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Abstract: The non-linear Fokker-Planck equation or Kolmogorov forward equation is 

currently successfully applied for deep analysis of irreversibility and it gives an excellent 

approximation near the free energy minimum, just as Boltzmann’s definition of entropy 

follows from finding the maximum entropy state. A connection to Fokker-Planck dynamics 

and the free energy functional is presented and discussed—this approach has been 

particularly successful to deal with metastability. We focus our attention on investigating 

and discussing the fundamental role of dissipation analysis in metastable systems. The major 

novelty of our approach is that the obtained results enable us to reveal an appealing, and 

previously unexplored relationship between Fokker-Planck equation and the associated free 

energy functional. Namely, we point out that the dynamics may be regarded as a gradient 

flux, or a steepest descent, for the free energy. 
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1. Introduction 

Stochastic differential equations are used to model many complex systems in physics, chemistry, 

biology, economics, and engineering, including population dynamics, protein kinetics, turbulence, etc. 

In this context, the Fokker-Planck equation represents the probability density for the position or the 

velocity of a particle which motion is well described by Langevin’s equation and how a collection of 

their initial physical data evolves with time. The Fokker-Planck equation is an excellent approximation 

near free energy minima. The solution of the Fokker-Planck equation is a powerful tool that allows one 

to follow at each instant the direction of a gradient flux of the associated free energy functional by a 

discrete time formulation, based on the Wasserstein metric [1]. By this approach metastability and 

hysteresis in physical systems could be treated in a satisfactory way [1–4]. Moreover, these results 

underline also the role of the dissipation analysis in metastable systems: a connection exists between 

Fokker-Planck equation and the global thermodynamic quantities like entropy, needed in the analysis of 

the dissipation in irreversible systems. As underlined in many papers (see for instance [5,6] and 

references therein quoted), entropy production and entropy generation are different concepts. The main 

characteristics of entropy generation [7–13] are: (a) it introduces the lifetime of the process, i.e., the time 

of occurrence of a process and (b) it allows the analysis of the systems in a time greater than or equal to 

the lifetime of the entire process, while the entropy production needs the local equilibrium hypothesis 

and it does not consider the time at all. Moreover, entropy generation is a global effect, while entropy 

production is its local counterpart; indeed entropy production is the entropy generation density rate. 

These two quantities are different: the local form usually does not allow the description of the 

cooperative effect of the irreversibility, as it has been shown in the optimization studies of thermal 

engineering [6,7]. Entropy production and entropy generation are two possible approaches to the analysis 

of irreversibility, in the present work entropy generation has been used due to the link with thermal 

engineering applications. For system dissipation analysis the two approaches are complementary. In this 

paper we apply Fokker-Plank equation to dissipation phenomena, with particular regards to the entropy 

generation and we come to a consistent statistical description. 

2. The Non-equilibrium Fokker-Planck Equation 

According to what has been said in the previous paragraph, Fokker-Planck equation is considered for 

a set of n interacting particles. Each particle position evolves in time following Langevin’s equations: 

( ) ( )trf
dt

dx
ii

i += x  (1) 

where xi is the position of the i-th particle, x = {xi}, fi is the force acting on the i-th particle, ri is the 

noise-induced drift term due to diffusion gradient effects (if the noise is state dependent). The noise term 

ri is a stochastic variable that obeys a Gaussian probability distribution with correlation function such as: 
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with 0≥iD  is a different constants for each particle. This implies the Onsager reciprocity relation δij = δji 

for the dumping coefficients. The δ-function of the correlations in time means that ri(t) at a timer t is 

assumed to be completely uncorrelated with it a any other time. 

In order to compute physical quantities we have to perform averages with respect to the noise: this is 

the consequence of the use of the entropy generation. The small perturbations of the systems can be 

neglected because times much longer with respect to the perturbations themselves have been considered, 

and then we take for physical quantities only time averages. In this approach, noise is described as a 

term of the entropy generation and it could be explicitly written as a sum of effects when specific 

applications are considered. 

