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ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE

REPRESENTATIONS OF MULTICOMPONENT (1 + 1)-DIMENSIONAL

EVOLUTION PDES

SERGEI IGONIN GIANNI MANNO

Department of Mathematical Sciences, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract. Zero-curvature representations (ZCRs) are one of the main tools in the theory of
integrable (1 + 1)-dimensional PDEs. According to the preprint arXiv:1212.2199, for any given
(1+1)-dimensional evolution PDE one can define a sequence of Lie algebras Fp, p = 0, 1, 2, 3, . . . ,
such that representations of these algebras classify all ZCRs of the PDE up to local gauge equiv-
alence. ZCRs depending on derivatives of arbitrary finite order are allowed. Furthermore, these
algebras provide necessary conditions for existence of Bäcklund transformations between two given
PDEs. The algebras Fp are defined in arXiv:1212.2199 in terms of generators and relations.

In the present paper, we describe some methods to study the structure of the algebras F
p

for multicomponent (1 + 1)-dimensional evolution PDEs. Using these methods, we compute the
explicit structure (up to non-essential nilpotent ideals) of the Lie algebras F

p for the Landau-
Lifshitz, nonlinear Schrödinger equations, and for the n-component Landau-Lifshitz system of
Golubchik and Sokolov for any n > 3.

In particular, this means that for the n-component Landau-Lifshitz system we classify all ZCRs
(depending on derivatives of arbitrary finite order), up to local gauge equivalence and up to killing
nilpotent ideals in the corresponding Lie algebras. As a result of the classification, one obtains two
main non-equivalent ZCRs: a well-known ZCR with values in the infinite-dimensional Lie algebra
of certain (n+ 1)× (n+ 1) matrix-valued functions on some algebraic curve and a very different
ZCR with values in the Lie algebra son−1. We prove that any other ZCR of the n-component
Landau-Lifshitz system is equivalent to a reduction of these two ZCRs.

The presented methods to classify ZCRs can be applied also to other (1+1)-dimensional evolu-
tion PDEs. Furthermore, the obtained results can be used for proving non-existence of Bäcklund
transformations between some PDEs, which will be described in forthcoming publications.
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1. Introduction

1.1. The main ideas. Let m be a positive integer. An m-component (1 + 1)-dimensional evo-
lution PDE for functions u1(x, t), . . . , um(x, t) is a PDE of the form

∂ui

∂t
= F i(x, t, u1, . . . , um, u11, . . . , u

m
1 , . . . , u

1
d, . . . , u

m
d ),(1)

ui = ui(x, t), uik =
∂kui

∂xk
, i = 1, . . . , m, k ∈ Z>0.

Here the number d ≥ 1 is such that the functions F i may depend only on the variables x, t, uj,
ujk for k ≤ d.

A large part of the theory of integrable systems is devoted to the study of such PDEs. This class
of PDEs includes many celebrated equations of mathematical physics (e.g., the KdV, Krichever-
Novikov, Landau-Lifshitz, nonlinear Schrödinger equations). Many more PDEs can be written in
the evolution form (1) after a suitable change of variables.

To simplify notation, we set uj0 = uj and ujt = ∂uj/∂t for j = 1, . . . , m. Then the right-hand

side of (1) can be written as F i(x, t, uj0, u
j
1, . . . , u

j
d), and the PDE (1) reads

(2) uit = F i(x, t, uj0, u
j
1, . . . , u

j
d), i = 1, . . . , m.

So (2) is a compact form of (1).
In this paper, integrability of PDEs is understood in the sense of soliton theory and the inverse

scattering method. This is sometimes called S-integrability.
It is well known that, in order to investigate possible integrability properties of (1), one needs

to consider zero-curvature representations (ZCRs).
Let g be a finite-dimensional Lie algebra. For a PDE of the form (1), a zero-curvature repre-

sentation (ZCR) with values in g is given by g-valued functions

(3) A = A(x, t, uj0, u
j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+d−1)

satisfying

(4) Dx(B)−Dt(A) + [A,B] = 0.
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The total derivative operators Dx, Dt in (4) are

(5) Dx =
∂

∂x
+

∑

i=1,...,m,
k≥0

uik+1

∂

∂uik
, Dt =

∂

∂t
+

∑

i=1,...,m,
k≥0

Dk
x

(

F i(x, t, uj0, u
j
1, . . . , u

j
d)
) ∂

∂uik
.

The number p in (3) is such that the function A may depend only on the variables x, t, ujk for
k ≤ p and j = 1, . . . , m. Then equation (4) implies that the function B may depend only on x,
t, ujk′ for k

′ ≤ p+ d− 1.
Such ZCRs are said to be of order ≤ p. In other words, a ZCR given by A, B is of order ≤ p

iff
∂A

∂uil
= 0 for all l > p.

Remark 1. The right-hand side F i(x, t, uj0, u
j
1, . . . , u

j
d) of (1) appears in condition (4), because

F i appears in the formula for the operator Dt in (5).
Note that (4) can be written as [Dx + A, Dt + B] = 0. Condition (4) is equivalent to the fact

that the auxiliary linear system

(6) ∂x(W ) = −AW, ∂t(W ) = −BW
is compatible modulo (1). Here W = W (x, t) is an invertible N ×N matrix-function.

Remark 2. When we consider a function Q = Q(x, t, uj0, u
j
1, . . . , u

j
l ) for some l ∈ Z≥0, we always

assume that this function is analytic on an open subset of the manifold with the coordinates
x, t, uj0, u

j
1, . . . , u

j
l for j = 1, . . . , m. For example, Q may be a meromorphic function, because a

meromorphic function is analytic on some open subset of the manifold. In particular, this applies
to the functions (3).

We study the following problem. How to describe all ZCRs (3), (4) for a given PDE (1)?
In the case when p = 0 and the functions F i, A, B do not depend on x, t, a partial answer

to this question is provided by the Wahlquist-Estabrook prolongation method (WE method for

short). Namely, for a given PDE of the form uit = F i(uj0, u
j
1, . . . , u

j
d), i = 1, . . . , m, the WE

method constructs a Lie algebra so that ZCRs of the form

(7) A = A(uj0), B = B(uj0, u
j
1, . . . , u

j
d−1), Dx(B)−Dt(A) + [A,B] = 0

correspond to representations of this algebra (see, e.g., [2, 25, 9]). It is called the Wahlquist-

Estabrook prolongation algebra. Note that in (7) the function A(uj0) depends only on uj0,
j = 1, . . . , m.

To study the general case of ZCRs (3), (4) with arbitrary p for any equation (1), we need to
consider gauge transformations.

Without loss of generality, one can assume that g is a Lie subalgebra of glN for some N ∈ Z>0,
where glN is the algebra of N ×N matrices with entries from R or C. So our considerations are
applicable to both cases glN = glN(R) and glN = glN(C). And we denote by GLN the group of
invertible N ×N matrices.

Let K be either C or R. Then glN = glN(K) and GLN = GLN(K). In this paper, all algebras
are supposed to be over the field K.

Let G ⊂ GLN be the connected matrix Lie group corresponding to the Lie algebra
g ⊂ glN . (That is, G is the connected immersed Lie subgroup of GLN corresponding to the
Lie subalgebra g ⊂ glN .) A gauge transformation is given by an invertible matrix-function

G = G(x, t, uj0, u
j
1, . . . , u

j
l ) with values in G.

For any ZCR (3), (4) and any gauge transformation G = G(x, t, uj0, u
j
1, . . . , u

j
l ), the functions

(8) Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1
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satisfy Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0 and, therefore, form a ZCR. (This is explained in Remark 10
below.)

Moreover, since A, B take values in g and G takes values in G, the functions Ã, B̃ take values
in g. (This is well known, but for completeness we prove this in Lemma 1 in Section 2.)

The ZCR (8) is said to be gauge equivalent to the ZCR (3), (4). For a given PDE (1), for-
mulas (8) determine an action of the group of gauge transformations on the set of ZCRs of this
PDE.

The WE method does not use gauge transformations in a systematic way. In the classification
of ZCRs (7) this is acceptable, because the class of ZCRs (7) is relatively small.

The class of ZCRs (3), (4) is much larger than that of (7). As is shown in the present paper,
gauge transformations play a very important role in the classification of ZCRs (3), (4). Because
of this, the classical WE method does not produce satisfactory results for (3), (4), especially in
the case p > 0.

To overcome this problem, we use the approach which we developed in [10, 11]. Namely, using
some ideas from [10, 11], we find a normal form for ZCRs (3), (4) with respect to the action of
the group of gauge transformations. Using the normal form of ZCRs, for any given equation (1),
we define a Lie algebra F

p for each p ∈ Z≥0 so that the following property holds.
For every finite-dimensional Lie algebra g, any g-valued ZCR (3), (4) of order ≤ p is locally

gauge equivalent to the ZCR arising from a homomorphism F
p → g.

More precisely, as is discussed below, we define a Lie algebra F
p for each p ∈ Z≥0 and each

point a of the infinite prolongation E of the PDE (1). So the full notation for the algebra is
F
p(E , a).
Recall that the infinite prolongation E of (1) is the infinite-dimensional manifold with the

coordinates

(9) x, t, uik, i = 1, . . . , m, k ∈ Z≥0.

(A more precise definition of the manifold E is given in Section 2.1.) The precise definition of
F
p(E , a) for any evolution PDE (1) is presented in Section 2. In this definition, the algebra Fp(E , a)

is given in terms of generators and relations.
For every finite-dimensional Lie algebra g, homomorphisms Fp(E , a) → g classify (up to gauge

equivalence) all g-valued ZCRs (3), (4) of order ≤ p, where functions A, B are defined on a
neighborhood of the point a ∈ E . See Section 2 for details.

The algebras Fp(E , a) are responsible also for parameter-dependent ZCRs, see Remark 3 below.
For scalar evolution equations with m = 1 this approach was developed in [11]. In the present

paper we study the algebras Fp(E , a) for multicomponent evolution PDEs (1) with arbitrary m.
Note that the same Lie algebras Fp(E , a) were used in [10] for a different purpose, see Remark 4

below.

Remark 3. In the theory of integrable (1 + 1)-dimensional PDEs, one is especially interested in
ZCRs depending on a parameter λ. So consider a g-valued ZCR of the form

A = A(λ, x, t, uj0, u
j
1, . . . , u

j
p), B = B(λ, x, t, uj0, u

j
1, . . . , u

j
p+d−1),(10)

Dx(B)−Dt(A) + [A,B] = 0,

where g-valued functions A, B depend on x, t, uik and a parameter λ.
Let g̃ be the infinite-dimensional Lie algebra of functions h(λ) with values in g. (Depending

on the problem under study, one can consider analytic or meromorphic functions h(λ). Or one
can assume that λ runs through an open subset of some algebraic curve and consider g-valued
functions h(λ) on this algebraic curve.)

Then (10) can be regarded as a ZCR with values in g̃. After a suitable (parameter-dependent)
gauge transformation, each ZCR of the form (10) corresponds to a homomorphism F

p(E , a) → g̃.
So the Lie algebras Fp(E , a) are responsible also for parameter-dependent ZCRs.
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Applications of Fp(E , a) to the theory of Bäcklund transformations are described in [10]. In the
scalar case m = 1, applications of Fp(E , a) to obtaining necessary conditions for integrability of
scalar evolution equations are discussed in [11].

According to Section 2, the algebras Fp(E , a) for p ∈ Z≥0 are arranged in a sequence of surjective
homomorphisms

(11) · · · → F
p(E , a) → F

p−1(E , a) → · · · → F
1(E , a) → F

0(E , a).
Recall that K is either C or R. We suppose that the variables x, t, uik take values in K. A

point a ∈ E is determined by the values of the coordinates x, t, uik at a. Let

(12) a = (x = xa, t = ta, u
i
k = aik) ∈ E , xa, ta, a

i
k ∈ K, i = 1, . . . , m, k ∈ Z≥0,

be a point of E . In other words, the constants xa, ta, a
i
k are the coordinates of the point a ∈ E in

the coordinate system x, t, uik.

Example 1. To clarify the definition of Fp(E , a), let us consider the case m = p = 1. To this
end, we fix an evolution PDE (1) with m = 1 and study ZCRs of order ≤ 1 of this PDE.

Since we assume m = 1, any ZCR of order ≤ 1 is written as follows

(13) A = A(x, t, u10, u
1
1), B = B(x, t, u10, u

1
1, . . . , u

1
d), Dx(B)−Dt(A) + [A,B] = 0.

According to Theorem 2 in Section 2, any such ZCR (13) on a neighborhood of a ∈ E is gauge
equivalent to a ZCR of the form

Ã = Ã(x, t, u10, u
1
1), B̃ = B̃(x, t, u10, u

1
1, . . . , u

1
d),(14)

Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,(15)

∂Ã

∂u11
(x, t, u10, a

1
1) = 0, Ã(x, t, a10, a

1
1) = 0, B̃(xa, t, a

1
0, a

1
1, . . . , a

1
d) = 0,(16)

where xa, a
1
k are the constants determined by the point a ∈ E given by (12).

In other words, properties (16) determine a normal form for ZCRs (13) with respect to the
action of the group of gauge transformations on a neighborhood of a ∈ E .

A similar normal form for ZCRs (3), (4) with arbitrary m, p is described in Theorem 3 in
Section 2.

Since the functions Ã, B̃ from (14), (16) are analytic on a neighborhood of a ∈ E , these
functions are represented as absolutely convergent power series

Ã =
∑

l1,l2,i0,i1≥0

(x− xa)
l1(t− ta)

l2(u10 − a10)
i0(u11 − a11)

i1 · Ãl1,l2
i0,i1

,(17)

B̃ =
∑

l1,l2,j0,...,jd≥0

(x− xa)
l1(t− ta)

l2(u10 − a10)
j0 . . . (u1d − a1d)

jd · B̃l1,l2
j0...jd

.(18)

Here Ãl1,l2
i0,i1

and B̃l1,l2
j0...jd

are elements of a Lie algebra, which we do not specify yet.
Using formulas (17), (18), we see that properties (16) are equivalent to

(19) Ãl1,l2
i0,1

= Ãl1,l2
0,0 = B̃0,l2

0...0 = 0 ∀ l1, l2, i0 ∈ Z≥0.

To define F
1(E , a), we regard Ãl1,l2

i0,i1
, B̃l1,l2

j0...jd
from (17), (18) as abstract symbols. By definition,

the algebra F
1(E , a) is generated by the symbols Ãl1,l2

i0,i1
, B̃l1,l2

j0...jd
for l1, l2, i0, i1, j0, . . . , jd ∈ Z≥0.

Relations for these generators are provided by equations (15), (19). A more detailed description
of this construction is given in Section 2 for arbitrary m, p. The scalar case m = 1 is studied also
in [11].

Remark 4. Let q ∈ Z>0. Consider a system of the form

wl
x = αl(w1, . . . , wq, x, t, uj0, u

j
1, . . . , u

j
p),(20)
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wl
t = βl(w1, . . . , wq, x, t, uj0, u

j
1, . . . , u

j
p+d−1),(21)

wl = wl(x, t), l = 1, . . . , q.

We assume that system (20), (21) is compatible modulo (1), which means the following. Dif-
ferentiating equation (20) with respect to t and equation (21) with respect to x, one obtains some
expressions for wl

xt and w
l
tx. The expressions for wl

xt and w
l
tx must coincide, modulo (1).

For example, the linear system (6) corresponding to the ZCR (3), (4) is compatible modulo (1).
In general, in (20), (21) the functions αl, βl may depend on w1, . . . , wq nonlinearly. It is well known
that such compatible systems play an important role in the theory of Bäcklund transformations
(see, e.g., [17]).

Recall that E is the manifold with the coordinates (9). We assume that the functions αl, βl

from (20), (21) are defined on the manifold W×U, where W is a manifold with the coordinates
w1, . . . , wq and U is an open subset of E .

Let L be the Lie algebra of vector fields on W. Since W is a manifold with the coordinates

w1, . . . , wq, the Lie algebra L consists of vector fields of the form
∑q

l=1 f
l(w1, . . . , wq)

∂

∂wl
.

Then

A =

q
∑

l=1

αl(w1, . . . , wq, x, t, uj0, u
j
1, . . . , u

j
p)

∂

∂wl
,(22)

B =

q
∑

l=1

βl(w1, . . . , wq, x, t, uj0, u
j
1, . . . , u

j
p+d−1)

∂

∂wl
(23)

can be regarded as functions on U ⊂ E with values in L.
It is well known (and is explained in [10]) that system (20), (21) is compatible modulo (1) iff

Dx(B)−Dt(A) + [A,B] = 0.

Therefore, (22), (23) can be viewed as a ZCR with values in L.
The preprint [10] shows that, up to gauge equivalence, compatible systems of the form (20),

(21) can be described in terms of homomorphisms Fp(E , a) → L. (The notion of gauge equivalence
for such systems is discussed in [10].)

The main goal of this paper is to demonstrate techniques for computation of the algebras
F
p(E , a) for multicomponent evolution PDEs. Since the algebras Fp(E , a) are responsible for all

ZCRs, computation of F
p(E , a) leads to classification of ZCRs up to gauge equivalence. The

results of the paper are described in the next subsection.

1.2. The main results. As has been discussed above, for each p ∈ Z≥0 the algebra F
p(E , a)

is defined by a certain set of generators and relations arising from a normal form of ZCRs. In
Theorem 7 in Section 2.5 we describe a smaller subset of generators for Fp(E , a). This result is very
helpful in the computation of Fp(E , a) for concrete PDEs, which is demonstrated in Sections 5, 6.

In Theorem 8 in Section 3 we describe a relation between the algebra F
0(E , a) and the

Wahlquist-Estabrook prolongation algebra. This is helpful in the computation of F0(E , a) for
PDEs whose Wahlquist-Estabrook prolongation algebra is known.

The main example of a PDE considered in this paper is the multicomponent generalization of
the Landau-Lifshitz equation from [6, 23]. To describe this PDE, we need some notation.

For any k ∈ Z>0 and any k-dimensional vectors V = (v1, . . . , vk) and W = (w1, . . . , wk), we set

〈V,W 〉 =
∑k

i=1 v
iwi.

Recall that K is either C or R. Fix an integer n ≥ 2. Let r1, . . . , rn ∈ K be such that ri 6= rj
for all i 6= j. Denote by R = diag (r1, . . . , rn) the diagonal n× n matrix with entries ri. Consider
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the PDE

(24) St =
(

Sxx +
3

2
〈Sx, Sx〉S

)

x
+

3

2
〈S,RS〉Sx, 〈S, S〉 = 1, R = diag (r1, . . . , rn),

where S =
(

s1(x, t), . . . , sn(x, t)
)

is an n-dimensional vector-function, and si(x, t) take values in
K.

System (24) was introduced in [6]. According to [6], for n = 3 it coincides with the higher
symmetry (the commuting flow) of third order for the Landau-Lifshitz equation. Thus (24) can
be regarded as an n-component generalization of the Landau-Lifshitz equation. For this reason,
we call (24) the n-component Landau-Lifshitz system.

The paper [6] considers also the following algebraic curve

(25) λ2i − λ2j = rj − ri, i, j = 1, . . . , n,

in the space Kn with coordinates λ1, . . . , λn. According to [6], this curve is of genus
1 + (n− 3)2n−2, and system (24) possesses a ZCR parametrized by points of this curve. (The
ZCR is described in Remark 5 below.)

System (24) has an infinite number of symmetries, conservation laws [6], and an auto-Bäcklund
transformation with a parameter [1]. Soliton-like solutions of (24) can be found in [1]. In [23]
system (24) and its symmetries are constructed by means of the Kostant–Adler scheme.

Remark 5. For i, j = 1, . . . , n+ 1, let Ei,j ∈ gln+1 be the (n+ 1)× (n+ 1) matrix with (i, j)-th
entry equal to 1 and all other entries equal to zero.

From the results of [6, 23] one can obtain the following gln+1-valued ZCR for the PDE (24)

A =

n
∑

i=1

siλi(Ei,n+1 + En+1,i),(26)

B = D2
x(A) + [Dx(A),A] +

(

r1 + λ21 +
1

2
〈S,RS〉+ 3

2
〈Dx(S), Dx(S)〉

)

A,(27)

Dx(B)−Dt(A) + [A,B] = 0.

Here λ1, . . . , λn ∈ K are parameters satisfying (25).
We regard λi(Ei,n+1+En+1,i) as gln+1-valued functions on the curve (25). Let L be the infinite-

dimensional Lie algebra of all polynomial gln+1-valued functions M(λ1, . . . , λn) on the curve (25).
Let L(n) ⊂ L be the Lie subalgebra generated by the functions λi(Ei,n+1+En+1,i), i = 1, . . . , n.

Using relations (25), one can easily show that L(n) consists of linear combinations of the functions

((λ1)
2 + r1)

lλi(Ei,n+1 + En+1,i), ((λ1)
2 + r1)

lλiλj(Ei,j − Ej,i),(28)

i, j = 1, . . . , n, i < j, l ∈ Z≥0.

According to [9], the Lie algebra L(n) is infinite-dimensional, and the functions (28) form a basis
for it. We describe L(n) in more detail in Section 4.

Note that the algebra L(n) is very similar to infinite-dimensional Lie algebras that were studied
in [22, 23]. According to [9], the Lie algebra L(n) appears in the description of the Wahlquist-
Estabrook prolongation algebra for the PDE (24). The paper [9] gives also a presentation for the
algebra L(n) in terms of a finite number of generators and relations.

Note that (26), (27) can be regarded as functions with values in L(n). So (26), (27) can be
viewed as a ZCR with values in L(n).

Remark 6. Let son,1 ⊂ gln+1 be the Lie algebra of the matrix Lie group O(n, 1) ⊂ GLn+1, which
consists of invertible linear transformations that preserve the standard bilinear form of signature
(n, 1).

The algebra son,1 has the following basis

Ei,j − Ej,i, i < j ≤ n, El,n+1 + En+1,l, l = 1, . . . , n.
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Note that the functions (26), (27), (28) take values in son,1.

Remark 7. In order to describe the algebras F
p(E , a) for system (24), we need to resolve the

constraint 〈S, S〉 = 1 for the vector-function S =
(

s1(x, t), . . . , sn(x, t)
)

. Following [6], we do this
as follows

(29) sj =
2uj

1 + 〈u, u〉 , j = 1, . . . , n− 1, sn =
1− 〈u, u〉
1 + 〈u, u〉 ,

where u =
(

u1(x, t), . . . , un−1(x, t)
)

is an (n− 1)-dimensional vector-function.

Then system (24) can be written as a PDE of the form uit = ui3+G
i(uj, uj1, u

j
2), i = 1, . . . , n−1.

The explicit formula for this PDE is (147) in Section 4. Substituting (29) in (26), (27), we see
that (26), (27) is a ZCR of order ≤ 0 for this PDE. (That is, the function (26) does not depend
on ujl for l > 0.)

In Theorem 10 in Section 5.3 we construct for this PDE an son−1-valued ZCR of the form

(30) A = A(uj, uj1), B = B(uj, uj1, u
j
2, u

j
3), Dx(B)−Dt(A) + [A,B] = 0,

where son−1 is the Lie algebra of skew-symmetric (n− 1)× (n− 1) matrices with entries from K.
According to our notation, uj = uj0, hence the ZCR (30) is of order ≤ 1. Note that the ZCR (30)
does not depend on any parameters.

So we have two very different ZCRs for the same PDE (24), which can be transformed to the
PDE (147) by the transformation (29). Namely, we have the gln+1-valued ZCR (26), (27) and
the son−1-valued ZCR (30) described in Theorem 10.

