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ABSTRACT 

Designing quality-inspection procedures may be difficult for short-run manufacturing processes, 

due to poor effectiveness of the classical statistical-process-control (SPC) techniques for these 

processes. This paper proposes a practical methodology to guide quality designers in selecting the 

more effective and economically convenient inspection procedures. First, the process of interest is 

decomposed into a number of steps, in which specific defects can occur. Next, several parameters 

related to inspection effectiveness and cost are combined into a probabilistic model. The more 

effective and economically convenient inspection procedures can finally be determined using two 

specific synthetic indicators. A case study concerning a short-run production of hardness testing 

machines is presented and discussed. 

 

Key Words: Defect; Inspection cost; Inspection effectiveness; Probabilistic model; Quality control; 

Short-run manufacturing process; Single-unit production. 
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1. INTRODUCTION 

When manufacturing complex products, typical activities are acquisition of raw materials, 

processing, assembly, functional testing, quality inspection, etc. (Vandebroek et al. (2016)). Quality 

inspections are usually aimed at checking whether specification and functional requirements are 

satisfied, identifying possible defects and/or product anomalies. They may be governed by strict or 

non-strict rules (e.g., periodical control, fixed-percentage control, etc.), following statistical or 

heuristic procedures and can be carried out in (at least) four different ways: (i) simple inspection, 

i.e., inspecting single items once; (ii) fractional inspection, i.e., the two extreme cases are those in 

which the fraction of the production output that is inspected is zero (no inspection) or one (100% 

inspection); (iii) repeated inspection, i.e., inspecting the same item(s) more than once; and (iv) 

dynamic or adaptive inspection, i.e., sequential inspection of production batches, in which 

inspection parameters may depend on the results of the previous inspections (Mandroli et al. (2006); 

Montgomery (2013)).  

Typical features to be considered when designing inspection procedures are: (i) collection of the 

available information on the process of interest; (ii) definition of appropriate tasks and parameters; 

(iii) definition of the activity and responsibility of operators/inspectors; (iv) identification of the 

inspection cost; and (v) identification of possible inspection errors (e.g., false positives or false 

negatives) and relevant consequences (Tang, K., and Tang, J. (1994)). 

When dealing with complex products and therefore with relatively complex/articulated 

manufacturing processes, it is particularly important to identify the more critical and vulnerable 

process features and to develop appropriate inspection strategies accordingly, defining test 

procedures, cases and resources (Colledani et al. (2014)). 

The effectiveness of possible inspection strategies can be tightly related to the production typology 

and volume. In the case of mass production, Statistical Process Control (SPC) techniques are 
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straightforwardly applied (Montgomery (2013)); on the other hand, in the case of single-unit or 

small-sized-lot productions (i.e., the so-called short-runs), most of the SPC techniques are not 

appropriate (Del Castillo et al. (1996); Trovato et al. (2010); Marques et al. (2015)). 

This paper analyses the quality-inspection procedures for short-run and/or single-unit 

manufacturing processes, extending the analysis carried out in a previous work (Franceschini et al. 

(2016)). These processes will be decomposed into individual process steps, i.e., specific and 

recognizable transformation/assembly activities, which contribute to the realization of the end 

product, providing an added value. In addition, the decision-making process of the quality-control 

staff (i.e., inspectors) is modelled by suitable discrete event models (De Ruyter et al. (2002)).  

This paper provides some guidelines for supporting the design and assessment of suitable inspection 

procedures, through the definition of a probabilistic model for defect prediction, trying to answer 

the following research question: considering a short-run or a single-unit manufacturing process 

with several alternative inspection procedures, how can the more effective and economically 

convenient ones be selected?  

