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Abstract: Energy dissipation and decoherence in state-of-the-art quantum nanomaterials and
related nanodevices are routinely described and simulated via local scattering models, namely
relaxation-time and Boltzmann-like schemes. The incorporation of such local scattering approaches
within the Wigner-function formalism may lead to anomalous results, such as suppression of
intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density
positivity. The primary goal of this article is to investigate a recently proposed quantum-mechanical
(nonlocal) generalization (Phys. Rev. B 2017, 96, 115420) of semiclassical (local) scattering models,
extending such treatment to carrier–carrier interaction, and focusing in particular on the nonlocal
character of Pauli-blocking contributions. In order to concretely show the intrinsic limitations of
local scattering models, a few simulated experiments of energy dissipation and decoherence in a
prototypical quantum-well semiconductor nanostructure are also presented.

Keywords: semiconductor nanodevices; quantum transport; density-matrix formalism;
Wigner-function simulations; nonlocal dissipation models

1. Introduction

Following the seminal paper by Esaki and Tsu [1], artificially tailored as well as self-assembled
solid-state nanostructures form the leading edge of semiconductor science and technology [2].
The design of state-of-the-art optoelectronic nanodevices, in fact, heavily exploits the principles
of band-gap engineering [3], achieved by confining charge carriers in spatial regions comparable to
their de Broglie wavelengths [4]. This, together with the progressive reduction of the typical time-scales
involved, pushes device miniaturization toward limits where, in principle [5], the application of the
traditional Boltzmann transport theory [6] becomes questionable, and a comparison with more rigorous
quantum-transport approaches [7–13] is desirable; the latter can be qualitatively subdivided into two
main classes. On the one hand, so-called double-time approaches based on the nonequilibrium
Green’s function technique [14] have been proposed and widely employed; an introduction to
the theory of nonequilibrium Green’s functions with applications to many problems in transport
and optics of semiconductors can be found in the books by Haug and Jauho [15], Bonitz [16],
and Datta [17]. By employing—and further developing and extending—such nonequilibrium Green’s
function formalism, a number of groups have recently proposed efficient quantum-transport treatments
for the study of various meso- and nanoscale structures as well as of corresponding micro- and
optoelectronic devices [18–21]. On the other hand, so-called single-time approaches based on the
density-matrix formalism [22,23] have been proposed, including phase-space treatments based on
the Wigner-function formalism [7,24]. In spite of the intrinsic validity limits of the semiclassical
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theory just recalled, during the last few decades, a number of Boltzmann-like Monte Carlo simulation
schemes have been successfully employed for the investigation of new-generation semiconductor
nanodevices [25–36]. Such modeling strategies—based on the neglect of carrier phase coherence—are,
however, unable to properly describe ultrafast phenomena. To this aim, the crucial step is to adopt
a quantum-mechanical description of the carrier subsystem; this can be performed at different
levels, ranging from phenomenological dissipation and decoherence models [37] to quantum-kinetic
treatments [8,10,11]. Indeed, in order to overcome the intrinsic limitations of the semiclassical picture in
properly describing ultrafast space-dependent phenomena —e.g., real-space transfer and escape versus
capture processes— Jacoboni and co-workers have proposed a quantum Monte Carlo technique [38],
while Kuhn and co-workers have proposed a quantum-kinetic treatment [39]; however, due to their
high computational cost, these non-Markovian density-matrix approaches are often unsuitable for the
design and optimization of new-generation nanodevices.

In order to overcome such limitations, a conceptually simple as well as physically reliable
quantum-mechanical generalization of the conventional Boltzmann theory has been recently
proposed [40]. The latter, based on the density-matrix formalism, preserves the power and flexibility
of the semiclassical picture in describing a large variety of scattering mechanisms; more specifically,
employing a microscopic derivation of generalized scattering rates based on a reformulation of
the Markov limit [41], a density-matrix equation has been derived, able to properly account for
space-dependent ultrafast dynamics in semiconductor nanostructures. Indeed, the density-matrix
approach just recalled has been recently applied to the investigation of scattering nonlocality in
GaN-based materials [42] and carbon nanotubes [43], as well as to the study of carrier capture
processes [44]. It is worth mentioning that a purely phenomenological Lindblad-type approach [45]
based on the jump-operator formalism has been recently proposed [46].

In addition to the density-matrix treatments just recalled, quantum-transport phenomena have
been extensively investigated via Wigner-function approaches [7,47]. Indeed, the Wigner-function
formalism has been adopted in various contexts to study ultrashort space- and/or time-scale
phenomena in semiconductor nanomaterials and related nanodevices [48–78]. In view of their formal
similarity with the conventional Boltzmann theory, in these Wigner-function treatments, dissipation
versus decoherence phenomena are often accounted for in semiclassical terms via local scattering
models, such as relaxation-time and Boltzmann-like schemes. It has been recently shown [79] that the
use of such local scattering approaches may lead to unphysical results, namely anomalous suppression
of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density
positivity. To overcome such severe limitations, in [79], a quantum-mechanical generalization
of relaxation-time and Boltzmann-like models has recently been proposed, resulting in nonlocal
electron-phonon scattering superoperators.