Then the Fokker-Planck equation describing the time evolution of the probability distribution P(x,t), 

usually named Smoluchowski equation, can be written as [8,14]: 
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Equation (3) can be solved inside a space spanned by the variable set x = {xi}, under boundary 
conditions related to the behavior of ( )tP ,x  and ( )tJi ,x  at the boundary surface of the integration space 

itself. The condition of irreversibility can be expressed as follows: 
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The first part of (4) can represent a system in contact with two or more heat reservoirs at different 

temperature, while the second relation can describe the contact of an irreversible system with one heat 

reservoir, but in the case of non-conservative forces. Equations (4) finds a useful application if we 

consider a thermodynamic approach to molecular machine. In fact, a thermodynamic machine works 

between two heat reservoirs and this case will be analyzed as a case example in one of the following 

sections. Generally speaking a thermodynamic system is a physical system whose interactions with the 

environment are characterized by transfer of heat and work. For such system, it is possible to write the 

kinetic energy theorem as [15,16]: 

kifees EWWW Δ=++  (5) 

where Wes is the work done by the environment (the world outside the system) on the system, in other 

words the work done from external forces on the border of the system, Wfe is the work lost due to external 

irreversibility (outside energy dissipation), ΔEk is the kinetic energy of the system, Wi is the internal 

work, such that: 

fi
rev

ii WWW −=  (6) 

with rev
iW  the reversible internal work and Wfi the work lost due to internal irreversibility. Moreover, the 

following relation must be taken in account [15,16]: 
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feesse WWW −−=  (7) 

where Wse is the work done by the system on the environment, i.e., the work done from internal forces 

on the border of the system. It is then possible to obtain the following two equivalent equations from the 

First Law of Thermodynamics: 

kse EUWQ Δ+Δ=−  (8) 

UWQ i Δ=−  (9) 

being U the internal energy of the system. Now, by using the relations (5), (6) and (9), it follows that: 

UWQW rev
ifi Δ−−=  (10) 

and from (7) and (9), Equation (10) becomes: 

kes
rev

ifefi EWWWW Δ+−−−=  (11) 

In a stationary state the kinetic energy, the work done external to the systems and the internal 

reversible work are all constant, therefore: 

fife WW δδ −=  (12) 

applying Gouy-Stodola theorem that states: 

gfe STW 0=  (13) 

it follows that: 

gfe STW δδ 0−=  from outside of the system (14) 

gfe STW δδ 0=  from inside of the system (15) 

The possible extrema are opposite, maximum if evaluated from the outside and minimum from the 

inside. The Equations (14) and (15) show the total work lost due to external irreversibility Wλ. These 

results underline the connection between the entropy generation and the work (energy) inside the system 

balanced on the boundary between the system and the environment and even provide a new approach to 

highlight the interaction between the system and its environment. Indeed, we are highlighting that 

irreversibility is the core of the whole entropy generation approach. The existence of irreversibility is 

due to the work lost, and this could be considered as a “natural” way of communication between the 

complex system and its environment. One important aspect is that, being the complex system accessible 

just due to the irreversible processes, the energy lost towards the environment can be seen as the 

information lost from the system, but this information is gained by the environment. Complex systems 

are all the time in a non-equilibrium situation with a continuous energy transduction: cell molecular 

machines are typical examples. A cell molecular machine can transport matter along the cell as done  

by kinesin protein in eukaryotic cells, or can propel the cell through the extracellular media, as the case 

of bacterial flagellar motor. In both cases they use energy from electrochemical potential variations or 

from the hydrolysis of the ATP. The ATP diffusion process inside the cell is a diffusion process and it 

can be worthy studied by Fokker-Planck equation and entropy generation approach as we show in the 

next paragraph. 