One can embed the Lie algebras gln+1 and son−1 into the Lie algebra glN for some N ≥ n+ 1,
and then one can regard these ZCRs as glN -valued ZCRs. One can ask whether these ZCRs can
become gauge equivalent after suitable embeddings gln+1 →֒ glN and son−1 →֒ glN . In Remark 29
in Section 5.5 we show that these ZCRs cannot become gauge equivalent.

Using the theory described in Sections 2, 3, we compute the algebras Fp(E , a) for the PDE (24)
in Sections 4, 5, 6.

The PDE (24) is imposed on a vector-function S =
(

s1(x, t), . . . , sn(x, t)
)

satisfying 〈S, S〉 = 1.
We compute F

p(E , a) for this PDE in the case n ≥ 4. (The cases n = 2, 3 are less interesting and
will described elsewhere.)

In Section 4 we compute the algebra F
0(E , a) for this PDE, using its Wahlquist-Estabrook

prolongation algebra described in [9].
In Section 5 we compute F

1(E , a), and in Section 6 the algebras F
k(E , a) for all k ≥ 2 are

computed for this PDE. (We describe the structure of these Lie algebras up to some non-essential
nilpotent ideals.)

The results are summarized in the following theorem, which is proved in Section 6.4.

Theorem 1 (Section 6.4). Let n ≥ 4. The Lie algebras F
p(E , a) for the PDE (24) have the

following structure.

The algebra F
0(E , a) is isomorphic to the algebra L(n) defined in Remark 5.

There is an abelian ideal S of F1(E , a) such that F1(E , a)/S ∼= L(n) ⊕ son−1, where son−1 is

the Lie algebra of skew-symmetric (n − 1) × (n − 1) matrices. The surjective homomorphism

F
1(E , a) → F

0(E , a) from (11) coincides with the composition of the homomorphisms

F
1(E , a) → F

1(E , a)/S ∼= L(n)⊕ son−1 → L(n) ∼= F
0(E , a).

Let τk : F
k(E , a) → F

k−1(E , a) be the surjective homomorphism from (11). Then for any k ≥ 2
we have

[v1, [v2, v3]] = 0 ∀ v1, v2, v3 ∈ ker τk.

In particular, the kernel of τk is nilpotent.
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For each k ≥ 1, let ϕk : F
k(E , a) → L(n) ⊕ son−1 be the composition of the surjective homo-

morphisms

F
k(E , a) → F

1(E , a) → F
1(E , a)/S ∼= L(n)⊕ son−1,

where F
k(E , a) → F

1(E , a) arises from (11). Then

[h1, [h2, . . . , [h2k−2, [h2k−1, h2k]] . . . ]] = 0 ∀h1, h2, . . . , h2k ∈ kerϕk.

In particular, the kernel of ϕk is nilpotent.

Remark 8. Nilpotent ideals of the Lie algebras Fp(E , a) are not important for the main applica-
tions to the theory of Bäcklund transformations and integrability.

Theorem 1 says that, for the PDE (24) in the case n ≥ 4, for each k ≥ 1 there is a surjective
homomorphism ϕk : F

k(E , a) → L(n) ⊕ son−1 such that the kernel of ϕk is nilpotent. Since
nilpotent ideals of Fk(E , a) are not important, one can say that “the main part” of Fk(E , a) is
L(n)⊕ son−1.

And one has also the isomorphism F
0(E , a) ∼= L(n) for this PDE, according to Theorem 1.

Consider a ZCR (3), a gauge transformation G = G(x, t, uj0, u
j
1, . . . , u

j
l ), and the corresponding

gauge equivalent ZCR (8). Then, essentially, (3) and (8) carry the same information, because one
can switch from (3) to (8) and vice versa, using G and G−1.

Furthermore, the following fact about ZCRs with values in a Lie algebra g is well known. If
one is interested in applications to the theory of integrable systems, then one can ignore nilpotent
ideals of the Lie algebra g.

Therefore, it makes sense to classify ZCRs up to gauge equivalence and up to killing nilpotent
ideals in the corresponding Lie algebras. As we show below, the algebras Fp(E , a) are helpful in
this respect.

As has been said above, for every finite-dimensional Lie algebra g, homomorphisms Fp(E , a) → g

classify (up to gauge equivalence) all g-valued ZCRs (3), (4) of order ≤ p, where functions A, B
are defined on a neighborhood of the point a ∈ E .

According to Theorem 1, for the PDE (24) in the case n ≥ 4, we have F
0(E , a) ∼= L(n), and

for each k ≥ 1 there is a surjective homomorphism ϕk : F
k(E , a) → L(n) ⊕ son−1 such that the

kernel of ϕk is nilpotent.
This allows us to classify all ZCRs (up to gauge equivalence and up to killing nilpotent ideals)

for the PDE (24) in the case n ≥ 4 as follows. In Section 7 we prove that, after suitable
gauge transformations and after killing some nilpotent ideals, any ZCR becomes isomorphic to a
reduction of the direct sum of the L(n)-valued ZCR described in Remark 5 and the son−1-valued
ZCR described in Remark 7. (The notions of direct sums and reductions of ZCRs are explained
in Section 2.6.)

In other words, as a result of the classification of all ZCRs (depending on derivatives of arbitrary
finite order) for the PDE (24) in the case n ≥ 4, we obtain two main non-equivalent ZCRs: the
L(n)-valued ZCR and the son−1-valued ZCR described above. In Section 7 we prove that any
other ZCR for the considered PDE is essentially equivalent (up to killing nilpotent ideals) to a
reduction of the direct sum of these two main ZCRs.

In our opinion, it is interesting to see that, for a given multicomponent evolution PDE, one can
classify all ZCRs (depending on derivatives of arbitrary order), and, as a result of the classification,
one obtains several non-equivalent ZCRs depending on different derivatives and taking values in
different Lie algebras. As has been said above, we classify ZCRs up to gauge equivalence and up
to killing nilpotent ideals in the corresponding Lie algebras.

In the present paper we do this for the multicomponent Landau-Lifshitz system, but the de-
scribed computational techniques can be applied to many more evolution PDEs. (Although for
some PDEs the computations may be very difficult.)
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For some scalar evolution PDEs of orders 3, 5, 7 (including the KdV and Krichever-Novikov
equations), a similar approach to classification of ZCRs was described in [8, 11]. Note that the
multicomponent case considered in the present paper is much more sophisticated than the scalar
case considered in [8, 11].

Using the methods developed in Sections 2–6, in Section 8 we describe the structure of the Lie
algebras Fp(E , a), p ∈ Z≥0, for the classical Landau-Lifshitz and nonlinear Schrödinger equations
in the case K = C.

As has been said above, in Theorem 8 in Section 3 we describe a relation between the algebra
F
0(E , a) and the Wahlquist-Estabrook prolongation algebra. To compute F0(E , a) for the classical

Landau-Lifshitz and nonlinear Schrödinger equations in Section 8, we use this relation and the
corresponding Wahlquist-Estabrook prolongation algebras computed in [16, 3].

For the classical Landau-Lifshitz equation, we show that F0(E , a) is isomorphic to an infinite-
dimensional Lie algebra of certain so3(C)-valued functions on an elliptic curve. According to [16],
this algebra arises from the well-known elliptic so3(C)-valued ZCR of the Landau-Lifshitz equa-
tion [21, 5, 16]. For this equation, we show also that the Lie algebras F

q(E , a) with q ∈ Z>0

are obtained from the Lie algebra F
0(E , a) by applying several times the operation of central

extension.
For the nonlinear Schrödinger equation, we show that F0(E , a) is isomorphic to the direct sum

of the infinite-dimensional Lie algebra

sl2(C[λ]) = sl2(C)⊗C C[λ]

and a one-dimensional abelian Lie algebra. Here C[λ] is the algebra of polynomials in the variable
λ. The Lie algebra sl2(C[λ]) arises from the well-known parameter-dependent sl2(C)-valued ZCR
of the nonlinear Schrödinger equation, and λ corresponds to the parameter in the ZCR. For this
equation, we show also that the Lie algebras F

q(E , a) with q ∈ Z>0 are obtained from the Lie
algebra F

0(E , a) by applying several times the operation of central extension.
Using the algebras Fp(E , a) for (1 + 1)-dimensional evolution PDEs, the preprint [10] describes

a necessary condition for existence of Bäcklund transformations between two given PDEs. This
necessary condition is given in [10] in terms of the algebras Fp(E , a).

Using this necessary condition from [10] and knowing the structure of the algebras F
p(E , a),

one can sometimes prove non-existence of Bäcklund transformations between two given PDEs.
Examples of such results for scalar evolution equations are given in [10] and references therein.
The methods to compute F

p(E , a) described in the present paper allow one to obtain similar
results for some multicomponent PDEs, which will be discussed in forthcoming publications.

Remark 9. As has been said above, the ZCR (26), (27) for the PDE (24) is parametrized by
points of the curve (25). Some other integrable PDEs with ZCRs parametrized by the curve (25)
were introduced in [6, 7, 22]. It was noticed in [22] that the formulas λ = λ2i + ri, y =

∏n

i=1 λi
provide a map from the curve (25) to the hyperelliptic curve y2 =

∏n

i=1(λ− ri). According to [6],
for n > 3 the curve (25) itself is not hyperelliptic.

Remark 10. It is well known that equation (4) implies Dx(B̃) − Dt(Ã) + [Ã, B̃] = 0 for Ã, B̃
given by (8). Indeed, one has Dx+ Ã = G(Dx+A)G

−1 and Dx+ B̃ = G(Dt+B)G−1. Therefore,

Dx(B̃)−Dt(Ã) + [Ã, B̃] = [Dx + Ã, Dt + B̃] = [G(Dx + A)G−1, G(Dt +B)G−1] =

= G[Dx + A,Dt +B]G−1 = G(Dx(B)−Dt(A) + [A,B])G−1.

Hence the equation Dx(B)−Dt(A) + [A,B] = 0 implies Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0.

Remark 11. Some other approaches to the study of the action of gauge transformations on ZCRs
can be found in [13, 14, 15, 18, 19, 20] and references therein. For a given ZCR with values in a
matrix Lie algebra g, the papers [13, 14, 18] define certain g-valued functions that transform by
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conjugation when the ZCR transforms by gauge. Applications of these functions to construction
and classification of some types of ZCRs are described in [13, 14, 15, 18, 19, 20].

To our knowledge, the theory of [13, 14, 15, 18, 19, 20] does not produce any infinite-dimensional
Lie algebras responsible for ZCRs. So this theory does not contain the algebras Fp(E , a).
1.3. Abbreviations, conventions, and notation. The following abbreviations, conventions,
and notation are used in the paper.

ZCR = zero-curvature representation, WE = Wahlquist-Estabrook.
The symbols Z>0 and Z≥0 denote the sets of positive and nonnegative integers respectively.
K is either C or R. All vector spaces and algebras are supposed to be over the field K. We

denote by glN the algebra of N × N matrices with entries from K and by GLN the group of
invertible N ×N matrices.

Also, we use the following notation for partial derivatives of functions ui = ui(x, t), i = 1, . . . , m,

ui0 = ui, uik =
∂kui

∂xk
, k ∈ Z≥0.

2. Zero-curvature representations, gauge transformations, and the algebras

F
p(E , a)

In this section we study the algebras F
p(E , a) introduced in [10]. For completeness, we give

detailed definitions of E , a ∈ E , and F
p(E , a).

2.1. The infinite prolongation of an evolution PDE. As has been said in Section 1.1, we
suppose that x, t, uik take values inK, where K is either C or R. LetK∞ be the infinite-dimensional
space with the coordinates

(31) x, t, uik, i = 1, . . . , m, k ∈ Z≥0.

The topology on K∞ is defined as follows.
For each l ∈ Z≥0, consider the space Km(l+1)+2 with the coordinates x, t, uik for k = 0, 1, . . . , l

and i = 1, . . . , m. One has the natural projection πl : K
∞ → Km(l+1)+2 that “forgets” the coordi-

nates uik′ for k
′ > l.

SinceKm(l+1)+2 is a finite-dimensional vector space, we have the standard topology onK
m(l+1)+2.

For any l ∈ Z≥0 and any open subset V ⊂ Km(l+1)+2, the subset π−1
l (V ) ⊂ K∞ is, by definition,

open in K∞. Such subsets form a base of the topology on K∞. In other words, we consider the
smallest topology on K∞ such that the maps πl : K

∞ → Km(l+1)+2, l ∈ Z≥0, are continuous.
According to our notation, the PDE (1) can be written as (2). Let Km(d+1)+2 be the space

with the coordinates x, t, uik for k = 0, 1, . . . , d and i = 1, . . . , m. Let U ⊂ Km(d+1)+2 be an open

subset such that the functions F i(x, t, uj0, u
j
1, . . . , u

j
d) from (2) are defined on U.

The infinite prolongation E of the evolution PDE (1) can be defined as follows

E = π−1
d (U) ⊂ K

∞.

So E is an open subset of the space K∞ with the coordinates (31). The topology on E is induced
by the embedding E ⊂ K∞.

Example 2. For any constants e1, e2, e3 ∈ K, consider the Krichever-Novikov equation [12, 24]

(32) ut = uxxx −
3

2

(uxx)
2

ux
+

(u− e1)(u− e2)(u− e3)

ux
, u = u(x, t).

Since this is a scalar equation of order 3, we have here m = 1 and d = 3.
In our notation, we set u1 = u(x, t) and rewrite equation (32) as follows

u1t = F 1(x, t, u10, u
1
1, u

1
2, u

1
3),(33)
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F 1(x, t, u10, u
1
1, u

1
2, u

1
3) = u13 −

3

2

(u12)
2

u11
+

(u10 − e1)(u
1
0 − e2)(u

1
0 − e3)

u11
,(34)

where u10 = u1 and u1k =
∂ku1

∂xk
for k ∈ Z≥0.

Let K6 be the space with the coordinates x, t, u10, u
1
1, u

1
2, u

1
3. According to (34), the function

F 1 is defined on the open subset U ⊂ K6 determined by the condition u11 6= 0.
In this example, K∞ is the space with the coordinates x, t, u1k for k ∈ Z≥0. We have the

map π3 : K
∞ → K6 that “forgets” the coordinates u1k′ for k

′ > 3. The infinite prolongation E of
equation (33) is the following open subset of K∞

E = π−1
3 (U) =

{

(x, t, u10, u
1
1, u

1
2, . . . ) ∈ K

∞
∣

∣u11 6= 0
}

.

2.2. A normal form for ZCRs with respect to the action of gauge transformations.

Consider again an evolution PDE (1) with arbitrary m, d ∈ Z>0. As has been said above, the
infinite prolongation E of (1) is an open subset of the space K∞ with the coordinates (31).

A point a ∈ E is determined by the values of the coordinates x, t, uik at a. Let

(35) a = (x = xa, t = ta, u
i
k = aik) ∈ E , xa, ta, a

i
k ∈ K, i = 1, . . . , m, k ∈ Z≥0,

be a point of E . In other words, the constants xa, ta, a
i
k are the coordinates of the point a ∈ E in

the coordinate system x, t, uik.
Recall that, for every N ∈ Z>0, we denote by glN the algebra of N ×N matrices with entries

from K and by GLN the group of invertible N × N matrices. Let Id ∈ GLN be the identity
matrix.

By the standard Lie group – Lie algebra correspondence, for every Lie subalgebra g ⊂ glN
there is a unique connected immersed Lie subgroup G ⊂ GLN whose Lie algebra is g. We call G
the connected matrix Lie group corresponding to the matrix Lie algebra g ⊂ glN .

For any l ∈ Z≥0, a matrix-function G = G(x, t, uj0, u
j
1, . . . , u

j
l ) with values in G is called a gauge

transformation. Equivalently, one can say that a gauge transformation is given by a G-valued
function G = G(x, t, uj0, u

j
1, . . . , u

j
l ).

The following lemma is known, but for completeness we present a proof of it.

Lemma 1. Let N ∈ Z>0 and p ∈ Z≥0. Let g ⊂ glN be a matrix Lie algebra and G ⊂ GLN be the

connected matrix Lie group corresponding to g ⊂ glN .
Let

(36)
A = A(x, t, uj0, u

j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ p such that the functions A, B take values in g. Here Dx and Dt are given

by (5).
Then for any G-valued function

(37) G = G(x, t, uj0, u
j
1, . . . , u

j
p−1)

depending on x, t, uj0, . . . , u
j
p−1, j = 1, . . . , m, the functions

(38) Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1

form a g-valued ZCR of order ≤ p. That is,

(39) Ã = Ã(x, t, uj0, u
j
1, . . . , u

j
p), B̃ = B̃(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B̃)−Dt(Ã)+[Ã, B̃] = 0,

and Ã, B̃ take values in g.
Formulas (38) determine an action of the group of G-valued gauge transformations (37) on the

set of g-valued ZCRs of order ≤ p.
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Proof. Since A, B take values in g and G takes values in the connected matrix Lie group G
corresponding to the Lie algebra g ⊂ glN , the functions

(40) GAG−1, GBG−1,
∂

∂x
(G) ·G−1,

∂

∂t
(G) ·G−1,

∂

∂uik
(G) ·G−1 ∀ i, k

take values in g. Hence the functions Ã, B̃ given by (38) take values in g as well.

Using formulas (5), (36), (38) and the fact that G may depend only on x, t, uj0, . . . , u
j
p−1, we

easily get (39).

One hasDx+Ã = G(Dx+A)G
−1 andDx+B̃ = G(Dt+B)G−1, which implies that formulas (38)

determine an action of the group of G-valued gauge transformations (37) on the set of g-valued
ZCRs of order ≤ p. �

Remark 12. For any l ∈ Z≥0 and a ∈ E , when we consider a function Q = Q(x, t, uj0, u
j
1, . . . , u

j
l )

defined on a neighborhood of a ∈ E , we always assume that the function is analytic on this
neighborhood. For example, Q may be a meromorphic function defined on an open subset of E
such that Q is analytic on a neighborhood of a ∈ E .

In particular, this applies to the functions A, B, G, Ã, B̃ considered in Theorems 2, 3 below.

Theorems 2 and 3 below describe a normal form for ZCRs with respect to the action of the
group of gauge transformations. To clarify the construction, we first consider the case of ZCRs
of order ≤ 1 in Theorem 2. The general case of ZCRs of order ≤ p for any p ∈ Z≥0 is described
in Theorem 3.

Theorem 2. Let m,N ∈ Z>0. Let g ⊂ glN be a matrix Lie algebra. Denote by G ⊂ GLN the

connected matrix Lie group corresponding to g ⊂ glN .
Let E be the infinite prolongation of an m-component evolution PDE (1). Consider a point

a ∈ E given by (35). According to (35), the point a is determined by constants xa, ta, a
i
k.

Let

(41) A = A(x, t, uj0, u
j
1), B = B(x, t, uj0, u

j
1, . . . , u

j
d), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ 1 such that the functions A, B are defined on a neighborhood of a ∈ E and

take values in g.
Then, on a neighborhood of a ∈ E , there is a G-valued function

(42) G = G(x, t, uj0)

depending on x, t, uj0, j = 1, . . . , m, such that the functions

(43) Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1

satisfy

∀ i0 = 1, . . . , m,
∂Ã

∂ui01

∣

∣

∣

∣

u
j
1
=a

j
1

∀ j, ui
0
=ai

0
∀ i>i0

= 0,(44)

Ã
∣

∣

∣

u
j
0
=a

j
0
, u

j
1
=a

j
1

∀ j
= 0,(45)

B̃
∣

∣

∣

x=xa, u
j

k
=a

j

k
∀ j, ∀ k≥0

= 0,(46)

and

(47) G
∣

∣

∣

x=xa, t=ta, u
j
0
=a

j
0

∀ j
= Id.

Note that, according to Lemma 1, the functions (43) form a g-valued ZCR of order ≤ 1. That

is,

(48) Ã = Ã(x, t, uj0, u
j
1), B̃ = B̃(x, t, uj0, u

j
1, . . . , u

j
d), Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,
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and Ã, B̃ take values in g.

Remark 13. The notation B̃
∣

∣

∣

x=xa, u
j

k
=a

j

k
∀ j, ∀ k≥0

in (46) means that we substitute x = xa and

ujk = ajk for all j = 1, . . . , m and all k ≥ 0 in the function B̃ = B̃(x, t, uj0, u
j
1, . . . , u

j
d). That is,

B̃
∣

∣

∣

x=xa, u
j

k
=a

j

k
∀ j, ∀ k≥0

= B̃(xa, t, a
j
0, a

j
1, . . . , a

j
d).

The notation in (44), (45), (47) can be understood in a similar way.

Proof. To clarify the main idea, let us consider first the case m = 2. Then formulas (41), (48)
become

A = A(x, t, u10, u
2
0, u

1
1, u

2
1), B = B(x, t, u10, u

2
0, u

1
1, u

2
1, . . . , u

1
d, u

2
d),(49)

Ã = Ã(x, t, u10, u
2
0, u

1
1, u

2
1), B̃ = B̃(x, t, u10, u

2
0, u

1
1, u

2
1, . . . , u

1
d, u

2
d).(50)

For m = 2 in (44) we have i0 = 1, 2, so condition (44) is equivalent to the following two equations

∂Ã

∂u11
(x, t, u10, a

2
0, a

1
1, a

2
1) = 0,(51)

∂Ã

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1) = 0.(52)

Conditions (45), (46) in the case m = 2 can be written as

Ã(x, t, a10, a
2
0, a

1
1, a

2
1) = 0,(53)

B̃(xa, t, a
1
0, a

2
0, a

1
1, a

2
1, . . . , a

1
d, a

2
d) = 0.(54)

According to Lemma 1 in the case p = 1, formulas (43) determine an action of the group of
G-valued gauge transformations (42) on the set of g-valued ZCRs of order ≤ 1.

To prove the statement of the theorem in the case m = 2, we need to find a G-valued gauge
transformation G = G(x, t, u10, u

2
0) such that the transformed ZCR (43) satisfies (51), (52), (53),

(54), and G(xa, ta, a
1
0, a

2
0) = Id.

We are going to construct the required gauge transformation in several steps. First, we will
construct a transformation to achieve property (52), then another transformation to get proper-
ties (51), (52), then another transformation to get properties (51), (52), (53), and finally another
transformation to obtain all properties (51), (52), (53), (54).

Consider the ordinary differential equation (ODE)

(55)
∂G2

∂u20
= G2 ·

(

∂A

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1)

)

with respect to the variable u20 and an unknown function G2 = G2(x, t, u
1
0, u

2
0). The variables

x, t, u10 are regarded as parameters in this ODE.
Let G2(x, t, u

1
0, u

2
0) be a local solution of the ODE (55) with the initial condition

G2(x, t, u
1
0, a

2
0) = Id. Since ∂A/∂u21 takes values in g, the function G2 takes values in G.

Set

(56) Â = G2AG
−1
2 −Dx(G2) ·G−1

2 , B̂ = G2BG
−1
2 −Dt(G2) ·G−1

2 .

Since G2 takes values in G, the functions Â, B̂ take values in g. Using (56) and (55), we get

(57)
∂Â

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1) = G2

(

∂A

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1)

)

G−1
2 −

(

∂

∂u21

(

Dx(G2)
)

)

G−1
2 =

= G2

(

∂A

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1)

)

G−1
2 − ∂G2

∂u20
G−1

2 =
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= G2

(

∂A

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1)

)

G−1
2 −G2

(

∂A

∂u21
(x, t, u10, u

2
0, a

1
1, a

2
1)

)

G−1
2 = 0.

Now consider the ODE

(58)
∂G1

∂u10
= G1 ·

(

∂Â

∂u11
(x, t, u10, a

2
0, a

1
1, a

2
1)

)

with respect to the variable u10 and an unknown function G1 = G1(x, t, u
1
0), where x, t are regarded

as parameters.
Let G1(x, t, u

1
0) be a local solution of the ODE (58) with the initial condition G1(x, t, a

1
0) = Id.

