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Hierarchical Divergence Conforming Bases for
Edge Singularities in Quadrilateral Cells

Roberto D. Graglia, Fellow, IEEE, Andrew F. Peterson, Fellow, IEEE, and Paolo Petrini

Abstract—Singular divergence-conforming bases have been
proposed for the solution of integral equations although they have
seen only occasional use in practical applications. The existing
singular bases are not hierarchical, which prevents their use in
adaptive p-refinement applications. In this article, a new family of
singular hierarchical basis functions is proposed for quadrilateral
cells. These functions model the singularities associated with
current and charge density at edges and are more convenient
for modeling such singularities than triangular bases of the same
kind. The basis functions are of the additive kind, and combine
a hierarchical polynomial representation on quadrilaterals with
linearly independent singular terms that incorporate general
exponents that may be adjusted for the specific wedge angle
of interest. Moreover, the added singular basis functions are
computed on the fly. On the basis of various reported numerical
results, the present work also illustrates the difficulties, the
advantages, the accuracy, and the cost of using such bases in
Method of Moments solutions of integral equations.

Index Terms – Basis Functions, Hierarchical Basis Functions,
Method of Moments, Singular basis functions, Wedges.

I. INTRODUCTION

The electromagnetic surface charge and current densities,
and certain field components, can be singular and sometimes
infinite in the vicinity of conducting or penetrable edges and
corners [1]. Although this behavior is localized at the edge or
corner, it stresses the accuracy and raises the computational
cost of numerical solvers. One possibility to improve the
quality of the results is to use a denser mesh or to adaptively
refine the cell sizes (h-refinement) in the neighborhood of
the singular region [2]. Adaptive h-refinement is commonly
used by modern Finite Element Method (FEM) solvers to
achieve polynomial convergence in the solution of differential
problems. For integral equation problems, Method of Moments
(MoM) solvers often use denser meshes in the neighborhood
of edges and corners but rarely use adaptive h-refinement,
perhaps because of increased costs associated with the dense
nature of the MoM system matrices. An alternative that is
expected to produce exponential convergence in numerical
applications is known as p-refinement, which requires the
introduction of singular basis functions to treat fields near
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edges. (A combination of h and p refinement may prove
optimal [3], [4].)

Most existing singular basis functions can be classified as
either substitutive or additive functions [5]. For low-order
numerical techniques, substitutive bases (specially constructed
singular functions that replace the original basis functions
on a 1:1 ratio) can be effective. Substitutive vector bases
for edge singularities on triangular cells were proposed by
Brown and Wilton [6], Graglia and Lombardi [7] and Ozturk
et al. [8], while bases for quadrilateral cells were proposed by
Andersson [9] and Graglia and Lombardi [7]. Conversely, an
additive representation is obtained by augmenting the regular
polynomial vector bases with additional independent degrees
of freedom to model the singular field behavior [10]. For
high-order treatment, basis functions of the additive kind
provide improved accuracy and additional flexibility since one
can model appropriate field behavior even if the expected
singularity is not excited by the source. Most of all, whenever
the polynomial basis subset is hierarchical (a polynomial basis
is hierarchical if the functions used for order p−1 are a subset
of those used for order p), additive bases allow p-refinement up
to the polynomial order p for which the polynomial functions
remain linearly independent from the singular ones. The reader
is referred to [5], [11], and the references therein for more
details.

The present paper proposes hierarchical vector basis func-
tions for the numerical treatment of edge singularities in the
context of two-dimensional quadrilateral-cell MoM analysis.
The basis functions presented here improve upon those dis-
cussed in [10] where interpolatory polynomials were used to
build high-order, non-hierarchical bases. The functions under
consideration are divergence conforming and impose normal-
vector continuity across cell boundaries. They are primarily
designed for the solution of the Electric Field Integral Equation
(EFIE) where it is necessary to represent both the unknown
current density and its divergence.

Specific issues discussed here include the following:

• The Degrees of Freedom (DoF) associated with additive
basis sets formed by the combination of regular and
singular basis functions.

• The error reduction due to the use of singular basis
functions.

• Deterioration of the matrix condition number due to the
singular basis function subsets.

A companion paper [12] describes numerical integration tech-
niques used to compute the MoM source integrals involving
singular basis functions.



2

TABLE I
ZEROTH-ORDER, DIVERGENCE-CONFORMING BASES FOR THE QUADRILATERAL CELL

Basis Functions Surface Divergences Dependency Relations

Regular Functions [11], [13]

Λβ(r) =
ξβ+2 `β−1

J for β =1, 2, 3, and 4 1
J

ξ1 Λ1(r) + ξ3 Λ3(r) = 0

ξ2 Λ2(r) + ξ4 Λ4(r) = 0

Singular Functions [10], [11]

eΛi±1(r) =
(
νξν−1
i − 1

)
Λi±1(r)

e
Λ
i+2(r) =

(
ξν−1
i − 1

)
Λi+2(r) for i =1, 2, 3, or 4

νξν−1
i − 1
J ξi+1

eΛi+1(r) + ξi−1
eΛi−1(r) = 0

The subscripts are counted modulo 4, for β and i = 1, 2, 3 or 4. J is the Jacobian of the transformation from parent to child space. The functions
eΛi±1 are singular on the i-th edge (where ξi = 0), and vanish for ν = 1. Λβ and eΛi±1 are edge-based and associated only with the edge quoted
in their subscript, since the normal component of these functions along the other element edges (not quoted in the subscript) is always equal to zero.
Conversely, e

Λ
i+2 is a bubble (element-based) function with a vanishing normal component along each of the element edges, but with singular

surface divergence at ξi = 0. To reflect the edgeless property, the symbol e
Λ
i+2 has been obtained by overturning Λ, while the subscript indicates

that e
Λ
i+2 is given in terms of the regular function Λi+2.