Entropy 2015, 17 767 

 

 

3. Entropy Generation and Fokker-Planck Equation 

Since 1962, Jaynes argued that Gibbs’ formalism of equilibrium statistical mechanics could be 

generalised in a statistical inference theory for non-equilibrium systems [17]. Moreover, the fluctuation 

theory has been established for a variety of non-equilibrium systems. In [17] it is said that probability of 

violation of the Second Law of thermodynamics becomes exponentially small as τ (or the system size) 

increases, with τ the time duration of the physical process. Therefore, it has been developed non-equilibrium 

statistical mechanics for the stationary state constraint on the basis of maximum entropy [17]. The 

approach consists of maximising the path of Shannon’s information entropy written as SI = −Σγpγlnpγ, 

with respect to pγ on the path γ. The information entropy is then seen as the logarithm of the number of 

the outcomes i with non-negligible probability pi, while in non-equilibrium statistical mechanics 

approach information entropy is the logarithm of the number of microscopic phase-space paths γ having 

non-negligible probability pγ. Following the suggestions of [17] we have to evaluate the most probable 

macroscopic path realised by the greater number of microscopic paths compatible with the imposed 

constrained, in full analogy with the Boltzmann microstate counting that claims paths, rather than states, 

are the central objects of interest in non-equilibrium systems. This because of the presence of non-zero 

macroscopic fluxes whose statistical description requires to take into account the microscopic behaviour 

over time. The last statement implies that the macroscopic behaviour is reproducible under known 

constraints and it is characteristic of each of the great number of microscopic paths compatible with 

those constraints [17]. From these considerations, it has been proven that the information entropy for the 

open systems is related to their entropy generation as [18]: 

( ) ( ) xxx dtPtPkSkS BIBg ,ln, γγ−==  (16) 

with pγ = Pγ(x,t). One possible interpretation of (16) is the missing information necessary for predicting 

which path a system of the ensemble takes during the transition from one state to another. Now, 
considering Gouy-Stodola theorem [7] the entropy generation can be related to the power lost λW  due 

to irreversibility as expressed in the relations (14) and (15), and it follows: 

=
τ

λ
00

1
dtW

T
Sg

  (17) 

with T0 reference temperature (usually environmental temperature is taken), thought as a constant. Now 

the power lost for irreversibility must be obtained. Starting from the definition [8,14]: 

=
i

i
i dt

dx
fWλ

  (18) 

from the Langevin’s Equation (1), the power lost for irreversibility can be written as: 

( ) ( )[ ] ( ) +=+=
i

iiii
i

iii fDftrffW 2 xλ
  (19) 

with fii = ∂fi/∂xi. Using this relation the entropy generation results: 
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This quantity is very interesting because allows us to introduce a reference state (T0) and the 

characteristic time (τ) of the process considered. 

Evaluating the average in the right side of Equation (20) and passing in the continuous setting of the 

phase-space it can be written: 

( ) ( ) xx dtPfDf
T

S
i

iiiig ,2

0
γ

τ
 +=  (21) 

where x represent all the possible microscopic phase-space paths and Pγ(x,t) the associated probability.  

The interest of the obtained result can be highlighted in connection to biophysical analysis of cells. This 

approach can represent a new point of view: instead of studying the cell, that is a very complex system 

indeed, we think it is easier and worthy to study how cells exchange matters and energy, i.e., information, 

with their environments, to came up to highlight cell interactions with the environment. Diseases or 

malfunctions could be seen through pathological cell-environment interactions. Cell-environment 

interactions are no more than flows across the cell membranes. But cells are so complex that it is almost 

impossible to quantify the single effect of each cellular process in relation to the global result. Therefore 

we start to consider the spontaneous flows through cell membranes. The spontaneous heat cell exchange 

represents the interaction or the spontaneous communication between the cell and its environment. 

Generally, it is easier to access to the environment than having a look inside the living cell. The heat 

flow throughout the cell membrane is strictly related to the irreversible processes within cells and this 

can be easily modelled by Gouy-Stodola theorem. In this way it must be taken into account only the 

work lost for irreversibility and the temperature of the environment. The obtained results sum up 

information from global thermodynamic approach and statistical mechanical interpretation of the system. 