Since ∂Â/∂u11 takes values in g, the function G1 takes values in G.
Set

(59) Ā = G1ÂG
−1
1 −Dx(G1) ·G−1

1 , B̄ = G1B̂G
−1
1 −Dt(G1) ·G−1

1 .

Then (57), (58), (59) imply that Ā satisfies properties (51), (52), if we replace Ã by Ā in (51),
(52). Furthermore, since G1 takes values in G, the functions Ā, B̄ take values in g.

Let G̃ = G̃(x, t) be a local solution of the ODE

∂G̃

∂x
= G̃ · Ā(x, t, a10, a20, a11, a21)

with the initial condition G̃(xa, t) = Id, where t is viewed as a parameter. Set

(60) Ǎ = G̃ĀG̃−1 −Dx(G̃) · G̃−1, B̌ = G̃B̄G̃−1 −Dt(G̃) · G̃−1.

Then Ǎ satisfies properties (51), (52), (53), if we replace Ã by Ǎ in (51), (52), (53).

Finally, let Ĝ = Ĝ(t) be a local solution of the ODE

(61)
∂Ĝ

∂t
= Ĝ · B̌(xa, t, a

1
0, a

2
0, a

1
1, a

2
1, . . . , a

1
d, a

2
d)

with the initial condition Ĝ(ta) = Id. Set

(62) Ã = ĜǍĜ−1 −Dx(Ĝ) · Ĝ−1, B̃ = ĜB̌Ĝ−1 −Dt(Ĝ) · Ĝ−1.

Then Ã, B̃ obey (51), (52), (53), (54).

Let G = Ĝ · G̃ ·G1 ·G2. Then equations (56), (59), (60), (62) imply

Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1.

Furthermore, since G2(x, t, u
1
0, a

2
0) = G1(x, t, a

1
0) = G̃(xa, t) = Ĝ(ta) = Id, we have

G(xa, ta, a
1
0, a

2
0) = Id. Thus G = Ĝ · G̃ · G1 · G2 satisfies all the required properties in the

case m = 2.
This construction can be easily generalized to the case of arbitrary m. One can define G as the

product G = Ĝ · G̃ ·G1 ·G2 . . . Gm, where the G-valued functions

Gq = Gq(x, t, u
1
0, . . . , u

q
0), q = 1, . . . , m, G̃ = G̃(x, t), Ĝ = Ĝ(t)

are defined as solutions of certain ODEs similar to the ODEs considered above. �

The set {1, . . . , m} × Z≥0 consists of pairs (i, k), where i ∈ {1, . . . , m} and k ∈ Z≥0. Consider
the following ordering � of the set {1, . . . , m} × Z≥0

i, i′ ∈ {1, . . . , m}, k, k′ ∈ Z≥0, k 6= k′,

(i, k) ≺ (i′, k′) iff k < k′, (i, k) ≺ (i′, k) iff i < i′.(63)

That is, (1, 0) ≺ (2, 0) ≺ · · · ≺ (m, 0) ≺ (1, 1) ≺ (2, 1) ≺ . . . .
As usual, the notation (i1, k1) � (i2, k2) means that either (i1, k1) ≻ (i2, k2) or (i1, k1) = (i2, k2).
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Remark 14. Let F = F (x, t, uik) be a function of the variables x, t, uik. Let i′ ∈ {1, . . . , m}
and k′ ∈ Z≥0. Then the notation F

∣

∣

∣

ui
k
=ai

k
∀ (i,k)≻(i′,k′)

says that we substitute uik = aik for all

(i, k) ≻ (i′, k′) in the function F .

Similarly, the notation F
∣

∣

∣

x=xa, ui
k
=ai

k
∀ (i,k)�(i′,k′)

means that we substitute x = xa and uik = aik

for all (i, k) � (i′, k′) in F .

Theorem 3. Let m,N ∈ Z>0 and p ∈ Z≥0. Let g ⊂ glN be a matrix Lie algebra. Denote by

G ⊂ GLN the connected matrix Lie group corresponding to g ⊂ glN .
Let E be the infinite prolongation of an m-component evolution PDE (1). Consider a point

a ∈ E given by (35). According to (35), the point a is determined by constants xa, ta, a
i
k.

Let

(64)

A = A(x, t, uj0, u
j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ p such that the functions A, B are defined on a neighborhood of a ∈ E and

take values in g.

Then, on a neighborhood of a ∈ E , there is a G-valued function G = G(x, t, uj0, u
j
1, . . . , u

j
p−1)

depending on x, t, uj0, . . . , u
j
p−1, j = 1, . . . , m, such that the functions

Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1

satisfy

∀ i0 = 1, . . . , m, ∀ k0 ≥ 1,
∂Ã

∂ui0k0

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)≻(i0,k0−1)

= 0,(65)

Ã
∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0,(66)

B̃
∣

∣

∣

x=xa, ui
k
=ai

k
∀ (i,k)

= 0,(67)

and

(68) G
∣

∣

∣

x=xa, t=ta, ui
k
=ai

k
∀ (i,k)

= Id.

Note that, according to Lemma 1, the functions (43) form a g-valued ZCR of order ≤ p. That

is, Ã, B̃ take values in g and satisfy (39).

Proof. This theorem can be proved similarly to Theorem 2. One can define G as the product
of several gauge transformations, which are defined as solutions of certain ODEs similar to the
ODEs considered in the proof of Theorem 2. �

Fix a point a ∈ E given by (35), which is determined by constants xa, ta, a
i
k.

A ZCR
(69)
A = A(x, t, uj0, u

j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B)−Dt(A) + [A,B] = 0

is said to be a-normal if A, B satisfy the following equations

∀ i0 = 1, . . . , m, ∀ k0 ≥ 1,
∂A

∂ui0k0

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)≻(i0,k0−1)

= 0,(70)

A

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0,(71)

B

∣

∣

∣

x=xa, ui
k
=ai

k
∀ (i,k)

= 0.(72)
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Remark 15. For example, the ZCR Ã, B̃ described in Theorem 3 is a-normal, because Ã, B̃
obey (65), (66), (67). Theorem 3 implies that any ZCR on a neighborhood of a ∈ E is gauge
equivalent to an a-normal ZCR.

Theorem 4. Let N ∈ Z>0. Let

(73) A = A(x, t, uj0, u
j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B)−Dt(A) + [A,B] = 0

be an a-normal ZCR with values in glN . (So A, B take values in glN and satisfy (70), (71), (72).)
Consider another a-normal ZCR with values in glN

A = A(x, t, uj0, u
j
1, . . . , u

j
q), B = B(x, t, uj0, uj1, . . . , ujq+d−1), Dx(B)−Dt(A) + [A,B] = 0,

(74)

∀ i0 = 1, . . . , m, ∀ k0 ≥ 1,
∂A
∂ui0k0

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)≻(i0,k0−1)

= 0,(75)

A
∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0,(76)

B
∣

∣

∣

x=xa, ui
k
=ai

k
∀ (i,k)

= 0.(77)

Suppose that there is a function G = G(x, t, uj0, u
j
1, . . . , u

j
l ) with values in GLN such that

A = GAG−1 −Dx(G) ·G−1,(78)

B = GBG−1 −Dt(G) ·G−1.(79)

In other words, we suppose that the a-normal ZCR A, B is gauge equivalent to the a-normal ZCR

A, B with respect to a gauge transformation G = G(x, t, uj0, u
j
1, . . . , u

j
l ).

Then the function G is actually a constant element of GLN (that is, G does not depend on x,
t, ujk), and we have

(80) A = GAG−1, B = GBG−1.

Proof. Using (70), (75), (78), one can prove

(81)
∂G

∂ujk
= 0 ∀ j, k

by descending induction on (j, k) with respect to the ordering ≺. Equation (81) means that the
function G may depend only on x, t.

Now, taking into account (81) and (5), we can rewrite (78), (79) as

A = GAG−1 − ∂G

∂x
·G−1,(82)

B = GBG−1 − ∂G

∂t
·G−1.(83)

Substituting uik = aik for all i, k in (82) and using (71), (76), we get ∂G/∂x = 0. Hence G may
depend only on t. Substituting x = xa and uik = aik for all i, k in (83) and using (72), (77), we
get ∂G/∂t = 0.

Thus G does not depend on x, t, ujk, so G is a constant element of GLN . Then
Dx(G) = Dt(G) = 0, and relations (78), (79) imply (80). �

Remark 16. In the situation described in Theorem 4, since G is a constant element of GLN , the
equation A = GAG−1 implies that the functions A and A depend on the same variables x, t, ujk.
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2.3. The algebras F
p(E , a). Recall that E is the infinite prolongation of an m-component evo-

lution PDE (1). The number m ∈ Z>0 is fixed throughout this section. Consider a point a ∈ E
given by (35). According to (35), the point a is determined by constants xa, ta, a

i
k.

For each q ∈ Z≥0, let Mq be the set of matrices of size m × (q + 1) with nonnegative integer
entries. For a matrix γ ∈ Mq, its entries are denoted by γi,k ∈ Z≥0, where i = 1, . . . , m and
k = 0, . . . , q. Let Uγ

a be the following product

(84) Uγ
a =

∏

i=1,...,m,
k=0,...,q

(

uik − aik
)γi,k .

Remark 17. For each q ∈ Z>0, i0 ∈ {1, . . . , m}, and k0 ∈ {1, . . . , q}, denote by M q
i0,k0

⊂ Mq the
subset of matrices α satisfying the following conditions

αi0,k0 = 1, ∀ k > k0 ∀ i αi,k = 0, ∀ i1 6= i0 αi1,k0 = 0, ∀ i2 > i0 αi2,k0−1 = 0.(85)

In other words, for each k > k0 the k-th column of any matrix α ∈M q
i0,k0

is zero, the k0-th column
contains only one nonzero entry αi0,k0 = 1, and in the (k0 − 1)-th column one has αi2,k0−1 = 0 for
all i2 > i0.

Set also M0
i0,k0

= ∅ for all i0, k0. So the set M0
i0,k0

is empty.

Let N ∈ Z>0 and p ∈ Z≥0. Consider again a matrix Lie algebra g ⊂ glN . According to
Theorem 3, any g-valued ZCR (64) of order ≤ p defined on a neighborhood of a ∈ E is gauge
equivalent to a g-valued ZCR

Ã = Ã(x, t, uj0, u
j
1, . . . , u

j
p), B̃ = B̃(x, t, uj0, u

j
1, . . . , u

j
p+d−1),(86)

Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0(87)

satisfying (66), (67), (68).
According to Remark 12, the g-valued functions Ã, B̃ are analytic on a neighborhood of a ∈ E .

Hence, in some neighborhood of a ∈ E , the functions Ã, B̃ can be represented as absolutely
convergent power series

Ã =
∑

α∈Mp, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uα
a · Ãl1,l2

α ,(88)

B̃ =
∑

β∈Mp+d−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uβ
a · B̃l1,l2

β ,(89)

Ãl1,l2
α , B̃l1,l2

β ∈ g.

Remark 18. Using formulas (88), (89), we see that properties (66), (67), (68) are equivalent to

(90) Ãl1,l2
0 = B̃0,l2

0 = 0, Ãl1,l2
α̂ = 0, α̂ ∈Mp

i0,k0
, i0 = 1, . . . , m, k0 = 1, . . . , p, l1, l2 ∈ Z≥0,

where Mp
i0,k0

⊂ Mp is the set of matrices defined in Remark 17.

Remark 19. The main idea of the definition of the Lie algebra Fp(E , a) can be informally outlined
as follows. According to Theorem 3 and Remark 18, any ZCR (64) of order ≤ p is gauge equivalent
to a ZCR given by functions Ã, B̃ that are of the form (88), (89) and satisfy (87), (90).

To define F
p(E , a), we regard Al1,l2

α , Bl1,l2
β from (88), (89) as abstract symbols. By definition,

the Lie algebra F
p(E , a) is generated by the symbols Al1,l2

α , Bl1,l2
β for α ∈ Mp, β ∈ Mp+d−1,

l1, l2 ∈ Z≥0. Relations for these generators are provided by equations (87), (90). The details of
this construction are presented below.

Let F be the free Lie algebra generated by the symbols Al1,l2
α , Bl1,l2

β for α ∈ Mp, β ∈ Mp+d−1,
l1, l2 ∈ Z≥0. In particular, we have

Al1,l2
α ∈ F, B

l1,l2
β ∈ F,

[

Al1,l2
α ,Bl1,l2

β

]

∈ F ∀α ∈ Mp, ∀ β ∈ Mp+d−1, ∀ l1, l2 ∈ Z≥0.
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Consider the following formal power series with coefficients in F

A =
∑

α∈Mp, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uα
a ·Al1,l2

α ,

B =
∑

β∈Mp+d−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uβ
a ·Bl1,l2

β .

Set

Dx(B) =
∑

β∈Mp+d−1, l1,l2∈Z≥0

Dx

(

(x− xa)
l1(t− ta)

l2Uβ
a

)

·Bl1,l2
β ,(91)

Dt(A) =
∑

α∈Mp, l1,l2∈Z≥0

Dt

(

(x− xa)
l1(t− ta)

l2Uα
a

)

·Al1,l2
α ,(92)

[A,B] =
∑

α∈Mp, β∈Mp+d−1,

l1,l2,l
′
1
,l′
2
∈Z≥0

(x− xa)
l1+l′1(t− ta)

l2+l′2 · Uα
a · Uβ

a ·
[

Al1,l2
α ,B

l′
1
,l′
2

β

]

.(93)

For any α ∈ Mp, β ∈ Mp+d−1, l1, l2 ∈ Z≥0, the expressions Dx

(

(x − xa)
l1(t − ta)

l2Uβ
a

)

and

Dt

(

(x−xa)
l1(t− ta)

l2Uα
a

)

are functions of the variables x, t, uik. Taking the corresponding Taylor
series at the point (35), we regard these expressions as power series.

Then (91), (92), (93) are formal power series with coefficients in F, and we have

Dx(B)−Dt(A) + [A,B] =
∑

γ∈Mp+d, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uγ
a · Zl1,l2

γ

for some elements Zl1,l2
γ ∈ F.

Let I ⊂ F be the ideal generated by the elements

Zl1,l2
γ , A

l1,l2
0 , B

0,l2
0 , γ ∈ Mp+d, l1, l2 ∈ Z≥0,

A
l1,l2
α̂ , α̂ ∈Mp

i0,k0
, i0 = 1, . . . , m, k0 = 1, . . . , p, l1, l2 ∈ Z≥0.

Set Fp(E , a) = F/I. Consider the natural homomorphism ρ : F → F/I = F
p(E , a) and set

A
l1,l2
α = ρ

(

Al1,l2
α

)

, B
l1,l2
β = ρ

(

B
l1,l2
β

)

.

The definition of I implies that the power series

A =
∑

α∈Mp, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uα
a · Al1,l2

α ,(94)

B =
∑

β∈Mp+d−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uβ
a · Bl1,l2

β(95)

satisfy

(96) Dx(B)−Dt(A) + [A,B] = 0.

Remark 20. The Lie algebra F
p(E , a) can be described in terms of generators and relations as

follows.
Equation (96) is equivalent to some Lie algebraic relations for Al1,l2

α , Bl1,l2
β .

The algebra F
p(E , a) is given by the generators Al1,l2

α , Bl1,l2
β , the relations arising from (96), and

the following relations

(97) A
l1,l2
0 = B

0,l2
0 = 0, A

l1,l2
α̂ = 0, α̂ ∈Mp

i0,k0
, i0 = 1, . . . , m, k0 = 1, . . . , p, l1, l2 ∈ Z≥0.

Note that condition (97) is equivalent to the following equations

∀ i0 = 1, . . . , m, ∀ k0 ≥ 1,
∂A

∂ui0k0

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)≻(i0,k0−1)

= 0,(98)
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A

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0,(99)

B

∣

∣

∣

x=xa, ui
k
=ai

k
∀ (i,k)

= 0.(100)

Remark 21. Let L be a Lie algebra. If A, B are functions with values in L and satisfy (69) then
A, B form a ZCR of order ≤ p with values in L.

Instead of functions with values in L, one can consider formal power series with coefficients in
L. Then one gets the notion of formal ZCRs with coefficients in L.

More precisely, a formal ZCR of order ≤ p with coefficients in L is given by power series

A =
∑

α∈Mp, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uα
a · Al1,l2

α ,(101)

B =
∑

β∈Mp+d−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uβ
a · Bl1,l2

β(102)

such that Al1,l2
α ,Bl1,l2

β ∈ L and Dx(B)−Dt(A) + [A,B] = 0.
If the power series (101), (102) satisfy (70), (71), (72) then this formal ZCR is said to be

a-normal.
For example, since (94), (95) obey (96), (98), (99), (100) and Al1,l2

α ,Bl1,l2
β ∈ F

p(E , a), the power
series (94), (95) constitute an a-normal formal ZCR of order ≤ p with coefficients in F

p(E , a).
Remark 22. Let L be a Lie algebra. Consider an L-valued ZCR of order ≤ p given by L-valued
functions A, B satisfying (69). Then the Taylor series of the functions A, B are of the form (101),
(102) and constitute a formal ZCR with coefficients in L.

Thus any L-valued ZCR can be regarded as a formal ZCR with coefficients in L, if we replace
the L-valued functions by the corresponding Taylor series with coefficients in L.

The definition of the Lie algebra F
p(E , a) implies the following result.

Theorem 5. Let (101), (102) be an a-normal formal ZCR of order ≤ p with coefficients in a Lie

algebra L. Then one has a homomorphism F
p(E , a) → L given by the formulas A

l1,l2
α 7→ A

l1,l2
α ,

B
l1,l2
β 7→ B

l1,l2
β for all α, β, l1, l2.

Remark 23. Let Â = Â(x, t, uj0, u
j
1, . . . , u

j
p), B̂ = B̂(x, t, uj0, u

j
1, . . . , u

j
p+d−1) be an a-normal ZCR

of order ≤ p with values in a Lie algebra ĝ. We suppose that the ĝ-valued functions Â, B̂ are
defined on a neighborhood of a ∈ E .

Then the Taylor series of the functions Â, B̂ at the point a ∈ E constitute an a-normal formal
ZCR of order ≤ p with coefficients in ĝ. Therefore, by Theorem 5, we get a homomorphism
F
p(E , a) → ĝ which maps the coefficients of the power series (94), (95) to the corresponding

coefficients of the Taylor series of the functions Â, B̂.

Let g be a finite-dimensional Lie algebra. A homomorphism µ : F
p(E , a) → g is said to be

regular if the power series

Ã =
∑

α∈Mp, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uα
a · µ

(

A
l1,l2
α

)

,(103)

B̃ =
∑

β∈Mp+d−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uβ
a · µ

(

B
l1,l2
β

)

(104)

are absolutely convergent in a neighborhood of a ∈ E . In other words, µ is regular iff (103), (104)
are analytic functions on a neighborhood of a ∈ E .

Since (94), (95) obey (96), the power series (103), (104) satisfy (87) for any homomorphism
µ : F

p(E , a) → g. Therefore, if µ is regular, the analytic functions (103), (104) form a ZCR with
values in g. Denote this ZCR by Z(E , a, p, µ).
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Combining this construction with Theorem 3 and Remark 18, we obtain the following result.

Theorem 6. Let g be a finite-dimensional matrix Lie algebra. For any g-valued ZCR (64) of

order ≤ p on a neighborhood of a ∈ E , there is a regular homomorphism µ : F
p(E , a) → g such

that the ZCR (64) is gauge equivalent to the ZCR Z(E , a, p, µ) given by (103), (104).
The ZCR Z(E , a, p, µ) takes values in the Lie algebra µ

(

F
p(E , a)

)

⊂ g.

Recall that we have the power series A, B with coefficients in F
p(E , a) given by formu-

las (94), (95). Formulas (103), (104) say that Ã = µ(A) and B̃ = µ(B), in the sense that µ
maps the coefficients of the power series A, B to the corresponding coefficients of the Taylor

series of the functions Ã, B̃.

So the ZCR (64) is gauge equivalent to the ZCR Z(E , a, p, µ) given by the functions Ã = µ(A),

B̃ = µ(B).

2.4. The homomorphism F
p(E , a) → F

p−1(E , a). According to Remarks 20, 21, the Lie algebra

F
p(E , a) is generated by Al1,l2

α , Bl1,l2
β , and the power series (94), (95) constitute an a-normal formal

ZCR of order ≤ p with coefficients in F
p(E , a).

In this subsection we suppose that p ≥ 1. Constructing the Lie algebra F
p−1(E , a) in the same

way, we get power series

Â =
∑

α̂∈Mp−1, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · U α̂
a · Âl1,l2

α̂ ,(105)

B̂ =
∑

β̂∈Mp+d−2, l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · U β̂
a · B̂l1,l2

β̂
(106)

such that the Lie algebra F
p−1(E , a) is generated by Â

l1,l2
α̂ , B̂l1,l2

β̂
for all α̂ ∈ Mp−1, β̂ ∈ Mp+d−2,

l1, l2 ∈ Z≥0, and the power series (105), (106) constitute an a-normal formal ZCR of order ≤ p−1
with coefficients in F

p−1(E , a).
We are going to construct a surjective homomorphism τp : F

p(E , a) → F
p−1(E , a). Since the

algebra F
p(E , a) is generated by Al1,l2

α , Bl1,l2
β , it is sufficient to define τp(A

l1,l2
α ), τp(B

l1,l2
β ).

To do this, we need to introduce some extra notation. Recall that, for each q ∈ Z≥0, we denote
by Mq the set of matrices of size m × (q + 1) with nonnegative integer entries. For a matrix
γ ∈ Mq, its entries are denoted by γi,k ∈ Z≥0, where i = 1, . . . , m and k = 0, . . . , q.

For each q ≥ 1 and each m × (q + 1) matrix γ ∈ Mq, we denote by r(γ) the m × q matrix
with the entries r(γ)i,k = γi,k for i = 1, . . . , m and k = 0, . . . , q − 1. In other words, the matrix
r(γ) ∈ Mq−1 is obtained from the matrix γ by erasing the last column.

Let l1, l2 ∈ Z≥0. For α ∈ Mp, β ∈ Mp+d−1, we can consider the matrices r(α) ∈ Mp−1,

r(β) ∈ Mp+d−2 and the elements Âl1,l2
r(α), B̂

l1,l2
r(β) ∈ F

p−1(E , a).
For all l1, l2 ∈ Z≥0, α ∈ Mp, β ∈ Mp+d−1, we set

τp(A
l1,l2
α ) =

{

0, if there is i ∈ {1, . . . , m} such that αi,p 6= 0,

Â
l1,l2
r(α), if αi,p = 0 for all i,

(107)

τp(B
l1,l2
β ) =

{

0, if there is i ∈ {1, . . . , m} such that βi,p+d−1 6= 0,

B̂
l1,l2
r(β), if βi,p+d−1 = 0 for all i.

(108)

The definition of F
p(E , a) and F

p−1(E , a) implies that τp : F
p(E , a) → F

p−1(E , a) defined
by (107), (108) is indeed a surjective homomorphism. The meaning of this homomorphism is
explained in Remark 24 below.

According to (107), one has τp(A
l1,l2
α ) = 0 if there is a nonzero entry in the last column of the

matrix α ∈ Mp. According to (108), one has τp(B
l1,l2
β ) = 0 if there is a nonzero entry in the last

column of the matrix β ∈ Mp+d−1.
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Recall that the power series A and B are given by (94), (95). Taking into account formula (84),
we see that formulas (107), (108) say the following. Applying τp to the coefficients of the power

series A
∣

∣

∣

ui
p=aip ∀ i

, we get the power series (105). Applying τp to the coefficients of the power series

B

∣

∣

∣

ui
p+d−1

=ai
p+d−1

∀ i
, we get the power series (106).