Section II provides sufficient information to understand the
numerical results presented in sections IV and V without re-
quiring the readers to study the theory and other mathematical
details associated with the new basis functions, which are
developed in Section III. Readers interested in the theory may
find it helpful to review [10], [11], and [13] for a detailed
introduction to the notation and other important background
information.

Preliminary results of this research work were presented in
[14], [15].

II. BASIS FUNCTION SETS AND THEIR ORDER

The basis functions and the cells are described in terms of
four local or parent variables ξβ (for β = 1 to 4, and indexes
counted modulo 4), two of which are independent with

ξβ + ξβ+2 = 1 (1)

Variable ξβ vanishes on the β-th edge of the cell along the
coordinate-line ξβ = 0. If a cell has a singular edge this is
denoted by the subscript i, so that the variable ξi vanishes on
the singular edge; in this case the two parent variables ξi±1

are longitudinal in the sense that they vary from 0 to +1 in
directions tangential to the singular edge.

Singular vector basis functions are constructed from scalar
functions of the independent (ξi) and longitudinal (ξi±1)
variables using the fundamental singular factors

fA(ν) = ν ξν−1
i − 1 (2)

fB(ν) = ξν−1
i − 1 (3)

where ν is any entry of the finite list

ν = {ν1, ν2, . . . , νj , . . . , νs} (4)

formed by the first s smallest non-integer singularity coeffi-
cients that appear in the infinite set of exponents that form
the complete expansion of the electromagnetic field near the
singular edge [1], [5]. The functions (2, 3) obtained by using
the ν values in (4) are not orthogonal. To obtain orthogonal
singular factors of ξi it is sufficient to add to fA and fB some

appropriate polynomials of ξi whose maximum order is (s−1).
The resulting orthogonal factors are then multiplied by the
zero-th order regular vector basis functions and by orthogonal
polynomials of maximum order m of the longitudinal parent
variable, to obtain the vector singular basis functions (for full
details, see Section III). The order of the singular set formed
in this manner, the so-called Meixner subset [11], is denoted
by the integers [s,m].

Thus, we describe the order of the additive quadrilateral
basis by three integers [p, s,m], where p is the order of the
vector polynomial basis (the background polynomial order of
the expansion), s is the number of fractional exponents from
(4) included in the representation, and m is the order of the
singular basis subset in the longitudinal direction. We expect
that m = p will provide the most consistent representation.

The polynomial and the Meixner subsets are built using
orthogonal polynomials to ensure linear independence of the
basis functions and attempt to maintain a well-conditioned
MoM matrix.

We observe that edge singularities may be easier to prop-
erly model using quadrilateral elements than triangular ones
because the latter require the introduction of “element fillers”
(that is, vertex singularity triangles) with only one vertex
attached to the singular edge [10, Section III-D]. As discussed
in [10, Section III-D], bases on such cells require additional
information to align them with the edge and may reduce
accuracy. On the contrary, it may be easier to model corner
singularities in MoM analysis by adjacent singular triangular
elements instead of quadrilateral cells; the quadrilateral bases
presented here are not designed to model corner singularities
that depend on the distance from the corner’s tip instead of
the distance from the two corner’s edges [5], [18] (Triangular
elements have also been used to model sharp edge junctions
in [16].)

III. SINGULAR HIERARCHICAL BASES

Table I summarizes the lowest-order divergence-conforming
basis functions for the quadrilateral cell discussed in [10], [11],
[13]. Table II reports the hierarchical generalization of those
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TABLE II

HIERARCHICAL DIVERGENCE-CONFORMING BASES FOR THE QUADRILATERAL CELL
Po

ly
no

m
ia

l
Se

t

Basis Functions Surface Divergences Orthogonality Relations
Edge Functions

Λβ
0k(r) = H0k(ξ)Λβ(r)

H0k(ξ)
J

∫∫
parent-cell

Λβ
0k ·Λ

β
0h dξ =

1

3
δkh

k = 0, 1, . . . , p; β = 1, . . . , 4.
Bubble Functions

Λβ
jk(r) = Hjk(ξ)Λβ(r)

H0k(ξ)
J gj−1(ξβ − ξβ+2)

∫∫
parent-cell

Λβ
jk ·Λ

β
`h dξ =

1

3
δkh δj`

k = 0, 1, . . . , p; j = 1, 2, . . . , p; β = 1, 2.

Λβ(r) indicates the zeroth-order regular functions of Table I. δkh, δj` denote the Kronecker delta. The vector functions are defined in
terms of the scalar polynomials

H0k(ξ) = Ek(ξβ+1 − ξβ−1)

Hjk(ξ) = ξβ fj−1(ξβ − ξβ+2)H0k(ξ)

The Ek , fn, and gn polynomials of Table III yield the reported orthogonality relations valid for integrals on the square part-cell. The p-th
order complete edge-based and bubble subsets have 4(p+ 1) and 2p(p+ 1) DoFs, respectively, for a total of 2(p+ 1)(p+ 2) DoFs.

