, we
repeated this process three times, each with a different geometric realization
(i.e.: a different packing created with Blender). Figure 4 shows the resulting
deposition efficiency versus increasing sample size for the three realizations: the335

results show that in the case of particle deposition, a suitable REV is given
by a sample containing about 1000 grains, after which the value of deposition
efficiency does not change with marginal increases in sample size. The three
different packings show very similar trends of deposition efficiency with respect
to sample size: the coefficient of variation of the three data-points is about 2%.340

Finally, the size of REV obtained for the modelling of particle deposition is
also larger than needed and thus appropriate for the description of fluid flow
and the geometric structure of the medium (expressed via its porosity). While
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we don’t show the graphs here, for brevity, the same analysis was performed as
the one just shown, resulting in even smaller REV sizes, of about 600 grains.345

On the other hand, the analysis regarding the mechanism of deposition by sedi-
mentation is more complex, especially with respect to the possibility of different
relative orientation of the gravitational acceleration and the mean direction of
fluid flow, and will be treated in later studies.

Figure 4: Brownian deposition efficiency with increasing domain size (in terms of number of
grains), for three different random packings (different symbols/colors).

3.4. Monodisperse case: Brownian and sedimentation efficiency350

All simulations of fluid flow and particle deposition were performed with
the open-source code OpenFOAM, which is also used for the pre-processing (i.e.
meshing) step. Both systems with only Brownian deposition and systems with
Brownian and sedimentation deposition were considered: in both cases, three
different geometric realizations of a randomly packed porous medium were stud-355

ied. In the first case, the domain considered was a cubic cut with a side of 1
mm in all three dimensions, containing approximately 1000 grains, each with
diameter equal to 100 µm, with an average porosity ε = 0.352: this choice came
from the REV analysis just presented. When dealing with the more complex
case of sedimentation, considered the need of performing multiple simulations360

taking into account the different relative directions of gravity with respect to
the fluid direction, a smaller domain (from the same original Blender packings)
containing approximately 350 grains was used. First, fluid flow simulations were
performed in these domains, by solving Eq. 1 by setting a pressure drop between
two opposite side of the cubic domain, driving fluid flow in the direction orthog-365

onal to the two faces. The remaining faces were set as symmetry boundaries,
which means setting a null gradient of the considered properties and effectively
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making the boundaries impermeable to diffusive and advective flow. We con-
sider the fluid to be water, Newtonian and incompressible and in isotherm condi-
tions, with density ρ = 997.78 Kg·m−3, and viscosity µ = 0.001003Kg·m−1s−1.370

The resulting fluid flow field was used in the simulations of particle transport
working, as mentioned, under the assumption of one-way coupling between the
particles and the fluid motion. The important difference discerning whether
particle sedimentation has to be ignored or considered in the particle deposition
simulations, is that in the latter case the particle terminal sedimentation veloc-375

ity vector (whose orientation depends on the chosen gravity direction) is added
uniformly to the obtained fluid flow field.

Then, simulations solving Eq. 2 at the steady state are performed. Particles
are injected in the system by means of setting a unitary value of normalized
particle concentration in the inlet face. As it was done in previous and other380

works [28, 35] to represent the perfect sink boundary condition, the value of
particle concentration on the surface of solid grains was set equal to zero while,
as in the case of fluid flow, the remaining lateral faces were set up as symmetrical
boundaries.

Reynolds number Particle diameter (nm) Péclet number

10−4 96 22
10−4 257 59
10−3 69 158
10−3 185 425
10−2 50 1140
10−2 133 3057
10−1 36 8200
10−1 96 22000

Table 3: Reynolds numbers and particle diameters for each Brownian deposition simulation,
and the resulting Péclet number.

