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Prognostics of Onboard Electromechanical Actuators: 
a New Approach Based on Spectral Analysis Techniques 

 
 

D. Belmonte, M. D. L. Dalla Vedova, P. Maggiore 
 
 
Abstract – In the last years, the layout of servomechanisms used in the aeronautical field to 
actuate the flight controls has changed radically and, nowadays electromechanical actuators 
(EMAs) are increasingly replacing the older hydraulic powered actuator types. The definition of 
special monitoring procedures, based on the analysis of the system response and aiming to 
evaluate the evolution of faults, represents an important task of the modern system engineering 
taking into account that onboard actuators are typically safety critical items. The present paper 
proposes a new prognostic procedure centered on the characterization of the state of health of an 
EMA used in aircraft primary flight controls. This approach, based on the innovative use of a 
model-based fault detection and identification method (FDI), identifies the actuator actual state of 
wear of the actuator analyzing proper system operational parameters, able to put in evidence the 
corresponding degradation path, by means of a numerical algorithm based on spectral analysis 
techniques. The proposed FDI algorithm has been tested in case of EMA affected by two 
progressive failures (rotor static eccentricity and stator phase turn-to-turn short-circuit), showing 
an adequate robustness and a suitable ability to early identify EMA malfunctions with low risk of 
false alarms or missed failures. Copyright © 2018 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
 
Keywords: BLDC Motor, Electromechanical Actuator, Prognostics, Spectral Analysis 
 

 

Nomenclature 
ACE Actuator control electronics 
ADC Analog-to-Digital Converter 
BLDC Brushless DC (motor) 
CEMF Counter-electromotive forces 
Com Position command 
CP Crossing point 
DC Direct current 
EM Electromagnetic 
EMA Electromechanical actuator 
FDI Fault Detection and Identification 
FFT Fast fourier transform 
g0 Nominal air gap (BLDC motor) 
g(ϑr) Variable radial air gap (BLDC motor) 
Ii Actual current of i-th stator phase (i = a, b, c) 
Ii RMS RMS value of i-th phase current 
Iref Reference current 
kei I-th CEMF constant (one for each branch) 
Kei I-th motor trapezoidal modulation function 
Ni % of not short-circuited turns of the i-th coil 
PID Proportional-integral-derivative 
PDE Power drive electronics 
PHM Prognositic and Health Management 
RMS Root mean square 
RSE, ζ Rotor Static Eccentricity (ζ = x0/g0) 
RUL Remaining useful life 
SC Short circuit – short coil 

ϑr Rotor angular position 
x0 Rotor misalignment 

I. Introduction 
In the last years electromechanical actuators (EMAs) 

have gradually replaced the actuators based on the 
hydraulic power in flight command actuation systems. 
EMAs are driven by electric motors that transfer 
rotational power to the control surfaces by means of 
gears. Compared to electrohydraulic systems, EMAs 
offer several advantages: in particular, overall system 
weight is reduced, maintenance is simplified and 
hydraulic fluids, which are often leaking, flammable or 
polluting, can be completely eliminated [1]. Since most 
of these actuators are safety critical, scheduled 
maintenance tasks and design redundancy are currently 
applied in order to guarantee that the system always 
operates in safe conditions. However, unexpected and 
extreme operative scenarios may lead to damage them 
and unscheduled maintenance becomes necessary, 
increasing risks and costs and generating possible impact 
on the mission. In this regard, according to [2], the 
reliability of modern systems is even more based on the 
proper support of diagnostics and prognostics. Both 
represent one of the most effective method to mitigate 
life cycle costs without losing reliability and guarantee, 
in compliance with regulations, the basis for an effective 
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health management of integrated components, 
subsystems and systems [3]. The practice of monitoring 
and analyzing the system response, through electrical 
signal acquisition, to evaluate the fault is the goal of the 
Prognositic and Health Management (PHM) [4].  