Si
ng

ul
ar

Se
t

Basis Functions and Their Surface Divergence Orthogonality Relations

Edge Functions

eΛi±1
j0 (r) = Na

j−1

√
3
[(
νjξ

νj−1

i − 1
)
+Aj−1(ξi)

]
Λi±1(r)

∇ · eΛi±1
j0 (r) =

Na
j−1

J
√
3
[(
νjξ

νj−1

i − 1
)
+Aj−1(ξi)

]
Bubble Functions

eΛi+1
jk (r) = Na

j−1

[(
νjξ

νj−1

i − 1
)
+Aj−1(ξi)

]
[ξi+1 fk−1(z)]Λi+1(r)

eΛi+2
j0 (r) = Nb

j−1

[(
ξ
νj−1

i − 1
)
+Bj−1(ξi)

]
Λi+2(r)

eΛi+2
jk (r) = Nb

j−1

[(
ξ
νj−1

i − 1
)
+Bj−1(ξi)

]
Ek(z)Λi+2(r)

∇ · eΛi+1
jk (r) =

Na
j−1

J

[(
νjξ

νj−1

i − 1
)
+Aj−1(ξi)

]
gk−1(z)

∇ · e
Λi+2
j0 (r) =

Nb
j−1

J

[(
νjξ

νj−1

i − 1
)
+

d

dξi
[ξiBj−1(ξi)]

]
∇ · e

Λi+2
jk (r) =

Nb
j−1

J

[(
νjξ

νj−1

i − 1
)
+

d

dξi
[ξiBj−1(ξi)]

]
Ek(z)

for j = 1, 2, . . . , s; k = 1, 2, . . . ,m with s− 1,m ≤ p

∫∫
parent-cell

eΛi±1
j0 · Λi±1

0h dξ = 0 ∀j

∫∫
parent-cell

eΛi±1
j0 · Λi±1

`h dξ = 0 ∀` ≥ 1

∫∫
parent-cell

eΛi±1
j0 ·

eΛi±1
`0 dξ = 0 for j 6= `

∫∫
parent-cell

eΛi±1
j0 ·

eΛi+1
`h dξ = 0 ∀h ≥ 1

∫∫
parent-cell

eΛi+1
jk · Λi±1

0h dξ = 0 ∀j

∫∫
parent-cell

eΛi+1
jk · Λi±1

`h dξ = 0 for k 6= h

∫∫
parent-cell

eΛi+1
jk ·

eΛi+1
`h dξ = 0 for j 6= `

or k 6= h∫∫
parent-cell

eΛi+2
jk ·

eΛi+2
`h dξ = 0 for j 6= `

or k 6= h

The functions model the behavior of the s different, non-integer singularity coefficients {ν1, ν2, . . . , νs}. The indexes i ± 1, i + 2 are
counted modulo 4, for i = 1, 2, 3 or 4. The En, fn, and gn polynomials of Table III yield the reported orthogonality relations valid for
integrals on the square parent-cell, with

z = ξi+1 − ξi−1 , ξi±1 =
1± z
2

basis functions to high orders while providing s different,
non-integer singularity coefficients {ν1, ν2, . . . , νj , . . . , νs}.
To help maintain linear independence, both the polynomial and
singular basis functions incorporate orthogonal polynomials
that are defined in Table III.

The function Λβ is independent of variables ξβ+1 and ξβ−1

on the parent cell, is linear in ξβ = (1− ξβ+2), and vanishes
at ξβ = 1. The hierarchical polynomial high-order subset Λβ

0k

reported at top of Table II is constructed by multiplying the Λβ

functions with a scalar set of orthogonal (shifted-Legendre)
polynomials of the ξβ+1 = (1−ξβ−1) variable. In this manner,
the function Λβ

0k remains edge-based and has the same order
in ξβ as Λβ , with Λβ

00 = Λβ .
To model high-order (polynomial) variations along ξβ , one

must introduce the hierarchical polynomial subset given in the
second row of Table II, obtained by further multiplying each
Λβ

0k function by a set of modified orthogonal Jacobi poly-
nomials [11]. Thus, a p-th order complete vector polynomial
set is obtained from the Cartesian product of two p-th order
scalar polynomial sets (one for each of the two independent
variables) by eliminating from the bubble-function set, at the
end of the construction process, any redundancy due to the
dependency relations of Table I; that is, for example, by elim-
inating all the bubble functions Λβ

jk obtained with β = 3, 4.
The number of Degrees of Freedom (DoF) associated with the
polynomial p-th order set is therefore equal to 2(p+1)(p+2)
[11].

The singular basis function sets at the bottom of Table II
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TABLE III
GENERATING ORTHOGONAL POLYNOMIALS

Recurrence Relations with Respect to the Degree n Generating Polynomials, Scale Factors Nn

a1nP
(α,β)
n+1 (z) = a2n z P

(α,β)
n (z)− a3nP (α,β)

n−1 (z) and Integral Normalizations [17]

Legendre Pn(z)

P0(z) = 1 a1n = n+ 1

P1(z) = z a2n = 2n+ 1

P2(z) =
1

2

(
3z2 − 1

)
a3n = n

En(z) =
√
2n+ 1Pn(z)

1

2

∫ 1

−1
E2
n(z) dz =

∫ 1

0
E2
n(2x− 1) dx = 1

Jacobi P (2,2)
n (z)

P
(2,2)
0 (z) = 1 a1n = (n+ 1)(n+ 5)

P
(2,2)
1 (z) = 3z a2n = (n+ 3)(2n+ 5)

P
(2,2)
2 (z) = 7z2 − 1 a3n = (n+ 2)(n+ 3)

Jacobi P (3,3)
n (z)

P
(3,3)
0 (z) = 1 a1n = (n+ 1)(n+ 7)