The goal of this paper is twofold: on the one hand, we shall elucidate the intimate link between
density-matrix and Wigner-function approaches, pointing out intrinsic limitations of semiclassical
scattering models within these, apparently different, simulation strategies. On the other hand, we shall
extend the carrier–phonon treatment in [79] to carrier–carrier interaction; indeed, the latter has been
for a long time to have a dramatic impact both on optical properties [8,10,11] as well as on transport
phenomena [80,81], and has more recently been in the spotlight due to the effects of its interplay
with spin-orbit coupling [82–85]. Moreover, we shall investigate in more detail the role played
by Pauli-blocking terms both within the density matrix formalism (population versus polarization
contributions) as well as within the Wigner-function picture (local versus nonlocal action). In order to
concretely show the intrinsic limitations of local scattering models, a few simulated experiments of
energy dissipation and decoherence in a prototypical quantum-well semiconductor nanostructure are
also presented.

The paper is organized as follows: in Section 2, we shall briefly recall the main features of
semiclassical scattering models, both for bulk and for nanostructured materials. In Section 3, we shall
provide a fully quantum-mechanical treatment of energy-dissipation and decoherence phenomena
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within the density-matrix formalism, and we shall translate the latter into a nonlocal Wigner-function
scattering model for both carrier–phonon and carrier–carrier interaction. In Section 4, we shall analyze
the role played by Pauli-blocking contributions, discussing non-classical features, like polarization
scattering within the density-matrix formalism, and nonlocal Pauli factors within the Wigner-function
picture. Finally, in Section 5, we shall summarize and draw a few conclusions.

2. Semiclassical Scattering Models

To investigate in quantum-mechanical terms the electro-optical response of semiconductor
nanomaterials and related nanodevices, it is crucial to study the time evolution of single-particle
quantities, e.g., total carrier density, mean kinetic energy, charge current, etc. Such quantities may
be conveniently expressed by a suitable (quantum-plus-statistical) average of a corresponding
(single-particle) operator in terms of the single-particle density matrix ρα1α2 [23] (α denoting
the electronic single-particle states of our nanostructure): its diagonal terms fα = ραα describe
the population of the generic single-particle state α while the off-diagonal terms describe the
quantum-mechanical phase coherence (or polarization) between states α1 and α2. More precisely,
we may write:

ρα1α2 = fα1 δα1α2 + pα1α2 . (1)

Here, the first (diagonal) term describes the semiclassical state populations, while the second term

pα1α2 = ρα1α2 (1− δα1α2) (2)

is the so-called polarization matrix.
Regardless of the specific physical system and related modelling, the time evolution of the

single-particle density matrix can be always expressed as the sum of a deterministic (d) and of a
scattering (s) contribution:

∂ρα1α2

∂t
=

∂ρα1α2

∂t

∣∣∣∣
d
+

∂ρα1α2

∂t

∣∣∣∣
s

. (3)

Here,
∂ρα1α2

∂t

∣∣∣∣
d
=

εα1 − εα2

ıh̄
ρα1α2 (4)

(εα denoting the energy of the single-particle state α), while the explicit form of the scattering
contribution depends on our level of description (see Section 3).

As discussed in detail in [13], for quantum nanodevices characterized by a relevant dissipation
versus decoherence dynamics and operating in steady-state conditions, it is common practice to adopt
the so-called semiclassical picture; this amounts to neglecting the polarization term in (2). Within such
semiclassical (or diagonal) approximation (ρα1α2 = fα1 δα1α2 ), the simplest scattering model is given by
the well-known relaxation-time approximation (RTA) [23]:

∂ fα

∂t

∣∣∣∣
s
= −Γα ( fα − f ◦α ) . (5)

Here, the relaxation of the state population fα toward the equilibrium population f ◦α is described
in terms of a state-dependent relaxation rate Γα that purely depends on that state and encodes all
relevant scattering processes characterizing the operational conditions of the device.

In order to provide a more accurate description of nonequilibrium phenomena, the RTA model
in Equation (5) is usually replaced by a Boltzmann-like scattering model of the form:

∂ fα

∂t

∣∣∣∣
s
= ∑

s
∑
α′

((1− fα)Ps
αα′ fα′ − (1− fα′)Ps

α′α fα) . (6)
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The above collision term exhibits the well-known in- minus out-scattering structure, and allows
one to incorporate a number of scattering mechanisms s via corresponding scattering rates Ps

α′α;
the latter describes the probability per time unit for an electronic transition α → α′ induced by the
scattering mechanism s, and are typically derived via the standard Fermi’s golden rule; moreover,
here the factors (1− fα) describe Pauli-blocking effects (see below).

As anticipated in the introductory section, in addition to the density-matrix treatments just
recalled, state-of-the-art quantum nanodevices are often modelled via Wigner-function-based
simulation schemes [48–78]. Regardless of the specific problem under investigation, the time evolution
of the single-particle Wigner function f (r, k) can be expressed once again as the sum of a deterministic
and of a scattering contribution, namely [86]:

∂ f (r, k)
∂t

=
∂ f (r, k)

∂t

∣∣∣∣
d
+

∂ f (r, k)
∂t

∣∣∣∣
s

. (7)

Here, the first term is the quantum-mechanical generalization of the deterministic
(diffusion-plus-drift) term in the semiclassical theory, and can be conveniently expressed in terms of
the well-known Moyal brackets [87], whose explicit form depends on the electron band dispersion
and on the electromagnetic gauge [72,79]. The second term, in contrast, describes again energy
dissipation and decoherence phenomena induced by various scattering mechanisms. Within a fully
quantum-mechanical treatment, such a scattering term is strictly nonlocal, as described in detail in [42],
and is of the general form

∂ f (r, k)
∂t

∣∣∣∣
s
= S

[
f (r′, k′)

]
(r, k) , (8)

where, in general, S is a nonlinear scattering superoperator describing a nonlocal action both in r and
k, i.e., the scattering contribution to the generic phase-space point (r, k) depends on the value of the
Wigner function f in any other phase-space point (r′, k′).