Remark 24. Any ZCR of order ≤ p−1 is at the same time of order ≤ p. Therefore, (105), (106)
can be regarded as an a-normal formal ZCR of order ≤ p with coefficients in F

p−1(E , a). The
homomorphism τp : F

p(E , a) → F
p−1(E , a) is the homomorphism which corresponds to this ZCR

by Theorem 5.

Thus we obtain the following sequence of surjective homomorphisms of Lie algebras

(109) . . .
τp+1−−→ F

p(E , a) τp−→ F
p−1(E , a) τp−1−−→ . . .

τ2−→ F
1(E , a) τ1−→ F

0(E , a).
2.5. Some results on generators of F

p(E , a). According to Remark 20, the algebra F
p(E , a)

is given by the generators Al1,l2
α , Bl1,l2

β and the relations arising from (96), (97). Using (5), we can
rewrite equation (96) as

(110)
∂

∂x
(B) +

∑

i=1,...,m,
k=0,1,...,p+d−1

uik+1

∂

∂uik
(B)− ∂

∂t
(A)

−
∑

i=1,...,m,
k=0,1,...,p

Dk
x

(

F i(x, t, uj0, u
j
1, . . . , u

j
d)
) ∂

∂uik
(A) + [A,B] = 0.

Here we regard F i = F i(x, t, uj0, u
j
1, . . . , u

j
d) as a power series, using the Taylor series of the

function F i at the point (35).

Theorem 7. The elements

(111) A
l1,0
α , l1 ∈ Z≥0, α ∈ Mp,

generate the algebra F
p(E , a).

Proof. For each l ∈ Z≥0, denote by Al ⊂ F
p(E , a) the subalgebra generated by all the elements

Al1,l2
α with l2 ≤ l. To prove Theorem 7, we need several lemmas.

Lemma 2. Let l1, l2 ∈ Z≥0. Let β ∈ Mp+d−1 be such that not all entries of the matrix β are zero

(i.e., in the matrix β there is a nonzero entry). Then B
l1,l2
β ∈ Al2.

Proof. One can prove this lemma, analyzing equation (110) and properties (97), (98). �

Lemma 3. For all l1, l2 ∈ Z≥0, one has B
l1,l2
0 ∈ Al2. Here 0 ∈ Mp+d−1 is the matrix with zero

entries.

Proof. According to (97), we have B
0,l2
0 = 0. Therefore, it is sufficient to prove B

l1,l2
0 ∈ Al2 for

l1 > 0.
Note that property (98) implies

(112) A

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0,
∂

∂t
(A)

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

= 0.

In view of (95), one has

(113)
∂

∂x
(B)

∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

=
∑

l1>0, l2≥0

l1(x− xa)
l1−1(t− ta)

l2 · Bl1,l2
0 .
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Substituting uik = aik for all i, k in (110) and using (112), (113), we get

(114)
∑

l1>0, l2≥0

l1(x− xa)
l1−1(t− ta)

l2 · Bl1,l2
0 =

= −
(

∑

i,k

uik+1

∂

∂uik
(B)

)
∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

+

(

∑

i,k

Dk
x

(

F i
) ∂

∂uik
(A)

)
∣

∣

∣

∣

ui
k
=ai

k
∀ (i,k)

.

For a matrix β ∈ Mp+d−1, we denote by |β| the sum of all entries of β. Combin-

ing (94), (95), (114), we see that for any l1 > 0 and l2 ≥ 0 the element B
l1,l2
0 is equal to a

linear combination of elements of the form

(115) A
l′
1
,l2

α , B
l′1,l2
β , l′1 ∈ Z≥0, α ∈ Mp, β ∈ Mp+d−1, |β| = 1.

According to Lemma 2 and the definition of Al2 , the elements (115) belong to Al2 . Thus

B
l1,l2
0 ∈ Al2 . �

Lemma 4. For all l1, l ∈ Z≥0 and α ∈ Mp, we have A
l1,l+1
α ∈ Al.

Proof. Using (94), we can rewrite equation (110) as

∂

∂t
(A) =

∑

α∈Mp, l1,l∈Z≥0

(l + 1)(x− xa)
l1(t− ta)

l · Uα
a · Al1,l+1

α =

=
∂

∂x
(B) +

∑

i,k

uik+1

∂

∂uik
(B)−

∑

i,k

Dk
x

(

F i
) ∂

∂uik
(A) + [A,B].

This implies that Al1,l+1
α is equal to a linear combination of elements of the form

(116) A
l̂1,l̂2
α̂ , B

l̃1,l̃2

β̃
,
[

A
l̂1,l̂2
α̂ ,Bl̃1,l̃2

β̃

]

, l̂2 ≤ l, l̃2 ≤ l, l̂1, l̃1 ∈ Z≥0, α̂ ∈ Mp, β̃ ∈ Mp+d−1.

Using Lemmas 2, 3 and the condition l̃2 ≤ l, we get Bl̃1,l̃2

β̃
∈ Al̃2

⊂ Al. Therefore, the elements (116)

belong to Al. Hence Al1,l+1
α ∈ Al. �

Now we return to the proof of Theorem 7. According to Lemmas 2, 3 and the definition of Al,
we have Al1,l2

α ,Bl1,l2
β ∈ Al2 for all l1, l2 ∈ Z≥0, α ∈ Mp, β ∈ Mp+d−1. Lemma 4 implies that

Al2 ⊂ Al2−1 ⊂ Al2−2 ⊂ · · · ⊂ A0.

Therefore, Fp(E , a) is equal to A0, which is generated by the elements (111). �

2.6. Some constructions with zero-curvature representations. We continue to work with
an evolution PDE (1), which can be written also as (2), according to our notation.

Let L1 and L2 be Lie algebras. For i = 1, 2, let
(117)

Ai = Ai(x, t, uj0, u
j
1, . . . , u

j
p), Bi = Bi(x, t, uj0, u

j
1, . . . , u

j
p+d−1), Dx(B)−Dt(A) + [A,B] = 0

be an Li-valued ZCR for the PDE (1). So the functions Ai, Bi take values in Li. The following
notions will be needed in the next sections.

The direct sum of the L1-valued ZCR A1, B1 and the L2-valued ZCR A2, B2 is the (L1 ⊕L2)-
valued ZCR given by the functions A1⊕A2, B1⊕B2. So the ZCR given by the functions A1⊕A2,
B1 ⊕B2 takes values in the Lie algebra L1 ⊕ L2.

We say that the ZCR A2, B2 is a reduction of the ZCR A1, B1 if there is a homomorphism
ρ : L1 → L2 such that A2 = ρ(A1) and B2 = ρ(B1).

Similarly, one can speak also about direct sums and reductions of formal ZCRs.
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Remark 25. For any (possibly infinite-dimensional) Lie algebra L, there is a (possibly infinite-
dimensional) vector space V such that L is isomorphic to a Lie subalgebra of gl(V ). Here gl(V )
is the algebra of linear maps V → V .

For example, one can use the following construction. Denote by U(L) the universal enveloping
algebra of L. We have the injective homomorphism of Lie algebras

ξ : L →֒ gl(U(L)), ξ(v)(w) = vw, v ∈ L, w ∈ U(L).

So one can set V = U(L).
So we have L ⊂ gl(V ). Let k ∈ Z≥0. A formal gauge transformation of order ≤ k is a formal

power series of the form

(118) G =
∑

γ∈Mk , l1,l2∈Z≥0

(x− xa)
l1(t− ta)

l2 · Uγ
a ·Gl1,l2

γ , Gl1,l2
γ ∈ gl(V ),

such that the map G0,0
0 : V → V is invertible. (So the free term G0,0

0 of the power series (118) is
invertible.) Then G−1 is well defined and is a power series with coefficients in gl(V ) as well.

Recall that a formal ZCR (101), (102) with coefficients in L is given by formal power series A,
B with coefficients in L satisfying Dx(B)−Dt(A) + [A,B] = 0. Then

(119) Ã = GAG−1 −Dx(G) ·G−1, B̃ = GBG−1 −Dt(G) ·G−1

are formal power series with coefficients in gl(V ) and satisfyDx(B̃)−Dt(Ã)+[Ã, B̃] = 0. Therefore,
(119) is a formal ZCR with coefficients in gl(V ).

The formal ZCR (119) is said to be gauge equivalent to the formal ZCR (101), (102) with
respect to the formal gauge transformation (118).

Quite often, it happens that the coefficients of the power series (119) belong to L ⊂ gl(V ).
Then (119) can be regarded as a formal ZCR with coefficients in L.

This allows us to speak about gauge equivalence for formal ZCRs with coefficients in infinite-
dimensional Lie algebras.

3. Relations between F
0(E , a) and the Wahlquist-Estabrook prolongation

algebra

Let m, d be positive integers. Consider an m-component evolution PDE of the form

uit = F i(uj0, u
j
1, . . . , u

j
d),(120)

ui = ui(x, t), ui0 = ui, uik =
∂kui

∂xk
, i, j = 1, . . . , m, k ∈ Z≥0.

Note that the functions F i in (120) do not depend on x, t.
Let E be the infinite prolongation of the PDE (120). According Section 2.1, E is an infinite-

dimensional manifold with the coordinates x, t, uik for i = 1, . . . , m and k ∈ Z≥0.
Consider a point a ∈ E given by (35). The constants xa, ta, a

i
k ∈ K from (35) are the coordinates

of the point a ∈ E in the coordinate system x, t, uik.
As has been said in Section 2.3, for each q ∈ Z≥0, we denote by Mq the set of matrices of

size m × (q + 1) with nonnegative integer entries. For a matrix γ ∈ Mq, its entries are denoted
by γi,k ∈ Z≥0, where i = 1, . . . , m and k = 0, . . . , q.

According to formula (84), for α ∈ M0 and β ∈ Md−1 we have

Uα
a =

∏

i=1,...,m

(

ui0 − ai0
)αi,0 , Uβ

a =
∏

i=1,...,m,
k=0,...,d−1

(

uik − aik
)βi,k .
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The Wahlquist-Estabrook prolongation algebra of the PDE (120) at the point a ∈ E can be defined
as follows. Consider formal power series

(121) A =
∑

α∈M0

Uα
a · Aα, B =

∑

β∈Md−1

Uβ
a · Bβ ,

where Aα, Bβ are generators of some Lie algebra, which is described below. The equation

(122) Dx(B)−Dt(A) + [A,B] = 0

is equivalent to some Lie algebraic relations for Aα, Bβ. The Wahlquist-Estabrook prolongation
algebra (WE algebra for short) at the point a ∈ E is the Lie algebra given by the generators Aα,
Bβ and the relations arising from (122). A more detailed definition of the WE algebra is presented
in [9]. We denote this Lie algebra by Wa.

Then (121), (122) is called the formal Wahlquist-Estabrook ZCR with coefficients in Wa.
For each p ∈ Z≥0, the Lie algebra F

p(E , a) has been defined in Section 2.3. In the present
section we study F

0(E , a). We are going to show that the algebra F
0(E , a) for the PDE (120) is

isomorphic to some Lie subalgebra of Wa.
Since the PDE (120) is invariant with respect to the change of variables x 7→ x−xa, t 7→ t− ta,

we can assume xa = ta = 0 in (35). Then (94), (95), (96) in the case p = 0 can be written as

A =
∑

α∈M0, l1,l2∈Z≥0

xl1tl2 · Uα
a · Al1,l2

α , B =
∑

β∈Md−1, l1,l2∈Z≥0

xl1tl2 · Uβ
a · Bl1,l2

β ,(123)

Dx(B)−Dt(A) + [A,B] = 0,(124)

where Al1,l2
α ,Bl1,l2

β ∈ F
0(E , a). Note that equation (124) is equivalent to some Lie algebraic relations

for Al1,l2
α , Bl1,l2

β .

According to Remark 20, the Lie algebra F
0(E , a) can be described in terms of generators and

relations as follows. The algebra F
0(E , a) is given by the generators Al1,l2

α , Bl1,l2
β , the relations

arising from (124), and the relations Al1,l2
0 = B

0,l2
0 = 0 for l1, l2 ∈ Z≥0.

Lemma 5. The elements

(125) A
l1,0
α , l1 ∈ Z≥0, α ∈ M0, α 6= 0,

generate the algebra F
0(E , a).

Proof. According to Theorem 7, the elements Al1,0
α for l1 ∈ Z≥0, α ∈ M0 generate the algebra

F
0(E , a). Since A

l1,0
0 = 0, we can assume α 6= 0. �

Lemma 6. Let L be a Lie algebra. Consider formal power series of the form

(126) P =
∑

α∈M0, l1,l2∈Z≥0

xl1tl2 · Uα
a · P l1,l2

α , Q =
∑

β∈Md−1, l1,l2∈Z≥0

xl1tl2 · Uβ
a ·Ql1,l2

β

satisfying

P l1,l2
α , Ql1,l2

β ∈ L, P l1,l2
0 = Q0,l2

0 = 0 ∀ l1, l2 ∈ Z≥0,(127)

Dx(Q)−Dt(P ) + [P,Q] = 0.(128)

Then the map A
l1,l2
α 7→ P l1,l2

α , B
l1,l2
β 7→ Ql1,l2

β determines a homomorphism from F
0(E , a) to L.

Proof. According to Remark 21, formulas (126), (127), (128) say that the power series P , Q
constitute an a-normal formal ZCR of order ≤ 0 with coefficients in L.

According to Theorem 5, this formal ZCR determines a homomorphism F
0(E , a) → L given by

the formulas Al1,l2
α 7→ P l1,l2

α and B
l1,l2
β 7→ Ql1,l2

β . �
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Let L be a Lie algebra. A ZCR of Wahlquist-Estabrook type with coefficients in L is given by
formal power series

(129) P =
∑

α∈M0

Uα
a · Pα, Q =

∑

β∈Md−1

Uβ
a ·Qβ , Pα, Qβ ∈ L,

satisfying

(130) Dx(Q)−Dt(P ) + [P,Q] = 0.

The next lemma follows from the definition of the WE algebra Wa.

Lemma 7. Recall that the WE algebra Wa is generated by Aα, Bβ for α ∈ M0, β ∈ Md−1 such

that one has formulas (121), (122).
For any Lie algebra L, any ZCR of Wahlquist-Estabrook type (129), (130) with coefficients in L

determines a homomorphism Wa → L given by the formulas Aα 7→ Pα, Bβ 7→ Qβ.

Denote by F the vector space of formal power series in the variables z1, z2 with coefficients in
F
0(E , a). That is, an element of F is a power series of the form

∑

l1,l2∈Z≥0

zl11 z
l2
2 C

l1l2 , C l1l2 ∈ F
0(E , a).

The space F has the Lie algebra structure given by
[

∑

l1,l2

zl11 z
l2
2 C

l1l2 ,
∑

l̃1,l̃2

z l̃11 z
l̃2
2 C̃

l̃1 l̃2

]

=
∑

zl1+l̃1
1 zl2+l̃2

2

[

C l1l2 , C̃ l̃1 l̃2

]

, C l1l2 , C̃ l̃1 l̃2 ∈ F
0(E , a).

We have also the following homomorphism of Lie algebras

(131) ν : F → F
0(E , a),

∑

l1,l2∈Z≥0

zl11 z
l2
2 C

l1l2 7→ C00.

For i = 1, 2, let ∂zi : F → F be the linear map given by

∂zi

(

∑

zl11 z
l2
2 C

l1l2

)

=
∑ ∂

∂zi

(

zl11 z
l2
2

)

C l1l2 .

Let D be the linear span of ∂z1 , ∂z2 in the vector space of linear maps F → F. Since the
maps ∂z1 , ∂z2 commute, the space D is a 2-dimensional abelian Lie algebra with respect to the
commutator of maps.

Denote by L the vector space D⊕ F with the following Lie algebra structure

[X1 + f1, X2 + f2] = X1(f2)−X2(f1) + [f1, f2], X1, X2 ∈ D, f1, f2 ∈ F.

An element of L can be written as a sum of the following form
(

y1∂z1 + y2∂z2
)

+
∑

zl11 z
l2
2 C

l1l2 , y1, y2 ∈ K, C l1l2 ∈ F
0(E , a).

Theorem 8. Recall that the WE algebra Wa is generated by Aα, Bβ for α ∈ M0, β ∈ Md−1 such

that one has formulas (121), (122).
Let R ⊂ Wa be the subalgebra generated by the elements

(132) (adA0)
k(Aα), k ∈ Z≥0, α ∈ M0, α 6= 0.

(Note that for k = 0 we have (adA0)
0(Aα) = Aα, hence Aα ∈ R for all α 6= 0.)

Then the map (adA0)
k(Aα) 7→ (k!)Ak,0

α determines an isomorphism between R and F
0(E , a).

Proof. Since the functions F i in (120) do not depend on x and t, from (123), (124) it follows that
the power series

Ã = ∂z1 +
∑

α∈M0, α6=0

Uα
a ·
(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
α

)

,(133)
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B̃ =

(

∂z2 +
∑

l1,l2

zl11 z
l2
2 B

l1,l2
0

)

+
∑

β∈Md−1, β 6=0

Uβ
a ·
(

∑

l1,l2

zl11 z
l2
2 B

l1,l2
β

)

(134)

form a ZCR of Wahlquist-Estabrook type with coefficients in L. Applying Lemma 7 to this ZCR,
we obtain the homomorphism

ϕ : Wa → L, ϕ(A0) = ∂z1 , ϕ(Aα) =
∑

l1,l2

zl11 z
l2
2 A

l1,l2
α , α ∈ M0, α 6= 0,(135)

ϕ(B0) = ∂z2 +
∑

l1,l2

zl11 z
l2
2 B

l1,l2
0 , ϕ(Bβ) =

∑

l1,l2

zl11 z
l2
2 B

l1,l2
β , β ∈ Md−1, β 6= 0.

Clearly, F is a Lie subalgebra of L = D ⊕ F. In view of (135), for any α ∈ M0 and k ∈ Z≥0

such that α 6= 0 we have

(136) ϕ
(

(adA0)
k(Aα)

)

=
(

ad ∂z1
)k

(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
α

)

=
(

∂z1
)k

(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
α

)

∈ F.

Since R ⊂ Wa is generated by the elements (132), property (136) implies ϕ(R) ⊂ F ⊂ L. Using
the homomorphism (131) and property (136), we obtain

(137) ν ◦ ϕ
∣

∣

R
: R → F

0(E , a), (ν ◦ ϕ)
(

(adA0)
k(Aα)

)

= k! ·Ak,0
α , k ∈ Z≥0, α ∈ M0, α 6= 0.

Using Remark 25, we can assume that Wa is embedded into the algebra gl(V ) for some vector
space V .

Then the exponentials etB0 , exA0 and the expressions (121) can be regarded as power series with
coefficients in gl(V ). If S1, S2 are power series with coefficients in gl(V ), then the product S1S2

is a well-defined power series as well. It is easy to check that the following formulas are valid

(138) etB0exA0

(

Dx +
∑

α∈M0

Uα
a · Aα

)

e−xA0e−tB0 =

= Dx − etB0A0e
−tB0 +

∑

α∈M0

Uα
a · etB0exA0Aαe

−xA0e−tB0 =

= Dx +
∑

α∈M0, α6=0

Uα
a ·
∑

l1,l2

1

l1!l2!
xl1tl2(adB0)

l2

(

(adA0)
l1(Aα)

)

,

(139) etB0exA0

(

Dt +
∑

β∈Md−1

Uβ
a · Bβ

)

e−xA0e−tB0 =

= Dt − B0 +
∑

β∈Md−1

Uβ
a ·
∑

l1,l2

1

l1!l2!
xl1tl2(adB0)

l2

(

(adA0)
l1(Bβ)

)

.

Recall that A, B are given by (121). Set

P =
∑

α∈M0, α6=0

Uα
a ·
∑

l1,l2

1

l1!l2!
xl1tl2(adB0)

l2

(

(adA0)
l1(Aα)

)

,(140)

Q = −B0 +
∑

β∈Md−1

Uβ
a ·
∑

l1,l2

1

l1!l2!
xl1tl2(adB0)

l2

(

(adA0)
l1(Bβ)

)

.(141)

According to (121), (138), (139), (140), (141) we have

(142) Dx + P = etB0exA0(Dx +A)e−xA0e−tB0 , Dt +Q = etB0exA0(Dt + B)e−xA0e−tB0 .

Note that, since [Dx, Dt] = 0, one has

(143) [Dx+A, Dt+B] = Dx(B)−Dt(A)+[A,B], [Dx+P,Dt+Q] = Dx(Q)−Dt(P )+[P,Q].
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Using (142), (143), (122), we get

Dx(Q)−Dt(P ) + [P,Q] = [Dx + P,Dt +Q] =

=
[

etB0exA0(Dx +A)e−xA0e−tB0 , etB0exA0(Dt + B)e−xA0e−tB0
]

=

= etB0exA0 [Dx +A, Dt + B]e−xA0e−tB0 = etB0exA0(Dx(B)−Dt(A) + [A,B])e−xA0e−tB0 = 0.

Therefore, the power series (140), (141) satisfy all conditions of Lemma 6. Applying Lemma 6
to (140), (141), we obtain the homomorphism

ψ : F
0(E , a) → Wa, ψ

(

A
l1,l2
α

)

=
1

l1!l2!
(adB0)

l2

(

(adA0)
l1(Aα)

)

, α ∈ M0, α 6= 0,

(144)

ψ
(

B
l1,l2
β

)

=
1

l1!l2!
(adB0)

l2

(

(adA0)
l1(Bβ)

)

, β ∈ Md−1, β 6= 0,

ψ
(

B
l′1,l

′
2

0

)

=
1

l′1!l
′
2!
(adB0)

l′
2

(

(adA0)
l′
1(B0)

)

, l′1 > 0.

From (144) we get

(145) ψ
(

A
l1,0
α

)

=
1

l1!
(adA0)

l1(Aα) ∈ R, l1 ∈ Z≥0, α ∈ M0, α 6= 0.

Since, by Lemma 5, the elements (125) generate the algebra F
0(E , a), property (145) implies

ψ
(

F
0(E , a)

)

⊂ R.

Then from (137), (145) it follows that the homomorphisms ψ : F
0(E , a) → R and

ν ◦ ϕ
∣

∣

R
: R → F

0(E , a) are inverse to each other. �

4. The algebra F
0(E , a) for the multicomponent Landau-Lifshitz system

For any m ∈ Z>0 and m-dimensional vectors v = (v1, . . . , vm), w = (w1, . . . , wm), we set
〈v, w〉 =∑m

i=1 v
iwi.

In order to describe the algebra F
0(E , a) for system (24), we need to resolve the constraint

〈S, S〉 = 1 for the vector-function S =
(

s1(x, t), . . . , sn(x, t)
)

. Following [6], we do this as follows

(146) sj =
2uj

1 + 〈u, u〉 , j = 1, . . . , n− 1, sn =
1− 〈u, u〉
1 + 〈u, u〉 ,

where u =
(

u1(x, t), . . . , un−1(x, t)
)

is an (n− 1)-dimensional vector-function.
As is shown in [6], using (146), one can rewrite system (24) as follows

ut = uxxx − 6〈u, ux〉∆−1uxx +
(

−6〈u, uxx〉∆−1 + 24〈u, ux〉2∆−2 − 6〈u, u〉〈ux, ux〉∆−2
)

ux+

+
(

6〈ux, uxx〉∆−1 − 12〈u, ux〉〈ux, ux〉∆−2
)

u+
3

2

(

rn + 4∆−2

n−1
∑

i=1

(ri − rn)(u
i)2
)

ux,
(147)

u =
(

u1(x, t), . . . , un−1(x, t)
)

,

where ∆ = 1 + 〈u, u〉 and r1, . . . , rn ∈ K are the numbers such that R = diag (r1, . . . , rn) in (24).
As has been said in Section 1.2, we assume ri 6= rj for all i 6= j.