Two types of errors are associated with an inspection: (i) the error of misclassifying a good part as a 

defective one, which is known as type-I error (); and (ii) the error of misclassifying a defective 

part as a good one, which is known as type-II error (). Recent advancements in the automation of 

manufacturing systems allow reducing the inspection errors, which however cannot be completely 

eliminated. Furthermore, since it is not possible to automate any manufacturing system owing to 

budget constraints, inspector skill results to be crucial (Kang et al. (2018)). It is also worth 

remarking that in many production environments, quality costs are significantly affected by 

inspection errors, e.g., in the presence of relatively low inspection costs, high repair cost, high 

penalty costs or high defect probability (Ballou and Pazer (1982)). Unfortunately, these errors are 

often overlooked (Veatch (2000); Kakade et al. (2004)). 
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The construction of the probabilistic model is based on the following two phases: 

I. estimating the probability of (not) detecting the defects, in each manufacturing step; 

II. combining the above probabilities into a model depicting the overall effectiveness and cost 

of the inspection procedure.   

The proposed model is supposed to have both an analytical and predictive connotation, as it allows 

to compare alternative inspection procedures from the perspective of effectiveness and cost, and to 

select the more suitable ones. For instance, it may be adopted to statistical samplings, 100% 

inspection, skip-lot inspection or combinations of them. Due to this flexibility, it can be particularly 

appropriate for short-run productions, which are generally characterized by a high level of 

complexity and customization. Similar approaches are adopted in the software engineering field 

(Rawat and Dubey (2012)); for example, probabilistic models based on Bayesian networks can be 

implemented for software defect prediction (Fenton et al. (2008)).  

The remainder of the paper is organized into four sections. Section 2 illustrates the probabilistic 

model and the relevant characteristic parameters. Section 3 illustrates two practical indicators, 

which depict the overall effectiveness and estimated cost of an inspection procedure; the description 

is supported by pedagogical examples. Section 4 presents a structured case study concerning the 

practical application of the proposed model in the short-run production of hardness testing 

machines. Section 5 summarizes the original contributions of this research, focussing on its 

implications, limitations and possible future developments. 
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2. MODEL DESCRIPTION 

2.1. Assumptions 

Let us consider a manufacturing process in optimal setting conditions and decompose it into a 

number (m) of process steps or just steps, i.e., specific operations providing an added value to the 

end product. Each step is supposed to be arranged in the best possible way. The proposed model is 

based on the following simplifying assumptions: 

1. For each step, there can be one-and-only-one specific defect. 

2. Defects originated in different steps are uncorrelated with each other. 

3. Defects and inspection errors are uncorrelated. 

For realistic application contexts, the first hypothesis is not so stringent, as the totality of the 

possible defects within a certain step can be interpreted as a unique “macro-defect”. On the other 

hand, the latter two hypotheses are certainly stronger. However, these are helpful for building a 

preliminary model. In fact, possible correlations between defects originated in different steps do not 

allow to decouple the corresponding steps. In case of absence of correlations, the model involves 

only simple probabilities, while, in presence of correlations, conditional probabilities need to be 

considered. Future research will aim at refining the model by relaxing uncorrelation assumption. 

To clarify the last concept, a short example is proposed. Let us consider a simple process consisting 

of three steps: (i) thread milling, (ii) tightening of a screw in the thread and (iii) anti-rust painting. 

The first two steps are inherently correlated, in fact threading defects may cause tightening 

problems with consequent defects. Instead, defects in painting are not inherently correlated with 

defects in the previous two steps. Therefore, only the hypothesis of absence of correlation between 

the first two steps may be considered not very realistic in this case.   
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In each i-th process step, different kinds of quality control activities may be performed, according to 

the specific type of defect. For each of these activities, there is a risk of detecting a defect when it is 

not present (type-I error), and a risk of not detecting it when it is actually present (type-II error). 

Although these risks can be minimized by using sophisticated quality monitoring techniques 

(manual and/or automatic), they can never be eliminated.  

2.2. Parameter definition 

Each i-th step of the production process is modelled by a Bernoulli distribution (Montgomery 

(2013)), hence it can be described through three parameters: 

 pi: probability of occurrence of the defect in the i-th step (i.e., the parameter of the Bernoulli 

distribution); 

 αi: probability of (erroneously) detecting the defect when it is not present in the i-th step 

(i.e., type-I inspection error or false positive); 

 βi: probability of not detecting the defect when it is present in the i-th step (i.e., type-II 

inspection error or false negative). 