P
(3,3)
1 (z) = 4z a2n = (n+ 4)(2n+ 7)

P
(3,3)
2 (z) =

5

4

(
9z2 − 1

)
a3n = (n+ 3)(n+ 4)

Nf
n =

√
(2n+ 5)(n+ 3)(n+ 4)

3(n+ 1)(n+ 2)

fn(z) = Nf
nP

(2,2)
n (z)

gn(z) = Nf
n

[
zP

(2,2)
n (z) + hn(z)

]
hn(z) =

(
z2 − 1

)
2

dP
(2,2)
n (z)

dz
= (n+ 5)

(
z2 − 1

)
4

P
(3,3)
n−1 (z)

1

2

∫ 1

−1

[
1− z2

4
fn(z)

]2
dz =

1

3

1

2

∫ 1

−1

1− z2

4
h2n(z)dz =

n(n+ 5)

3
(
Nf
n

)2
Pn(z) and P

(α,β)
n (z) are the Legendre and the Jacobi polynomial of order n, respectively; with Pn(z) = P

(0,0)
n (z) and P

(β,α)
n (z) =

(−1)nP (α,β)
n (−z). The order of the polynomials is indicated by their subscripts with the only exception of the generating polynomials gn(z) and

hn(z) whose order is equal to (n+ 1). This convention is convenient because gn(z) and hn(z) are paired with fn(z) whose order is n. (gn(z) and
hn(z) are used to compute the divergence of the functions of Table II that contain the (n+ 1)-order factor ξ fn(z).)

are constructed using the same Cartesian-product scheme with
only a minor modification to incorporate s different singularity
coefficients. The singular functions eΛi±1 and e

Λ
i+2 exhibit

the same variation in the parent ξ-space as that of the zeroth-
order vector functions (Λi±1 or Λi+2, respectively) appearing
in their expressions, apart the singular factors (2, 3) that are
functions of ν and ξi. These specific singular factors are
only appropriate for the first singular coefficient ν = ν1. To
incorporate a different singularity coefficient νn, these factors
must be modified by adding appropriate polynomials of the
ξi variable, and imposing the orthogonality relations in Table
II, to produce the new singular factors fA(νn) + An−1 and
fB(νn)+Bn−1. The order of the polynomials An−1 and Bn−1

depends on n; they are of zeroth-order for n = 1 (nothing
added), and are of order (n− 1) for n ≥ 2.

The singular hierarchical sets that model higher-order vari-
ations along the parent variables are obtained by multiplying
the appropriate singular vector factors by a set of orthogonal
(shifted-Legendre or modified Jacobi) polynomials. In partic-
ular, for n ≥ 2, the (n− 1) coefficients of the polynomials

An−1(ξi) =

n−1∑
q=1

aq,n−1
(q+1)(q+2)

2 [fA(q + 1)− fA(q)]

=

n−1∑
q=1

aq,n−1
(q+1)(q+2)

2

[
(q + 1)ξqi − qξ

q−1
i

]
(5)

Bn−1(ξi) =

n−1∑
q=1

bq,n−1
(q+1)(q+2)

2 [fB(q + 1)− fB(q)]

=(ξi − 1)

n−1∑
q=1

bq,n−1
(q+1)(q+2)

2 ξq−1
i (6)

of Table II associated with νn are ordered into two column
arrays

Xan−1 =


a1,n−1

a2,n−1

...
an−1,n−1

 , Xbn−1 =


b1,n−1

b2,n−1

...
bn−1,n−1

 (7)

whose entries depend on the value of the lower order polyno-
mial coefficients, with

A0(ξi) = 0 (8)

B0(ξi) = 0 (9)

Eq. (6) forces Bn−1 to equal zero at ξi = 1 to guarantee that
e
Λi+2
nk is a bubble function. The coefficients (7) are obtained

by imposing the orthogonality of eΛi±1
nk with respect to the

zeroth order polynomial basis functions Λi±1 and to the other
singular functions eΛi±1

jk , and by imposing the orthogonality
of e

Λi+2
nk with respect to the other functions e

Λi+2
jk , for all
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j = 1, 2, . . . , n− 1:∫ 1

0

[fA(νn) +An−1]

[
P0(2ξi − 1)

fA(νj) +Aj−1

]
dξi =

[
0

0

]
(10)∫ 1

0

ξ2i [fB(νn) +Bn−1] [fB(νj) +Bj−1] dξi = 0 (11)

The normalization coefficients Na
n−1, N b

n−1 of the singular
basis functions of Table II are obtained by setting

Na
n−1

∫ 1

0

[fA(νn) +An−1]P1(2ξi − 1) dξi = 1 (12)

N b
n−1

∫ 1

0

ξi [fB(νn) +Bn−1]P0(2ξi − 1) dξi = 1 (13)

that yield

Na
n−1 =

(
νn − 1

νn + 1
+

n−1∑
q=1

aq,n−1

)−1

(14)

N b
n−1 = −2

(
νn − 1

νn + 1
+

n−1∑
q=1

bq,n−1

)−1

(15)

The kernels of (11) and (13) are ξ2i and ξi, respectively,
because Λi+2 varies linearly with ξi on the parent cell.
Obviously, whenever convenient, one can deviate from (13)
and use the different normalization

N b
n−1

√∫ 1

0

{ξi [fB(νn) +Bn−1]}2 dξi = 1 (16)

since the integral in (16) exists. Also, as far as (10) is
concerned, recall that on the parent cell Λi±1 is constant with
respect to ξi (see Table I); that is, proportional to the shifted
Legendre polynomial P0(2ξi − 1) = 1.