Due to the difficulty in dealing with its fully nonlocal character, it is common practice in many
quantum-simulation approaches to replace the scattering superoperator in Equation (8) with a local
superoperator. The simplest choice is once again the adoption of an RTA model [49,51,66,75] that
rewords the semiclassical case, namely:

∂ f (r, k)
∂t

∣∣∣∣
s
= −Γ(r, k) ( f (r, k)− f ◦(r, k)) . (9)

Here, similar to the RTA model in (5), the relaxation of the Wigner function in the phase-space
point (r, k) toward the equilibrium Wigner function f ◦(r, k) is described in terms of a space- and
momentum-dependent relaxation rate Γ(r, k); the latter may be extracted from fully microscopic
Monte Carlo simulations [6], or modelled via simplified Fermi’s Golden-rule treatments.

Another simplified (i.e., local) version of the scattering superoperator in Equation (8) is inspired
again by the formal analogy between the Wigner transport equation in (7) and the usual Boltzmann
transport theory, and consists of replacing S with a conventional (i.e., semiclassical) Boltzmann collision
term [6,23]:

∂ f (r, k)
∂t

∣∣∣∣
s
= ∑

s

∫
dk′

[
Ps(r; k, k′) f (r, k′)− Ps(r; k′, k) f (r, k)

]
, (10)

where
Ps(r; k, k′) = (1− f (r, k)) Ps

0(r; k, k′) (11)

denotes the low-density scattering rate Ps
0 in r (for the generic transition k′ → k induced by the

scattering mechanism s) weighted by the usual Pauli-blocking factor, and simply reduces to Ps
0(r; k, k′)

in the low-density limit ( f (r, k)→ 0).
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The Boltzmann collision term in (10) is characterized once again by the well-established in- minus
out-scattering structure; indeed, the latter may also be written as

∂ f (r, k)
∂t

∣∣∣∣
s

= ∑
s

∫
dr′ dk′Ps,in(r, k; r′, k′) f (r′, k′)

− ∑
s

∫
dr′ dk′Ps,out(r, k; r′, k′) f (r′, k′) (12)

with
Ps,in(r, k; r′, k′) = δ(r− r′)Ps(r; k, k′) (13)

and
Ps,out(r, k; r′, k′) = δ(r− r′)δ(k− k′)

∫
dk′′Ps(r; k′′, k) , (14)

which shows that, within the conventional Boltzmann theory, both superoperators are local in r,
and that the out-scattering one is local in k as well.

3. Fully Quantum-Mechanical Scattering Models

The quantum-mechanical derivation of effective scattering models within the density-matrix
formalism may involve one or more of the following three key steps [88]: (i) mean-field approximation;
(ii) adiabatic or Markov limit; and (iii) semiclassical or diagonal limit.

When all of these three approximations are applied, the usual Boltzmann collision term is obtained
(see Equation (6)); the latter, if applicable (see above), constitutes a robust/reliable particle-like
description in purely stochastic terms, thus providing physically acceptable results.

In contrast, the combination of the first two approximation schemes only, namely mean-field
treatment and adiabatic limit, allows one to derive so-called Markovian scattering superoperators,
whose action may lead to unphysical results [89]. Indeed, as originally pointed out by Spohn and
coworkers [90], the choice of the adiabatic decoupling strategy is definitely not unique and, in general,
the positive-definite character of the density-matrix operator may be violated.

To overcome this severe limitation, a few years ago, an alternative and more general Markov
procedure has been proposed [41]; the latter allows for a microscopic derivation of Lindblad-type
scattering superoperators [45], thus preserving the positive-definite nature of the electronic
quantum-mechanical state. More recently [40], such alternative Markov scheme combined with the
conventional mean-field approximation just recalled has allowed for the derivation of positive-definite
nonlinear scattering superoperators acting on the single-particle density matrix ρα1α2 ; more specifically,
as shown in [40], for both carrier–phonon and carrier–carrier interaction, the resulting single-particle
equation is given by

dρα1α2

dt

∣∣∣∣
s
=

1
2 ∑

α′α′1α′2

((
δα1α′ − ρα1α′

)
P s

α′α2,α′1α′2
ρα′1α′2

−
(

δα′α′1
− ρα′α′1

)
P s∗

α′α′1,α1α′2
ρα′2α2

)
+ H.c. (15)

with generalized carrier–phonon scattering rates [91]

Pcp
α1α2,α′1α′2

= Acp
α1α′1

Acp∗
α2α′2

(16)

and generalized carrier–carrier scattering rates [92]

Pcc
α1α2,α′1α′2

= 2 ∑
α1α2,α′1α′2

(
δα2α1 − ρα2α1

)
Acc

α1α1,α′1α′1
Acc∗

α2α2,α′2α′2
ρα′1α′2

. (17)

Here, Acp
αα′ denotes the matrix element of the corresponding carrier–phonon Lindblad operator

for the (one-body) transition α′ → α, while Acc
αα,α′α′ denotes the matrix element of the corresponding
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carrier–carrier Lindblad operator for the (two-body) transition α′α′ → αα. These carrier–phonon
and carrier–carrier Lindblad matrix elements can be microscopically derived starting from the
corresponding interaction Hamiltonians, as described in [40].