The index i is obviously included between 1 and m, i.e. the total number of steps. 

The first parameter (pi) concerns the defectiveness or, reversing the perspective, the quality of the 

i-th step, while the other two parameters (i and i) concern the quality of the corresponding 

inspection(s). These three parameters may sometimes be difficult to estimate. Since pi is related to 

the characteristics of the process and its propensity to generate defects, it can be a priori estimated 

using adequate defect-generation models (Genta et al. (2018)); alternative approaches may be based 

on empirical methods (e.g., use of prior experience) and/or simulations (De Ruyter et al. (2002); 

Sarkar and Saren (2016)). On the other hand, the estimation of αi and βi depends on the 
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characteristics of the inspection procedure and the technical skills and/or experience of the inspector 

(Tang and Schneider (1987); Duffuaa and Khan (2005)).  

2.3. Conceptual representation of the process 

The graph in Figure 1 represents a generic manufacturing process with m steps in series. The graph 

in Figure 2 represents another process, consisting of two steps in parallel, followed by a third one 

(in series).  

 

 

FIGURE 1. Representation of a production process with m steps in series. 

 

 

FIGURE 2. Representation of a production process with two steps in parallel, followed by a third 

one (in series). 
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More complex processes can be represented using graphs with more articulated mixed structures (in 

series and in parallel). Consistently with the description of Sections 2.1 and 2.2, each (i-th) step can 

be associated with three parameters (pi, αi, βi). 

2.4. Model presentation 

The following probabilities can be calculated for each generic i-th step: 

     detecting the defect in the step 1 1i i i iP i p p        (1)

and 

     not detecting the defect in the step 1 1i i i iP i p p        (2)

where i is included between 1 and m, i.e. the total number of steps.  

In the case the defect is detected, it will be authentic1 with a probability pi∙(1–i) or false with a 

probability (1–pi)∙i (see Equation (1)). On the other hand, in the case no defect is detected, there 

can be an inspection error (false negative), with a probability pi∙i, or due to the real absence of any 

defect, with a probability (1–pi)∙(1–i) (see Equation (2)). The above probabilities represent the 

basic elements for the construction of some indicators depicting the performance of the overall 

inspection procedures, which are presented in Section 3. 

Considering a generic process with m steps, the above probabilities can be combined together: 

    



m

i
iiii ppmP

1

)1(1steps   theallin  defects  thedetecting   (3)

and 

   



m

i
iiii ppmP

1

)1()1(steps   theallin defect any  detectingnot   (4)

                                                      
1 i.e., a defect, which is actually present. 
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It is also possible to calculate the probability of detecting the defects into a specific subset of all the 

steps and not detecting them in the remaining steps, i.e.:  

    

  
 












KMi
iiii
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iiii
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ppKP





1)1(

)1(1set   theof steps in the defects  thedetecting

 (5)

where M is the set of all the numbers of the steps (from 1 to m) and K is its subset including the 

numbers of the steps for which a defect is detected. When K is empty, Equation (5) degenerates into 

Equation (4), while when K includes the totality of the steps, Equation (5) degenerates into 

Equation (3). 

According to the assumptions introduced in Section 2.1 (i.e. absence of correlation between the 

parameters related to the different steps), the formulas in Equations (3), (4) and (5) hold for any 

configuration of the process (e.g., series, parallel or mixed). Furthermore, the probabilities in these 

equations are related to the complexity of the process, in terms of number of steps (m), quality of 

the process (pi), and quality of the inspection (αi and βi) in each single step. 

3. PROPOSED INDICATORS 

Different combinations of inspection activities may be adopted for checking the conformity of the 

output of a specific step, e.g., visual check, dimensional verification, comparison with reference 

exemplars, etc. (See (2012); Bress (2017); Savio et al. (2016)). The indicators discussed in the 

following two subsections can be used for comparing alternative combinations of inspection 

activities according to their effectiveness and cost (Ng and Hui (1997); Wang et al. (2010)). 