As per the previous expressions, the coefficients (7) are
obtained “on the fly” by solving the (n − 1)-order linear
systems

Ma Xan−1 = Ya (17)

Mb Xbn−1 = Yb (18)

The entries of Ma,b, Ya,b (for j, q = 1, 2, . . . , n− 1) are

Ma[j, q] =
(q + 1)(q + 2)(νj − 1)νj
(q + νj − 1)(q + νj)

+ Sma · Xaj−1 (19)

Ya[j] = 2− 2 νj νn
νj + νn − 1

+ Sya · Xaj−1 (20)

Mb[j, q] =
(q + 1)(νj − 1)(2q + νj + 4)

(q + 3)(q + νj + 1)(q + νj + 2)
+ Smb · Xbj−1

(21)

Yb[j] =
2 (νn − 1)(1− νj)(νn + νj + 4)

3(νn + 2)(νj + 2)(νn + νj + 1)
+ Syb ·Xbj−1 (22)

where it is understood that the scalar quantities Sma,b · Xa,bj−1

and Sya,b · Xa,bj−1 vanish for j = 1 (recall that A0 = B0 = 0)

while, for j ≥ 2, the q–dependent entries of the (j − 1)-order
row-arrays Sma,b and Sya,b are

Sma[p] =
q(q + 1)(q + 2)p(p+ 1)(p+ 2)

(p+ q − 1)(p+ q)(p+ q + 1)
(23)

Sya[p] =
(1− νn)νn(p+ 1)(p+ 2)

(p+ νn − 1)(p+ νn)
(24)

Smb[p] =
(p+ 1)(p+ 2)(q + 1)(q + 2)

(p+ q + 1)(p+ q + 2)(p+ q + 3)
(25)

Syb[p] =
(p+ 1)(1− νn)(2p+ νn + 4)

(p+ 3)(p+ νn + 1)(p+ νn + 2)
(26)

Eqs. (19)-(26) are readily obtained by the fundamental inte-
grals ∫ 1

0

fA(xn) fA(xj) dξi =
xj xn

xj + xn − 1
− 1 (27)∫ 1

0

ξ2i fB(xn) fB(xj) dξi =
(1− xn)(1− xj)(xn + xj + 4)

3(xn + 2)(xj + 2)(xn + xj + 1)
(28)

As an example, Table IV reports the singular basis functions
for {ν1, ν2, ν3} = { 12 ,

3
2 ,

5
2} that correspond to the case of a

zero thickness perfectly conducting wedge.
Clearly, when incorporating only one singular exponent ν1,

one can use the singular functions of Table I (with ν = ν1)
with the polynomial subset of order p = 0 (or with higher-
order polynomial subsets as desired). To employ two different
exponents (ν1, ν2) one has to increase the order of the regular
polynomial subset to a minimum of p = 1. In general,
to include s different singular exponents, the order of the
polynomial subset must be at least s − 1, since one singular
factor for νs contains an (s−1)-th order polynomial of the ξi
variable.

The hierarchical nature of the Table II bases permits their
order to change from one patch to another. That is, the order of
the basis within patches that lie along an edge of the structure
does not necessarily need to be equal; one can use high-order
bases for some of the patches attached to the edges of the
structure and lower order basis on the remaining patches.
The mixture of orders may be determined by an adaptive
refinement strategy [2]-[4].

IV. RESULTS FOR SCATTERING FROM INFINITELY THIN
PLATES

The edge of an infinitely thin metal structure exhibits a 0◦

wedge angle and a set of singularity coefficients [1], [5]

{ν1, ν2, . . . , νj , . . . } =
{
1

2
,
3

2
, . . . , j − 1

2
, . . .

}
(29)

Table IV presents the three families of singular basis functions
associated with the smallest of these coefficients, j=1, 2, and
3. Numerical results are presented below for two infinitely thin
metallic structures: a square plate and a circular disk.

Although there is no exact solution, the square plate fa-
cilitates an assessment of the Condition Number (CN) of the
MoM system matrix for changing basis order by working on a
very simple “structured” mesh, with no curved elements. The
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TABLE IV
SINGULAR BASIS FUNCTION SET FOR {ν1, ν2, ν3} = { 12 ,

3
2
, 5
2
}

Basis Functions Surface Divergences

eΛi±1
j0 (r) = Λi±1(r)Aj(ξi)

eΛi+1
jk (r) = Λi+1(r)Aj(ξi) ξi+1 fk−1(z)

eΛi+2
j0 (r) = Λi+2(r)Bj(ξi)

eΛi+2
jk (r) = Λi+2(r)Bj(ξi)Ek(z)

∇ · eΛi±1
j0 (r) =

Aj(ξi)
J

∇ · eΛi+1
jk (r) =

Aj(ξi)
J

gk−1(z)

∇ · e
Λi+2
j0 (r) =

Cj(ξi)
J

∇ · e
Λi+2
jk (r) =

Cj(ξi)
J

Ek(z)

For k = 1, 2, . . . , p with p ≥ 3, and z = ξi+1 − ξi−1 For k = 1, 2, . . . , p with p ≥ 3, and z = ξi+1 − ξi−1

Use j = 1 for the ν1 set, Use j = 2 for the ν2 set, Use j = 3 for the ν3 set,

where ξν1−1
i = 1/

√
ξi, and where ξν2−1

i =
√
ξi, and where ξν3−1

i = ξi
√
ξi, and

A1(ξi) = 3

(
1−

1

2
√
ξi

)
A2(ξi) = 5

(
6ξi − 6

√
ξi + 1

)
A3(ξi) =

7

4

[
10ξi

(
82
√
ξi − 51ξi − 33

)
+ 7
]