Table 3 shows the operating conditions of the case of Brownian deposition385

without sedimentation, while a snapshot of the results can be found in Fig. 5,
showing contour plots of particle concentration in in the middle section of one
of the three geometric realization in the case of Brownian deposition (without
sedimentation), for increasing particle size (and thus, increasing Péclet number).
As expected, particle deposition is increased for smaller Péclet numbers, which390

is due to the concurrent effects of particle size and fluid velocity. Particles with
smaller diameter are characterized by a greater Brownian mobility and thus
an increased transport from the bulk of the fluid to the surface of the porous
medium, where they are removed by deposition; lower fluid velocities result
in higher time spent by the particles in the domain before their escape, and395

thus higher probability of being transported to the grains surface by molecular
diffusion. The final point is to calculate the Brownian deposition efficiency
from the values of obtained values of particle concentration via Eq. 9 over all
the range of Péclet numbers considered: the results are shown in Fig. 6.
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Figure 5: Contour plots of particle concentration in the a median section (parallel to fluid
flow) inthe case of Brownian deposition for the same geometry and different particle diameters.
From top to bottom and from left to right, Pe = 22, Pe = 158, Pe = 3057,Pe = 22000.

The graph shows how the results follow the trend of the theoretical predic-400

tions, with a marked separation for low Pe. This is manly due to the fact that
the original work by Levich [28] does not take into account the contribution
of diffusive flux in the balance of mass entering the system, which is especially
relevant for lower Pe. Employing the classical laws directly in these regimes
may lead to unphysical results, e.g. values of efficiency η greater than one: this405

has been evidenced in other works [46, 47, 48]. For this reason, in the context
of this work where the purpose is to compare the simulations results to the the-
oretical law in their range of applicability, we will exclude the results relative to
the lowest Péclet number (Pe=22). The remaining data can be described by a
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constituive equation in the same form of 10:410

ηB = CAs1/3Peα , (12)

which results, after operating a regression on the average of the values of the
three geometric realizations, in:

ηB = 0.83As1/3Pe0.57 (13)

While the exponent α shows a minor variation from the value in the theo-
retical law, the pre-exponential coefficient C is instead markedly different. This
can be explained by deviation from the ideal conditions of the systems taken415

here under consideration, which are meant to represent realistic packings: in
this light, it is clear how the random arrangement of grains of these packings
breaks the ideality of Happel’s model, modifying the interaction of the grains
on each other’s concentration boundary layers in non-trivial ways.

Figure 6: Brownian deposition efficiency with varying Péclet number, for three different ran-
dom packings (different symbols/colors), compared with theoretical Happel’s law (dashed grey
line). All datapoints are normalized by the respective porosity-dependent value As1/3.

Then, the effect of particle sedimentation on deposition efficiency was con-420

sidered. As mentioned a new simulation campaign was performed, where the
particle terminal sedimentation velocity was added to the obtained fluid flow
field, to replicate the effect of the deviation of velocity of the particles sub-
jected to gravitational acceleration, which in these first cases was considered
to be orthogonal to the fluid direction. As before, three differerent geometric425

realizations of a random packing were used. The operating conditions, span-
ning a wide range of gravity numbers NG, are reported in Tab. 4, and for the
purposes of calculating the settling velocity with Eq. 3, ρs = 7860 kg m−3
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(i.e.: iron). Figure 7 shows the effect of the additional transport mechanism,
markedly increasing particle deposition and skewing the spatial distribution of430

concentration towards the direction of gravity.

Figure 7: Comparison between contour plots of particle concentration in a median section of
the same geometric domain, for the same Péclet number Pe = 588, showing the effect of parti-
cle sedimentation (right) with respect to the only Brownian deposition, without gravitational
effects (left). The direction of gravity here (from top to bottom) is orthogonal to fluid flow
(left to right).

Reynolds number Particle diameter (nm) Settling velocity (m·s−1) NG Péclet number

2.85 · 10−4 897 2.85 · 10−6 0.35 588
3.33 · 10−4 897 2.85 · 10−6 0.3 686

4 · 10−4 897 2.85 · 10−6 0.25 823
5 · 10−4 897 2.85 · 10−6 0.2 1026

6.7 · 10−4 897 2.85 · 10−6 0.15 1374
10−3 897 2.85 · 10−6 0.1 2060
10−4 634 1.43 · 10−6 0.05 1456

Table 4: Reynolds numbers and particle diameters for each Brownian deposition simulation
with sedimentation, and the resulting Péclet number and gravity number NG.