It is worth stressing that, contrary to the generalized carrier–phonon rates in (16), the generalized
carrier–carrier rates in (17) are themselves a function of the single-particle density matrix; this is a clear
fingerprint of the two-body nature of the carrier–carrier interaction (see below).

The generic single-particle scattering superoperator in (15) is the result of positive-like
(in-scattering) and negative-like (out-scattering) contributions, which are nonlinear functions of the
single-particle density matrix. Indeed, in the semiclassical limit previously recalled (ρα1α2 = fα1 δα1α2 ),
the density-matrix Equation (15) assumes the expected nonlinear Boltzmann-type form

d fα

dt

∣∣∣∣
s
= ∑

α′
((1− fα)Ps

αα′ fα′ − (1− fα′)Ps
α′α fα) (18)

with semiclassical carrier–phonon scattering rates

Pcp
αα′ = P

cp
αα,α′α′ =

∣∣∣Acp
αα′

∣∣∣2 (19)

and semiclassical carrier–carrier scattering rates

Pcc
αα′ = P

cc
αα,α′α′ = 2 ∑

αα′
(1− fα)

∣∣∣Acc
αα,α′α′

∣∣∣2 fα′ . (20)

The above semiclassical limit clearly shows that the nonlinearity factors (δα1α2 − ρα1α2) in (15) as
well as in (17) can be regarded as the quantum-mechanical generalization of the Pauli factors (1− fα)

of the conventional Boltzmann theory (see also Section 4 below).
A closer inspection of Equations (15) and (17)—together with their semiclassical counterparts

in (18) and (20)—confirms the two-body nature of the carrier–carrier interaction. Indeed, differently
from the carrier–phonon scattering, in this case, the density-matrix equation describes the time
evolution of a so-called “main carrier” α interacting with a so-called “partner carrier” α.

As already pointed out in the introductory section, in addition to the density-matrix treatments
just recalled, quantum-transport phenomena in nanomaterials and related nanodevices have been
extensively investigated via Wigner-function approaches [48–78]. In view of their formal similarity with
the conventional Boltzmann transport theory, in these Wigner-function treatments, dissipation versus
decoherence phenomena are often accounted for via local scattering models, such as relaxation-time
and Boltzmann-like schemes (see Section 2).

In spite of the fact that density-matrix and Wigner-function treatments have been historically
developed and applied independently to the modeling and optimization of various state-of-the-art
nanodevices, it is imperative to stress that the single-particle density matrix ρα1α2 in (3) is linked to
the single-particle Wigner function f (r, k) in (7) via a one-to-one correspondence provided by the
well-known Weyl–Wigner transform [7]. More specifically, adopting the very same notation employed
in [72], we have

f (r, k) = ∑
α1α2

W∗α1α2
(r, k)ρα1α2 , (21)

where

Wα1α2
(r, k) =

∫
dr′φα1

(
r +

r′

2

)
e−ık·r′φ∗α2

(
r− r′

2

)
(22)

denotes the Weyl–Wigner transform just recalled, and φα(r) the real-space wavefunction of the
single-particle state α.

In view of such one-to-one correspondence, it is thus clear that, given a scattering model within
the density-matrix picture, the latter will have a well-defined Wigner-function counterpart, and vice
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versa. On this basis, the most natural and rigorous approach is to select a reliable/robust model in
one picture, and then to translate it into the other one via the Weyl–Wigner transform in (22). This is
exactly what has been recently proposed in [79]: applying the nonlinear density-matrix scattering
model in (15) to the case of carrier–phonon interaction, a nonlocal scattering superoperator for the
Wigner function has been derived. In what follows, we shall extend such nonlocal scattering treatment
to the case of carrier–carrier interaction as well.

In order to get the desired Wigner-function version of the density-matrix scattering superoperator
in (15), the crucial step is to apply to the latter the Weyl–Wigner transform (21) together with its
inverse, namely [93]

ρα1α2 =
∫ dr dk

(2π)3 Wα1α2
(r, k) f (r, k). (23)

The resulting Wigner-function scattering superoperator is given by

∂ f (r, k)
∂t

∣∣∣∣
s

=
∫

dr′ dk′Ps,in(r, k; r′, k′) f (r′, k′)

−
∫

dr′ dk′Ps,out(r, k; r′, k′) f (r′, k′) , (24)

where

Ps,in/out(r, k; r′, k′) =
∫ dr′′ dk′′

(2π)3

(
1− f (r′′, k′′)

)
P̃s,in/out(r′′, k′′; r, k; r′, k′) (25)

with

P̃s,in(r′′, k′′; r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗α1α′(r

′′, k′′)P s
α′α2,α′1α′2

W∗α′1α′2
(r′, k′)

}
(26)

and

P̃s,out(r′′, k′′; r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗α′α′1

(r′′, k′′)P s ∗
α′α′1,α1α′2

W∗α′2α2
(r′, k′)

}
. (27)

As expected, for both carrier–phonon and carrier–carrier interaction, the proposed
quantum-mechanical generalization of the standard Boltzmann collision term in (10) is thus intrinsically
nonlocal. In particular, comparing Equation (25) with its semiclassical counterpart in (11), we realize
that the action of the Pauli exclusion principle within the Wigner phase-space is itself nonlocal: the
generalized in and out scattering rates for a given transition r, k → r′, k′ depend on the value
of the Wigner function in any other phase-space point r′′, k′′ via the Pauli factor 1 − f (r′′, k′′).
Such Pauli-blocking nonlocality will be discussed in more detail at the end of Section 4.