3.1. Inspection effectiveness 

Let us consider m Bernoulli random variables (Xi), defined as follows: 
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 Xi = 0: when (i) an authentic defect is detected or (ii) no defect is present in the i-th 

inspection. 

 Xi = 1: when an authentic defect is not detected in the i-th inspection. 

According to the model proposed in Section 2.4, an authentic defect is detected with a probability 

pi∙(1-i) and not detected with a probability pi∙i. Instead, when no defect is actually present, a 

defect may be detected with a probability (1-pi)∙αi and not detected with a probability (1-pi)∙(1-αi). 

Of course, the sum of the latter two probabilities is the probability that no defect is present, i.e. 

(1-p). The following relationships hold: 

     
 

0 1 1 1

1 

i i i i i i

i i i

P X p p p

P X p

 



        

  
 (6)

where i is included between 1 and m. Therefore, the mean number of authentic defects undetected in 

the i-th inspection is: 

𝐷 𝐸 𝑋 𝑝 ∙ 𝛽  (7)

which is obviously a quantity included between 0 and 1. 

Let us now consider a further random variable, which counts the total number of authentic defects 

that are not detected in the overall inspection procedure: 





m

i
iXY

1

 (8)

The expected value of the total number of authentic defects that are not detected is: 

𝐷 𝐸 𝑌 𝐸 𝑋 𝐸 𝑋 𝐷 𝑝 ∙ 𝛽  (9)

The variable D provides an indication of the overall effectiveness of the inspections. 
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3.2. Inspection cost 

Regarding the i-th step, the total inspection cost may be expressed, as a first approximation, as 

follows:  

   , 1 1tot i i i i i i i i i i iC c NRC p URC p NDC p               (10)

where: 

 ci is the cost of the specific inspection activity (e.g., manual or automatic inspection 

activities); 

 NRCi is the necessary-repair cost, i.e., the cost for removing the defect when it is present;  

 URCi is the unnecessary-repair cost, i.e., the cost incurred when identifying false defects; 

e.g., although there is no repair cost, the overall process can be slowed down or interrupted, 

with a consequent extra cost. 

 NDCi is the cost of undetected defect, i.e., the cost related to the missing detection of 

defects. 

Apart from the estimate of the probabilities pi, αi and βi, the calculation of the total cost requires the 

estimate of additional cost parameters. In general, ci and NRCi are known costs, URCi is likely to be 

relatively easy to estimate, while NDCi is difficult to estimate since it may depend on difficult-to-

quantify factors, such as image loss, after-sales repair cost, etc. It can be seen that, among the 

parameters in Equation (10), only ci, αi and βi are related to the inspection procedure. In fact, the 

parameters NRCi, URCi and NDCi depend on the cost concerning (in)appropriate defect repair or 

missing defect detection, while pi is associated to the process propensity to generate defects. The 

total cost related to the manufacturing process of interest, i.e., joining the individual step-by-step 

costs, can be expressed as: 
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m

i
iiiiiiiiii

m

i
itottot pNDCpURCpNRCcCC

11
, 11   (11)

The indicator Ctot gives a trade-off among different cost components. For each i-th step, the first 

cost component ic  is always present, in the case an inspection is performed, while the second 

component  1i i iNRC p     generally has an opposite behaviour with respect to the latter two 

components  1i i iURC p     and i i iNDC p   . In fact, when the defect is detected and repair is 

performed correctly, we certainly do not incur in the third and fourth cost components. 

Let us consider the i-th step and suppose that the parameters pi, ci, NRCi, URCi, and NDCi are 

known and fixed. The first cost component ci is independent from αi and βi, the second and fourth 

component are functions of βi, and the third component is a function of αi, as shown in Figure 3.  