In this section we assume n ≥ 3, because we will use some results of the paper [9], which
studied equations (24), (147) in the case n ≥ 3.

Let E be the infinite prolongation of the PDE (147). Then E is a manifold with the coordinates
x, t, uik for i = 1, . . . , n − 1 and k ∈ Z≥0. (Recall that ui0 = ui, according to our notation.) Let
a ∈ E .
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According to Theorem 8, the algebra F
0(E , a) for (147) is isomorphic to a subalgebra of the WE

algebra Wa of (147). The WE algebra of (147) is described in [9]. To present this description,
we need to introduce some auxiliary constructions.

Recall that gln+1 is the algebra of matrices of size (n + 1)× (n + 1) with entries from K. Let
Ei,j ∈ gln+1 be the matrix with (i, j)-th entry equal to 1 and all other entries equal to zero.

The Lie subalgebra son,1 ⊂ gln+1 has been defined in Remark 6. It has the following basis

Ei,j −Ej,i, i < j ≤ n, El,n+1 + En+1,l, l = 1, . . . , n.

Consider the algebra K[λ1, . . . , λn] of polynomials in λ1, . . . , λn. Let I ⊂ K[λ1, . . . , λn] be the
ideal generated by λ2i − λ2j + ri − rj for i, j = 1, . . . , n.

Consider the quotient algebra Q = K[λ1, . . . , λn]/I, which is isomorphic to the algebra of
polynomial functions on the algebraic curve (25).

The space son,1 ⊗K Q is an infinite-dimensional Lie algebra over K with the Lie bracket

[M1 ⊗ h1, M2 ⊗ h2] = [M1,M2]⊗ h1h2, M1,M2 ∈ son,1, h1, h2 ∈ Q.
We have the natural homomorphism ξ : K[λ1, . . . , λn] → K[λ1, . . . , λn]/I = Q. Set

λ̂i = ξ(λi) ∈ Q.
Consider the following elements of son,1 ⊗Q

(148) Qi = (Ei,n+1 + En+1,i)⊗ λ̂i, i = 1, . . . , n.

Denote by L(n) ⊂ son,1 ⊗Q the Lie subalgebra generated by Q1, . . . , Qn.

Since λ̂2i − λ̂2j + ri − rj = 0 in Q, the element λ̂ = λ̂2i + ri ∈ Q does not depend on i.
Recall that Z>0 is the set of positive integers. For i, j ∈ {1, . . . , n} and k ∈ Z>0, consider the

following elements of son,1 ⊗K Q
Q2k−1

i = (Ei,n+1 + En+1,i)⊗ λ̂k−1λ̂i, Q2k
ij = (Ei,j −Ej,i)⊗ λ̂k−1λ̂iλ̂j .

For i, j, l,m ∈ {1, . . . , n} and k1, k2 ∈ Z>0 one has

(149) [Q2k1
ij , Q

2k2
lm ] = δljQ

2(k1+k2)
im − δimQ

2(k1+k2)
lj + δjmQ

2(k1+k2)
li − δilQ

2(k1+k2)
jm +

+ riδimQ
2(k1+k2−1)
lj − rjδljQ

2(k1+k2−1)
im + riδilQ

2(k1+k2−1)
jm − rjδjmQ

2(k1+k2−1)
li ,

(150) [Q2k1
ij , Q2k2−1

l ] = δljQ
2k1+2k2−1
i − δilQ

2k1+2k2−1
j − rjδljQ

2k1+2k2−3
i + riδilQ

2k1+2k2−3
j ,

(151) [Q2k1−1
i , Q2k2−1

j ] = Q
2(k1+k2−1)
ij , [Q2k1−1

i , Q2k2−1
i ] = 0.

Since Q1
i = Qi and Q

2k
ij = −Q2k

ji , from (149), (150), (151) we see that the elements

(152) Q2k−1
l , Q2k

ij , i, j, l ∈ {1, . . . , n}, i < j, k ∈ Z>0,

span the Lie algebra L(n). It is shown in [9] that the elements (152) are linearly independent
over K and, therefore, form a basis of L(n).

Remark 26. In Remark 5 we have said that L(n) consists of certain gln+1-valued functions on the
curve (25), and in Remark 6 we have shown that these functions take values in the Lie subalgebra
son,1 ⊂ gln+1.

Here we have defined L(n) as a certain Lie subalgebra of son,1 ⊗Q. This is in agreement with
Remarks 5, 6, because elements of son,1 ⊗ Q can be regarded as son,1-valued functions on the
curve (25).

Note that the algebra L(n) is very similar to infinite-dimensional Lie algebras that were studied
in [22, 23].

Theorem 9. Let n ≥ 3. For the PDE (147), the Lie algebra F
0(E , a) defined in (109) is isomor-

phic to L(n).
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Proof. Let Wa be the WE algebra for the PDE (147). According to [9], the algebra Wa is isomor-
phic to the direct sum of L(n) and the 2-dimensional abelian Lie algebra K2. So Wa

∼= L(n)⊕K2.
(Note that the algebra Wa is denoted by W in [9].)

According to [9], in the formal Wahlquist-Estabrook ZCR with coefficients in Wa for the
PDE (147), one has

A = C0 +
n
∑

l=1

Cl · sl(u1, . . . , un−1), C0, C1, . . . , Cn ∈ Wa,

where the functions sl = sl(u1, . . . , un−1) are given by (146), the elements C1, . . . , Cn ∈ Wa

generate the Lie subalgebra L(n) ⊂ Wa
∼= L(n)⊕K2, and one has [C0, Cl] = 0 for all l = 1, . . . , n.

This implies that the subalgebra R ⊂ Wa defined in Theorem 8 is equal to L(n) ⊂ Wa.
According to Theorem 8, one has F0(E , a) ∼= R. Since in the considered case we have R = L(n),
we get F0(E , a) ∼= L(n). �

5. The algebra F
1(E , a) for the multicomponent Landau-Lifshitz system

5.1. Preliminary computations. We continue to use the notation uik =
∂kui

∂xk
.

Let E be the infinite prolongation of the PDE (147). Recall that u = (u1, . . . , un−1) is an (n−1)-
dimensional vector in (147). Then E is an infinite-dimensional manifold with the coordinates

(153) x, t, uik, i = 1, . . . , n− 1, k ∈ Z≥0, ui0 = ui.

Consider an arbitrary point a ∈ E given by

(154) a = (x = xa, t = ta, u
i
k = aik) ∈ E , xa, ta, a

i
k ∈ K, i = 1, . . . , n− 1, k ∈ Z≥0.

Since the PDE (147) is invariant with respect to the change of variables x 7→ x−xa, t 7→ t− ta,
it is sufficient to consider the case

(155) xa = ta = 0.

For simplicity of exposition, we assume also

(156) aik = 0 ∀ i, k.

(In the case aik 6= 0, the computations change very little, and the final result is the same.)
According to Remark 20 and assumptions (155), (156), in order to describe the Lie algebra

F
1(E , a) for the PDE (147), we need to study the equations

(157) Dx(B)−Dt(A) + [A,B] = 0,

∀ i0 = 1, . . . , n− 1,
∂A

∂ui01

∣

∣

∣

∣

u
j
1
=0 ∀ j, ui

0
=0 ∀ i>i0

= 0,(158)

A
∣

∣

∣

u
j
0
=0, u

j
1
=0 ∀ j

= 0,(159)

B
∣

∣

∣

x=0, u
j

k
=0 ∀ j, ∀ k≥0

= 0,(160)

where

• A = A(x, t, uj0, u
j
1) is a power series in the variables x, t, uj0, u

j
1 for j = 1, . . . , n− 1,

• B = B(x, t, uj0, u
j
1, u

j
2, u

j
3) is a power series in the variables x, t, uj0, u

j
1, u

j
2, u

j
3 for

j = 1, . . . , n− 1.
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The coefficients of the power series A, B are generators of the Lie algebra F
1(E , a). Relations for

these generators are provided by equations (157), (158), (159), (160).

Since, according to our notation, uj0 = uj, below we sometimes write uj instead of uj0. In
particular, we can write A = A(x, t, uj, uj1).

When we consider power series in the variables x, t, uj, ujk, partial derivatives with respect to
these variables are often denoted by subscripts. For example,

Aui
1
=
∂A

∂ui1
, Aui

1
x =

∂2A

∂ui1∂x
, Aui

1
uj =

∂2A

∂ui1∂u
j
, i, j = 1, . . . , n− 1.

Differentiating equation (157) with respect to ui4, we obtain that B is of the form

(161) B =
∑

i

ui3Aui
1
+ F 1(x, t, uj , uj1, u

j
2),

where F 1 is a power series in the variables x, t, uj, uj1, u
j
2.

According to our notation, the symbols ut, u, ux, uxx, uxxx in (147) denote the following vectors

ut = (u1t , . . . , u
n−1
t ), u = (u1, . . . , un−1) = (u10, . . . , u

n−1
0 ),

ux = (u11, . . . , u
n−1
1 ), uxx = (u12, . . . , u

n−1
2 ), uxxx = (u13, . . . , u

n−1
3 ).

Therefore, system (147) can be written as

(162) uit = ui3 +Gi(uj, uj1, u
j
2), i = 1, . . . , n− 1,

for some functions Gi(uj, uj1, u
j
2) determined by the right-hand side of (147). Then one has

Dx(B) =
∑

i

(

ui4Aui
1
+ ui3

(

Aui
1
x +

∑

j

(

uj1Aui
1
uj + uj2Aui

1
u
j
1

))

)

+ F 1
x +

∑

i

(

ui1F
1
ui + ui2F

1
ui
1

+ ui3F
1
ui
2

)

,

Dt(A) = At +
∑

i

(

ui3Aui +GiAui + ui4Aui
1
+
∑

j

(

uj1G
i
ujAui

1
+ uj2G

i

u
j
1

Aui
1
+ uj3G

i

u
j
2

Aui
1

)

)

,

[A,B] =
∑

i

ui3[A,Aui
1
] + [A, F 1].

Differentiating equation (157) with respect to ui3, we get

(163) F 1
ui
2

= Aui +
∑

j

Gj

ui
2

A
u
j
1

−Aui
1
x−
∑

j

uj1Aui
1
uj −

∑

j

uj2Aui
1
u
j
1

− [A,Aui
1
], i = 1, . . . , n−1.

Since Gj

ui
2
ul
2

= 0 for all i, l, from (163) one obtains that F 1 is of the form

(164) F 1 = −1

2

∑

i,j

ui2u
j
2Aui

1
u
j
1

+

+
∑

i

ui2

(

Aui +
∑

j

Gj

ui
2

A
u
j
1

− Aui
1
x −

∑

j

uj1Aui
1
uj − [A,Aui

1
]
)

+ F 2(x, t, ul, ul1),

where F 2 is a power series in the variables x, t, ul, ul1. Then equation (157) becomes

(165) F 1
x +

∑

i

ui1F
1
ui +

∑

i

ui2F
1
ui
1

−At−
∑

i

GiAui −
∑

i,j

uj1G
i
ujAui

1
−
∑

i,j

uj2G
i

u
j
1

Aui
1
+[A, F 1] = 0.

Differentiating (165) with respect to ui2, u
j
2, u

h
2 and taking into account (164), one gets

A
ui
1
u
j
1
uh
1

= 0 for all i, j, h. That is, A is of the form

(166) A =
1

2

∑

i,j

ui1u
j
1Yij +

∑

i

ui1Yi + Y, Yij = Yji,
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where Yij, Yi, Y are power series in the variables x, t, u1, . . . , un−1.
From the definition of Gi, for all h, i, j = 1, . . . , n− 1 one has

(167) Gh
ui
2

= −6δhi ∆
−1〈u, u1〉 − 6∆−1uiuh1 + 6∆−1ui1u

h,

(168) Gh

u
j
1

= −6∆−1ujuh2 − 6δhj∆
−1〈u, u2〉+ 6∆−1uj2u

h

+ 48∆−2〈u, u1〉ujuh1 + 24δhj∆
−2〈u, u1〉2 − 12∆−2〈u, u〉uj1uh1 − 6δhj∆

−2〈u, u〉〈u1, u1〉

− 12∆−2uhuj〈u1, u1〉 − 24∆−2〈u, u1〉uhuj1 +
3

2
δhj

(

rn + 4∆−2
∑

i

(ri − rn)u
i2

)

,

where uk is the vector (u1k, . . . , u
n−1
k ) for k ∈ Z≥0.

Differentiating equation (165) with respect to ui2, u
j
2 and taking into account (164), (167), (168),

we obtain

(169) A
ui
1
u
j
1
x
+
∑

h

uh1Aui
1
u
j
1
uh + [A,A

ui
1
u
j
1

] + 4∆−1A
ui
1
u
j
1

〈u, u1〉+ 2
∑

h

uiuh1∆
−1A

uh
1
u
j
1

+

+ 2
∑

h

ujuh1∆
−1Auh

1
ui
1
− 2

∑

h

ui1u
h∆−1A

uh
1
u
j
1

− 2
∑

h

uj1u
h∆−1Auh

1
ui
1
= 0.

Substituting (166) to (169), one gets

(170) Yij,x +
∑

h

uh1Yij,h + [A, Yij]+

+ ∆−1
(

4〈u, u1〉Yij + 2
∑

h

uiuh1Yhj + 2
∑

h

ujuh1Yhi − 2
∑

h

ui1u
hYhj − 2

∑

h

uj1u
hYhi

)

= 0.

Here and below we use the following notation

Yij,x =
∂Yij
∂x

, Yij,h =
∂Yij
∂uh

, Yij,hk =
∂2Yij
∂uh∂uk

, i, j, h, k = 1, 2, . . . , n− 1,

Yh,x =
∂Yh
∂x

, Yi,j =
∂Yi
∂uj

, Y,x =
∂Y

∂x
, Y,h =

∂Y

∂uh
.

The left-hand side of (170) is a polynomial of degree ≤ 2 with respect to the variables
u11, . . . , u

n−1
1 . Equating to zero the coefficients of this polynomial, we obtain

[Yhk, Yij] = 0 ∀h, k, i, j,(171)

Yij,h = [Yij, Yh]− 2∆−1
(

2uhYij + uiYhj + ujYhi − δih
∑

m

umYmj − δjh
∑

m

umYmi

)

∀ i, j, h,
(172)

Yij,x = [Yij, Y ] ∀ i, j.(173)

Let us rewrite (172) replacing h by k

(174) Yij,k = [Yij, Yk]− 2∆−1
(

2ukYij + uiYkj + ujYki − δik
∑

m

umYmj − δjk
∑

m

umYmi

)

∀ i, j, k.

Now we differentiate (172) with respect to uk and differentiate (174) with respect to uh. Then
the equality Yij,hk = Yij,kh implies

(175) [Yij, Tkh] + 4∆−2(−δikYhj + δihYkj − δjkYhi + δjhYki) = 0 ∀ i, j, k, h,
where

(176) Tkh = [Yk, Yh]− Yk,h + Yh,k.
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In other words, we regard (172) as an overdetermined system of PDEs for Yij , and equations (175)
have been obtained from the compatibility condition of system (172).

Remark 27. Another way to obtain (175) from (172) is the following. Set

Vk = Yk +
∂

∂uk
, k = 1, . . . , n− 1.

Then (172) and (176) can be rewritten as follows

[Vh, Yij] = −2∆−1
(

2uhYij + uiYhj + ujYhi − δih
∑

m

umYmj − δjh
∑

m

umYmi

)

,(177)

Tkh = [Vk, Vh].(178)

Using the Jacobi identity and equation (178), we get

(179) [Vk, [Vh, Yij]] = [[Vk, Vh], Yij] + [Vh, [Vk, Yij]] = [Tkh, Yij] + [Vh, [Vk, Yij]].

Let P be a power series in the variables x, t, u1, . . . , un−1 with coefficients in the Lie algebra
F
1(E , a). Then the operator adVk can be applied to P in the standard way

(adVk)(P ) = [Vk, P ] =
[

Yk +
∂

∂uk
, P
]

= [Yk, P ] +
∂

∂uk
(P ).

Applying the operator adVk to equation (177), for all k, h we can express [Vk, [Vh, Yij]] as a linear
combination of Ypq, p, q = 1, . . . , n−1. Then, exchanging k and h, we can express [Vh, [Vk, Yij]] as
a linear combination of Ypq, p, q = 1, . . . , n − 1. Substituting the obtained expressions in (179),
one gets (175).

Combining equations (158), (159) with formula (166), we obtain

∀ i = 1, . . . , n− 2, Yi

∣

∣

∣

ui+1=ui+2=···=un−1=0
= 0, Yn−1 = 0,(180)

Y
∣

∣

∣

u1=u2=···=un−1=0
= 0.(181)

In order to study the obtained equations, we need the following lemmas on formal power series,
which can be proved straightforwardly by induction on the degrees of the coefficients of these
power series.

Lemma 8. Let Z1, . . . , Zn−1 be formal power series in some variables v1, . . . , vn−1 with coefficients

in a Lie algebra g. Suppose that

(182) ∀ i = 1, . . . , n− 2, Zi

∣

∣

∣

vi+1=vi+2=···=vn−1=0
= 0, Zn−1 = 0.

Set Vij = [Zi, Zj]−
∂Zi

∂vj
+
∂Zj

∂vi
.

Then the Lie subalgebra generated by the coefficients of the power series Z1, . . . , Zn−1 coincides

with the Lie subalgebra generated by the coefficients of the power series Vij , i, j = 1, . . . , n− 1.

Lemma 9. Let Z1, . . . , Zn−1 and Ψ1, . . . ,Ψm be formal power series in some variables v1, . . . , vn−1

with coefficients in a Lie algebra g.
Suppose that (182) holds and

(183)
∂Ψl

∂vh
= [Ψl, Zh] +

m
∑

i=1

f i
l (v

1, . . . , vn−1)Ψi ∀ l, h,

for some power series f i
l (v

1, . . . , vn−1) with coefficients in K. Consider the coefficients of the

power series Ψl

Ψl =
∑

i1,...,in−1≥0

(

v1
)i1
. . .
(

vn−1
)in−1

ψl
i1,...,in−1

, ψl
i1,...,in−1

∈ g, l = 1, . . . , n− 1.
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Then any coefficient ψl
i1,...,in−1

belongs to the vector subspace spanned by the zero degree coefficients

ψ1
0,...,0, . . . , ψ

n−1
0,...,0.

Recall that Yij from formula (166) are power series in the variables x, t, u1, . . . , un−1 with
coefficients in the Lie algebra F

1(E , a). Let g be the Lie algebra of formal power series in the
variables x, t with coefficients in F

1(E , a). Then Yij can be regarded as a power series in the
variables u1, . . . , un−1 with coefficients in g

(184) Yij =
∑

i1,...,in−1≥0

(

u1
)i1 . . .

(

un−1
)in−1yiji1,...,in−1

(x, t), yiji1,...,in−1
(x, t) ∈ g.

Note that equations (172) are of the type (183) for vh = uh and Zh = Yh. Therefore, by
Lemma 9, we obtain the following result.

Lemma 10. For any i, j, i1, . . . , in−1, the power series y
ij
i1,...,in−1

(x, t) belongs to the vector subspace

spanned by the power series ypq0,...,0(x, t), p, q = 1, . . . , n− 1.

From (173), (181), (184) one gets

(185)
∂

∂x

(

ypq0,...,0(x, t)
)

= Ypq,x

∣

∣

∣

u1=u2=···=un−1=0
=

=
[

Ypq

∣

∣

∣

u1=u2=···=un−1=0
, Y
∣

∣

∣

u1=u2=···=un−1=0

]

= 0 ∀ p, q.

Combining (185) with Lemma 10, we obtain

(186) Ypq,x = 0 ∀ p, q
and, by (173),

(187) [Yij, Y ] = 0 ∀ i, j.
Before continuing the analysis of the obtained equations, we need to consider some special cases

in the next subsections.

5.2. Some special cases. Suppose that A is of the form

(188) A =
∑

i

ui1Ỹi + Ỹ ,

where Ỹi, Ỹ are power series in the variables x, t, u1, . . . , un−1 with coefficients in some Lie algebra.
Substituting (188) in (164) we obtain

(189) F 1 =
∑

i

ui2Hi + F 2,

where

Hi =
∑

k

uk1T̃ik + Ỹ,i + [Ỹi, Ỹ ]− Ỹi,x +
∑

j

Gj

ui
2

Ỹj,

T̃ik = [Ỹi, Ỹk]− Ỹi,k + Ỹk,i,(190)

Ỹi,x =
∂Ỹi
∂x

, Ỹi,k =
∂Ỹi
∂uk

, Ỹ,i =
∂Ỹ

∂ui
.

Differentiating (165) with respect to ui2, one gets

(191) − ∂F 2

∂ui1
= Hi,x +

∑

j

uj1Hi,j −
∑

j,k

Gj

ui
2

uk1Ỹk,j −
∑

j

Gj

ui
2

Ỹ,j −
∑

j,k

uj1G
k
ui
2
uj Ỹk −

∑

k

Gk
ui
1

Ỹk+

+
∑

j,k

Gk

u
j
2
ui
1

uj2Ỹk +
∑

k

uk1[Ỹk, Hi] + [Ỹ , Hi].
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Denote the right-hand side of (191) by Ωi. Then equation (191) reads

(192) − ∂F 2

∂ui1
= Ωi ∀ i.

Differentiating (192) with respect to uh1 , u
k
1, we obtain

∂

∂uh1

(

Ωi

)

=
∂

∂ui1

(

Ωh

)

,(193)

∂2

∂uh1∂u
k
1

(

Ωi

)

=
∂2

∂ui1∂u
k
1

(

Ωh

)

.(194)

Using formulas (167), (168), it is straightforward to show that equations (194), (193) reduce to

T̃ih,k = 2∆−1
(

2ukT̃hi + uhT̃ki + uiT̃hk + δik
∑

m

umT̃mh + δhk
∑

m

umT̃im

)

+ [T̃ih, Ỹk],(195)

T̃ih,x = [T̃ih, Ỹ ],(196)

where

T̃ih,k =
∂T̃ih
∂uk

, T̃ih,x =
∂T̃ih
∂x

.

Set Pi = Ỹi +
∂

∂ui
. Then

T̃ih = [Ỹi, Ỹh]− Ỹi,h + Ỹh,i = [Pi, Ph],

[T̃ih, T̃km] = [T̃ih, [Pk, Pm]] = [[T̃ih, Pk], Pm] + [Pk, [T̃ih, Pm]] =

= [[T̃ih, Pk], Pm]− [[T̃ih, Pm], Pk],
(197)

and equation (195) can be written as

(198) [T̃ih, Pk] = 2∆−1
(

2ukT̃ih + uhT̃ik + uiT̃kh + δik
∑

m

umT̃hm + δhk
∑

m

umT̃mi

)

.

Using (197) and (198), one obtains

(199) [T̃ih, T̃km] = 4∆−2(δhmT̃ki + δhk T̃im + δimT̃hk + δikT̃mh).

5.3. A zero-curvature representation. In order to analyze the structure of F1(E , a), we need
to construct a ZCR with A of the form

(200) A =
∑

i

ui1Ŷi,

where Ŷi are power series in the variables u1, . . . , un−1 with coefficients in some Lie algebra. In
particular, we assume that Ŷi do not depend on x, t. That is,

(201)
∂

∂x

(

Ŷi
)

=
∂

∂t

(

Ŷi
)

= 0.

Also, similarly to (180), we assume

(202) ∀ i = 1, . . . , n− 2, Ŷi

∣

∣

∣

ui+1=ui+2=···=un−1=0
= 0, Ŷn−1 = 0.