4. Application to Biological Molecular Machines  

In biophysics there is a growing interest in molecular motor analysis (see for instance [19]). The 

dynamics of such motors are quite different in relation to macroscopic motors. Typical distances, 

velocities and viscosities of the cellular media overwhelm the dynamics of the motion of the motor; 

therefore, the inertia doesn’t play any role in the physical mathematical approach, while the thermal 

fluctuations must be considered. The basic dynamics can be well described by the Langevin’s Equation (1). 

For a rotatory motor, it follows that the Equation (1) becomes:  

( ) ( )( )extinf

x

τϑτ
γ

ϑ

+=

=
1

x
 (22) 

where γ is the effective rotational friction coefficient of the motor, τin(ϑ) is the internal torque profile 

generated by chemical processes, τext is the conservative external torque applied on the motor and r(t) is 

the thermal noise described, for instance, as a Gaussian white noise of zero mean value. This approach 

can be used for a linear motor such as kinesin protein behaviour in eukaryotic cells. In kinesin the linear 

length of the step is fixed by the periodicity of the dimers of the microtubule track, while for rotatory 
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motors the angular step depends on the radial symmetry of the motor. Moreover, two different energetic 

states must be considered: 

(1) the relaxed state, in which the motor does not advance and waits for an energetic input; 

(2) the excited state, in which the energy is transduced producing the power stroke of the motor. 

In some biological machines the energy can be obtained by the hydrolysis of the ATP. So, from (3) 

and (23) it follows that: 

( ) ( )( ) ( )tPD
t

tP
extin ,

1, ϑ
ϑ

τϑτ
γϑ

ϑ
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with D a noise function. From (21) and (23) the work lost for irreversibility Wλ can be written as: 

( )( ) ( )( ) ( ) ϑϑ
ϑ

τϑτ
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from (24) we can find out a relation that makes possible to evaluate the efficiency η of the molecular machine: 
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2  (25) 

where ΔGATP is the free energy variation (free energy = ΔGATP – Wλ, Wλ is the work lost for irreversibility 

and is a constant since a specific process is considered) due to the hydrolysis of a single ATP molecule 

(∼21 kBT = 50 kJ mol−1, being kB the Boltzmann constant and T the temperature). The Equation (25) 

shows the connection to efficiency η of the molecular machine and the probability distribution. We can 

argue that this probability distribution, is strongly related to molecular machines operations and would 

be different from normal and ill cell, being different the behaviour of the cells and their interactions with 

the environment. This equation allows us to link the macroscopic power of the molecular machine with 

the microscopic chemical reaction probability. 

5. Conclusions  

In this paper a Fokker-Planck equation for the entropy generation has been introduced. The result is 

a thermodynamic approach to irreversibility which links the global analysis to the statistical one. The 

obtained results show the important role of the entropy generation in analysis and understanding of 

irreversibility. Our conclusions follow what is pointed out in [11]: it is the energy flow between the 

system and its environment that renders the evolution irreversible. These flows of energy “select and 

shape” the paths “delivering least time energy dispersal” [11]. According to [15,16], cells’ behavior 

could be seen as the consequence of the interplay and dynamic balance between pairs of opposite 

elements, that are in the present approach the cell system and its environment. In [23–26] it has been 

pointed out that the two principles, maximum of entropy generation and least action, can be seen as the 

same fundamental laws of nature. The natural behavior of the open systems could be thought as the 

decrease of free energy in the least time (minimum). The least time can be evaluated by the entropy 

generation theorem. Using the entropy generation is possible to analyze the irreversibility in real systems 

overcoming most of the difficulties rising with the entropy production approach as pointed out  

by [23,24]. The link between the entropy generation and the Fokker-Planck equation leads to a statistical 
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approach to the exergy (the maximum useful work possible during the process) flows evaluation. The 

entropy generation in irreversible processes could represent the basis of a new approach to modern 

thermodynamics and statistical physics. 
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