0 
i

i

1 

1 

ic )1( iii pNRC 

i

i

1 

1 

iii pURC  )1(

i

i

1 

1 

iii pNCD 

i

i

1 

1 

1st cost component 2nd cost component 3rd cost component 4th cost component 

 

FIGURE 3. Cost components as functions of the probabilities αi and βi for a generic (i-th) step of 

the inspection procedure. 

It is worth remarking that, as the quality of the inspections is improved (i.e. i and i are likely to 

decrease, while ic  is likely to increase, due to the improved testing activities), then the 

contributions  1i i iURC p     and i i iNDC p    will tend to decrease, while  1i i iNRC p     

and ic  will tend to increase. The indicator Ctot may be consequently affected by compensation 

effects.  
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A more specific indicator on economic convenience of the inspection procedure C*tot may be 

obtained by removing the contributions  1i i iNRC p     from Ctot, as suggested in Franceschini et 

al. (2016). However, the indicator Ctot may be preferable, since it has a wider use. 

In conclusion, we believe that the combined use of Ctot (indicator of cost) and D (indicator of 

effectiveness, defined in Section 3.1) enables to support the selection of the better inspection 

procedure(s). 

3.3. Pedagogical example 

Let us now focus the attention on a pedagogical example concerning the inspection activities in a 

production process consisting of m=5 steps; three different procedures are proposed: 

 Procedure U in which two steps only (i.e., step 1 and 5) are subject to inspection; 

 Procedure V in which the totality of the steps are subject to inspection. 

 Procedure W in which the totality of the steps are not subject to any inspection. 

The effectiveness of the three alternative procedures can be evaluated using the indicator (D) 

defined in Equation (9). Precisely, the mean total number of (authentic) defects, which are not 

detected in the three procedures are respectively: 

54321

5544332211

5543211

pppppD

pppppD

pppppD

W

V

U











 (12)

in which, for a generic i-th step with no inspection, the corresponding βi was replaced with 1. 

Assuming that the βi related to a generic i-th step with inspection has the same value irrespective of 

the inspection procedure, it follows that: 

VUW DDD   (13)
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Not surprisingly, the procedure W is the worst one in terms of effectiveness.  

From the viewpoint of inspection costs, by applying Equation (11), it is obtained: 
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 (14)

So, if a generic i-th step is not subject to inspection, then ci = 0, i = 0 and i = 1. Assuming that, 

for the step with inspection, the parameters (probabilities and costs) are known, the cost Ctot can be 

calculated and the alternatives inspection procedures compared with each other. 

For example, in the case the ci values tend to be higher than the NDCi values and the pi values are 

relatively lower, then the procedure W (with no inspection at all), will be likely to be more 

convenient than the others. Conversely, in the case the ci values tend to be lower than the other cost 

components and the pi values tend to be higher, then the procedure V (in which the totality of the 

steps are subject to inspection) will be likely to be more convenient than the others. Section 4 

presents a case study which shows numerically these effects.  

3.4. Estimation of the variability of D and Ctot  

Equations (9) and (11) allow one to estimate the central tendency of D and Ctot respectively: namely 

their mean values can be calculated replacing the input parameters (pi, αi, βi, ci, NRCi, URCi and 

NDCi) with the corresponding mean values. However, given that the input parameters are affected 

by variability, it would be appropriate to estimate the resulting variability of D and Ctot.  
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Precisely, supposing to know the variability of the input parameters in terms of variances, the 

variances of both D and Ctot may be obtained by applying the law of propagation of variances 

(Montgomery et al. (2010)). The variance of D may be expressed as: 

𝑉𝐴𝑅 𝐷 𝑉𝐴𝑅 𝐷 𝑉𝐴𝑅 𝐷 𝑉𝐴𝑅 𝑝 ∙ 𝛽  (15)

in the hypothesis of absence of correlations (see Section 2.1). From Equation (15), we obtain: 

𝑉𝐴𝑅 𝐷
𝜕𝐷
𝜕𝑝

∙ 𝑉𝐴𝑅 𝑝
𝜕𝐷
𝜕𝛽

∙ 𝑉𝐴𝑅 𝛽  (16) 

where the partial derivatives are evaluated at the mean values of the input parameters. Therefore, it 

results:  
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1
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According to Equation (17), the variance of D is the sum of the variances of the parameters pi and 

βi, weighted respectively by the squares of βi and pi. It can be noticed that the effect of relatively 

higher variances of pi can be compensated by relatively lower βi values, and vice versa. 

