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Abstract 

Geared Rotary Actuators are mechanical devices wildly used 

in the aerospace field to provide controlled motion to 

secondary flight control surfaces. Their use ranges from their 

application as powered hinges, when directly supporting the 

aerodynamic load forces in addition to the surface hinge 

moment, to actuators in linked mechanism where they provide 

the actuation torque and the aerodynamic load reaction is 

delegated to other load bearing equipment. In almost all cases, 

the GRAs are organized along the leading or trailing edge and 

are connected to each other via shafts and joints transferring 

the Power Drive Unit torque to the GRAs.  

From a mechanical stand point, the GRAs can be classified as 

epicyclical gear reducer and their internal mechanical 

arrangement can be wildly varied however the current 

industry state of the art focuses on two types.  

This paper will describe their configuration, the governing 

equations, and the mathematical model that can be used to 

characterize the GRAs. The focus will be on the speed ratio 

calculation, the efficiency of the unit as function of the single 

geared meshing efficiency, the sources of drag and the torque 

output capability. 

 

Type 1 GRA Configuration 

Type 1 geared rotary actuators (GRA T1) are mechanical 

assemblies performing speed reduction and torque 

amplification from the input shaft to the actuator output and 

providing reaction to the control surface loads.  With 

reference to Figure 1, the  actuator accepts input rotation and 

torque from the driveline at its input shaft (I). Speed reduction 

is obtained by means of a compound carrierless planetary 

gearset. 

 

Figure 1: 3D section of a Type 1 geared rotary actuator 

The compound planetary gear arrangement differs from a 

conventional epicyclic gear reducer by eliminating the carrier 

assembly for planetary gears. This is made possible by 

balancing the tangential teeth forces on the planetary pinions 

at the ring gear meshes.  The compound planetary gearset 

contains a sun gear (1) receiving the input torque from the 

input shaft (I), a ring gear (4) providing the output torque to 

the driven element (O), two stationary ring gears (5) 

symmetrically placed at the two sides of the output ring gear 

(4).  The power flow from the input to the output sun gears 

takes place through multiple planet gears meshing with the 

sun gears.  Each planet gear consists of three pinions: the 

outer end pinion gears (3) are identical, as are the two fixed 

outer ring gears (5).  For each planet gear the tooth load at the 

center mesh is reacted by the two identical forces at the fixed 

meshes.  A full complement of planetary gears is used to 

distribute the load over a large number of gear teeth which, in 

addition to minimizing the teeth stresses, ensures more even 

load distribution and increases the actuator stiffness. 

The output element of the rotary actuator is radially supported 

by the fixed housing (F); the radial support occurs along two 

parallel circular surfaces, symmetrically located at the two 

sides of the actuator output.  Such circular support provides 

the necessary radial reaction force to balance the force acting 

on the actuator output, while the moment of the external force 

about the actuator axis is balanced by the torque provided by 

the actuator output gear.  As a result, the actuator behaves as a 

powered hinge. 

The design of the rotary actuator is such that it can react all 

torque and shear loads transmitted through the actual hinge 

created by the actuator. The hinge (shear) reaction force is 

isolated from the actuator gear teeth by spigotting the fixed 

ring gears into plain, or roller, bearing recesses in the 

moveable output ring gears.  Because the fixed ring gears are 

earthed (supported by the structure) all shear loads on the 

output are transmitted, via the bearings and the fixed rings, to 

the aircraft structure.   

 

TYPE 2 GRA CONFIGURATION 

Type 2 geared rotary actuators (GRA T2) differ from GRA T1 

by the fact that their output is not a ring gear but the shaft (O) 

of Figure 2 and often the output shaft is hollowed allowing 

the input shaft (I) to pass through the entire reducer.  With 

reference to Figure 2 the  actuator accepts input rotation and 

torque from the driveline at its input shaft (I). Speed reduction 

is obtained by means of two integrated epicyclic reducers in 

series. 
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Figure 2: Section of a Type 2 geared rotary actuator 

 

The first epicyclic stage, composed by the gears from (1) to 

(3) and as a planet carrier the internal gear (8), performs the 

first speed reduction of the component. This stage gear’s 

configuration is similar to the member’s arrangement viewed 

in the standard epicyclics reducers type I and II. As in the 

more common reducers, the presence of multiple planets 

allows for a load distribution between the gears permitting 

greater power transfer in the same form factor when compared 

with an ordinary gear set. Because the planets are supported 

by the gear (8) misalignment during operation and 

manufacturing tolerances require a small downgrade of the 

maximum load bearable by the gears.  