In general, as reported in [5], the prognostics purpose 
is to perform an early Fault Detection and Identification 
(FDI) and, then, to provide real-time data on the current 
status of the system and to calculate the Remaining 
Useful Life (RUL) before a fault occurs or a component 
becomes unable to perform its functions at a given level.  

In aerospace disciplines, prognostic strategies often 
apply to onboard equipment (typically non-linear 
mechatronic systems) and, by the monitoring of some 
functional parameters of the component involved, they 
have to predict progressive failures at an early stage and 
to determine the source of irregular behaviors.  

Literature proposes several FDI strategies, often 
conceived and implemented to specific problems or well-
defined technical fields [6]; as regards onboard actuation 
systems based upon EMAs, it is possible to mention the 
followingmain FDI techniques: 
 model-based techniques founded on the comparison 

between the real system and related monitoring model 
(e.g. deterministic methods based upon appropriate 
merit coefficients [7]-[8], genetic algorithms [9]-[10] 
or further probabilistic approaches such as the 
simulated annealing method [11]); 

 approaches based on the spectral analysis of well-
defined signals (i.e. related to peculiar behaviors of 
the system that allow a timely identification of these 
incipient failures) and, generally, performed by Fast 
Fourier Transforms (FFT) methods [12]-[13]; 

 hybrid approaches that exploit a suitable combination 
of the above methods in order to identify the health of 
the system [14]; 

 identification and classification algorithms based on 
artificial neural networks [15]-[17].  

The concepts reported in this paper are related to the 
design of a reliable and fast FDI routine focused on the 
diagnosis model-based approach and, in particular, on the 
parametric estimation task. It must be noted that PHM 
approaches can be applied on EMAs in a more efficient 
way (if compared to the case of the most known electro-
hydraulic actuators), because in EMAs additional sensors 
are not required. Indeed, prognostic strategies normally 
involve the monitoring of parameters that in EMAs are 
already provided by the same sensors of the system 
monitor and control functions.  

This study is focused on the development a prognostic 
technique able to identify failure precursors alerting that 
the consideredEMAis degrading (exhibiting anomalous 
behaviors). In particular, in this paper two progressive 
failures are considered: partial stator phase turn-to-turn 
Short Circuit (SC) and Rotor Static Eccentricity (RSE). 

The obtained results prove that this FDI method is 
suitably robust and it is also able to provide early and 
reliable identifications of any system malfunctions, 
reducing the risk of false alarms or undetected failures. 

Furthermore, it is able to operate on the base of data 
collected by sensors that already equip the actuation 
system or derived from the post-processing of the real 
raw measurements (virtual sensors). 

The authors adopted this strategy because, as it is 
known, the introduction of additional components in the 
EMA transducers network could generate the onset of 
integration problems such (e.g. redesign of the hardware 
layout, software modifications, compatibility problems, 
redundancies, reduction of overall reliability and increase 
in costs) [7] and, at the same time, it would make much 
more difficult the implementation of the aforementioned 
prognostic method on preexisting equipment. In addition, 
it must be noted that this integration between real and 
virtual sensors, combining and processing information 
from multiple sources, can increase the effectiveness and 
robustness of the FDI algorithm. From an operational 
point of view, this FDI approach can be easily integrated 
into a system control process periodically performed by 
maintenance personnel (e.g. in pre-flight checks). 

II. EMA Reference Model 
The actuation system considered by the authors is an 

electromechanical position servomechanism typically 
used in primary and secondary flight controls (Fig. 1). 

As suggested by [18], the aforesaid system can be 
studied subdividing it into six principal subsystems: 
 a control electronics unit (defined as ACE in Fig. 1) 

that closes the position feedback loop- comparing the 
command input with the actual position, elaborating 
corrective actions (by means of a PID control logic 
[19]-[20]), and regulating the reference current (Iref); 

 a Power Drive Electronics unit (PDE) regulating the 
three-phase electrical power; 

 a BLDC three-phase electrical motor; 
 a gearbox that adapts the motor outputs reducing its 

rotor angular speed (and, at the same time, increasing 
the supplied mechanical torque); 

 a nut-screw system that converts motor rotation into 
linear motion (ball screws or roller screws are 
normally used because, with respect to acme screws, 
they provide lower frictions and higher efficiencies); 

 a network of sensors (SENSORS) able to close the 
feedback chains (i.e. control rings acting on phase 
currents, motor angular speed and output position). 