B1(ξi) = 6

(
1
√
ξi
− 1

)
B2(ξi) = 30

(
13
√
ξi − 8ξi − 5

)
B3(ξi) =

84

59

[
ξi

(
2584

√
ξi − 1247ξi − 1456

)
+ 119

]
C1(ξi) = 3

(
1
√
ξi
− 2

)
C2(ξi) = 15

(
39
√
ξi − 32ξi − 10

)
C3(ξi) =

84

59

[
ξi

(
6460

√
ξi − 3741ξi − 2912

)
+ 119

]
The polynomials E, f , and g are given in Table III. For example, for k at most 3, one needs:

E1(z) =
√
3z, E2(z) =

√
5

2

(
3z2 − 1

)
, E3(z) =

√
7

2
z
(
5z2 − 3

)
,

f0(z) =
√
10, f1(z) =

√
70 z, f2(z) =

√
15

2

(
7z2 − 1

)
,

g0(z) =
√
10 z, g1(z) =

√
35

2

(
3z2 − 1

)
, g2(z) =

√
30 z

(
7z2 − 4

)
.

The coefficients of the An−1(ξi) and Bn−1(ξi) polynomials of Table II and Eqs. (5, 6) are obtained “on the fly”. This Table reports
the singular basis function set for {ν1, ν2, ν3} = {1/2, 3/2, 5/2} to help the reader verify his own implementation of the procedure
illustrated in Eqs. (17) - (26).

versatility of our hierarchical bases is also more easily and
intuitively tested by working on such structured meshes.

The second test-case problem we consider is the circular
disk because it has no corner and it is one of only a few three-
dimensional geometries amenable to exact electromagnetic
(EM) analysis [19].

The frequency domain results reported below are obtained
by solving the EFIE with hierarchical polynomial basis func-
tions from [11] combined with the singular basis functions
reported here in the edge cells. Galerkin testing is used
and the equations are solved by standard LU factorization.
All necessary integrals are computed by adaptive quadrature.
More details on the matrix entry computation are given in a
companion paper [12].

A. Results for Scattering from an Infinitely Thin Square Plate

Consider an infinitely thin metallic square plate of size 1λ×
1λ located in the x, y Cartesian plane, normally illuminated
by a plane wave with unity magnitude H-field parallel to the
y axis. In most of the examples to follow, the plate is meshed
with 25 square cells of equal size λ/5× λ/5.

Fig. 1 at left shows the magnitude of the x (co-polarized)
component of the current induced on the plate obtained with
a [2, 1, 0] base on a 5 × 5 mesh. This component is singular
along the edges located at y = ±λ/2 and vanishes along the
other two edges with a square root slope. The co-polarized
component is essentially indistinguishable from the benchmark
solution reported in [20] where the x and y components of
the current are obtained by the weighed sum of even and
odd symmetric functions whose domain is the whole plate.
Differences with respect to the benchmark are visible only
for the cross-polarized current component shown at the center
of Fig. 1, which should be zero along the two symmetry
axes of the plate. The vanishing of this component along
the symmetry axes is enforced by the functions used to
construct the benchmark solution shown at right, whereas,
in our simulation, the vanishing occurs in spite of the fact
that these symmetry axes divide and run inside the internal
elements.

Fig. 2 shows the same current obtained by using the lowest
possible polynomial basis subset (p = 0) with and without a
singular basis term, that is for the orders [0, 1, 0] and [0, 0, 0],
respectively. (The functions described by order [0, 0, 0] are the
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Fig. 1. Magnitude of the current on a 1λ × 1λ square plate as induced by a normally incident plane-wave with Hy = 1 A/m. The x (co-polar) and y
(cross-polar) components of the current at left and center are obtained using a [2, 1, 0] base with singular basis functions in 16 of the 25 cells of the plate to
model only the first singularity exponent ν = 1/2. The total number of DoF is 456 (36 singular + 420 polynomial). The results are obtained with Galerkin
testing, and the condition number of the resulting MoM matrix is 1,400. The figure at right shows the benchmark solution [20] for the cross-polarized
component. The co-polarized benchmark solution is indistinguishable from the results shown at left. Both the x and y components are unbounded (when
tangent to an edge) at the plate edges even if the rendering of the figure does not show this.

Fig. 2. Normalized magnitude of the current x-component along the x = 0
(at left) and y = 0 (at right) cut, for the square plate considered in Fig. 1,
obtained with zeroth-order polynomial subsets. Meixner basis functions are
used only on the cells that are on the border of the plate to get the solid-line
results.

Fig. 3. Normalized magnitude of the current x component along the x = 0
(at left) and y = 0 (at right) cut, for the square plate considered in Fig. 1,
obtained by p-refinement of the p=0 base.

classical rooftop basis and testing functions.) To run the code
without the singular terms we used a denser mesh made of 169
equal-size square cells (312 DoF). The results in this figure
are not as smooth as might be desired, but they illustrate that
similar accuracy is obtained in the currents with only 76 DoF
(a matrix with 1/4 the order) due to the singular functions.