 The compound carrierless second stage is composed by the 

internal to external gear (4) and (5), serving as the input 

member to the planet assembly constituted by the gears (6) 

and (7), the supporting gear (9) and the double output gears 

(8). The compound planetary gear arrangement differs from a 

conventional epicyclic gear reducer by eliminating the carrier 

assembly for planetary gears. This is made possible by 

balancing the tangential teeth forces on the planetary pinions 

at the ring gear meshes.  The compound planetary gearset 

contains a sun gear (5) receiving the input torque from the 

internal gear (4), the two ring gears (8) providing the output 

torque to the driven element (O) and one stationary ring gear 

(9) placed at the centre of the planets.  The power flow from 

the input to the output sun gears takes place through multiple 

planet gears meshing with the sun gears.  Each planet gear 

consists of three pinions: the outer end pinion gears (6) are 

identical, as are the two outer ring gears (8). For each planet 

the load acting on the two outer gears is reacted by the fixed 

gear (9)   

A full complement of planetary gears is used to distribute the 

load over a large number of gear teeth which, in addition to 

minimizing the teeth stresses, ensures more even load 

distribution and increases the actuator stiffness. 

 

GENERAL PROPERTIES 

As for epicyclic gear reducers, gears rotating about a fixed 

axis when observed from a static observer are called sun 

gears, while gears whose axis is not stationary are defined 

planets underlining their revolving motion around the sun 

gears.  The gears making up the rotary actuators are spur gears 

which are sized according to the module and the number of 

teeth.  An important feature of the teeth commonly used in the 

GRA planets is the rounded axial profile. This non-standard 

geometry accommodates the planets deformation due to the 

bending moment, thereby ensuring a more uniform load 

distribution along the teeth length that contributes to reduce 

localized stress.  It is also important to underline that most 

often the gears of a GRA are cut with a large correction 

increasing the root thickness permitting higher load transfer in 

gears with a limited number of teeth.  

The speed ratio between output and input of a GRA can be 

calculated by applying repeatedly the well known Willis 

equation used for ordinary epicyclic gear reducers 

𝑟𝑜 =
𝜔𝑛 − 𝜔𝑃

𝜔1 − 𝜔𝑃

 
1

 

To calculate the speed ratio of the GRA T1 two equivalent 

epicyclic reducers can be identified within a GRA.  The first 

equivalent epicyclic reducer is comprised of gears 1, 2, 4 of 

Figure 1; the second one is comprised of gears 1, 2, 3, 5 of 

Figure 1. These two equivalent epicyclic reducers have their 

planets carried by the same virtual carrier. When equation 

1and reduction techniques at [1] and [2] are applied to the two 

equivalent epicyclic reducers, the speed ratio r for the GRA is 

eventually obtained: 

𝑟 =

𝑧2𝑧5
𝑧3𝑧4

⁄ − 1
𝑧2𝑧5

𝑧1𝑧3
⁄ + 1

 
2

 

For GRA T2 the application of the Willis equation leads to the 

total speed ratio given by: 

𝑟 =
1

1 −
𝑧2𝑧4

𝑧1𝑧3

1+
𝑧6𝑧9
𝑧5𝑧7

1−
𝑧6𝑧9
𝑧7𝑧8

+
𝑧2𝑧4

𝑧1𝑧3

 
3

 

 

GRA inertia 

The rotational inertia of the GRA T1 can be computed from 

the different contributions of all its rotating components.  The 

masses and moments of inertia of the individual components 

can be computed from the CAD design of the actuator.  

However, as a first approximation, the inertia of each 

component can be estimated considering it as a cylinder with 

diameter equal to the pitch diameter and an uniformly 

distributed mass.  This leads to a slightly overestimated value 

of the inertia because it does not consider the design features 

typically introduced to reducer the component mass.   With 

this assumption, the inertia properties of input pinion gear are 

defined by the following equations: 

𝑚𝑠1 =
𝜌𝜋

4
𝑏1𝑑1

2 
4
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𝐼𝑠𝑖 =
1

8
𝑚𝑠1𝑑1

2 
5

 

𝑚𝑠2 =
𝜌𝜋

4
𝑏2𝑑2

2 
6

 

𝑚𝑠3 =
𝜌𝜋

2
𝑏3𝑑3

2 
7

 

𝐼𝑠𝑝 =
𝑛𝑠

8
(

𝑧1𝑧3

𝑧2𝑧5

)
2

(𝑚𝑠𝑙𝑑3
2 + 𝑚𝑠𝑐𝑑2

2) 
8

 

Because the motion of the planets is a composition of a 

rotation about their own axis and a rotation about the axis of 

the input sun gear, the inertia of the masses of the planets 

revolving about the GRA fixed axis must be duly taken into 

account.  The inertia of the planets carried in their motion by a 

virtual carrier is:   

𝐼𝑠𝑐 = (

𝑧1𝑧3

𝑧2𝑧5

1 +
𝑧1𝑧3

𝑧2𝑧5

)

2

𝑛𝑠(𝑚𝑠2 + 𝑚𝑠2) (
𝑑1 + 𝑑2

2
)

2

 

9

 

 

The last contribution to the global inertia of the GRA is given 

by the output element. This part of the GRA can actually have 

different shape and mass, depending on its mechanical 

interface with the driven element.  The following equations 

will thus provide an estimate of the moment of inertia of the 

output ring gear alone, without considering its flanges or other 

features that provide the interconnection with the driven 

element. The error introduced by this approximation is, 

however, very limited because the inertia of the output 

element is anyhow very little when reflected to the GRA input 

shaft because of the very high speed reduction ratio.    