By (161), (164), (200), one has

(203) B =
∑

i

ui3Ŷi +
∑

i,j

ui2

(

uj1Tij +Gj

ui
2

Ŷj

)

+ F 2.
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Using (191) and (201), it is straightforward to show that F 2 is of the form

F 2 =
∑

i,j,h

ui1u
j
1u

h
1Mijh +

∑

i

ui1Mi +M,(204)

Mihk = 2∆−2
(

(4(ukuiŶh + uhukŶi + uhuiŶk)− 〈u, u〉(δikŶh + δihŶk + δhk Ŷi)

− 2
∑

m

umŶm(δ
h
ku

i + δiku
h + δihu

k)
)

− 2

3

∑

m

∆−1um(δikT̂hm + δihT̂km + δhk T̂im),

Mi =
3

2

(

rn + 4∆−1
∑

k

(rk − rn)u
k2

)

Ŷi,

T̂kh = [Ŷk, Ŷh]− Ŷk,h + Ŷh,k,(205)

where M is a power series in the variables x, t, u1, . . . , un−1.
Equations (195), (199) remain valid if we replace (188) by (200), so one has

T̂ih,k = 2∆−1
(

2ukT̂hi + uhT̂ki + uiT̂hk + δik
∑

m

umT̂mh + δhk
∑

m

umT̂im

)

+ [T̂ih, Ŷk],(206)

[T̂ih, T̂km] = 4∆−2(δhmT̂ki + δhk T̂im + δimT̂hk + δikT̂mh).(207)

Combining (205) with (201), we obtain also

∂

∂x

(

T̂kh
)

=
∂

∂t

(

T̂kh
)

= 0.

Thus T̂kh is a power series in the variables u1, . . . , un−1.
Let Ei,j ∈ gln−1(K) be the matrix with (i, j)-th entry equal to 1 and all other entries equal to

zero. Then the matrices Ckh = 4(Ek,h −Eh,k) span the Lie algebra son−1 ⊂ gln−1(K).

Theorem 10. There is a ZCR with values in son−1 such that

• A is of the form (200), where the power series Ŷi(u
1, . . . , un−1) satisfy (202),

• B is defined by (203), (204) with M = 0,
• for the power series (205), one has

(208) T̂kh

∣

∣

∣

u1=···=un−1=0
= 4(Ek,h −Eh,k).

Proof. For j = 1, . . . , n−1, let N j be the son−1-valued matrix-function whose (h, i)-entry is equal
to

−2δhj∆
−1ui + 2δij∆

−1uh.

Let A be given by (200) with Ŷi = N i and B be defined by (203), (204) with M = 0. It is
straightforward to check that such A, B satisfy the zero-curvature condition (157). In order to
achieve condition (202), we can apply a gauge transformation depending on u1, . . . , un−1, similarly
to Theorem 3.

According to Theorem 3, the required gauge transformation is defined on a neighborhood of
the point (154) and is equal to the identity transformation at this point. Since we assume (155),
(156), in our case the gauge transformation may depend nontrivially on u1, . . . , un−1 and is equal
to the identity transformation at the point u1 = · · · = un−1 = 0.

Computing T̂kh by formula (205) for Ŷi = N i, one obtains that (208) is valid. It is easy
to check that (208) remains valid after applying the gauge transformation, because the gauge
transformation is equal to the identity transformation at the point u1 = · · · = un−1 = 0. �

Remark 28. Note that the ZCR described in Theorem 10 is of order ≤ 1 and is a-normal for
the point a ∈ E satisfying (154), (155), (156).
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5.4. The ideal generated by Yij. Continue the analysis started in Section 5.1. Recall that

A = A(x, t, uj0, u
j
1) and B = B(x, t, uj0, u

j
1, u

j
2, u

j
3) are power series with coefficients in the algebra

F
1(E , a) and satisfy (157), (158), (159), (160). Recall that we have obtained formula (166).

Lemma 11. The algebra F
1(E , a) is generated by the coefficients of the power series

(209) Yij

∣

∣

∣

t=0
, Yi

∣

∣

∣

t=0
, Y

∣

∣

∣

t=0
, i, j = 1, . . . , n− 1.

Proof. Theorem 7 implies that the algebra F
1(E , a) is generated by the coefficients of the power

series A
∣

∣

∣

t=0
. According to formula (166), the set of the coefficients of A

∣

∣

∣

t=0
consists of the

coefficients of the power series (209). �

Lemma 12. For all i, j, any coefficient of the power series Yij

∣

∣

∣

t=0
belongs to the vector subspace

spanned by the zero degree coefficients

(210) zpq = Ypq

∣

∣

∣

x=t=u1=···=un−1=0
, p, q = 1, . . . , n− 1.

Proof. The statement follows from Lemma 10 and equation (185). �

Lemma 13. Let P be a power series in the variables x, ul. Suppose that

(211)
[

Yij

∣

∣

∣

t=0
, P
]

= 0 ∀ i, j.

Then any coefficient of the power series Yij

∣

∣

∣

t=0
commutes with any coefficient of P .

Proof. Using Lemma 12, one can prove the statement by induction on the degree of coefficients
of P . �

Lemma 14. For all i, j, any coefficient of the power series Yij

∣

∣

∣

t=0
commutes

• with any coefficient of Y
∣

∣

∣

t=0
,

• with any coefficient of Ypq

∣

∣

∣

t=0
for all p, q.

Proof. Substituting t = 0 to (187) and (171), we obtain the required statement by Lemma 13. �

Consider the ZCR with values in son−1 constructed in Theorem 10. Recall that, according

to (200), (205), and Theorem 10, this ZCR determines the power series Ŷi, T̂kh in the variables
u1, . . . , un−1 with coefficients in son−1.

According to Remark 28, this son−1-valued ZCR is of order ≤ 1 and is a-normal. Therefore,
by Remark 23, this ZCR determines a homomorphism σ : F

1(E , a) → son−1.
For a power series P with coefficients in F

1(E , a), we can apply σ to each coefficient of P and
obtain a power series σ(P ) with coefficients in son−1.

Recall that Tkh is defined by (176). By the definition of σ, one has

(212) σ(Yi) = Ŷi, σ(Tkh) = T̂kh.

Combining (212) with (206), (207), we obtain

σ
(

Tih,k
)

= σ
(

2∆−1

(

2ukThi + uhTki + uiThk + δik
∑

m

umTmh + δhk
∑

m

umTim

)

+ [Tih, Yk]
)

,

(213)

σ
(

[Tih, Tkm]
)

= σ
(

4∆−2(δhmTki + δhkTim + δimThk + δikTmh)
)

.(214)
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Set

Γihk = Tih,k −
(

2∆−1

(

2ukThi + uhTki + uiThk + δik
∑

m

umTmh + δhk
∑

m

umTim

)

+ [Tih, Yk]
)

,

(215)

Γihkm = [Tih, Tkm]− 4∆−2(δhmTki + δhkTim + δimThk + δikTmh).(216)

Lemma 15. One has

(217) [Ypq,Γihk] = 0, [Ypq,Γihkm] = 0 ∀ p, q, i, h, k,m.

Proof. Set P ′
i = Yi +

∂

∂ui
, then

Tih = [Yi, Yh]− Yi,h + Yh,i = [P ′
i , P

′
h],(218)

Γihk = [P ′
k, Tih]− 2∆−1

(

2ukThi + uhTki + uiThk + δik
∑

m

umTmh + δhk
∑

m

umTim

)

.(219)

and equation (195) can be written as

(220) [Yij, P
′
h] = 2∆−1

(

2uhYij + uiYhj + ujYhi − δih
∑

m

umYmj − δjh
∑

m

umYmi

)

.

Using (175), (216), (218), (219), (220), one can check relations (217) by a straightforward com-
putation. �

Combining (213), (214), (215), (216) with (201), we obtain

(221) σ
(

Γihk

)

= σ
(

Γihk

∣

∣

∣

t=0

)

= 0, σ
(

Γihkm

)

= σ
(

Γihkm

∣

∣

∣

t=0

)

= 0.

From (212) and (201) it follows that

(222) σ(Yi) = σ
(

Yi

∣

∣

∣

t=0

)

= σ
(

Yi

∣

∣

∣

x=t=0

)

= Ŷi.

Set

(223) Γi = Yi

∣

∣

∣

t=0
− Yi

∣

∣

∣

x=t=0
,

then equation (222) implies

(224) σ(Γi) = 0.

Let H ⊂ F
1(E , a) be the subalgebra generated by the coefficients of the power series

Yi

∣

∣

∣

t=0
, i = 1, . . . , n−1. Then Yi

∣

∣

∣

t=0
and Tkh

∣

∣

∣

t=0
are power series with coefficients in H. Therefore,

the coefficients of the power series

(225) Γihk

∣

∣

∣

t=0
, Γihkm

∣

∣

∣

t=0
, Γi

belong to H as well.

Lemma 16. Let I ⊂ H be the ideal of H generated by the coefficients of the power series (225).
Then

(226) I = H ∩ ker σ.

Proof. From (221) and (224) it follows that

(227) I ⊂ ker σ.

Consider the quotient Lie algebra g = H/I and the natural projection ψ : H → g. Set

(228) Yi = ψ
(

Yi

∣

∣

∣

t=0

)

, Tkh = ψ
(

Tkh

∣

∣

∣

t=0

)

,
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which are power series with coefficients in g. From (176), (180) it follows that

Tkh = [Yk,Yh]− Yk,h + Yh,k,(229)

∀ i = 1, . . . , n− 2, Yi

∣

∣

∣

ui+1=ui+2=···=un−1=0
= 0, Yn−1 = 0.(230)

By the definition of I and ψ,

(231) ψ
(

Γihk

∣

∣

∣

t=0

)

= 0, ψ
(

Γihkm

∣

∣

∣

t=0

)

= 0, ψ
(

Γi

)

= 0.

According to (215), (216), (223), (228), equations (231) say that

Tih,k = 2∆−1

(

2ukThi + uhTki + uiThk + δik
∑

m

umTmh + δhk
∑

m

umTim

)

+ [Tih,Yk],(232)

[Tih,Tkm] = 4∆−2(δhmTki + δhkTim + δimThk + δikTmh),(233)

∂

∂x

(

Yi

)

= 0.(234)

From (228), (229), (234) it follows that Yi, Tkh are power series in the variables u1, . . . , un−1 with
coefficients in g.

Lemma 17. The elements

(235) Tkh

∣

∣

∣

u1=u2=···=un−1=0
∈ g, k, h = 1, . . . , n− 1,

generate the Lie algebra g.

Proof. From the definition of H and g it follows that g is generated by the coefficients of the power
series Yi.

Relations (229), (230), (232) are of the type considered in Lemmas 8, 9 for vi = ui. Therefore,
by Lemmas 8, 9, any coefficient of Yi, Tkh belongs to the Lie subalgebra generated by (235). �

From (233) and Lemma 17 it follows that the map

son−1 → g, (Ek,h − Eh,k) 7→ 1

4

(

Tkh

∣

∣

∣

u1=u2=···=un−1=0

)

,

is a surjective homomorphism. Therefore,

(236) dim g = dim
(

H/I
)

≤ dim son−1.

According to Theorem 10, the coefficients of the power series Ŷi generate son−1. Combining this
with (222) and the definition of H, we obtain

(237) σ(H) = son−1.

Combining (227), (236), (237), one gets (226). �

Substituting t = 0 to (172), we obtain

(238) Yij,h

∣

∣

∣

t=0
=

=
[

Yij

∣

∣

∣

t=0
, Yh

∣

∣

∣

t=0

]

−2∆−1
(

2uhYij+u
iYhj+u

jYhi−δih
∑

m

umYmj−δjh
∑

m

umYmi

)
∣

∣

∣

t=0
∀ i, j, h.

From (186) it follows that Yij

∣

∣

∣

t=0
= Yij

∣

∣

∣

x=t=0
for all i, j. Therefore, substituting x = t = 0

to (172), we get

(239) Yij,h

∣

∣

∣

t=0
=
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=
[

Yij

∣

∣

∣

t=0
, Yh

∣

∣

∣

x=t=0

]

−2∆−1
(

2uhYij+u
iYhj+u

jYhi−δih
∑

m

umYmj−δjh
∑

m

umYmi

)
∣

∣

∣

t=0
∀ i, j, h.

Subtracting (239) from (238), one obtains

(240)
[

Yij

∣

∣

∣

t=0
, Γh

]

= 0 ∀ i, j, h,

where Γh = Yh

∣

∣

∣

t=0
− Yh

∣

∣

∣

x=t=0
.

Let V be the vector subspace spanned by the elements zpq, p, q = 1, . . . , n−1, defined in (210).
Lemma 14 implies that V is a commutative subalgebra of the Lie algebra F

1(E , a).
Recall that Yh

∣

∣

∣

t=0
is a power series in the variables x, u1, . . . , un−1. So one has

(241) Yh

∣

∣

∣

t=0
=

∑

l,i1,...,in−1≥0

xl
(

u1
)i1 . . .

(

un−1
)in−1βh

l,i1,...,in−1

for some elements βh
l,i1,...,in−1

∈ F
1(E , a).

Lemma 12 says that for all i, j any coefficient of the power series Yij

∣

∣

∣

t=0
belongs to V. Then

equation (238) implies that for all i, j, h the coefficients of the power series
[

Yij

∣

∣

∣

t=0
, Yh

∣

∣

∣

t=0

]

belong

to V. Using these facts and the definition of V, by induction on l + i1 + · · · + in−1 one proves
that [βh

l,i1,...,in−1
,V] ⊂ V. Since the Lie algebra H is generated by the elements βh

l,i1,...,in−1
and V

is spanned by the elements zpq, we see that [zpq,H] ⊂ V for all p, q.
Substituting t = 0 to (217), one gets

(242)
[

Ypq

∣

∣

∣

t=0
, Γihk

∣

∣

∣

t=0

]

= 0,
[

Ypq

∣

∣

∣

t=0
,Γihkm

∣

∣

∣

t=0

]

= 0 ∀ p, q, i, h, k,m.

By Lemma 13, from (240) and (242) it follows that zpq defined in (210) commutes with any
coefficient of the power series (225).

Thus [zpq,H] ⊂ V and zpq commutes with any coefficient of the power series (225). Combining
this with Lemma 16, one gets

(243)
[

zpq, (H ∩ ker σ)
]

= 0 ∀ p, q.
Lemma 18. The vector space V spanned by the elements zpq, p, q = 1, . . . , n−1, is a commutative

ideal of the Lie algebra F
1(E , a).

Proof. We have shown above that V is a commutative subalgebra F
1(E , a). Let us show that V

is an ideal of F1(E , a).
According to Lemma 11, the Lie algebra F

1(E , a) is generated by the coefficients of the power
series (209). As we have shown above, [V,H] ⊂ V, where H ⊂ F

1(E , a) is the subalgebra generated
by the coefficients of the power series Yi

∣

∣

∣

t=0
, i = 1, . . . , n − 1. Furthermore, Lemma 14 implies

that any element of V commutes with any coefficient of the power series Y
∣

∣

∣

t=0
and Yij

∣

∣

∣

t=0
.

Therefore, V is an ideal of F1(E , a). �

Lemma 19. For any v ∈ ker σ ⊂ F
1(E , a), one has [zpq, v] = 0 for all p, q.

Proof. By Lemma 11, the algebra F
1(E , a) is generated by the coefficients of (209). Since

σ(Yij) = σ(Y ) = 0 and the coefficients of Yi

∣

∣

∣

t=0
generate H, the ideal ker σ is generated by

the subalgebra H ∩ ker σ and the coefficients of Yij

∣

∣

∣

t=0
, Y

∣

∣

∣

t=0
. Then the required statement

follows from (243), Lemma 14, and Lemma 18. �

From (184) and (186) it follows that yiji1,...,in−1
is a power series in one variable t.
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Lemma 20. For all i, j, i′, j′, any coefficient of the power series yij0,...,0(t) commutes with any

coefficient of yi
′j′

0,...,0(t).

Proof. For each l ∈ Z≥0, set

(244) zijl =
∂lyij0,...,0
∂tl

∣

∣

∣

∣

t=0

∈ F
1(E , a).

Similarly to Lemma 19, by induction on l, one can prove that

(245) [zijl , ker σ] = 0 ∀ i, j, l.
Since σ(Yi′j′) = 0, property (245) implies that zijl commutes with any coefficient of the power

series yi
′j′

0,...,0(t). Since the elements zijl are the coefficients of the power series yij0,...,0, we see that

any coefficient of yij0,...,0(t) commutes with any coefficient of yi
′j′

0,...,0(t). �

Theorem 11. The Lie subalgebra S generated by the coefficients of Yij is abelian and satisfies

(246) [S, ker σ] = 0.

Furthermore, the subalgebra S is an ideal of F1(E , a).
Proof. The fact that S is abelian follows from Lemma 10, property (186), and Lemma 20. Ac-
cording to Lemma 10 and property (186), the subalgebra S is generated by the coefficients (244)
of the power series yij0,...,0(t). Then (245) implies (246).

By Lemma 11, the algebra F
1(E , a) is generated by the coefficients of (209). Therefore, in order

to show that S is an ideal, one needs to prove that [C,S] ⊂ S for any coefficient C of Yi

∣

∣

∣

t=0

and Y
∣

∣

∣

t=0
. This can be easily deduced from equations (172) and (187), using Lemma 10 and

property (186). �

5.5. The ideal generated by Ỹi. In this subsection we study the quotient Lie algebra
L = F

1(E , a)/S, where S is the ideal generated by the coefficients of Yij. Therefore, we can
assume that A, B are power series with coefficients in L and formula (188) holds.

Then T̃ij defined in (190) are power series in the variables x, t, u1, . . . , un−1 with coefficients
in L. Let g̃ be the Lie algebra of formal power series in the variables x, t with coefficients in L.
Then T̃ij can be regarded as a power series in the variables u1, . . . , un−1 with coefficients in g̃

T̃ij =
∑

i1,...,in−1≥0

(

u1
)i1
. . .
(

un−1
)in−1

αij
i1,...,in−1

(x, t), αij
i1,...,in−1

(x, t) ∈ g̃.

From (180), (181) we get

∀ i = 1, . . . , n− 2, Ỹi

∣

∣

∣

ui+1=ui+2=···=un−1=0
= 0, Ỹn−1 = 0,(247)

Ỹ
∣

∣

∣

u1=u2=···=un−1=0
= 0.(248)

Similarly to Lemma 10, using Lemma 9, from equations (195) we obtain the following.

Lemma 21. For any i, j, i1, . . . , in−1, the power series α
ij
i1,...,in−1

(x, t) belongs to the vector subspace

spanned by the power series αpq
0,...,0(x, t), p, q = 1, . . . , n− 1.

Similarly to (185), from (196) and (248) one gets

(249)
∂

∂x

(

αpq
0,...,0(x, t)

)

= T̃pq,x

∣

∣

∣

u1=u2=···=un−1=0
=

=
[

T̃pq

∣

∣

∣

u1=u2=···=un−1=0
, Ỹ
∣

∣

∣

u1=u2=···=un−1=0

]

= 0 ∀ p, q.
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Combining (249) with Lemma 21, we obtain

(250) T̃pq,x = 0 ∀ p, q
and, by (196),

(251) [T̃ij , Ỹ ] = 0 ∀ i, j.
Lemma 22. The algebra L is generated by the coefficients of the power series

(252) T̃ij

∣

∣

∣

t=0
, Ỹ

∣

∣

∣

t=0
, i, j = 1, . . . , n− 1.

Proof. Similarly to Lemma 11, taking into account formula (188), one proves that L is generated

by the coefficients of Ỹi

∣

∣

∣

t=0
, Ỹ

∣

∣

∣

t=0
. By Lemma 8, the Lie subalgebra generated by the coefficients

of Ỹi

∣

∣

∣

t=0
coincides with the Lie subalgebra generated by the coefficients of T̃ij

∣

∣

∣

t=0
. �

Similarly to Lemma 12, using equation (195), we obtain the following.

Lemma 23. Any coefficient of the power series T̃ij

∣

∣

∣

t=0
belongs to the vector subspace spanned by

the zero degree coefficients

(253) βpq = T̃pq

∣

∣

∣

x=t=u1=···=un−1=0
, p, q = 1, . . . , n− 1.

Lemma 24. Let Z ⊂ F
1(E , a)/S be the Lie subalgebra generated by the coefficients of the power

series T̃ij

∣

∣

∣

t=0
. This subalgebra is isomorphic to son−1.

Proof. Recall that Ei,j ∈ gln−1(K) is the matrix with (i, j)-th entry equal to 1 and all other entries
equal to zero. The matrices

Ckh = 4(Ek,h −Eh,k), k, h = 1, . . . , n− 1, k < h,

form a basis of the Lie algebra son−1 ⊂ gln−1(K).
Substituting x = t = u1 = · · · = un−1 = 0 in equation (199), we see that the elements (253)

satisfy

(254) [βih, βkm] = 4(δhmβ
ki + δhkβ

im + δimβ
hk + δikβ

mh).

Since T̃pq = −T̃qp, we have βpq = −βqp. Combining this with equation (254), we see that the map

(255) f : son−1 → Z, f(Ckh) = βkh,

is a homomorphism.
Consider the homomorphism σ : F

1(E , a) → son−1 constructed in Section 5.4. Since σ(Yij) = 0
and the ideal S ⊂ F

1(E , a) is generated by the coefficients of Yij, the homomorphism σ determines
a homomorphism σ̂ : F

1(E , a)/S → son−1.
Consider the ZCR with coefficients in son−1 constructed in Theorem 10. Recall that, according

to (200), (205), and Theorem 10, this ZCR determines the power series Ŷi, T̂kh in the variables
u1, . . . , un−1 with coefficients in son−1 such that (208), (212) hold.

For a power series P with coefficients in F
1(E , a)/S, we can apply σ̂ to each coefficient of P

and obtain a power series σ̂(P ) with coefficients in son−1.

The projection F
1(E , a) → F

1(E , a)/S maps Yi to Ỹi and Tkh to T̃kh. Combining this with (212),
we obtain

(256) σ̂(Ỹi) = Ŷi, σ̂(T̃kh) = T̂kh.

From (208), (253), (256) we get

(257) σ̂(βkh) = 4(Ek,h − Eh,k) = Ckh.
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Relations (255), (257) imply that the Lie subalgebra generated by the elements βkh is isomorphic
to son−1. According to Lemma 23, the Lie subalgebra generated by βkh coincides with Z, so Z is
isomorphic to son−1. �

Lemma 25. Any coefficient of T̃ij

∣

∣

∣

t=0
commutes with any coefficient of Ỹ

∣

∣

∣

t=0
.

Proof. The statement is proved similarly to Lemma 14, using (251) and Lemma 23. �

Recall that L(n) is the infinite-dimensional Lie algebra generated by (148).

Theorem 12. Suppose that n ≥ 4. Then the Lie algebra L = F
1(E , a)/S is isomorphic to the

direct sum L(n) ⊕ son−1, where son−1 is generated by the coefficients of T̃ij. The ideal son−1

coincides also with the subalgebra generated by the coefficients of Ỹi.
The homomorphism F

1(E , a) → F
0(E , a) from (109) coincides with the composition of the ho-

momorphisms

(258) F
1(E , a) → F

1(E , a)/S ∼= L(n)⊕ son−1 → L(n) ∼= F
0(E , a),

where L(n) ∼= F
0(E , a) is the isomorphism described in Theorem 9.

Proof. Let S1 be the subalgebra generated by the coefficients of Ỹ
∣

∣

∣

t=0
and S2 be the subalgebra

generated by the coefficients of T̃ij

∣

∣

∣

t=0
. By Lemmas 22, 25, one has L = S1+S2 and [S1, S2] = 0.