If we implement p-refinement we can improve the accuracy
with far less than the 312 DoF required by the 13 × 13 cell
mesh used to produce Fig. 2. Fig. 3 shows results for the same

Fig. 4. Normalized magnitude of the current x component along the x = 0
cut for the same test case of Fig. 1 obtained by using bases of different order
in the various cells.

cuts considered in Fig. 2 obtained with bases of different order
in the various cells. In particular, we always use the p = 0
base on the nine inner cells and increase the base order only
on the 16 outer cells. The “background” results obtained with
the purely polynomial p=0 base are shown by dashed-lines
(40 DoF). The dotted-line results are obtained after increasing
the order in the outer cells to p=1 (120 DoF). (For the edges
shared with an internal cell we introduce only the p=0 edge-
based functions and discard the p=1 ones so not to spoil the
zeroth-order representation used on the inner cells.) Finally,
the solid-line results (156 DoF) are obtained by adding the
Meixner set to the external cells (an extra 36 singular basis
functions), thereby using the [1, 1, 0] base on these cells only.
(Note that for the excitation considered it would be enough
to add the singular functions only on the two edges where
the singularity is excited, and then add only 18 instead of
36 singular functions. In doing so, the results for the induced
current remain essentially the same, but 138 DoF would be
used in all, with further savings.) Had we used the first-order
(p=1) polynomial subset base on all the 25 cells of the mesh
plus the Meixner set we would have used 216 DoF. However,
this is still less than the 312 DoF used to produce Fig. 2. In
spite of the fact that in Fig. 3 the order of the base on the
inner cells does not change, the overall solution is improved
just by increasing the order of the base used on the outer cells.
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Notice also that p-refinement does not spoil the continuity of
the normal component of the current across adjacent cells, as
can be clearly seen from Fig. 3 at right.

To illustrate a hierarchical increase of the basis order, Fig. 4
shows the results obtained for a 5× 5 mesh using a p=0 basis
on the central cell, a p=1 basis on the inner ring of cells, and
a [2, 2, 2] basis on the the edge cells. In this case the number
of DoFs is 540 instead of the 652 required by a uniform use
of the p = 2 order on all 25 cells.

The results that follow employ expansions with identical
polynomial order on all cells (with no p-refinement).

It is of importance to stress that in the absence of singular
basis functions (the Meixner subset) the quality of the plate
currents is not improved by increasing the order of the
polynomial subset. In fact, the current obtained using purely
polynomial basis functions shows non-physical oscillations
near the singular edges with a pseudo frequency that increases
as the order of the polynomial base grows (Fig. 5 at top left).
On the contrary (Fig. 5 at top-right), by adding even only one
singular basis function these oscillations disappear. In addition,
the continuity of the x-component of the current increasingly
improves with the growth of the basis order, despite the fact
that divergence-conforming basis functions do not enforce this
(expected) tangential continuity across cell borders. Recall that
divergence-conforming functions merely force the continuity
of the current component normal to the border in common to
two adjacent cells, as shown in the figures at bottom of Fig.
5. In fact, the “non-physical” ripples occurring in the absence
of singular basis functions can be used in a p-refinement
strategy to identify the cells where it is necessary to refine
the representation by adding singular functions.

It is noteworthy that by adding only one (dominant) singular
exponent the results obtained with a very coarse mesh appear
to outperform commercial codes based on low-order polyno-
mial basis sets, which can require thousands of elements and
the solution of very large systems (more than a thousand DoF)
even when dealing with scatterers of moderate size (see for
example Fig. 5 at right and its caption). An exact solution for
this test case does not exist, although our results compare very
well with those reported in [10], [20], [21], [22].

Fig. 6 shows the RCS of this plate versus the DoF obtained
with three different basis sets. Clearly the convergence is
dramatically improved just by adding one singularity (the
dominant one) in the numerical model. The addition of the
dominant singular term for ν = 1/2 permits one to obtain
good results even with a background representation based on
rooftop basis functions.

Table V reports the Condition Number (CN) of the MoM
system matrix and the total CPU time obtained using various
combinations of polynomial and singular basis subsets for a
plate modeled with 25 cells (without p-refinement). The total
(matrix fill-in plus solution) CPU time is normalized to the
CPU time spent when using the [1,1,1] base. The system so-
lution time is negligible with respect to the matrix fill-in time.
When in use, the singular basis functions are assigned to the 16
cells along the four plate edges. (In a general structure meshed
with a high number of cells, where most cells are not located
at an edge, the number of singular DoF is typically lower

Fig. 5. Normalized magnitude of the current x-component along the x = 0
(at top) and y = 0 (at bottom) cut, for the same test case of Fig. 1. The results
on the left-hand side are obtained with purely polynomial bases. On the right-
hand side the results obtained with singular bases are compared against those
obtained by a commercial code run by using about 20,000 triangular cells.
With singular bases for p ≥ 1 the current behavior along the y = 0 cut (at
bottom right) does not change appreciably.