𝑚𝑠4 =
𝜌𝜋

4
𝑏2((𝑑4 + 10𝑚1)2 − 𝑑4

2) 

 

10 

𝐼𝑠𝑜 =
1

8
𝑟2𝑚𝑠4((𝑑4 + 10𝑚1)2 + 𝑑4

2) 
11 

 

To moment of inertia of the entire GRA is then obtained by 

summing all the previously computed contributions of the 

different parts of the actuator:  

𝐼 = 𝐼𝑠𝑖+𝐼𝑠𝑝 + 𝐼𝑠𝑐 + 𝐼𝑠𝑜 12 

 

A similar procedure can be applied to calculate the inertia of 

the GRA T2. 

𝑚𝑔1 =
𝜌𝜋

4
𝑏1𝑑1

2 

 

13 

𝐼𝑔1 =
1

8
𝑚𝑔1𝑑1

2 
14 

𝑚𝑔2 =
𝜌𝜋

4
𝑏2𝑑2

2 
15 

𝐼𝑔2 =
1

8
𝑛𝑒𝑝 (

𝑧1

𝑧2

)
2

𝑚𝑔2𝑑2
2 

16 

𝑚𝑔3 =
𝜌𝜋

4
𝑏3𝑑3

2 
17 

𝐼𝑔3 =
1

8
𝑛𝑒𝑝 (

𝑧1

𝑧2

)
2

𝑚𝑔3𝑑3
2 

18 

 

Because the planets are carried in their epicyclic motion by 

the gear (8) the additional rotational inertia is determined via 

the following equation: 

𝐼𝑝 = 𝑛𝑒𝑝𝑟2(𝑚𝑔2 + 𝑚𝑔3) (
𝑑1 + 𝑑2

2
)

2

 
19 

The inertia of the epicyclic stage is thereby given by: 

 

𝐼𝑒𝑝 = 𝐼𝑔1 + 𝐼𝑔2 + 𝐼𝑔3 + 𝐼𝑒𝑝 20 

As for the gears (4) and (5) assumption must be made 

regarding the geometry of the component. Following the 

guide lines described in the reference document a) the external 

diameter of the ring gear (4) is assumed equal to the pitch 

diameter increased by ten times the normal modulus of the 

gear. Regarding the internal diameter of the hollowed gear (5), 

this parameter is assumed equal to the pitch diameter 

decreased by ten times the normal modulus of the gear. The 

hollow disk connecting the gears (4) and (5) has the inner and 

outer diameter already defined and we assume its thickness 

equal to five times the mean of the moduli of the gears (4) and 

(5).  

In order to determine the equivalent inertia at the input axis of 

the reducer it’s necessary to calculate the transmission ratio 

from the gear (1) to (4). Because of the epicyclic nature of the 

reducer the angular speed of the planet carrier (8) should be 

considered, but because the impact on the inertia is small, the 

transmission ratio is calculated as an ordinary gear train. 

By this assumptions the mass and inertia of the gears (4) and 

(5) plus the connecting disk is: 

𝑚𝑔4 =
𝜌𝜋

4
𝑏4((𝑑4 + 10𝑚2)2 − 𝑑4

2) 
21 

𝑚𝑔5 =
𝜌𝜋

4
𝑏5(𝑑5

2 − (𝑑5 − 10𝑚3)2) 
22 

𝑚𝑑45 =
5

8
𝜌𝜋(𝑚2 + 𝑚2)((𝑑4 + 10𝑚2)2

− (𝑑5 − 10𝑚3)2) 

23 

𝐼𝑔4 =
1

8
𝑚𝑔4((𝑑4 + 10𝑚2)2 + 𝑑4

2) 
24 

𝐼𝑔5 =
1

8
𝑚𝑔5(𝑑5

2 + (𝑑5 − 10𝑚3)2) 
25 

𝐼𝑑45 =
1

8
𝑚𝑑45((𝑑4 + 10𝑚2)2 + (𝑑5 − 10𝑚3)2) 

26 

𝐼45 = (
𝑧1𝑧3

𝑧2𝑧4

)
2

(𝐼𝑔4 + 𝐼𝑔5 + 𝐼𝑑45) 
27 
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The planets are composed of two identical lateral gears (6) 

and a central wheel (7), their contribution to the global 

actuator inertia is calculated via the following equations: 