In the low-density limit ( f (r, k)→ 0), the proposed scattering model in (25) reduces to:

Ps,in(r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′1α′2

<
{

Wα1α2
(r, k)P s

α1α2,α′1α′2
W∗α′1α′2

(r′, k′)
}

(28)

and
Ps,out(r, k; r′, k′) =

1
(2π)3 ∑

α1α2α′1α′2

<
{

Wα1α2
(r, k)P s ∗

α′1α′1,α1α′2
W∗α′2α2

(r′, k′)
}

. (29)

It is however worth stressing that, while for carrier–phonon interaction the above low-density
scattering rates are different from zero, for carrier–carrier interaction, the latter vanish; this is due to
the fact that, in the low-density limit (ρα1α2 → 0), the generalized carrier–carrier scattering rates in (17)
tend to zero.
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For the case of carrier–phonon interaction, we may easily derive the explicit form
of the corresponding Wigner-function scattering rates. By inserting Equation (16) into
Equations (26) and (27), we get

P̃cp,in(r′′, k′′; r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗α1α′(r

′′, k′′)Acp
α′α′1

Acp∗
α2α′2

W∗α′1α′2
(r′, k′)

}
(30)

and

P̃cp,out(r′′, k′′; r, k; r′, k′) = 1
(2π)3 ∑α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗

α′α′1
(r′′, k′′)Acp∗

α′α1
Acp

α′1α′2
W∗

α′2α2
(r′, k′)

}
. (31)

In contrast, for the case of carrier–carrier interaction, getting the explicit form of the corresponding
Wigner-function scattering rates is not so straightforward. To this aim, the first step is to rewrite the
generalized carrier–carrier rates in (17) in terms of the Wigner function f (r, k). More specifically,
by inserting into Equation (17) the inverse Weyl–Wigner transform (23), we get:

Pcc
α1α2,α′1α′2

= 2 ∑
α1α2,α′1α′2

∫ dr′′dk
′′

dr′dk
′

(2π)6 ·

(
1− f (r′′, k

′′
)
)

Wα2α1
(r′′, k

′′
)Acc

α1α1,α′1α′1
Acc∗

α2α2,α′2α′2
Wα′1α′2

(r′, k
′
) f (r′, k

′
) . (32)

By inserting this last expression into Equations (26) and (27), the latter can be compactly rewritten as

P̃cc,in/out(r′′,k′′; r,k; r′,k′)=
∫ dr′′dk′′ dr′dk′

(2π)6

(
1− f (r′′,k

′′
)
)

p̃in/out(r′′,k
′′

; r′′,k′′; r,k; r′,k′; r′,k
′
) f (r′,k

′
) (33)

with
p̃in(r′′, k

′′
; r′′, k′′; r, k; r′, k′; r′, k

′
) =

1
4π3 ∑

α1α2α′α′1α′2

∑
α1α2,α′1α′2

·

<
{

Wα2α1
(r′′, k

′′
)W∗α1α′(r

′′, k′′)Acc
α′α1,α′1α′1

Wα1α2
(r, k)Acc∗

α2α2,α′2α′2
W∗α′1α′2

(r′, k′)Wα′1α′2
(r′, k

′
)
}

(34)

and
p̃out(r′′, k

′′
; r′′, k′′; r, k; r′, k′; r′, k

′
) =

1
4π3 ∑

α1α2α′α′1α′2

∑
α1α2,α′1α′2

·

<
{

W∗α2α1
(r′′, k

′′
)W∗α′α′1

(r′′, k′′)Acc∗
α′α1,α1α′1

Wα1α2
(r, k)Acc

α1α2,α′2α′2
W∗α′2α2

(r′, k′)W∗α′1α′2
(r′, k

′
)
}

. (35)

Exactly as for the density-matrix treatment previously considered, the Wigner-function version of
the corresponding carrier–carrier scattering superoperator reveals again its two-body nature. Indeed,
combining the general in- minus-out structure in (24) with the explicit form of the carrier–carrier
scattering rates in (33) and adopting the compact notation ξ ≡ r, k, it is easy to realize that the
carrier–carrier scattering superoperator is always of the form:

∂ f (ξ)
∂t

∣∣∣∣
s
=
∫

dξ
′′dξ ′′dξ ′dξ

′ (
1− f (ξ ′′)

) (
1− f (ξ ′′)

)
K
(

ξ
′′

, ξ ′′, ξ, ξ ′, ξ
′) f (ξ ′) f (ξ ′) . (36)

As we can see, the scattering contribution to the Wigner function in ξ = r, k is
the result of a fully nonlocal two-body transition: while the “main carrier” performs
the generic transition ξ ′ = r′,k′ → ξ ′′ = r′′, k′′, the “partner carrier” performs the generic
transition ξ

′
= r′,k

′ → ξ
′′
= r′′, k

′′
.



Entropy 2018, 20, 726 9 of 18

4. Nonlocal Character of Pauli-Blocking Contributions

The aim of this section is to further investigate—both within the density-matrix formalism and
within the Wigner-function picture—the role played by Pauli-blocking terms.