Considering that ηTOT = ηB + ηG [49], the results of sedimentation deposi-
tion efficiency ηG can be obtained by subtraction, performing two simulations
on the same system respectively with or without the addition of the particle
sedimentation velocity and separating the two different contributions. These435

results are shown in Fig. 8 (top), where the trends for each of the three different
realizations are:
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Figure 8: Sedimentation efficiency ηG for different values of gravity number NG. On the top,
results for three different random packings (different symbols/colors). On the bottom, results
for the case of gravity acting in a direction parallel to fluid flow (purple line) and orthogonal
to fluid flow (blue line). In both figures, the theoretical law is reported for comparison (dashed
grey line).

ηG = 0.72NG − 0.04

ηG = 0.55NG − 0.02

ηG = 0.60NG − 0.03 . (14)

These constitutive equations differ from theoretical expectation of ηG = NG,
again this shows the inadequacy of Yao’s simplified model to describe randomly
arranged systems. It can also be noticed that the trends of each geometry440
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diverge for increasing NG: this is instead most probably due to the fact that
the smaller computational domains here considered do not represent a REV for
this system, and thus evidences a point which will need further investigation, as
was done in the case of Brownian deposition. Together with this, another point
worth exploring is the effect that grain diameter could have on sedimentation445

efficiency, which is another parameter missing in the theoretical description of
the problem.

Lastly, for one of the geometric models used, two different simulations at the
same operating conditions (i.e.: Reynolds and Péclet number) were performed,
examining the different behaviour in the case where the direction of gravita-450

tional acceleration is respectively orthogonal or parallel to the mean fluid flow
direction. The results of sedimentation efficiency for the two cases versus grav-
ity number are shown in Fig. 8 (bottom), and the two trend lines are described
by the equations:

ηG = 0.72NG − 0.04

ηG = 0.34NG − 0.04 , (15)

both quite different from the theoretical prediction. The difference between the455

two cases can be ascribed to the lower particles residence time in the case of
parallel gravity6, leading to a decrease in the time available to the particles to
reach the grains surface and hence a depressed deposition.

3.5. Polydisperse case: effects on size evolution and efficiency

In the second part of this work, we explore the effect of considering the460

particles as a polydisperse population, instead of a concentration of particles
with uniform diameter; only the Brownian mechanism of deposition will be
explored here. For this more complex case instead of the three-dimensional
random packings obtained with Blender, the simplified and periodic arranged
FCC geometry described in the earlier section was used; the diameter of the465

grains in the domain considered is equal to Dg = 200 µm, with porosity ε = 0.4.
The setup of the boundary conditions is the same as the previous case, with
fluid flow simulations set up with a pressure drop between the inlet and outlet
faces of the domain (with added condition of periodicity of the velocity field
on these two faces), with symmetry conditions on the remaining boundaries.470

To investigate particle deposition the classic advection-diffusion equation is not
sufficient anymore, but we solved the equation of transport of the moments of
the particle distribution (Eq. 5), so instead of setting a inlet boundary condition
of constant unitary concentration, a constant particle distribution was set7.

6This is because, in this case, the average fluid velocity magnitude after adding the particle
settling velocity to the advective term of the transport equation is higher with respect to the
orthogonal case.

7To represent the perfect-sink boundary condition, the moments of the distribution were
set to a very small fraction (i.e. 1% of the inlet value, as using values equal to zero like
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Figure 9 shows contour plots of the first four transported moments in the FCC475

domain.

Figure 9: Contour plot of the transported moments in the case of polydisperse particle depo-
sition in the arranged face-centered domain, values visible on the external boundaries. From
left to top and top to bottom, moments from m0 to m3.