Extending the reasoning to Ctot (see Equation (11)), the relevant variance may be expressed as: 
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again in the hypothesis of absence of correlations. From Equation (18) , we obtain: 
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where the derivatives are once more evaluated at the mean values of the parameters. Therefore, it 

results: 

     
         
           iiiiiiiiiii
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(20) 

According to Equation (20), the variance of Ctot is a sum of the variances of the input parameters, 

weighted by polynomial combinations of pi, αi, βi, NRCi, URCi and NDCi. It can be noticed that the 

weights of the variances of the probability parameters (pi, αi and βi) depend on both probability and 

cost parameters, while the weights of the variances of the cost parameters (ci, NRCi, URCi and 

NDCi) only depend on probability parameters. 

Section 4 presents a case study with a numerical estimation of the variability of D and Ctot, 

according to the afore-presented models. 

4. PRACTICAL CASE STUDY 

4.1. Process description and modelling 

Let us now consider a practical application of the proposed model and indicators in a case study of 

short-run production, i.e. the manufacturing process of hardness testing machines AFFRI® LD 3000 

AF (Figure 4). 
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FIGURE 4. AFFRI® LD 3000 AF hardness testing machine. 

 

The production of these machines can be considered as a short-run production. This process 

includes three types of activities: mechanical, electrical and software development; our attention 

will be focused on the first one. In particular, we will consider the production of two components of 

the hardness-tester head, i.e., the indenter holder and the reference support of the displacement 

transducer (see Figure 5 and Figure 6).  

The manufacturing operations of the indenter holder involves a turning operation followed by a 

cylindrical grinding, while those of the reference support of the displacement transducer involves a 

milling operation followed by a tangential grinding. The two components are then assembled 

together. The whole production process of interest may be decomposed into six operations (i.e. six 

steps): turning, cylindrical grinding, milling, tangential grinding, mechanical assembly and sensors 

assembly.  
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FIGURE 5. AFFRI® technical drawing of the head of the hardness tester, labelling the main 

components: (1) the indenter holder, (2) the reference support of the displacement transducer, (3) 

the mechanical unit of the head, (4) the threaded shaft, and (5) the nut screw.  
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(a) 

 

(b) 

FIGURE 6. Detailed representation of (a) the indenter holder and (b) the reference support of the 

displacement transducer. 

 

More precisely, there is a parallel combination of two pairs of operations – i.e., (i) turning and 

relevant cylindrical grinding, and (ii) milling and relevant tangential grinding – which is in turn in 

series with the two operations of mechanical assembly and sensors assembly. Figure 7 shows the 

flow chart of the manufacturing process. 
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FIGURE 7. Flow chart representing the considered production process. 

 
For the afore-illustrated process, two alternative inspection procedures, which may be adopted by 

the producer, are examined and compared. These procedures are denoted as IP1 (Inspection 

Procedure 1) and IP2 (Inspection Procedure 2).  

Regarding IP1, an accurate self-inspection is performed after each of the first five steps, and a final 

inspection is performed by an appointed staff after the sensors assembly (see Figure 8). Precisely, 

the accurate self-inspections after the first four steps, consist of manual measurements, aimed at the 

verification of dimensional and geometrical tolerances, in addition to a visual inspection. At the end 

of the fifth step, a final verification of the functionality and conformity of the mechanical assembly 

is performed by the operators, while at the end of the sixth step, a verification of the conformity and 

functionality of the sensors is performed by the appointed staff.  

 



 21

 

FIGURE 8. Flow chart representing the first inspection procedure (IP1) for the process of interest. 

Insp. 1 to 5 are accurate self-inspections, while Insp. 6 is an inspection executed by an appointed 

staff.   