As discussed in [89], the time evolution of the single-particle density matrix is always
characterized by a highly non-trivial coupling between diagonal (population) and non-diagonal
(polarization) terms; indeed, starting from the density-matrix-based nonlinear scattering model in (15),
the equation of motion for the diagonal elements fα = ραα of the semiclassical theory (see Section 2) is
given by:

d fα

dt

∣∣∣∣
s
=

1
2 ∑

α′α′1α′2

(
(δαα′ − ραα′)P s

α′α,α′1α′2
ρα′1α′2

−
(

δα′α′1
− ρα′α′1

)
P s∗

α′α′1,αα′2
ρα′2α

)
+ c.c. (37)

This shows that the time evolution of the carrier population involves, in general, diagonal as well
as non-diagonal elements; this is different from the semiclassical Boltzmann-like scattering model
in (6), where all non-diagonal (polarization) terms are neglected.

In order to better compare the semiclassical scattering model in (6) with the fully
quantum-mechanical result in (37), let us insert into Equation (37) the separation between population
and polarization terms introduced in (1):

d fα

dt

∣∣∣∣
s

= ∑
α′

((1− fα)Ps
αα′ fα′ − (1− fα′)Ps

α′α fα)

+
1
2 ∑

α′1α′2

(
(1− fα)P s

αα,α′1α′2
pα′1α′2

−
(

1− fα′1

)
P s∗

α′1α′1,αα′2
pα′2α

)
+ c.c.

− 1
2 ∑

α′α′1

(
pαα′ P s

α′α,α′1α′1
fα′1
− pα′α′1

P s∗
α′α′1,αα fα

)
+ c.c.

− 1
2 ∑

α′α′1α′2

(
pαα′ P s

α′α,α′1α′2
pα′1α′2

− pα′α′1
P s∗

α′α′1,αα′2
pα′2α

)
+ c.c. , (38)

where Ps
αα′ = P s

αα,α′α′ denote the diagonal terms of our generalized scattering rates, which
coincide with the standard semiclassical rates of the Boltzmann theory provided by the usual
Fermi’s-golden-rule-prescription (see Equation (6)).

As we can see, the original scattering contribution in (37) splits into four different terms: the first
one describes population–population contributions and coincides with the semiclassical model in (6),
the second and third term describe, respectively, population–polarization and polarization–population
contributions, while the last one describes polarization-polarization contributions, also referred to
as “polarization scattering” [10]. At high carrier densities and in the presence of electronic phase
coherence, these last three (polarization-induced) contributions may lead to significant modifications
compared to the semiclassical case; it is however hard to draw conclusions about the impact of such
quantum-mechanical corrections, since the sign of these three extra-terms depend strongly on the
specific problem under investigation as well as on the device operational conditions; in contrast, in the
low-density limit, the last two (polarization–population and polarization-polarization) terms vanish,
and the quantum-mechanical correction with respect to the semiclassical contribution is given by the
second (population–polarization) term only.

The density-matrix analysis presented so far shows that, at high carrier concentrations, the Pauli
blocking factors (δα1α2 − ρα1α2) may lead to significant modifications to the dissipation versus
decoherence process via its diagonal (population) contributions as well as via its non-diagonal
(polarization) ones.
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Employing once again the Weyl–Wigner transform in (21), the above density-matrix Pauli
factors are straightforwardly translated into the corresponding Pauli factors of the Wigner-function
formulation (see Equations (25) and (33)):

∑
α1α2

W∗α1α2
(r, k) (δα1α2 − ρα1α2) = (1− f (r, k)) . (39)

As shown in the previous section, within our fully quantum-mechanical Wigner-function
treatment, the action of these Pauli factors is always nonlocal; this can be clearly seen in Equation (25),
where the generic scattering process from r′, k′ → r, k is “weighted” by a corresponding Pauli factor
(1− f (r′′, k′′)) and integrated over its phase-space coordinates r′′, k′′; this implies that the impact of
such nonlocal Pauli factor may be relevant, also if the value of the Wigner function in r, k is equal
to zero.

We finally stress that, similar to the density-matrix case previously considered, it is difficult to
evaluate the real impact of nonlocal Pauli factors within the Wigner-function picture. Indeed, as for
the case of the population–polarization, polarization–population and polarization–polarization terms
in (38), it is hard to draw general conclusions about the overall impact (scattering increase versus
suppression) induced by such nonlocal Pauli factors. Indeed, opposite to the case of a semiclassical
carrier distribution, it is imperative to recall that the Wigner function is a real quantity which may
take negative values as well as values greater than one (see Figure 1c below). This implies that
phase-space regions with a positive Wigner function will lead to a local suppression of dissipation
versus decoherence phenomena, while phase-space regions characterized by a negative Wigner
function will correspond to a Pauli factor larger than one, thus leading to a local increase of the
scattering dynamics; moreover, for phase-space regions characterized by a Wigner function greater
than one, the Pauli factor is negative, leading again to a scattering suppression. In a similar way,
it is also important to recall that the Wigner-function scattering probabilities P̃s,in/out in (25) are
pseudoprobabilities, i.e., real functions which, in general, are not positive-definite. This implies that,
for phase-space regions where the latter are negative, the two regimes of Pauli-induced scattering
suppression versus increase just discussed are simply interchanged.