Specifically, we considered two cases of log-normal distributions, both with
average diameter µ = 300 nm, and standard deviation σ=0.3µ and σ=0.6µ,
respectively. First, we performed a number of simulations exploring a range of
different average fluid velocities, with Reynolds numbers from Re = 3 · 10−3

480

to Re = 3. From these we calculated the variation in particle Sauter diameter
between the inlet and the outlet, for all fluid velocities and for the two different
values of distribution standard deviation. The results are shown in Fig. 10, and
it is possible to see how this ratio will always increase. This is to be expected: as
already pointed out earlier, the deposition efficiency will be enhanced for lower485

fluid superficial velocities, as the particles residence time will be higher resulting
in more time available for the diffusion mechanism to tranport them from the
bulk of the fluid to the surface of the grains. Since we are considering Brownian
deposition only, the smaller particles will be preferentially removed, changing
the mean size at the outlet of the system to larger values, as it can be seen in490

Fig. 10, which shows an increment of several percentage points for the lower fluid
velocities. Keeping in mind that these simulations were performed on a very
small section of the periodic arrangement equal to approximately 1.2 equivalent
grain diameters (refer to the rightmost image in Fig. 2 for a visualization), this
means that this effect of variation on mean particle size can not be ignored when495

it was done in the previous monodisperse case would cause stability issues in the moment
reconstruction algorithm.
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upscaling the results to the macroscopic scale, since it will have a very noticeable
effect on the macroscopic transport characteristics of the particle population.

Lastly, to provide for an updated macroscopic interpretation of deposition
efficiency in this case of polydisperse particles, simulations at different Péclet
numbers were performed and the value of ηB calculated, similarly to the case of500

monodisperse particles. The results can be seen in Fig. 11, which shows a com-
parison between values of deposition efficiency for the theoretical (Happel’s) law
and both monodisperse and polydisperse cases. While in both cases the trend
of the simulations results follow the theoretical law, insofar as the deposition
efficiency decreases for an increasing particle size (i.e. increasing Péclet num-505

ber), the polydisperse case shows a more marked departure from the theoretical
predictions, and potentially reveals a different type of power law dependence
for the deposition efficiency. Moreover, as it has been mentioned, it has to be
noted that while Fig. 11 shows different symbols for the polydisperse case (for
ease of comparison to the simple monodisperse case), the results were obtained510

from a single CFD simulation, which while involving the solution of multiple
equations (as opposed to the single advection-diffusion when considering a con-
stant particle size) for the transport of the distribution moments, means that
great computational savings are obtained by removing the need for a poten-
tially very large simulation campaign due to the need of considering a wide set515

of monodisperse cases.

Figure 10: Evolution of the Sauter diameter with increasing Reynolds number in the face-
centered simplified geometries at two different standard deviations of the particle distribution
(σ=0.3µ on the left and σ=0.6µ on the right).
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Figure 11: Deposition efficiency versus Péclet number: comparison between the theoretical
law (red continuous line), monodisperse (white diamonds) and polydisperse (filled circles)
systems. The standard deviation of the polydisperse population distribution at the inlet is
σ = 0.3µ.
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4. Conclusions

In this work we presented a completely in-silico framework for the investi-
gation of particle transport and deposition in filtration and catalytic processes.
The use of the presented methodology for the creation of random packings offers520

two distinct advantages. First, the computer generation of realistic models of
packed beds with the desired features provides for a sizeable saving with respect
to the alternative of extracting the geometric structure via more expensive ex-
perimental techniques (SEM, µ-CT, et c.) Secondly, it closes one of the most
glaring gaps in the theoretical description of particle deposition in the classical525

filtration theory, which is based on very simplified models of arranged spherical
collectors. In the second part we present the main modelling advance of this
work, which is the description of the polidispersity of the particle population,
which was done here via the solution of the population balance equation, solved
by the quadrature method of moments. The results from these simulations530

also show a marked difference with respect to the theoretical predictions and
evidence the pitfalls of the simplified description valid for monodisperse popu-
lations, evidencing how the proposed model can greatly improve the description
of particle transport and deposition in real filtration and catalytic processes.

A number of possible improvements on this work are possible. First, a more535

accurate representation of the porous medium will be very useful, in terms both
of introducing the polidispersity of the solid grains constituting the packing,
and considering non-spherical shapes. Then, even more crucially, the present
results on the modelling of filtration of polydisperse transported populations will
have to be expanded to include the remaining deposition mechanisms, namely540

interception and gravity; the inclusion of aggregation and breakage processes
will also be possible in the proposed computational framework. These aspects
will be studied in future works, for which the present study is meant to be the
starting point.