𝑚𝑔6 =
𝜌𝜋

4
𝑏6𝑑6

2 28 

𝑚𝑔7 =
𝜌𝜋

4
𝑏7𝑑7

2
 

29 

𝐼𝑔6 =
1

8
𝑚𝑔6𝑑6

2
 

30 

𝐼𝑔7 =
1

8
𝑚𝑔7𝑑7

2
 

31 

𝐼𝑐𝑝 = 𝑛𝑐𝑝 (
𝑧1𝑧3𝑧5

2𝑧2𝑧4𝑧6
)

2

((2𝐼𝑔6 + 𝐼𝑔7) +

1

(1+
𝑧5
𝑧6

)
2 (2𝑚𝑔6 + 𝑚𝑔7) (

𝑑8−𝑑7

2
)

2

)  

32 

The output gear assembly, composed by the double gear (8) 

has the following inertia properties: 

𝑚𝑔8 =
𝜌𝜋

4
𝑏8((𝑑8 + 10𝑚3)2 − 𝑑8

2) 

 

33 

𝑚𝑑8 =
5𝜌𝜋

4
𝑚3(𝑑8 + 10𝑚3)2 

 

34 

𝐼𝑔8 =
1

8
𝑟2(𝑚𝑔8((𝑑8 + 10𝑚3)2 + 𝑑8

2)

+ 𝑚𝑑8(𝑑8 + 10𝑚3)2) 

35 

 

Stiffness and backlash 

For both configuration, when the input shaft of a GRA is held 

fixed and a load torque is applied at the GRA output in both 

directions, the angular rotation of the output versus the 

applied load torque normally has the shape shown in Figure 

3.  The stiffness is defined by the slope of the curve when the 

load torque is above a low threshold, typically 5% of the rated 

load.  The backlash is defined by the length of the segment on 

the x-axis determined by the intersections of the straight lines 

tangent to the curve for loads above threshold with the x-axis. 

 

Figure 3: Typical curve of angular deflection versus load 

torque for a geared rotary actuator 

Stiffness and backlash of a GRA depend on its specific design 

characteristics and can be determined once the detailed design 

of the actuator is finalised.  However, the following values for 

backlash and stiffness referred to the GRA output can be used 

as a reference as long as the actual values are not known: 

Angular backlash θb = 0.08 - 0.15° 

Torsional stiffness: kt = (150 - 250)Tnom [Nm/rad] 

where Tnom is the rated output torque for the GRA, in Nm, and 

kt the torsional stiffness in Nm/rad referred to the GRA 

output. 

 

Power transmission 

The mechanical power is ideally transmitted by the 

component gears from input to output without any internal 

loss.  For this ideal condition, the ratio between output and 

input torques is inversely proportional to the speed ratio r 

defined by equations 2 and 3. 

𝑇4

𝑇1

= −
𝜔1

𝜔4

= −
1

𝑟
= −

𝑧2𝑧5
𝑧3𝑧4

⁄ − 1
𝑧2𝑧5

𝑧1𝑧3
⁄ + 1

 
36 

𝑇8

𝑇1

= −
𝜔1

𝜔8

= −
1

𝑟
= − (1 −

𝑧2𝑧4

𝑧1𝑧3

1 +
𝑧6𝑧9

𝑧5𝑧7

1 −
𝑧6𝑧9

𝑧7𝑧8

+
𝑧2𝑧4

𝑧1𝑧3

) 

37 

The geared rotary actuators are mainly designed to provide a 

large speed reduction ratio with a compact assembly having a 

large torque-to-weight ratio.  This characteristics, however, is 

obtained at the expense of a reduction of the actuator 

efficiency; the mechanical power losses must hence be taken 

into account for a fairly accurate model of this component. 

 

Power losses 

When mechanical power is transmitted through the gears, 

some mechanical power is lost and converted into heat.  Three 

types of mechanical power losses can be identified: 

- Mechanical power losses proportional to the output 

torque 

- Mechanical power losses originated by the gears rotation, 

that are a function of the gears angular speed 

- Parasitic power losses that are not dependent on load or 

speed, but are generated by a constant drag torque 

which is anyhow needed to cause a slow speed rotation 

of the gears in a no-load condition.  These are normally 

referred to as tare losses. 

The above mentioned power losses are addressed in the 

following paragraphs. 

 

Load dependent mechanical losses 

Load dependent mechanical losses are calculated for each 

gear meshing as in [3], [4] and [5].  The mechanical efficiency 

of a gear mashing between two spur gears can be calculated 

Angular 

deflection 

Load 

torque 

Backlash 

Stiffness 
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applying equation 38. Where the plus sign must be used if the 

gears are both external and the minus shall be used if the j-th 

gear is internal. 