As a result of the non-positive-definite character of both the Wigner function and of the
corresponding scattering probabilities, we are then forced to conclude that the nonlocal Pauli blocking
factors previously discussed do not necessarily lead to an overall scattering suppression; we stress
that such a conclusion is in clear contrast with the behaviour predicted by semiclassical models
(see Equation (6)), where the presence of local Pauli factors leads in any case to a suppression of the
scattering dynamics.

In order to concretely show the intrinsic limitations of local scattering models, we shall now
present a few simulated experiments of phonon-induced energy dissipation for the prototypical
nanosystem depicted in Figure 1a: it consists of a l = 20 nm thick GaAs quantum well (QW) surrounded
by (Al,Ga)As barriers with band offset V◦ = 0.3 eV; its three-dimensional electronic states exhibit
the usual subband structure due to confinement along the growth direction (z). To simplify our
analysis, we shall neglect in-plane phase-space coordinates and adopt an effective one-dimensional
(1D) description of the QW nanosystem, i.e., r, k → z, k. This implies that, within such simplified
treatment, the set of single-particle quantum numbers of our nanostructure coincides with the partially
discrete index of our 1D states only: α ≡ n. Moreover, since in the low-temperature simulated
experiments discussed below the only electronic states involved in the dissipation process are the
ground (n = 1) and first excited state (n = 2), our QW nanostructure may be described as a two-level
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system, whose energy levels and electronic wave functions, depicted in Figure 1a, may be safely
described via the following infinite-barrier model:

k1 =
π

l
, ε1 =

h̄2k2
1

2m∗ , φ1(z) =

√
2
l

cos(k1z),

k2 =
2π

l
, ε2 =

h̄2k2
2

2m∗ , φ2(z) = −
√

2
l

sin(k2z) (40)

(m∗ denoting the GaAs effective mass). The prototypical QW nanostructure in Figure 1a has been
optimized in order to maximize the intersubband carrier–phonon coupling; indeed, for l = 20 nm,
the interlevel splitting (ε2 − ε1 ' 40 meV) matches with the GaAs LO-phonon energy [6].
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Figure 1. (a) conduction band profile along the growth (z) direction for the prototypical
GaAs/(Al,Ga)As QW nanostructure considered in our simulated experiments. Energy levels of the first
two confined states (ε1 and ε2) are shown, together with the corresponding wavefunctions (φ1(z) and
φ2(z)); (b) probability density (n(z) = |ψ(z)|2) corresponding to the coherent state in (41); (c) Wigner
function (see Equation (43)) of the coherent state in (41) plotted for the two relevant values k1 and k2

corresponding to the two QW basis states in (40) (see also panel (a)).

In order to better emphasize the intrinsic limitations of local scattering models, let us consider
an electronic state given by a coherent and equally weighted superposition [94] of the two QW basis
states in (40), namely

ψ(z) = c1φ1(z) + c2φ2(z) , c1 = c2 =
1√
2

, (41)

whose probability density n(z) = |ψ(z)|2 is depicted in Figure 1b. It is easy to show that the coherent
electronic state in (41) corresponds to the following (two-by-two) single-particle density matrix [95]:(

ρ11 ρ12

ρ21 ρ22

)
=

(
|c1|2 c1c∗2
c2c∗1 |c2|2

)
=

(
1
2

1
2

1
2

1
2

)
. (42)
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As for any pure state ψ(z), the corresponding Wigner function is simply given by:

f (z, k) =
∫

dz′ψ
(

z +
z′

2

)
e−ıkz′ψ∗

(
z− z′

2

)
. (43)

Figure 1c shows the above Wigner function for the two relevant values k1 and k2 corresponding
to the two QW basis states in (40) (see also Figure 1a). In addition to the strongly asymmetric
nature of both the probability density n(z) in Figure 1b and of the corresponding Wigner function
profiles in Figure 1c, the latter exhibit negative values as well as values significantly greater than one
(see dashed curve).

Combining Equations (24) and (25), the 1D version (r, k→ z, k) of the nonlocal scattering model
in (24) for the case of carrier–phonon interaction comes out to be:

∂ f (z, k)
∂t

∣∣∣∣
s
=
∫ dz′′dk′′ dz′dk′

2π

(
1− f (z′′, k′′)

)
∆P̃cp(z′′, k′′; z, k; z′, k′) f (z′, k′) (44)

with
∆P̃cp(z′′, k′′; z, k; z′, k′) = P̃cp,in(z′′, k′′; z, k; z′, k′)− P̃cp,out(z′′, k′′; z, k; z′, k′) . (45)

Here, P̃cp,in/out are the 1D version of the fully nonlocal scattering rates in (30)–(31), and, for the
case of our simplified QW model, the generalized carrier–phonon scattering rates in (16) acquire the
diagonal form: Pcp

α1α2,α′1α′2
= Pα1α′1

δα1α′1,α2α′2
. In particular, in the low-temperature limit, the only active

relaxation channel is the 2→ 1 transition induced by LO-phonon emission, namely(
P11 P12

P21 P22

)
=

(
0 P◦

0 0

)
, (46)

where for our GaAs-based QW nanostructure the 2 → 1 phonon-emission rate P◦ is of the order
of 5 ps−1.