In closing, it has to be noted that the results of the present work can be used545

in other fields beyond catalytic reactor engineering: in general this simulation
and upscaling framework can be employed in every system characterized by a
multi-scale geometric arrangement, for which it is possible to identify a sepa-
ration of scales and where the phenomena at the pore-scale have an impact on
the system behaviour at the macroscopic scale. By way of example the system550

at large scale could be, other than a catalytic reactor (structured or randomly
arranged), an aquifer where studies of contaminant transport or remediation
have to be carried out, or an oil reservoir suitable for EOR practices, needing
precise estimations of the migration of a dispersed phase.
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Appendix A. Accuracy of EQMOM reconstruction

As it has been mentioned elsewhere in the manuscript, the EQMOM was
employed as a post-processing step for the reconstruction of the particle size
distribution at the outlet of the domain, to calculate the particle deposition
efficiency η. Several non-trivial choices have to be made to obtain a physical740

and realistic number density function from the available set of moments: one
is the the number of nodes chosen, another is the kernel density function itself
(here chosen to be a log-normal distribution due to its semi-infinite support).
Also, it has to be remembered that the EQMOM reconstruction procedure will
return a smooth number density function having the same set of moments as745

the original distribution (depending on the number of quadrature nodes used),
but of which it is not guaranteed to be an exact representation. As it will be
seen later in this Appendix, some cases can be identified in which the recon-
structed and expected distribution differ greatly, but those are cases in which
the use of EQMOM would indeed be inappropriate. Moreover, it is not possible750
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to know a priori whether the specific physical problem will result in a set of
moments from which it is possible to extract a realistic (and accurate) parti-
cle size distribution. Thus, to inform a correct application of EQMOM to our
system, we have conducted a preliminary campaign where we substituted our
particle deposition system with zero-dimensional reduced models operating with755

a number of simple filtration “laws”, for which the resulting outlet distribution
is obtainable a priori. An inlet particle size distribution (expressed through its
moments, as in our CFD simulations) was then subjected to these filtration 0D
models, and the results reconstructed with the EQMOM. The resulting curve
was compared to the theoretical expectation, resulting in a good guideline for760

the possibility of application of the methodology for various cases, and the its
range of applicability in terms of relevant operating conditions. The three “toy
models” are represented in Fig. A.12: in the figure, to each model two graphs
are associated showing the corresponding concentration ratio (between outlet
and inlet of the system) and the deposition efficiency versus the Péclet number.765

In the first case, the 0D model prescribes a step-function removal, where all
particles with a size smaller than a certain threshold are removed: after this
threshold the concentration ratio equals unity (no particles removed) and the
deposition efficiency goes to zero. In the second case, a linear removal is posited.
Instead of having a filtration threshold, the assumption is that particles with770

size tending to zero are completely removed (null concentration ratio, i.e.: no
particles exiting the system), with a linear relationship for the concentration
ratio holding for progressively larger particles. In this case the relationship be-
tween concentration ratio and deposition efficiency is non-trivial, and Eq. 9 was
used to obtain η. The third case is the closest to the one of interest for us. The775

assumed filtration law is the classical colloid filtration theory: instead of assum-
ing a certain concentration ratio (like in the linear model), we assume that the
relationship between η and Péclet number follows a functional form similar to
the power-law obtained by Yao (Eq. 10). This assumption is indeed verified,
save for different values of the pre-exponential and exponential coefficients, as780

shown in the results of the present study and previous works [35].
The following figures show the results of this study. First, the original log-

normal particle size distribution is shown, with the corresponding theoretical
expectation of the outlet distribution; on the side the particle distribution recon-
structed via the EQMOM is shown, for a qualitative comparison. The bottom785

part of the three figures shows a comparison between the expected concentra-
tion ratio and, more importantly, deposition efficiency and the calculated values
from the reconstructed distribution. Figure A.13 shows the results for the step
removal model. As it can be seen, even a qualitative comparison of the two size
distribution curves shows an appreciable error in the reconstruction. This is790

even more evident when looking at concentration ratio and deposition efficiency
results, which are marred by very strong oscillations and discrepancies, which
are not solved by the use of more EQMOM nodes (i.e.: extending the sum of
kernel density functions composing the reconstructed curve), but actually in-
creased. While this is not a case of interest for a real application in fine particles795

filtration, this example goes to show how certain precautions have to be taken
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Figure A.12: Chosen 0D models, represented by the ratio of particle concentration between
outlet and inlet faces Cout/Cin and the corresponding deposition efficiency η versus Péclet
number.