 
Regarding IP2, a rough self-inspection (i.e. visual inspections only) is performed after each of the 

first four steps, so as to detect the more critical non-conformities. Next an overall quality inspection, 

based on several measurements in a controlled metrological environment, is performed before 

assembling the components. For this reason, an additional step has been introduced at this stage (see 

step 4’, denominated “Quality Inspection” in the process flow chart in Figure 9). Similarly to IP1, 

an accurate self-inspection is performed after the mechanical assembly (step 5) and then a 

verification of the conformity and functionality of the sensors is performed by the appointed staff 

(see Figure 9).  
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FIGURE 9. Flow chart representing the second inspection procedure (IP2) for the process of 

interest. Insp. 1 to 4 are rough self-inspections, Insp. 4’ indicates the additional quality inspection, 

Insp. 5 is an accurate self-inspection, and Insp. 6 is an inspection executed by an appointed staff.   

 
In practice, the inspection procedures may include some operations for repairing possible defects 

(e.g., assembly errors). For simplicity, these repair operations are omitted in the schemes in Figure 8 

and 9. 
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4.2. Comparison of the two inspection procedures 

The indicators described in Sections 3.1 and 3.2 can be applied to compare IP1 and IP2. Tables 1 

and 2 report the step-by-step estimates of the probabilities (pi, αi and βi) for IP1 and IP2 

respectively.  

     

TABLE 1. Estimates of probabilities pi, αi and βi when implementing IP1.  

Step no. Operation pi [%] αi [%] βi [%] 
1 Turning 5.0 1.0 5.0 

2 
Cylindrical 

grinding 
2.0 0.5 2.5 

3 Milling 5.0 1.0 5.0 

4 
Tangential 
grinding 

0.2 0.5 2.5 

5 
Mechanical 
assembly 

2.0 2.0 0.1 

6 
Sensors 

assembly 
5.0 2.0 0.1 

 

TABLE 2. Estimates of probabilities pi, αi and βi when implementing IP2. 

Step no. Operation pi [%] αi [%] βi [%] 
1 Turning 2.5 1.0 5.0 

2 
Cylindrical 

grinding 
1.0 0.5 2.5 

3 Milling 2.5 1.0 5.0 

4 
Tangential 
grinding 

0.1 0.5 2.5 

4’ 
Quality 

inspection 
6.1 0.2 0.5 

5 
Mechanical 
assembly 

2.0 2.0 0.1 

6 
Sensors 

assembly 
5.0 2.0 0.1 
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For each i-th step, the pi value and the corresponding αi and βi values were estimated by the 

operators/inspectors, based on their experience and technical knowledge of the process. For 

simplicity, the αi and βi values concerning the same steps (i.e., step 1, 2, 3, 4, 5 and 6) of the two 

different inspection procedures are considered identical. However, IP2 also includes step 4’, with 

additional specific parameters. In the first four steps, the pi values for IP2 are assumed to be one 

half of the homologous pi values related to IP1, since in the rough self-inspections only a portion 

(assumed to be 50%) of the possible defects is inspected. The additional quality inspection at step 4’ 

compensates for the remaining portions of pi values of the first four steps: see Table 2, in which 

p1 + p2 + p3 + p4 = p4’. The values of p5 and p6 are assumed to be identical for IP1 and IP2. 

Tables 3 and 4 report the estimates of the cost parameters for each process step, concerning IP1 and 

IP2 respectively. These estimates were calculated taking into account the time required for 

identifying and repairing possible defects, and the labour cost of operators/inspectors. However, 

these values are just indicative because the real ones are confidential. 

 

TABLE 3. Estimates of cost parameters related to IP1.  

Step no. Operation ci [€] NRCi [€] URCi [€] NDCi [€] 
1 Turning 2.1 3.5 3.5 18.8 

2 
Cylindrical 

grinding 
0.7 3.6 3.6 18.8 

3 Milling 3.1 5.2 5.2 18.8 

4 
Tangential 
grinding 

0.7 3.6 3.6 18.8 

5 
Mechanical 
assembly 

7.0 3.5 3.5 31.4 

6 
Sensors 

assembly 
6.3 2.1 2.1 25.1 
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TABLE 4. Estimates of cost parameters related to IP2. 