By Lemma 24, S2
∼= son−1. Since for n ≥ 4 the center of the Lie algebra son−1 is trivial, we

obtain S1 ∩ S2 = 0 and, therefore, L = S1 ⊕ S2. In particular, S2 is an ideal of L.
For n ≥ 4, from equations (199), (250) and Lemma 21 it follows that for all p, q = 1, . . . , n− 1

any coefficient of T̃pq belongs to the ideal generated by the coefficients of T̃ij

∣

∣

∣

t=0
, i, j = 1, . . . , n−1.

(To see this, one needs to differentiate (199) with respect to t several times and substitute t = 0.)

Since the subalgebra S2 generated by the coefficients of T̃ij

∣

∣

∣

t=0
is an ideal, we obtain that all

coefficients of T̃pq belong to S2.

According to (190) and (247), we can apply Lemma 8 to the power series Ỹi and T̃ij. This

implies that the subalgebra generated by the coefficients of Ỹi, i = 1, . . . , n − 1, coincides with
the subalgebra S2 generated by the coefficients of T̃ij , i, j = 1, . . . , n − 1. Since S2 is an ideal,

we see that the ideal generated by the coefficients of Ỹi coincides with S2. Therefore, taking into
account formulas (161) and (188), one obtains that the quotient L/S2 is isomorphic to F

0(E , a).
Combining this with Theorem 9, we get S1

∼= L/S2
∼= F

0(E , a) ∼= L(n).
According to formulas (166) and (161), the kernel of the homomorphism F

1(E , a) → F
0(E , a)

from (109) is generated by the coefficients of the power series Yij, Yi. Recall that S ⊂ F
1(E , a) is

the ideal generated by the coefficients of Yij. Applying the projection F
1(E , a) → F

1(E , a)/S to

the coefficients of the power series Yi, we get Ỹi. As has been shown above,

F
1(E , a)/S ∼= L(n)⊕ son−1,

where son−1 coincides with the ideal generated by the coefficients of Ỹi. According to Theo-
rem 9, the algebra F

0(E , a) is isomorphic to L(n). These results show that the homomorphism
F
1(E , a) → F

0(E , a) from (109) coincides with the composition (258). �

Remark 29. We have two different ZCRs for the same PDE (24), which can be transformed to
the PDE (147) by the transformation (29). Namely, we have the gln+1-valued ZCR (26), (27) and
the son−1-valued ZCR described in Theorem 10.

One can embed the Lie algebras gln+1 and son−1 into the Lie algebra glN for some N ≥ n+ 1,
and then one can regard these ZCRs as glN -valued ZCRs. One can ask whether these ZCRs can
become gauge equivalent after suitable embeddings gln+1 →֒ glN and son−1 →֒ glN .
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Let us show that these ZCRs cannot become gauge equivalent.
The gln+1-valued ZCR (26), (27) is of order ≤ 0. By Theorem 3 and Remark 15, there is an

a-normal gln+1-valued ZCR Z of order ≤ 0 such that the ZCR (26), (27) is gauge equivalent to
the ZCR Z.

Theorem 4 and Remark 16 imply the following. If two a-normal ZCRs C1 and C2 are gauge
equivalent and the ZCR C1 is of order ≤ 0, then the ZCR C2 is also of order ≤ 0.

The son−1-valued ZCR described in Theorem 10 is a-normal and is not of order ≤ 0, because
the function A in this ZCR depends nontrivially on uj1. Therefore, this son−1-valued ZCR cannot
become gauge equivalent to the gln+1-valued ZCR Z, after any embeddings gln+1 →֒ glN and
son−1 →֒ glN .

Since the ZCR (26), (27) is gauge equivalent to the ZCR Z, we see that the son−1-valued ZCR
described in Theorem 10 cannot become gauge equivalent to the gln+1-valued ZCR (26), (27),
after any embeddings gln+1 →֒ glN and son−1 →֒ glN .

6. The algebras F
p(E , a) for the multicomponent Landau-Lifshitz system

6.1. Preliminary computations. Recall that the infinite prolongation E of system (147) is

an infinite-dimensional manifold with the coordinates (153), where uim corresponds to
∂mui

∂xm
for

m ∈ Z≥0 and i = 1, . . . , n− 1. In particular, ui0 = ui.
Consider an arbitrary point a ∈ E given by (154). As has been said in Section 5.1, since the

PDE (147) is invariant with respect to the change of variables x 7→ x − xa, t 7→ t − ta, it is
sufficient to consider the case xa = ta = 0.

For simplicity of exposition, we continue to assume (156), so we assume that aik = 0 in (154).
(In the case aik 6= 0, the computations change very little, and the final result is the same.)

Fix an integer k ≥ 2. In this section we compute the algebra F
k(E , a) of the PDE (147).

According to Remark 20 and assumptions (155), (156), in order to describe the Lie algebra
F
k(E , a) for the PDE (147), we need to study the equations

(259) Dx(B)−Dt(A) + [A,B] = 0,

∀ i0 = 1, . . . , n− 1, ∀ k0 ≥ 1,
∂A

∂ui0k0

∣

∣

∣

∣

ui
k
=0 ∀ (i,k)≻(i0,k0−1)

= 0,(260)

A
∣

∣

∣

ui
k
=0 ∀ (i,k)

= 0,(261)

B
∣

∣

∣

x=0, ui
k
=0 ∀ (i,k)

= 0.(262)

where

• A = A(x, t, uj0, u
j
1, . . . , u

j
k) is a power series in the variables x, t, uj0, u

j
1, . . . , u

j
k for

j = 1, . . . , n− 1,
• B = B(x, t, uj0, u

j
1, . . . , u

j
k+2) is a power series in the variables x, t, uj0, u

j
1, . . . , u

j
k+2 for

j = 1, . . . , n− 1.

The coefficients of the power series A, B are generators of the Lie algebra F
k(E , a). Relations for

these generators are provided by equations (259), (260), (261), (262).
In this section, summations over repeated indices run from 1 to n − 1 when referred to the

number of dependent variables and from 0 to k when referred to the order of derivatives, unless
otherwise specified. For instance, uim+1F

1
ui
m

means
∑n−1

i=1

∑k

m=0 u
i
m+1F

1
ui
m
. The integer k ≥ 2 is

fixed throughout this section, and there is no summation over k.
Recall that system (147) is of the form

(263) uit = ui3 +Gi(uj, uj1, u
j
2) = ui3 +Gi(uj0, u

j
1, u

j
2), i = 1, . . . , n− 1.
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Then equation (259) reads

(264) Bx +
k+2
∑

j=0

uij+1Bui
j
−At −

k
∑

j=0

uij+3Aui
j
−

k
∑

j=0

Dj
x(G

i)Aui
j
+ [A,B] = 0.

If we put equal to zero the coefficient of uik+3 in (264), we obtain that Bui
k+2

− Aui
k
= 0, and,

by integrating this, we see that B is of the form

(265) B = uik+2Aui
k
+ F 1(x, t, ui, ui1, . . . , u

i
k+1)

for some power series F 1(x, t, ui, ui1, . . . , u
i
k+1). Taking into account the form of A and B above,

we rewrite equation (264) as

(266) uik+2Aui
k
x + F 1

x + uhj+1u
i
k+2Aui

k
uh
j
+ uik+3Aui

k
+

k+1
∑

m=0

uim+1F
1
ui
m

−At − uij+3Aui
j
−Dj

x(G
i)Aui

j
+ uik+2[A,Aui

k
] + [A, F 1] = 0.

Now we compute the coefficient of uik+2 of the left-hand side of (266). It is

Aui
k
x + uhj+1Aui

k
uh
j
−Aui

k−1
+ F 1

ui
k+1

−Gj

ui
2

A
u
j

k
+ [A,Aui

k
],

and, by putting it equal to zero, one obtains the following system of PDEs

F 1
ui
k+1

= Aui
k−1

+ A
u
j

k
Gj

ui
2

− Aui
k
x − Aui

k
uh
j
uhj+1 − [A,Aui

k
], i = 1, . . . , n− 1.

Integrating this system, we see that F 1 is of the form

(267) F 1 = −1

2
uik+1u

h
k+1Aui

k
uh
k
+ uik+1

(

Aui
k−1

+Gj

ui
2

A
u
j

k
−

k−1
∑

j=0

Aui
k
uh
j
uhj+1 −Aui

k
x − [A,Aui

k
]
)

+ F 2

for some power series F 2 = F 2(x, t, ui, ui1, . . . , u
i
k).

In view of (267), the coefficient of uik+1u
j
k+1u

p
k+1 in the left-hand side of (266) is A

ui
k
u
j

k
u
p

k
mul-

tiplied by a nonzero scalar. Therefore, A
ui
k
u
j

k
u
p

k
= 0 for all i, j, p. Hence A is of the form

(268) A =
1

2
uiku

j
kY

k
ij + uikY

k
i + Y k, Y k

ij = Y k
ji,

where Y k
ij , Y

k
i , Y

k are power series in the variables x, t, uim, m = 0, . . . , k − 1.
Similarly to (180), combining condition (260) with formula (268), we obtain

(269) ∀ i = 1, . . . , n− 2, Y k
i

∣

∣

∣

ui+1

k−1
=ui+2

k−1
=···=un−1

k−1
=0

= 0, Y k
n−1 = 0.

6.2. The ideal generated by Y k
ij . The coefficient of uik+1u

h
k+1 of the left-hand side of (266),

taking into account that Dj
x(G

i) does not contribute to this coefficient because k ≥ 2, is

(270) − 3Y k
ih,x − 3

k−1
∑

j=0

upj+1Y
k
ih,u

p
j
+Gj

ui
2

Y k
jh +Gj

uh
2

Y k
ji − 3[A, Y k

ih].

Note that (270) is a polynomial of degree 2 in uik. Equating the coefficient of upku
q
k of (270) to

zero, we get

(271) [Y k
pq, Y

k
ih] = 0 ∀ p, q, i, h.
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Now, to compute the coefficient of uik+1u
h
k+1u

p
k of (266), it is enough to look at the coefficient of

upk of (270). Note that the quantity Gj

ui
2

Y k
jh + Gj

uh
2

Y k
ji does not depend on upk, since we suppose

k ≥ 2. Then we have only the system

(272) Y k
ih,u

p

k−1

= [Y k
ih, Y

k
p ] ∀ p, i, h.

We regard (272) as an overdetermined system of PDEs for Y k
ih. The compatibility conditions of

this system give the relations

[T k
pq, Y

k
ih] = 0 ∀ p, q, i, h,

where

(273) T k
pq := [Y k

p , Y
k
q ]− Y k

p,u
q

k−1

+ Y k
q,u

p

k−1

.

Lemma 26. The Lie subalgebra generated by the coefficients of the power series Y k
i coincides

with the Lie subalgebra generated by the coefficients of T k
pq.

Proof. The statement follows from Lemma 8 applied to (269), (273). �

The coefficient of uik+1u
h
k+1 of (266) is the coefficient of degree zero in upk of (270). Equating

this coefficient to zero, we obtain

(274) − 3Y k
ih,x − 3

k−2
∑

j=0

upj+1Y
k
ih,u

p
j
+Gj

ui
2

Y k
jh +Gj

uh
2

Y k
ji − 3[Y k, Y k

ih] = 0.

Lemma 27. The power series Y k
ih does not depend on upq for q > 0. So Y k

ih depends only on

up0 = up and x, t.

Proof. This is proved by induction on l = k − q, using conditions (260), (261) and equa-
tions (272), (274). �

In view of Lemma 27, equation (274) becomes

(275) − 3Y k
ih,x − 3up1Y

k
ih,p +Gj

ui
2

Y k
jh +Gj

uh
2

Y k
ji − 3[Y k, Y k

ih] = 0,

where Y k
ih,p = Y k

ih,up.
Furthermore, by differentiating (275) with respect to upl with l ≥ 2 and with respect to up1, u

q
1

we get, respectively, the following relations

[Y k
,u

p

l
, Y k

ij ] = 0 ∀ l ≥ 2, [Y k
,u

p
1
u
q
1
, Y k

ih] = 0.

Therefore, the quantity [Y k, Y k
ih] is a polynomial of degree ≤ 1 in up1. Its coefficient in up1 is

[Y k
,u

p
1

, Y k
ih] (recall that Y

k
ih depends only on x, t, up) and its zero degree term is [Y k − Y k

,u
p
1

up1, Y
k
ih].

By putting equal to zero the coefficient of up1 and that of degree zero (in up1) of the left-hand side
of (275), we get the system

Y k
ij,h = [Y k

ij , Y
k
,uh

1

]− 2∆−1
(

2uhY k
ij + uiY k

hj + ujY k
hi − δihu

mY k
mj − δjhu

mY k
mi

)

∀ i, j, h,(276)

Y k
ij,x = [Y k

ij , Z], Z = Y k − up1Y
k
,u

p
1
.

Similarly to (175), the compatibility conditions of system (276) imply

(277) [Y k
ij ,Wmh] + 4∆−2(−δimY k

hj + δihY
k
mj − δjmY

k
hi + δjhY

k
mi) = 0 ∀ i, j,m, h,

where

(278) Wmh := [Y k
,um

1
, Y k

,uh
1

]− Y k
,um

1
uh + Y k

,uh
1
um .

Recall that in Section 5.4 we have defined the homomorphism σ : F
1(E , a) → son−1. Let

σk : F
k(E , a) → son−1 be the composition of the homomorphisms F

k(E , a) → F
1(E , a) → son−1,

where the homomorphism F
k(E , a) → F

1(E , a) arises from (109).
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Theorem 13. The Lie subalgebra Sk generated by the coefficients of Y k
ij is abelian and satisfies

[Sk, ker σk] = 0.

Furthermore, this subalgebra is an ideal of Fk(E , a).
Proof. This is proved similarly to Theorem 11, using the results of this section. �

6.3. The ideal generated by Y k
i . In this subsection we study the quotient Lie algebra

Lk = F
k(E , a)/Sk, where Sk is the ideal generated by the coefficients of Y k

ij . Therefore, we
can assume that A, B are power series with coefficients in Lk and

(279) A = uikY
k
i + Y k,

where Y k
i and Y k depend on x, t, ui, . . . , uik−1.

Then from (265), (266), (267) one gets

B = uik+2Y
k + F 1,

F 1 = uik+1

(

Aui
k−1

+Gj

ui
2

A
u
j

k
−

k−1
∑

j=0

Aui
k
uh
j
uhj+1 − Aui

k
x − [A,Aui

k
]
)

+ F 2,(280)

F 1
x +

k
∑

m=0

uim+1F
1
ui
m
− At −

k−2
∑

j=0

uij+3Aui
j
−Dj

x(G
i)Aui

j
+ [A, F 1] = 0.(281)

Substituting (279) and (280) in (281), we see that F 2 is a polynomial of degree ≤ 3 in u1k, . . . , u
n−1
k .

So F 2 is of the form
F 2 = uiku

j
ku

h
kM

k
ijh + uiku

j
kM

k
ij + uikM

k
i +Mk,

where all the Mk
... are fully symmetric with respect to the lower indices and depend on x, t, uiq,

q = 0, . . . , k − 1.
Differentiating (281) with respect to uik+1, u

p
k, u

q
k, we get

(282) T k
ip,u

q

k−1

+ T k
iq,u

p

k−1

+ [Y k
p , T

k
iq] + [Y k

q , T
k
ip] + 6Mk

ipq = 0 ∀ i, p, q.

Interchanging the indices i and p in (282), one obtains

(283) T k
pi,u

q

k−1

+ T k
pq,ui

k−1

+ [Y k
i , T

k
pq] + [Y k

q , T
k
pi] + 6Mk

piq = 0 ∀ p, i, q.

Subtracting (283) from (282) and using the relations Mk
ipq = Mk

piq, T
k
pi = −T k

ip, T
k
pq = −T k

qp, we
get

(284) T k
iq,u

p

k−1

+ T k
qp,ui

k−1

+ 2T k
ip,u

q

k−1

+ [Y k
p , T

k
iq] + [Y k

i , T
k
qp] + 2[Y k

q , T
k
ip] = 0.

Set

V k
p = Y k

p +
∂

∂upk−1

.

Then from (273) we have T k
pq = [V k

p , V
k
q ], and equation (284) can be written in terms of commu-

tators of V k
p

(285) [V k
p , [V

k
i , V

k
q ]] + [V k

i , [V
k
q , V

k
p ]] + 2[V k

q , [V
k
i , V

k
p ]] = 0.

By the Jacobi identity, equation (285) can be rewritten as

(286) 3[V k
q , [V

k
i , V

k
p ]] = 0.

Since [V k
i , V

k
p ] = T k

ip and V k
q = Y k

q +
∂

∂uqk−1

, equation (286) says that

(287) T k
ip,u

q

k−1

+ [Y k
q , T

k
ip] = 0 ∀ i, p, q.
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Differentiating (281) with respect to uik+1, u
p
k, we obtain

(288) Y k
p,ui

k−1
x − 2Y k

i,u
p

k−1
x + [Y k

i , Y
k
p ],x + [Y k

i,x, Y
k
p ]− Y k

p,ui
k−2

+

k−2
∑

m=0

T k
ip,u

q
m
uqm+1 +Gj

ui
2

T k
pj+

+ [Y k, T k
ip] + Y k

,ui
k−1

u
p

k−1

−
k−2
∑

m=0

Y k
i,uh

mu
p

k−1

uhm+1 − Y k
i,u

p

k−2

− [Y k
,u

p

k−1

, Y k
i ]− [Y k, Y k

i,u
p

k−1

]+

+ [Y k
p , Y

k
,ui

k−1

]−
k−2
∑

m=0

[Y k
p , Y

k
i,uh

m
]uhm+1 − [Y k

p , [Y
k, Y k

i ]] + 2Mk
ip = 0 ∀ i, p.

Denote the left-hand side of (288) by Zk
ip. So equation (288) reads Zk

ip = 0 for all i, p. Inter-

changing the indices i and p, one gets also Zk
pi = 0.

Subtracting the equation Zk
pi = 0 from the equation Zk

ip = 0 and using the relation Mk
ip =Mk

pi,
we obtain

(289) 3T k
ip,x + 3

k−2
∑

m=0

T k
ip,u

q
m
uqm+1 +Gh

ui
2

T k
ph −Gh

u
p
2
T k
ih + 3[Y k, T k

ip] = 0.

Lemma 28. The power series T k
ip does not depend on ujm for m > 0. So T k

ip depends only on

uj0 = uj and x, t.

Proof. This is proved by induction on l = k − m, using conditions (260), (261) and equa-
tions (287), (289). �

Differentiating (289) with respect to upl with l ≥ 2 and with respect to up1, u
q
1 we get, respectively,

the following relations

[Y k
,u

p

l
, T k

ij ] = 0 l ≥ 2, [Y k
,u

p
1
u
q
1
, T k

ih] = 0.

Therefore, the left-hand side of (289) is a polynomial of degree 1 in up1. Equating to zero the
coefficients of this polynomial, taking into account (167), we obtain the system

T k
ip,uj = 2∆−1

(

2ujT k
pi + upT k

ji + uiT k
pj + δiju

mT k
mp + δpju

mT k
im

)

+ [T k
ip, Y

k

,u
j
1

], ∀ i, p, j,(290)

T k
ip,x = [T k

ip, Z], Z = Y k − uq1Y
k
,u

q
1
.

The compatibility conditions of system (290) imply

(291) [T k
ip,Wjm] = 4∆−2(δpmT

k
ji + δpjT

k
im + δimT

k
pj + δijT

k
mp)

with Wjm defined by (278).

Let ψk : F
k(E , a) → F

1(E , a) be the homomorphism that arises from (109). Formulas (268)
and (265) imply that ψk maps each coefficient of Y k

ij to zero. Since Sk is generated by the coef-

ficients of Y k
ij , we get ψk(Sk) = 0. Therefore, ψk : F

k(E , a) → F
1(E , a) induces a homomorphism

from F
k(E , a)/Sk to F

1(E , a), which we denote by ψ̂k : F
k(E , a)/Sk → F

1(E , a)
Recall that in Section 5.4 we have defined the homomorphism σ : F

1(E , a) → son−1. Let

σ̂k : F
k(E , a)/Sk → son−1

be the composition of the homomorphisms σ : F
1(E , a) → son−1 and ψ̂k : F

k(E , a)/Sk → F
1(E , a).

Theorem 14. Recall that k ≥ 2. Let Hk ⊂ F
k(E , a)/Sk be the Lie subalgebra generated by the

coefficients of Y k
i . Then Hk is abelian and satisfies

(292) [Hk, ker σ̂k] = 0.

Furthermore, this subalgebra is an ideal of the Lie algebra F
k(E , a)/Sk.
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Proof. According to Lemma 26, the Lie subalgebra generated by the coefficients of the power
series Y k

i coincides with the Lie subalgebra generated by the coefficients of T k
pq.

Therefore, it remains to prove that the subalgebra generated by the coefficients of T k
pq is an

abelian ideal and satisfies (292). This is proved similarly to Theorem 11, using the results of the
present section. �

6.4. The structure of the algebras F
p(E , a).

Theorem 15. Let n ≥ 4. Recall that the n-component Landau-Lifshitz system (24) is transformed

to the PDE (147) by means of the change of variables (146).
The Lie algebras Fp(E , a), p ∈ Z≥0, for the PDE (147) have the following structure.

The algebra F
0(E , a) is isomorphic to L(n).

There is an abelian ideal S of F1(E , a) such that F1(E , a)/S ∼= L(n)⊕son−1, where son−1 is the

Lie algebra of skew-symmetric (n−1)×(n−1) matrices. The homomorphism F
1(E , a) → F

0(E , a)
from (109) coincides with the composition of the homomorphisms

F
1(E , a) → F

1(E , a)/S ∼= L(n)⊕ son−1 → L(n) ∼= F
0(E , a).

Let τk : F
k(E , a) → F

k−1(E , a) be the surjective homomorphism from (109). Then for any k ≥ 2
we have

(293) [v1, [v2, v3]] = 0 ∀ v1, v2, v3 ∈ ker τk.

In particular, the kernel of τk is nilpotent.

For each k ≥ 1, let ϕk : F
k(E , a) → L(n)⊕ son−1 be the composition of the homomorphisms

(294) F
k(E , a) → F

1(E , a) → F
1(E , a)/S ∼= L(n)⊕ son−1,

where F
k(E , a) → F

1(E , a) arises from (109). Then

(295) [h1, [h2, . . . , [h2k−2, [h2k−1, h2k]] . . . ]] = 0 ∀h1, h2, . . . , h2k ∈ kerϕk.

In particular, the kernel of ϕk is nilpotent.

Proof. The isomorphism F
0(E , a) ∼= L(n) is proved in Theorem 9.

In particular, the abelian ideal S ⊂ F
1(E , a) is defined in Theorem 11, and the isomorphism

F
1(E , a)/S ∼= L(n)⊕ son−1 is described in Theorem 12. Also, in Theorem 12 it is shown that the

homomorphism F
1(E , a) → F

0(E , a) from (109) coincides with the composition (293).
Recall that in Section 5.4 we have defined the homomorphism σ : F

1(E , a) → son−1.
For any r ≥ 1, let σr : F

r(E , a) → son−1 be the composition of the homomorphisms
F
r(E , a) → F

1(E , a) → son−1, where F
r(E , a) → F

1(E , a) arises from (109).
Since for any k ≥ 2 the composition

F
k(E , a) τk−→ F

k−1(E , a) σk−1−−−→ son−1

coincides with σk : F
k(E , a) → son−1, we have

(296) ker τk ⊂ ker σk ∀ k ≥ 2.

Formulas (268), (265) imply that ker τk is generated by the coefficients of the power series Y k
ij ,

Y k
i .
Recall that Sk ⊂ F

k(E , a) is the ideal generated by the coefficients of Y k
ij for any k ≥ 2.

According to Theorem 13,

(297) [Sk, ker σk] = 0 ∀ k ≥ 2.