𝜂𝑖,𝑗 =  (1 − 𝑘𝑓 (
1

𝑧𝑖

±
1

𝑧𝑗

)) 
38 

 

By imposing the torque and power balance for the GRA T1 it 

is possible to obtain the equations defining the direct  (η1,4) 

and reverse (η4,1)  efficiencies of the geared rotary actuator: 

𝜂1,4 =

𝜂1,2𝜂3,5 (1 −
1

1+
𝑧2𝑧5
𝑧1𝑧3

) +
1

1+
𝑧2𝑧5
𝑧1𝑧3

𝜂2,4𝜂3,5 (1 −
1

𝑧2𝑧5
𝑧3𝑧4

−1
) +

1
𝑧2𝑧5
𝑧3𝑧4

−1

 

39 

𝜂4,1 =

(1 −
1

𝑧2𝑧5
𝑧3𝑧4

−1
) 𝜂2,1 +

1
𝑧2𝑧5
𝑧3𝑧4

−1
𝜂2,1𝜂4,2𝜂5,3

(1 −
1

𝑧2𝑧5
𝑧1𝑧3

+1
) 𝜂4,2 +

1
𝑧2𝑧5
𝑧1𝑧3

+1
𝜂2,1𝜂4,2𝜂5,3

 

40 

Similarly for GRA T2 

𝜂1,4 =  (1 − 𝑘𝑓 (
1

𝑧1

+
1

𝑧2

)) (1 − 𝑘𝑓 (
1

𝑧3

−
1

𝑧4

)) 
41 

𝜂4,1 = 0.995𝜂1,4 42 

𝜂6,8 =

𝜂5,6𝜂6,8 (1 −
1

1+
𝑧7𝑧8
𝑧5𝑧6

) +
1

1+
𝑧7𝑧8
𝑧5𝑧6

𝜂7,9𝜂6,8 (1 −
1

𝑧7𝑧8
𝑧6𝑧9

−1
) +

1
𝑧7𝑧8
𝑧6𝑧9

−1

 

43 

𝜂8,6 = 0.995𝜂6,8 44 

𝜂𝑑 = 𝜂1,4𝜂6,8 45 

𝜂𝑟 = 𝜂4,1𝜂8,6 46 

The use of the reducing coefficient 0.995 is a standard 

practice to simplify the reverse efficiency calculation and to 

account for the lower reverse efficiency.. 

 

Speed dependent mechanical losses 

Speed dependent mechanical losses are generated by two 

factors: windage losses developed by the viscosity of fluid 

entrained by the rotating gears, and micro-impacts occurring 

at the initial contact of the meshing teeth as the gears rotate.   

These losses are a non-linear function of the gears angular 

speed; however, when the actuator runs at the rated speed, the 

losses are about proportional to the square of the speed and 

their end effect is to create an opposing torque TS reflected to 

the pinion axis equal to: 

𝑇𝑠 =  𝑐𝑠𝜔1
2 47 

The coefficient cs in the equation above takes into account 

windage and impact losses and is a function of several factors: 

gears size, lubricant type, gears profiles quality, temperature.   

The speed losses are firstly determined for each rotating gear 

and then the global speed loss coefficient of the reducer is 

calculated as function of the speed ratios between gears.  For 

the GRA T1 the sun gears 1 and 4 the speed loss coefficient is 

calculated as follows: 

𝑐𝑠 𝑖 = 𝑘𝑠𝑑𝑖
2 48 

For the planets, the speed loss coefficient is calculated from 

the following equation: 

𝑐𝑠 𝑠 = 𝑘𝑠𝑛𝑠(𝑑2
2 + 2𝑑3

2) 49 

In order to correlate the speed loss coefficient of each gear to 

the speed of the input shaft, the relevant speed ratios must be 

utilized. The following expression calculates the global speed 

loss coefficient of the reducer: 

𝑐𝑠 = 𝑐𝑠1 + 𝑟3𝑐𝑠 4 + (
2𝑧1

𝑧2 + 𝑧3

)
3

𝑐𝑠 𝑠 
50 

where 𝑐𝑠 is the speed loss coefficient for complete reducer. 