Step no. Operation ci [€] NRCi [€] URCi [€] NDCi [€] 
1 Turning 0.2 3.5 3.5 18.8 

2 
Cylindrical 

grinding 
0.2 3.6 3.6 18.8 

3 Milling 0.3 5.2 5.2 18.8 

4 
Tangential 
grinding 

0.2 3.6 3.6 18.8 

4’ 
Quality 

inspection 
7.4 22 22 132 

5 
Mechanical 
assembly 

7.0 3.5 3.5 31.4 

6 
Sensors 

assembly 
6.3 2.1 2.1 25.1 

 

Table 5 reports the calculated values of D and Ctot, for both the inspection procedures, using 

respectively Equations (9) and (11), and the estimates of the probabilities and cost parameters in 

Tables 1 to 4. 

 

TABLE 5. Indicators values calculated for IP1 and IP2.   

Indicator IP1 IP2 

D [-] 0.00562 0.00315

Ctot [€] 20.94 23.64 

 

Table 5 shows that the mean D value for IP2 is lower than that for IP1; on the contrary, the mean 

Ctot value of IP2 is higher than that of IP1. According to these results, the producer of hardness 

testing machines selects IP1, because it is willing to accept an increase of the number of undetected 

defects in order to have a reduction of the total inspection costs. Even if the mean total number of 

undetected defects becomes almost the double, it is still small as it refers to a short-run production. 

Therefore, according to a cost-benefit logic, the combined use of the two indicators enables to 
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compare the two inspection procedures in order to select the more appropriate according to the 

actual requirements of the producer.  

The information contained in Table 5 should be complemented with the estimated variabilities of D 

and Ctot (for both the inspection procedures). As a first approximation, the standard deviation of 

each (probability and cost) parameter was assumed to be 5% of the relevant value of the parameter 

itself. Then, the standard deviations related to D and Ctot were calculated by applying Equations 

(17) and (20) for both the inspection procedures (see Table 6). 

 

TABLE 6. Standard deviations of the indicators calculated for the two inspection procedures.   

Indicator IP1 IP2 

D [-] 0.00025 0.00013

Ctot [€] 0.51 0.61 

 

Even considering the resulting variability of D and Ctot, IP2 remains significantly more effective, 

but also more expensive than IP1.  

5. CONCLUSIONS 

In manufacturing processes, inspection strategies are strictly related to the production typology and 

volume. SPC techniques are very diffused for mass productions, although difficult to manage for 

short-run and single-unit productions. This paper examined the latter ones, defining an overall 

probabilistic model for defect prediction. Furthermore, two indicators (i.e. D and Ctot) for estimating 

the expected inspection effectiveness and cost, and the relevant dispersions were defined. 

According to a cost-benefit logic, the combined use of the two indicators makes it possible to 
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compare alternative inspection procedures, in order to select the more effective and economically 

convenient for a specific process of interest.  

The proposed model and indicators may be exploited for a wide range of industrial processes. An 

application concerning the comparison of two alternative inspection procedures for a real-life 

short-run production of hardness testing machines was presented. 

Some limitations of the proposed approach have to be discussed. First, some of the simplifying 

assumptions may be relatively stringent, such as (i) presence of a unique type of defect for each 

manufacturing step and (ii) absence of correlation between the parameters related to different steps. 

Future research will be aimed at refining/improving the proposed model by relaxing these 

simplifying assumptions. Furthermore, the proposed model and indicators require the estimation of 

various not-so-easily-quantifiable parameters (i.e. pi, αi, βi, ci, NRCi, URCi, NDCi). A thorough 

understanding of the process of interest and the experience of operators and inspectors may 

contribute to overcome (at least partially) this obstacle. Also, suitable models for supporting the 

estimation of the probabilities pi, αi, βi are under study. 
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