Since ker τk ⊂ ker σk, we get

(298) [Sk, ker τk] = 0 ∀ k ≥ 2.
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Theorem 14 implies

(299) [ker τk, ker σk] ⊂ Sk ∀ k ≥ 2.

Combining (296), (298), (299), one obtains [ker τk, ker τk] ⊂ Sk and [Sk, ker τk] = 0. This
yields (293) and implies that ker τk is nilpotent.

Since ϕk : F
k(E , a) → L(n)⊕ son−1 is the composition (294), we have

(300) kerϕk ⊂ ker σk ∀ k ≥ 2.

For k = 1, the homomorphism ϕ1 : F
1(E , a) → L(n) ⊕ son−1 is the composition of the homo-

morphisms

(301) F
1(E , a) → F

1(E , a)/S ∼= L(n)⊕ son−1,

hence kerϕ1 = S ⊂ F
1(E , a). According to Theorem 11, the ideal S is abelian, so [h1, h2] = 0 for

all h1, h2 ∈ kerϕ1 = S. This proves (295) for k = 1.
Now let us prove (295) by induction on k ≥ 2.
In the case k = 2, consider any elements

(302) h1, h2, h3, h4 ∈ kerϕ2 ⊂ F
2(E , a).

According to the definition of ϕk, the homomorphism ϕ2 is the composition of the homomorphisms

F
2(E , a) τ2−→ F

1(E , a) → F
1(E , a)/S ∼= L(n)⊕ son−1.

Therefore, the condition h3, h4 ∈ kerϕ2 means that τ2(h3), τ2(h4) ∈ S. Since [S,S] = 0, we have
τ2([h3, h4]) = 0, so [h3, h4] ∈ ker τ2.

From (300), (302) it follows that h1, h2 ∈ ker σ2. According to (299), since h2 ∈ ker σ2
and [h3, h4] ∈ ker τ2, we have [h2, [h3, h4]] ∈ S2. According to (297), since h1 ∈ ker σ2 and
[h2, [h3, h4]] ∈ S2, we get [h1, [h2, [h3, h4]]] = 0, which means that we have proved (295) for k = 2.

Let r ≥ 2 be such that (295) is valid for k = r. Then for any elements

h1, h2, h3, . . . , h2r+2 ∈ kerϕr+1 ⊂ F
r+1(E , a)

we have

(303)
[

τr+1(h3),
[

τr+1(h4), . . . ,
[

τr+1(h2r),
[

τr+1(h2r+1), τr+1(h2r+2)
]]

. . .
]]

= 0,

because τr+1(hi) ∈ kerϕr for i = 3, 4, . . . , 2r + 2. Equation (303) says that

(304) [h3, [h4, . . . , [h2r, [h2r+1, h2r+2]] . . . ]] ∈ ker τr+1.

According to (300), since h2 ∈ kerϕr+1, we have h2 ∈ ker σr+1. Combining this with (299) and
(304), one obtains

(305) [h2, [h3, [h4, . . . , [h2r, [h2r+1, h2r+2]] . . . ]]] ∈ Sr+1.

According to (300), since h1 ∈ kerϕr+1, we have h1 ∈ ker σr+1. Combining this with (297) and
(305), one gets

[h1, [h2, [h3, . . . , [h2r, [h2r+1, h2r+2]] . . . ]]] = 0.

Thus we have proved (295) for k = r+1. Clearly, property (295) implies that kerϕk is nilpotent.
�
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7. On zero-curvature representations for the multicomponent Landau-Lifshitz

system

In this section we use the notions of reductions and direct sums of ZCRs. These notions have
been introduced in Section 2.6.

Let n ≥ 4. Recall that the n-component Landau-Lifshitz system (24) is transformed to the
PDE (147) by means of the change of variables (146). In what follows we study ZCRs for this
PDE.

Let Z1 be the L(n)-valued ZCR defined in Remark 5. So the ZCR Z1 is given by the func-
tions (26), (27), which take values in the infinite-dimensional Lie algebra L(n) introduced in
Remark 5.

Let Z2 be the son−1-valued ZCR defined in Theorem 10. We can consider also the direct sum
Z1 ⊕ Z2 of the ZCRs Z1 and Z2. The ZCR Z1 ⊕ Z2 takes values in the Lie algebra L(n)⊕ son−1.

For any given ZCR R of the PDE (147), we are going to show that, after suitable gauge
transformations and after killing some nilpotent ideal in the corresponding Lie algebra, the ZCR
R becomes isomorphic to a reduction of the ZCR Z1 ⊕ Z2.

Let E be the infinite prolongation of the PDE (147). Fix a point a ∈ E given by (154). We are
going to study ZCRs defined on a neighborhood of a ∈ E .

Fix p ∈ Z≥0. In what follows, we study ZCRs of order ≤ p. Without loss of generality, we can
assume p ≥ 1, because any ZCR of order ≤ 0 is at the same time of order ≤ 1.

Recall that the theory of Section 2 has been developed for an arbitrary m-component PDE (2)
such that the right-hand side of (2) may depend on x, t, uj, ujk for k ≤ d. Since we study now
the (n− 1)-component PDE (147) of order 3, we will use the theory of Section 2 for m = n − 1
and d = 3.

According to (94), (95), one has the power series A = A(x, t, uj0, u
j
1, . . . , u

j
p),

B = B(x, t, uj0, u
j
1, . . . , u

j
p+2) with coefficients in F

p(E , a) satisfying (96), so A, B constitute a
formal ZCR with coefficients in F

p(E , a).
According to Theorem 15, we have the surjective homomorphism

(306) ϕp : F
p(E , a) → L(n)⊕ son−1

such that kerϕp is a nilpotent ideal of Fp(E , a). Then
(307) Ǎ = ϕp(A), B̌ = ϕp(B)

are power series with coefficients in L(n) ⊕ son−1 and constitute a formal ZCR with coefficients
in L(n)⊕ son−1.

According to Remark 22, the
(

L(n) ⊕ son−1

)

-valued ZCR Z1 ⊕ Z2 can be regarded also as a
formal ZCR with coefficients in L(n)⊕ son−1.

Recall that in Remark 25 we have defined formal gauge transformations and the notion of
gauge equivalence for formal ZCRs with coefficients in arbitrary (possibly infinite-dimensional)
Lie algebras. The results of Sections 5, 6 imply that the formal ZCR Ǎ, B̌ with coefficients in
L(n)⊕ son−1 is gauge equivalent to the formal ZCR Z1 ⊕ Z2.

Let g ⊂ glN be a matrix Lie algebra. Let R be a g-valued ZCR of order ≤ p. So the ZCR R

is given by g-valued functions A = A(x, t, uj0, u
j
1, . . . , u

j
p), B = B(x, t, uj0, u

j
1, . . . , u

j
p+2) satisfying

Dx(B)−Dt(A) + [A,B] = 0.
According to Theorem 6, there is a homomorphism µ : F

p(E , a) → g such that the ZCR A, B
is gauge equivalent to the µ

(

F
p(E , a)

)

-valued ZCR

(308) Ã = µ(A), B̃ = µ(B).

Here Ã, B̃ are µ
(

F
p(E , a)

)

-valued functions, and formulas (308) mean that µ maps the coefficients

of the power series A, B to the corresponding coefficients of the Taylor series of the functions Ã,
B̃. The ZCR Ã, B̃ is a-normal.
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Recall that kerϕp is a nilpotent ideal of Fp(E , a). This implies that µ
(

kerϕp

)

is a nilpotent

ideal of the Lie subalgebra µ
(

F
p(E , a)

)

⊂ g.
Since the homomorphism (306) is surjective, the algebra L(n) ⊕ son−1 is isomorphic to

F
p(E , a)/ kerϕp, and the surjective homomorphism µ : F

p(E , a) → µ
(

F
p(E , a)

)

induces a sur-
jective homomorphism

(309) µ̂ : L(n)⊕ son−1 → µ
(

F
p(E , a)

)

/µ
(

kerϕp

)

.

Consider the natural surjective homomorphism

(310) ψ : µ
(

F
p(E , a)

)

→ µ
(

F
p(E , a)

)

/µ
(

kerϕp

)

.

Using this homomorphism and the µ
(

F
p(E , a)

)

-valued ZCR (308), we see that the functions ψ(Ã),

ψ(B̃) form a ZCR with values in the Lie algebra µ
(

F
p(E , a)

)

/µ
(

kerϕp

)

.
Formulas (307), (308) and the definition of the homomorphism (309) imply the following

(311) ψ(Ã) = µ̂
(

Ǎ
)

, ψ(B̃) = µ̂
(

B̌
)

.

Equations (311) say that the ZCR ψ(Ã), ψ(B̃) is a reduction of the ZCR Ǎ, B̌, which is gauge
equivalent to the ZCR Z1 ⊕ Z2, as has been discussed above.

Recall that two ZCRs are called gauge equivalent if one is obtained from the other by means
of a gauge transformation. Thus, starting from an arbitrary ZCR R given by functions A, B, we
have done the following steps:

(1) Using Theorem 6, we have obtained a homomorphism µ : F
p(E , a) → g and a gauge

equivalent ZCR Ã, B̃ satisfying (308). The ZCR Ã, B̃ takes values in the Lie subalgebra
µ
(

F
p(E , a)

)

⊂ g and is obtained from the ZCR A, B by means of a gauge transformation.

(2) Killing the nilpotent ideal µ
(

kerϕp

)

⊂ µ
(

F
p(E , a)

)

, we have obtained the ZCR ψ(Ã),

ψ(B̃), where ψ is defined by (310).

(3) We have shown that the ZCR ψ(Ã), ψ(B̃) is a reduction of the ZCR Ǎ, B̌, which is gauge
equivalent to the ZCR Z1 ⊕ Z2. The ZCR Ǎ, B̌ is obtained from the ZCR Z1 ⊕ Z2 by
means of a gauge transformation.

Thus, for any given ZCR R, we have shown that, after suitable gauge transformations and after
killing some nilpotent ideal in the corresponding Lie algebra, the ZCR R becomes isomorphic to
a reduction of the ZCR Z1 ⊕ Z2.

Remark 30. One has also a similar result in the case when a ZCR R takes values in a matrix
Lie algebra g and depends on a parameter λ.

Suppose that the ZCR R is given by functions
(312)
A = A(λ, x, t, uj0, u

j
1, . . . , u

j
p), B = B(λ, x, t, uj0, u

j
1, . . . , u

j
p+2), Dx(B)−Dt(A) + [A,B] = 0,

where g-valued functions A, B depend on x, t, uik and a parameter λ.
Let g̃ be the infinite-dimensional Lie algebra of functions h(λ) with values in g. (Depending

on the problem under study, one can consider analytic or meromorphic functions h(λ). Or one
can assume that λ runs through an open subset of some algebraic curve and consider g-valued
functions h(λ) on this algebraic curve.)

Then (312) can be regarded as a ZCR with values in g̃. Using parameter-dependent versions
of Theorems 3, 6, one can show that the ZCR (312) is gauge equivalent to an a-normal ZCR

Ã = Ã(λ, x, t, uj0, u
j
1, . . . , u

j
p), B̃ = B̃(λ, x, t, uj0, u

j
1, . . . , u

j
p+2), Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,

satisfying Ã = µ(A), B̃ = µ(B) for some homomorphism µ : F
p(E , a) → g̃. The functions Ã, B̃

take values in the Lie subalgebra µ
(

F
p(E , a)

)

⊂ g̃.

Then one can kill the nilpotent ideal µ
(

kerϕp

)

⊂ µ
(

F
p(E , a)

)

and proceed similarly to the
steps described above.
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8. The algebras F
p(E , a) for the classical Landau-Lifshitz and nonlinear

Schrödinger equations

In this section we assume K = C and study the algebras F
p(E , a) for the classical Landau-

Lifshitz and nonlinear Schrödinger equations.
The classical Landau-Lifshitz equation reads

(313) St = S×Sxx+S×JS, S =
(

S1(x, t), S2(x, t), S3(x, t)
)

, (S1)2+(S2)2+(S3)2 = 1,

where J = diag(j1, j2, j3) is a constant diagonal (3×3)-matrix with j1, j2, j3 ∈ C, and the symbol
× denotes the vector product. We consider the fully anisotropic case j1 6= j2 6= j3 6= j1.

Let E be the infinite prolongation of the PDE (313). Let a ∈ E . We are going to describe the
algebras Fp(E , a) for this PDE.

Remark 31. Strictly speaking, in order to define E and F
p(E , a) for the PDE (313), we need to

resolve the constraint (S1)2 + (S2)2 + (S3)2 = 1 and to rewrite (313) as a 2-component evolution
PDE. For example, Roelofs and Martini [16] use the spherical coordinates

(314) S1 = cos v sin u, S2 = sin v sin u, S3 = cosu.

According to [16], using the transformation (314), one can rewrite the PDE (313) as the 2-
component evolution PDE

(315)

ut = −(sin u)vxx − 2(cosu)uxvx + (j1 − j2) sinu cos v sin v,

vt =
1

sin u
uxx − (cosu)v2x + (cosu)(j1 cos

2 v + j2 sin
2 v − j3).

One can use also some other way to resolve the constraint (S1)2 + (S2)2 + (S3)2 = 1 and to
rewrite (313) as a 2-component evolution PDE, then E and F

p(E , a) will be the same (up to
isomorphism).

We need some auxiliary constructions. Let C[v1, v2, v3] be the algebra of polynomials in
the variables v1, v2, v3. Recall that, by our assumption, the constants j1, j2, j3 ∈ C satisfy
j1 6= j2 6= j3 6= j1. Consider the ideal Ij1,j2,j3 ⊂ C[v1, v2, v3] generated by the polynomials

(316) v2α − v2β + jα − jβ, α, β = 1, 2, 3.

Set Ej1,j2,j3 = C[v1, v2, v3]/Ij1,j2,j3. In other words, Ej1,j2,j3 is the commutative associative
algebra of polynomial functions on the algebraic curve in C3 defined by the polynomials (316).

Since we assume j1 6= j2 6= j3 6= j1, this curve is nonsingular and is of genus 1, so this is an
elliptic curve. It is well known that the Landau-Lifshitz equation (313) possesses an so3(C)-valued
ZCR parametrized by points of this curve [21, 5].

We have the natural surjective homomorphism µ : C[v1, v2, v3] → C[v1, v2, v3]/Ij1,j2,j3 = Ej1,j2,j3.
Set v̄i = µ(vi) ∈ Ej1,j2,j3 for i = 1, 2, 3.

Consider also a basis x1, x2, x3 of the Lie algebra so3(C) such that [x1, x2] = x3, [x2, x3] = x1,
[x3, x1] = x2. We endow the space so3(C)⊗C Ej1,j2,j3 with the following Lie algebra structure

[z1 ⊗ h1, z2 ⊗ h2] = [z1, z2]⊗ h1h2, z1, z2 ∈ so3(C), h1, h2 ∈ Ej1,j2,j3.

Denote by Rj1,j2,j3 the Lie subalgebra of so3(C)⊗C Ej1,j2,j3 generated by the elements

xi ⊗ v̄i ∈ so3(C)⊗C Ej1,j2,j3, i = 1, 2, 3.

Since Rj1,j2,j3 ⊂ so3(C)⊗C Ej1,j2,j3, we can regard elements of Rj1,j2,j3 as so3(C)-valued functions
on the elliptic curve in C3 determined by the polynomials (316). The paper [16] describes a basis
for Rj1,j2,j3, which implies that the algebra Rj1,j2,j3 is infinite-dimensional.

Theorem 16. Recall that J = diag(j1, j2, j3) in (313) is a constant diagonal (3× 3)-matrix with

j1, j2, j3 ∈ C. We consider the case j1 6= j2 6= j3 6= j1.
Let E be the infinite prolongation of the Landau-Lifshitz equation (313). Let a ∈ E .
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The Lie algebras Fp(E , a), p ∈ Z≥0, for this PDE have the following structure.

The algebra F
0(E , a) is isomorphic to Rj1,j2,j3.

For each p ∈ Z≥0, there are an abelian ideal Ip+1 of the Lie algebra F
p+1(E , a) and an abelian

ideal Jp+1 of the quotient Lie algebra F
p+1(E , a)/Ip+1 such that

•
[

Ip+1, F
p+1(E , a)

]

= 0, so Ip+1 lies in the center of the Lie algebra F
p+1(E , a),

•
[

Jp+1, F
p+1(E , a)/Ip+1

]

= 0, so Jp+1 lies in the center of the Lie algebra F
p+1(E , a)/Ip+1,

• the algebra F
p(E , a) is isomorphic to the quotient algebra

(

F
p+1(E , a)/Ip+1

)

/Jp+1, and the

surjective homomorphism F
p+1(E , a) → F

p(E , a) from (109) coincides with the composition

of the natural homomorphisms

F
p+1(E , a) → F

p+1(E , a)/Ip+1 →
(

F
p+1(E , a)/Ip+1

)

/Jp+1
∼= F

p(E , a),
which means that the Lie algebra F

p+1(E , a) is obtained from the Lie algebra F
p(E , a) by

applying two times the operation of central extension.

For each q ∈ Z>0, the Lie algebra F
q(E , a) is obtained from the Lie algebra F

0(E , a) by applying

several times the operation of central extension. The kernel of the surjective homomorphism

F
q(E , a) → F

0(E , a) from (109) is nilpotent.

Proof. Recall that, using the transformation (314), one can rewrite the PDE (313) in the
form (315). In what follows, when we speak about the WE algebra and the algebras F

p(E , a)
for the PDE (313), we assume that the PDE (313) is written in the form (315).

Let Wa be the Wahlquist-Estabrook prolongation algebra (WE algebra) for the PDE (313). It
is shown in [16] that this algebra is isomorphic to the direct sum of Rj1,j2,j3 and the 2-dimensional
abelian Lie algebra C2. So Wa

∼= Rj1,j2,j3 ⊕ C2.
In Section 3 for any evolution PDE of the form (120) we have defined the notion of formal

Wahlquist-Estabrook ZCR, which is given by formulas (121), (122). According to [16], in the
formal Wahlquist-Estabrook ZCR with coefficients in Wa for the PDE (313) one has

A = p1S
1 + p2S

2 + p3S
3 + p4, p1, p2, p3, p4 ∈ Wa

∼= Rj1,j2,j3 ⊕ C
2,

where S1, S2, S3 are given by (314), the elements p1, p2, p3 generate the Lie subalgebra
Rj1,j2,j3 ⊂ Wa

∼= Rj1,j2,j3 ⊕ C2, and one has [p4, pl] = 0 for all l = 1, 2, 3.
This implies that the subalgebra R ⊂ Wa defined in Theorem 8 in Section 3 is equal to

Rj1,j2,j3 ⊂ Wa. According to Theorem 8, one has F0(E , a) ∼= R. Since in the considered case we
have R = Rj1,j2,j3, we see that F0(E , a) is isomorphic to Rj1,j2,j3.

It remains to prove the statements about F
p+1(E , a), Ip+1, Jp+1, F

p(E , a), F
q(E , a),

F
q(E , a) → F

0(E , a) in Theorem 16.
The statements about Fp+1(E , a), Ip+1, Jp+1, F

p(E , a) can be proved similarly to the results of
Sections 5, 6.

The homomorphism F
q(E , a) → F

0(E , a) is equal to the composition of the surjective homo-
morphisms

F
q(E , a) → F

q−1(E , a) → · · · → F
1(E , a) → F

0(E , a)
from (109). It is easily seen that the statements about Fp+1(E , a), Ip+1, Jp+1, F

p(E , a) imply the
statements about Fq(E , a) and F

q(E , a) → F
0(E , a). �

The nonlinear Schrödinger (NLS) equation is another well-known PDE from mathematical
physics (see, e.g, [5]). It can be written as follows

(317) iψt + ψxx − κψ̄ψ2 = 0, i =
√
−1 ∈ C,

where κ ∈ R is a nonzero constant. The function ψ = ψ(x, t) takes values in C, and one has

(318) ψ = u1 + iu2, ψ̄ = u1 − iu2, i =
√
−1 ∈ C,

for some R-valued functions u1 = u1(x, t) and u2 = u2(x, t).
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Taking into account (318), we see that the NLS equation (317) is equivalent to the 2-component
evolution PDE

(319)
u1t = −u2xx + κu2

(

(u1)2 + (u2)2
)

,

u2t = u1xx − κu1
(

(u1)2 + (u2)2
)

.

In what follows, when we speak about the NLS equation, we mean the PDE (319).
So we will study the evolution PDE (319), where κ is a nonzero constant. Since in this section

we work over C, we assume that u1, u2 in (319) take values in C.
Let C[λ] be the algebra of polynomials in the variable λ. Consider the infinite-dimensional Lie

algebra

sl2(C[λ]) = sl2(C)⊗C C[λ].

Theorem 17. Let E be the infinite prolongation of the NLS equation (319). Let a ∈ E .
The Lie algebras Fp(E , a), p ∈ Z≥0, for this PDE have the following structure.

The algebra F
0(E , a) is isomorphic to the direct sum of sl2(C[λ]) and a one-dimensional abelian

Lie algebra.

For each p ∈ Z≥0, there are an abelian ideal Ip+1 of the Lie algebra F
p+1(E , a) and an abelian

ideal Jp+1 of the quotient Lie algebra F
p+1(E , a)/Ip+1 such that

•
[

Ip+1, F
p+1(E , a)

]

= 0, so Ip+1 lies in the center of the Lie algebra F
p+1(E , a),

•
[

Jp+1, F
p+1(E , a)/Ip+1

]

= 0, so Jp+1 lies in the center of the Lie algebra F
p+1(E , a)/Ip+1,

• the algebra F
p(E , a) is isomorphic to the quotient algebra

(

F
p+1(E , a)/Ip+1

)

/Jp+1, and the

surjective homomorphism F
p+1(E , a) → F

p(E , a) from (109) coincides with the composition

of the natural homomorphisms

F
p+1(E , a) → F

p+1(E , a)/Ip+1 →
(

F
p+1(E , a)/Ip+1

)

/Jp+1
∼= F

p(E , a),

which means that the Lie algebra F
p+1(E , a) is obtained from the Lie algebra F

p(E , a) by

applying two times the operation of central extension.

For each q ∈ Z>0, the Lie algebra F
q(E , a) is obtained from the Lie algebra F

0(E , a) by applying

several times the operation of central extension. The kernel of the surjective homomorphism

F
q(E , a) → F

0(E , a) from (109) is nilpotent.

Proof. Let Wa be the Wahlquist-Estabrook prolongation algebra (WE algebra) for the NLS equa-
tion (319). It is shown in [3, 4] that this algebra is isomorphic to the direct sum of sl2(C[λ]) and
a 3-dimensional abelian Lie algebra.

To describe F
0(E , a), we can use again Theorem 8, which allows us to describe F

0(E , a) as a
certain subalgebra of Wa. Applying Theorem 8 to the description of the Wahlquist-Estabrook
prolongation algebra Wa in [3, 4], one obtains that F

0(E , a) is isomorphic to the direct sum of
sl2(C[λ]) and a one-dimensional abelian Lie algebra.

It remains to prove the statements about F
p+1(E , a), Ip+1, Jp+1, F

p(E , a), F
q(E , a),

F
q(E , a) → F

0(E , a) in Theorem 17.
The statements about Fp+1(E , a), Ip+1, Jp+1, F

p(E , a) can be proved similarly to the results of
Sections 5, 6.

The homomorphism F
q(E , a) → F

0(E , a) is equal to the composition of the surjective homo-
morphisms

F
q(E , a) → F

q−1(E , a) → · · · → F
1(E , a) → F

0(E , a)

from (109). It is easily seen that the statements about Fp+1(E , a), Ip+1, Jp+1, F
p(E , a) imply the

statements about Fq(E , a) and F
q(E , a) → F

0(E , a). �
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