For the GRA T2 

𝑐𝑠 𝑔1 = 𝑘𝑠𝑑1
2 51 

For the gear (2) and (3): 

𝑐𝑠 𝑔2 = (
𝑧1

𝑧2

)
3

𝑘𝑠𝑛𝑒𝑝𝑑2
2 

52 

𝑐𝑠 𝑔3 = (
𝑧1

𝑧2

)
3

𝑘𝑠𝑛𝑒𝑝𝑑3
2 

53 

For the gear (4) and (5): 

𝑐𝑠 𝑔4 = (
𝑧1𝑧3

𝑧2𝑧4

)
3

𝑘𝑠𝑑4
2 

54 

𝑐𝑠 𝑔5 = (
𝑧1𝑧3

𝑧2𝑧4

)
3

𝑘𝑠𝑑5
2 

55 

For the planets composed by the gear (6) and (7): 

 

𝑐𝑠 𝑔67 = (
2𝑧3

𝑧6 + 𝑧7

)
3

𝑘𝑠𝑛𝑐(2𝑑6
2 + 𝑑7

2) 
56 

And for the gear (8): 

 

𝑐𝑠 𝑔8 = 2|𝑟|3𝑘𝑠𝑑8
2 57 

The global speed loss coefficient of the reducer is: 

𝑐𝑠 = 𝑐𝑠 𝑔1 + 𝑐𝑠 𝑔2 + 𝑐𝑠 𝑔3 + 𝑐𝑠 𝑔4 + 𝑐𝑠 𝑔5 + 𝑐𝑠 𝑔67

+ 𝑐𝑠 𝑔8 

58 

 

Constant mechanical losses 

The constant mechanical losses for the GRA that do not 

depend on either load or speed (tare losses) are originated 

from several sources.  A specific contribution is given by the 

seals used to contain the lubricant inside the actuator.  The 

tare loss created by the seals in the GRA T1 can be estimated 
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from the following equation:  

𝑇𝑠𝑒𝑎𝑙 = 𝐾𝑠1𝑑𝑚 𝑑
2.25/1000 59 

where, 𝐾𝑠1, is a seal drag coefficient that is normally in the 

range from 0.015 to 0.020. 

The tare loss of the ith gear can be estimated from the equation 

60: 

𝑇𝑇𝐿 𝑖 = 𝑘𝑇𝐿𝑑𝑖 60 

Then, the global tare loss reflected to the actuator input shaft 

is obtained from the following equation: 

𝑇𝑇𝐿 = 𝑇𝑇𝐿 𝑠𝑖 +
2𝑧1

𝑧2 + 𝑧3

𝑇𝑇𝐿 𝑠 + 𝑟(𝑇𝑇𝐿 𝑠𝑜 + 𝑇𝑠𝑒𝑎𝑙) 
61 

 

And for the GRA T2, the tare loss torque of the input pinion 

is: 

𝑇𝑇𝐿 𝑔1 = 𝑘𝑇𝐿𝑑1 62 

For the gear (2) and (3): 

𝑇𝑇𝐿 𝑔2 =
𝑧1

𝑧2

𝑛𝑒𝑝𝑘𝑇𝐿𝑑2 
63 

𝑇𝑇𝐿 𝑔3 =
𝑧1

𝑧2

𝑛𝑒𝑝𝑘𝑇𝐿𝑑3 
64 

For the gear (4) and (5): 

 

𝑇𝑇𝐿 𝑔4 =
𝑧1𝑧3

𝑧2𝑧4

𝑘𝑇𝐿𝑑4 
65 

𝑇𝑇𝐿 𝑔5 =
𝑧1𝑧3

𝑧2𝑧4

𝑘𝑇𝐿𝑑5 
66 

For the planets composed by the gear (6) and (7): 

 

𝑇𝑇𝐿 𝑔67 =
2𝑧3

𝑧6 + 𝑧7

𝑘𝑠𝑛𝑐(2𝑑6 + 𝑑7) 
67 

And for the gear (8): 

 

𝑇𝑇𝐿 𝑔8 = 2|𝑟|𝑘𝑠𝑑8 68 

The tare loss torque of the GRA T2 is: 

 

𝑇𝑇𝐿 = 𝑇𝑇𝐿 𝑔1 + 𝑇𝑇𝐿 𝑔2 + 𝑇𝑇𝐿 𝑔3 + 𝑇𝑇𝐿 𝑔4 + 𝑇𝑇𝐿 𝑔5

+ 𝑇𝑇𝐿 𝑔67 + 𝑇𝑇𝐿 𝑔8 

69 

 

Torque ratio 

The ratio between output and input torques for the ideal case 

of no mechanical losses, and hence of efficiency equal to 1, is 

given by equations 36 and 37. When all power losses 

occurring in a gear drive are taken into account, the 

relationship between the torques at input and output shafts and 

the relevant overall efficiencies of the geared rotary actuators 

is given in the following paragraphs. The equation are valid 

for both GRAs architectures. 