when applying this method, or even that for some cases, like the present one
involving abrupt discontinuities, it is not applicable at all. As mentioned in
Section 2 and earlier in this Appendix, this is not a limitation of the EQMOM.
This method is based on using a sum of chosen kernel density functions to ob-800

tain a reconstruction of a smooth and continuous distribution possessing the
same 2N + 1 moments (where N is the number of quadrature nodes used) of
the original density functions, which is not strictly guaranteed to conserve the
original distribution shape. This is certainly true in this present case, where
a clear discontinuity is present, which is obviously impossible to obtain via a805

sum of continuous functions. The second example of linear filtration, with data
shown in Fig. A.14, paints a much brighter picture, with EQMOM being able to
perfectly reconstruct a particle size distribution curve which was subjected to a
system characterized by this filtration law. In this case the use of more (or less)
nodes resulted in only marginal increases (or decreases) in accuracy, proving the810

method to be very robust. The last case, which is the one representing the ac-
tual system of interest in this work, is described in Fig. A.15. Even in this case
a qualitative comparison of the expected and obtained number density func-
tions shows a very good agreement, and resulting concentration ratio match the
expected value perfectly. The interesting point comes from the observation of815

the last figure showing the calculated line of deposition efficiency versus Péclet
number. Here it can be seen that for a wide range of Pe the results follow the
power-law behaviour expected from the classical law: this is instead lost when
looking at the lower and upper limit of the curve. There the calculated values
deviates from the expectation, and display zones where the applicability of EQ-820

MOM breaks down. It has to be noted that these zones correspond to the tails
of the distribution, corresponding to very small integral values of the density
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function (� 1%). Thus, the result of this analysis is that in the case of filtra-
tion of fine particles in packed beds, the EQMOM is a provably valid method
for analyising particle deposition by analyising the outlet particle distribution825

curve; the caveat is that special care has to be taken when interpreting results
concerning the extreme bounds of the distribution, or restrict the analysis to
the part of the distribution (which is still a fraction close to 100% of the integral
number of particles) where the method returns accurate results.

This is what has been done in the analysis of the very last results of this830

work shown in Fig. 11, where the deposition efficiency curve shown is obtained
by previously “cutting” the extreme limits of the curve. As an important side
note, these bounds of applicability are of course not absolute in terms of Péclet
number but relative to the operating conditions, which are different between
these test models and the actual simulations analyzed in this work: in other835

words, it is the distribution tails for which it is necessary to take care, whichever
Pe they may correspond to.

Figure A.13: Application of EQMOM (2 nodes) in the case of “step” removal. On the top
left the inlet distribution (dashed black line) and the theoretical expected distribution at
the outlet (continuous red line). On the top right, the resulting EQMOM reconstructed
curve (continuous red line). On the bottom, the theoretical expected results (black lines)
and reconstructed results (red lines) calculating inlet-outlet concentration ratio (left) and
deposition efficiency (right).
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Figure A.14: Application of EQMOM (2 nodes) in the case of “linear” removal. On the
top left the inlet distribution (dashed black line) and the theoretical expected distribution
at the outlet (continuous red line). On the top right, the resulting EQMOM reconstructed
curve (continuous red line). On the bottom, the theoretical expected results (black lines)
and reconstructed results (red lines) calculating inlet-outlet concentration ratio (left) and
deposition efficiency (right).
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Figure A.15: Application of EQMOM (4 nodes) in the case of “packed bed filtration” re-
moval. On the top left the inlet distribution (dashed black line) and the theoretical expected
distribution at the outlet (continuous red line). On the top right, the resulting EQMOM
reconstructed curve (continuous blue line). On the bottom, the theoretical expected results
(black lines) and reconstructed results (blue lines) calculating inlet-outlet concentration ratio
(left) and deposition efficiency (right).
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