In order to compare the fully nonlocal QW scattering model described so far with its local
counterpart, we shall describe energy relaxation via an effective Boltzmann-like equation coupling the
two energy levels of the QW nanostructure depicted in Figure 1a. According to such a local scattering
model, the phonon-induced time evolution of the upper-level Wigner function (see solid curve in
Figure 1c) is given by:

∂ f (z, k2)

∂t

∣∣∣∣
s
= (1− f (z, k2) P21 f (z, k1)− (1− f (z, k1) P12 f (z, k2) , (47)

and in the low-temperature limit (see Equation (46)), the latter reduces to:

∂ f (z, k2)

∂t

∣∣∣∣
s
= − (1− f (z, k1) P◦ f (z, k2) . (48)

In Figure 2, we show the time derivative

g(z) =
∂ f (z, k2)

∂t

∣∣∣∣
s

(49)

of the upper-level Wigner-function profile (see solid curve in Figure 1c) comparing the nonlocal model
in (44) (solid curves) with its local counterpart in (47) (dash-dotted curves) in the absence (a) and
presence (b) of Pauli-blocking terms.
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Figure 2. Time derivative of the upper-level Wigner-function profile (see Equation (49)): comparison
between the nonlocal model in (44) (solid curves) and its local counterpart in (47) (dash-dotted curves)
in the absence (a) and presence (b) of Pauli-blocking terms (see text).

As we can see, already neglecting Pauli-blocking factors, the nonlocal and local scattering models
exhibit qualitatively different behaviours. Indeed, while the local result (dash-dotted curve in (a)) is
always negative and simply proportional to the Wigner function f (z, k2) (see Equation (48) and solid
curve in Figure 1c), the nonlocal one (solid curve in (a)) comes out to be significantly different. This is
due to the nonlocal nature of the carrier–phonon scattering model in (44) present also in the absence of
the Pauli factor (1− f (z′′, k′′)) and ascribed to the spatial integration with respect to z′.

In the presence of Pauli-blocking factors, the discrepancies between nonlocal and local models are
strongly amplified. Indeed, while for the nonlocal model the presence of the Pauli factors leads basically
to an overall suppression of the time derivative (solid curve in (b)), with respect to the Pauli-free case
(solid curve in (a)), the local result (dash-dotted curve in (b)) exhibits significant positive-definite
regions, due to negative values of the Pauli factor (1− f (z, k1)).

As a confirmation of the intrinsic limitations of the local scattering model pointed out so far,
it is easy to show that the Wigner function of the QW ground state φ1(z)—corresponding to the
zero-temperature equilibrium state of our nanostructure—is not a steady-state solution of the local
scattering model in (48).

5. Conclusions

Thanks to their simple physical interpretation as well as to their straightforward implementation
within various quantum-mechanical simulation schemes, semiclassical scattering models have
been widely employed in the design and optimization of new-generation quantum nanomaterials
and related nanodevices. In particular, during the last few decades, two different classes of
semiclassical treatments have been independently used, namely density-matrix and Wigner-function
schemes. The first class is based on the so-called diagonal approximation, i.e., the neglect
of non-diagonal density-matrix elements (i.e., polarization terms). The second class includes
local scattering models borrowed from the conventional Boltzmann transport theory, namely
relaxation-time schemes as well as Boltzmann collision terms; it has been recently shown [79]
that the use of such local scattering approaches within the Wigner-function formalism may lead to
unphysical results, namely anomalous suppression of intersubband relaxation, incorrect thermalization
dynamics, and violation of probability-density positivity. To overcome such severe limitations,
a quantum-mechanical generalization of relaxation-time and Boltzmann-like models has been recently
proposed [79], resulting in nonlocal electron-phonon scattering superoperators.
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The primary goal of this paper is twofold: on the one hand, we have investigated the intimate
link between density-matrix and Wigner-function approaches, pointing out intrinsic limitations of
semiclassical scattering models within these, apparently different, simulation strategies. On the other
hand, we have extended the carrier–phonon treatment in [79] to carrier–carrier interaction, deriving
the explicit form of the corresponding two-body scattering superoperator.

The main result of our investigation is that, for both carrier–phonon and carrier–carrier interaction,
it is hard to evaluate the impact (scattering suppression or increase) of Pauli-blocking factors.
More specifically, within the density-matrix picture, such terms give rise to quantum corrections
(with respect to the semiclassical case), namely population–polarization, polarization–population,
and polarization-polarization terms, often referred to as “polarization scattering”. At the same time,
within the Wigner-function picture, the action of the corresponding Pauli factors comes out to always be
nonlocal. Combining such nonlocal character with the non-positive-definite nature of both the Wigner
function and of the corresponding scattering probabilities, it is again hard to draw general conclusions
on the overall impact of Pauli blocking terms on energy dissipation and decoherence processes.

In order to concretely show the intrinsic limitations of local scattering models, a few simulated
experiments of energy dissipation and decoherence in a QW semiconductor nanostructure have
also been presented. The latter show that, already in the low-density limit (i.e., neglecting
Pauli-blocking terms), one deals with significant nonlocal corrections, and that, at high carrier densities,
these corrections are strongly amplified.
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contribution only. The long-range contribution may be accounted for via coupled Wigner-Poisson
schemes [7].

93. The fact that Equation (23) is the inverse of the Weyl–Wigner transform in (21) can be easily checked
noting that:

(2π)−3 ∑
α1α2

W∗α1α2
(r, k)Wα1α2

(r′, k′) = δ(r− r′) δ(k− k′).

94. Such a quantum-mechanical state superposition may be realized via ultrafast coherent laser excitation in the
infrared spectral range [10].

95. We stress that such a pure state constitutes the building block for the generation of maximally entangled
electronic Bell states in semiconductors [23].
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