 

Direct power flow 

For the prevailing condition of power flow from input to 

output sun gears, the driving torque Tin necessary at the input 

shaft to balance a load torque Tout  applied to the output 

element under steady state (constant speed) condition, is: 

𝑇𝑖𝑛 =
𝑟𝑇𝑜𝑢𝑡

𝜂𝑑

+ 𝑐𝑠𝜔1
2 + 𝑇𝑇𝐿  

70 

The overall direct efficiency of the reducer is therefore: 

𝜂𝑑−𝐺𝑅𝐴 =
𝑟𝑇𝑜𝑢𝑡

𝑟𝑇𝑜𝑢𝑡

𝜂𝑑
+ 𝑐𝑠𝜔1

2 + 𝑇𝑇𝐿

 
71 

 

Reverse power flow 

When an aiding load condition occurs in the geared rotary 

actuator and power flows backward from the output to the 

input, the torque Tin at the input shaft necessary to balance a 

driving torque Tout  applied to the output element under steady 

state (constant speed) condition, is: 

𝑇𝑖𝑛 = 𝑟𝑇𝑜𝑢𝑡𝜂𝑟 − 𝑐𝑠𝜔1
2 − 𝑇𝑇𝐿 72 

The resulting overall reverse efficiency of the gear drive is 

therefore: 

𝜂𝑟−𝐺𝑅𝐴 =
𝑟𝑇𝑜𝑢𝑡𝜂𝑟 − 𝑐𝑠𝜔1

2 − 𝑇𝑇𝐿

 𝑟𝑇𝑜𝑢𝑡

 
73 

 

Dynamic model 

The following paragraphs describe the governing equations of 

a geared rotary actuator for running and breakout conditions. 

 

Figure 4 shows the definition of the positive directions for 

torque and speed of the GRA input and output gears. 
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Figure 4: Dynamic model of a GRA 

The equations representative of GRA dynamics are written 

reflected to the axis of the input shaft (pinion sun gear).  The 

basic equation defining the gear stage dynamics is then: 

𝐼
𝑑𝜔𝑖𝑛

𝑑𝑡
= 𝑇𝑖𝑛 + 𝑟𝑇𝑜𝑢𝑡 − 𝑇𝐹𝑅 − 𝑇𝑇𝐿 − 𝑇𝑆 

74 

where I is the moment of inertia of the GRA reflected to the 

input shaft. 

The torques of the right hand side of 74 include the input and 

output torques Tin  and Tout, the torques function of the load 

TFR, the tare losses TTL and the speed losses TS.  A proper 

attention must be given to the load dependent power losses 

whose contribution was defined in paragraph 3.2.1 as a 

reduction of the efficiency for the power transmission.  The 

above torque balance equation 74 requires that load dependent 

power losses be introduced as a torque dissipating mechanical 

power, as for the speed dependent and tare losses.  An 

equivalent friction torque TFR reflected to the input axis is 

therefore defined with the following logic: 

If Toutωout < 0 (hence, the load torque is opposing the motion):  

𝑇𝐹𝑅 = 𝑟 [𝑇𝑜𝑢𝑡 (
1

𝜂𝑑

− 1) + 𝑇𝑏] sign(𝜔𝑜𝑢𝑡) 
75 

where ηd is the direct efficiency of the GRA and Tb is the 

portion of bearing drag torque.  Therefore, for this condition if 

the speed sign is positive, the load torque is negative and the 

equivalent friction torque is also negative, thereby creating 

dissipation of mechanical energy. 

If Toutωout > 0 (hence, the load torque is aiding the motion):  

𝑇𝐹𝑅 = −𝑟[𝑇𝑜𝑢𝑡(1 − 𝜂𝑟) + 𝑇𝑏]sign(𝜔𝑜𝑢𝑡) 76 

where ηr is the reverse efficiency.  Therefore, for this condition 

if the speed sign is positive, the load torque is also positive but 

the equivalent friction torque is negative, thereby creating 

dissipation of mechanical energy. 

After defining the equivalent friction torque taking into 

account the load dependent losses, the governing dynamic 

equation is: 

For the running condition: 

𝑇𝑖𝑛 + 𝑟𝑇𝑜𝑢𝑡 − 𝑇𝐹𝑅 − 𝑐𝑠𝜔𝑖𝑛|𝜔𝑖𝑛| − 𝑇𝑇𝐿sign(𝜔𝑖𝑛)

= 𝐼
𝑑𝜔𝑖𝑛

𝑑𝑡
 

77 

When the GRA is initially at rest, the condition necessary to 

break away and start moving is that the absolute value of the 

algebraic sum of external torques Tin and rTout is greater than 

the sum of the frictional and drag torques.  The following 

logic equations define the condition necessary for the GRA to 

start moving 

For the breakout condition: 

- If Tin + rTout  > 0 (hence, the sum of the external torques 

acts in the direction of generating a motion in the positive 

direction and a positive sign is then assigned to ωin and 

ωout; the frictional torque TFR is then computed with the 

applicable of 75 or 76) 

- If Tin + rTout  < 0 (hence, the sum of the external torques 

acts in the direction of generating a motion in the negative 

direction and a negative sign is then assigned to ωin and 

ωout; the frictional torque TFR is then computed with the 

applicable of 75 or 76) 