Fig. 6. RCS for the same square plate considered in Fig. 1.

than the number of polynomial DoF. For this 25-cell plate,
the singular DoF sometimes exceed the polynomial DoF.) In
Table V, for purely polynomial bases, the CN grows slowly
with the order. This is due to the fact that the hierarchical
polynomial basis functions are linearly independent (in fact,
for this rectangular mesh they are actually orthogonal). The
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TABLE V
MATRIX CONDITION NUMBER, CPU TIME, AND NUMBER

OF DOF FOR THE SQUARE PLATE TEST PROBLEM

Base Order CN CN CPU Time
p s m after pre-conditioning (Normalized)
0 0 0 12 12 0.2
0 1 0 34 25 0.3
0 1 1 83 155 0.6
0 1 2 212 275 0.8
0 2 0 496 69 0.4
0 2 1 8.3× 103 2.3× 103 0.8
0 2 2 5.0× 104 1.4× 104 1.4

1 0 0 330 363 0.4
1 1 0 690 407 0.7
1 1 1 1.8× 103 1.3× 103 1.0
1 1 2 2.9× 103 1.5× 103 1.4
1 2 0 8.0× 103 820 0.8
1 2 1 7.0× 104 9.4× 103 1.4
1 2 2 1.8× 105 2.1× 104 2.1

2 0 0 685 1.3× 103 1.3
2 1 0 1.3× 103 1.5× 103 1.8
2 1 1 3.4× 103 2.9× 103 2.3
2 1 2 6.0× 103 3.5× 103 2.9
2 2 0 1.5× 104 2.0× 103 2.1
2 2 1 1.9× 105 1.6× 104 2.9
2 2 2 4.6× 105 3.6× 104 4.1

Square plate of size 1λ × 1λ meshed with 5 × 5 equal square cells.
Singular basis and testing functions are used only on the cells that are
on the border of the plate. The number of unknowns used by the [p, s,m]
order base is equal to

DoF = 10(p+ 1)(5p+ 4) + s(36 + 40m)

The MoM system matrix Condition Numbers (CN) obtained with and
without diagonal preconditioning are reported. The last column reports
the total (matrix fill-in plus solution) CPU time normalized to the CPU
time spent when using the [1,1,1] base.

CN increases faster when adding the Meixner subset. This
suggests that the linear independence of the singular basis
functions can be improved, and motivates additional research
efforts. A noticeable exception to this trend is observed for
bases of order [0, 1,m] because in that case the Meixner
basis functions are orthogonal to the zeroth-order polynomial
functions. Except for this case, we do not recommend using
bases with an order s > p+1. (For s fractional exponents, the
Meixner functions contain polynomial terms of order s − 1,
which exceed the background polynomial order.)

Fig. 7 provides CN and run-time data for the purely
polynomial bases of order [p, 0, 0], and singular bases of
order [p, 1, 1] and [p, 2, 2]. The CNs shown in the figure
are obtained after calculating the MoM integrals with high
precision. We have observed that lower precision integration,
while usually yielding an acceptable solution for the induced
current, sometimes produces unreliable CNs. In Fig. 7, the CN
for the [p, p, p] bases roughly grows as CN=30 (DoF/100)4.
The CPU time also grows roughly as p to the fourth power
(Fig. 7 at right).

Fig. 7. The square-plate test case. The figure at left shows in logarithmic
scale the Condition Number (computed after simple diagonal scaling) versus
the number of DoF. The figure at right shows the normalized CPU time versus
the polynomial order p obtained with purely polynomial bases of order p
(solid line), singular bases of order [p, 1, 1] (dashed-line), and the [p, 2, 2]
base (dotted-line). The polynomial subset order is distinguished by different
markers: a circle for p=0, a star for p=1, a diamond for p=2, a square for
p = 3, and a six-pointed star for p = 4. The CPU times are normalized with
respect to the time spent in solving the problem with the [1,1,1] order base
(red star marker).

B. Results for Scattering from a Circular Disk

A circular, perfectly conducting disk is one of only a
few three-dimensional geometries amenable to exact electro-
magnetic (EM) analysis [19]. As such, the disk offers the
potential to serve as a benchmark for validating EM modeling
software, and specifically for studying the performance of
special numerical techniques for accurately modeling edge
singularities. A disk of radius a can be discretized by (curved)
quadrilateral cells.

Fig. 8 shows the normalized magnitude of the co-polarized
current component induced on disk with ka = 2π (at left) and
ka = 10 (at right) by a normally incident plane wave with
unity magnitude H-field, for two cuts through the disk center
along the y and x-axis. The results, compared with the exact
solution, are obtained with a zeroth order pure polynomial
basis subset (roof top basis functions) augmented with singular
basis functions that model only the first (dominant) singular
coefficient ν = 1/2 (that is, by using the singular functions of
Table I for p = 0, s = 1, m = 0). This figure clearly shows
that acceptable results are obtainable with a low-order basis
by including just the functions that model the first dominant
singularity.

Fig. 9 shows the 2-norm error in the bistatic RCS of the disk
with ka = 2π for a normally-incident wave, for a series of
meshes and three sets of basis functions, two of which employ
singular functions in the edge cells. The 2-norm error is
measured every 30 degrees in θ and φ. An order of magnitude
improvement in accuracy is observed when the singular basis
functions are employed.

V. CONCLUSION

Hierarchical vector basis functions are proposed for model-
ing edge singularities in quadrilateral cells. The functions are
described in detail, and results for perfectly conducting square
plates and circular disks are used to illustrate the improved
accuracy and efficiency of the bases. The increase in matrix
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Fig. 8. The figures at left show the co-polarized current induced on a disk
with ka = 2π by a normally incident plane wave with unity magnitude H-
field. The numerical result incorporating singular basis functions in the edge
cells for a 192-cell mesh is shown for cuts through the disk center along the
co-polarized (at top) and cross-polarized (at bottom) axes. The figures at right
show the analogous current induced on a disk with ka = 10 by a normally
incident plane wave, for a 336-cell mesh.

Fig. 9. 2-norm error in the bistatic RCS of the disk with ka = 2π for a
normally-incident wave, for a series of meshes employing bases with and
without singular functions in the edge cells. The 2-norm error is measured
every 30 degrees in θ and φ.

condition number resulting from the use of singular functions
is also reported.
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