After having set the sign for ωin and ωout the condition for the 

GRA to start moving is given by: 

|𝑇𝑖𝑛 + 𝑟𝑇𝑜𝑢𝑡 − 𝑇𝐹𝑅 − 𝑐𝑠𝜔𝑖𝑛|𝜔𝑖𝑛| − 𝑇𝑇𝐿sign(𝜔𝑖𝑛)|
> 0 

78 

The remaining case to be addressed is to establish when a 

condition is reached for the running gears to stop.  The 

numerical integration of the differential equation 74 could in 

fact lead to a continuous small fluctuation of the GRA angular 

position around a mean value while the speed fluctuates from 

positive to negative, without this being an actual behaviour, 

but simply the result of the numerical solution of the 

differential equation.  An effective way to overcome this 

potential problem is to apply the reset speed integrator 

technique when the absolute value of the difference between 

the active torques and the static passive actions is less than the 

tare loss torque of the reducer. This technique avoids the 

continuous fluctuation of the speed value even if the 

acceleration value is different from zero.   

 

Design criteria - Minimum teeth number 

The number of teeth of a gear cannot go below a minimum 

value to ensure that the points of contact on the two mating 

teeth lie on the involute profiles and that no interference 

occurs.  The minimum number of teeth necessary to avoid 

work interference depends on several geometrical parameters 

of the gears but can generally be avoided utilizing corrected 

gears with teeth number greater than 11.  

 

Design criteria - Maximum number of planets 

The multiple planets of a geared rotary actuator allow a 

sharing of the transmitted torque among the planets, thereby 

allowing to reach a minimum size of the GRA.  Contrary to a 

conventional epicyclic gear reducer, the carrierless 

configuration of the GRA allows an almost equal sharing of 

the transmitted torque among the planets.  In general, a non-

uniform distribution factor equal to 1.1 is considered in the 

sizing of the GRA gears. 

It is impossible to fit an indiscriminate amount of planets in 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 1 (2018) pp. 167-174 

© Research India Publications.  http://www.ripublication.com 

174 

the GRA, the number being limited by the space available in 

the circumferential area separating input and output sun gears.  

In order to calculate the maximum number of planets, the 

angle corresponding to 1 revolution must be divided by the 

angle occupied by the outside circle of a planet.  As a result, 

the maximum number ns,max of planets is:  

𝑛𝑠,𝑚𝑎𝑥 = ⌊
𝜋

atan (
𝑧3+2

𝑧3+𝑧1
)

⌋ 

79 

 

Design criteria - Load carrying capability 

The determination of the load carrying capability of the GRA 

is a procedure based on the calculation of the maximum 

torque bearable by the output wheel. This value is then used 

as output torque to the reducer, having defined its value is 

now possible to determine the torque acting on each member 

of the geartrain.  

The ability of the geared rotary actuator components to 

withstand the static and fatigue loads must be computed by a 

detailed FEM stress analysis, which takes in due account the 

actual geometry of the gears.  Standard gear sizing equation 

can be used however, since the gears have large corrections 

and are rounded to account for their deformation, the result 

can only be approximate. 

 

CONCLUSIONS 

The theoretical framework for the analysis of state-of-the-art 

geared rotary actuator has been presented along with the 

equation structure to implement a dynamic simulation of the 

equipment. This research allowed to develop robust sizing 

procedure for the GRAs focussed on the system engineering 

needs rather than a more detailed oriented mechanical design. 

As such it’s main use is for preliminary sizing of rotary 

actuators. 

 

NOMENCLATURE 

- 𝑟𝑜 is the speed ratio of the equivalent ordinary speed 

reducer 

- 𝑟 is the speed ratio of the reducer 

- 𝜔𝑖 is the angular speed of the i-th gear 

- 𝜔𝑃  is the angular speed of the planet carrier 

- 𝑚𝑠𝑖 is the mass of the i-th sun gear 

- 𝜌 is density of the material 

- 𝑏𝑖 is the face width of the i-th gear 

- 𝑑𝑖 is the pitch diameter of the i-th gear 

- 𝐼𝑠𝑖  in the rotational inertia of the i-th sun gear 

- 𝑚𝑠𝑖 is the mass of the i-th planet gear 

- 𝑛𝑠 is the number of planet 

- 𝐼𝑠𝑝 in the moment of inertia of the planets reflected to 

the input pinion 

- 𝑚1 is the modulus of the wheel’s teeth 

- 𝜂𝑖,𝑗 is the direct efficiency of the gear meshing 

between the i-th gear and the j-th gear 

- csi are the speed loss coefficients for sun gears and 

planets 

- 𝑘𝑠 is the speed loss parameter 

- 𝑇𝑇𝐿 is the global tare loss of the reducer 

- 𝑇𝑇𝐿 𝑖 is the tare loss of the i-th gear 
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