 

 
 

Fig. 1. Electromechanical actuator (EMA) scheme 
 
In this work a Matlab-Simulink numerical model is 

used, in place of a physical test bench, to provide 
reference data to be analyzed by the prognostic FDI 



Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

[11
 

 

 

 

 

 

real EMA taking also in
motor 
phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [2
sig
electrical offset of the position transducers [
friction 

aeronauti
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 
areas
electric motor [11
screw actuators) 
regards the main failure 
as reported in [1
turn

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
11] and 

 

 
It consists of the following five

 an input block (named as Com in Fig. 2) generating 
the various position commands

 an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current

 a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 
motor and the
electronics: this block calculates the mechanical 
torque developed by the mot
voltage

 a block simulating the EMA mechanical behavior by 
a 2 d.o.f. 

 another input block (
allows simulating the aerodynamic forces (if any) 
act

This numerical model simulates the 
real EMA taking also in
motor 
phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [2
signals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [
friction 

Since the use of electromechanical actuators in the 
aeronauti
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 
areas: electronics (e.g. ACE and sensors) [27
electric motor [11
screw actuators) 
regards the main failure 
as reported in [1
turn-to

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
and it 

Fig. 2. 

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 
motor and the
electronics: this block calculates the mechanical 
torque developed by the mot
voltage
a block simulating the EMA mechanical behavior by 
a 2 d.o.f. 
another input block (
allows simulating the aerodynamic forces (if any) 
acting

This numerical model simulates the 
real EMA taking also in
motor degradation and 
phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [2

nals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [
friction acting on bearings, gears, hinges and screw

Since the use of electromechanical actuators in the 
aeronautical field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
electric motor [11
screw actuators) 
regards the main failure 
as reported in [1

to-turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
it is consistent with th

Fig. 2. Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 
motor and the
electronics: this block calculates the mechanical 
torque developed by the mot
voltage regulated by the three
a block simulating the EMA mechanical behavior by 
a 2 d.o.f. 
another input block (
allows simulating the aerodynamic forces (if any) 

ing on the co
This numerical model simulates the 

real EMA taking also in
degradation and 

phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [2

nals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [

acting on bearings, gears, hinges and screw

III.
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
electric motor [11
screw actuators) 
regards the main failure 
as reported in [1

turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
is consistent with th

Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 
motor and the
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 
a 2 d.o.f. dyna
another input block (
allows simulating the aerodynamic forces (if any) 

on the co
This numerical model simulates the 

real EMA taking also in
degradation and 

phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [2

nals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [

acting on bearings, gears, hinges and screw

III. 
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
electric motor [11
screw actuators) 
regards the main failure 
as reported in [1

turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
is consistent with th

Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 
motor and the 
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 

dynamic
another input block (
allows simulating the aerodynamic forces (if any) 

on the co
This numerical model simulates the 

real EMA taking also in
degradation and 

phase short circuit 
travels, compliance and backlashes acting on gearbox 
and ballscrew [26]-

nals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [

acting on bearings, gears, hinges and screw

 EMA 
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
electric motor [11],
screw actuators) or structural failures 
regards the main failure 
as reported in [13], they are generally due to prog

turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
is consistent with th

Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

 characteristics of the power 
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 

mic system (EMA Dynamic Models)
another input block (
allows simulating the aerodynamic forces (if any) 

on the control surface driven by the EMA.
This numerical model simulates the 

real EMA taking also in
degradation and 

phase short circuit a rotor eccentricity [2
travels, compliance and backlashes acting on gearbox 

-[28
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

EMA 
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
, [31
or structural failures 

regards the main failure 
], they are generally due to prog

turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
is consistent with th

Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 

system (EMA Dynamic Models)
another input block (named as 
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA.
This numerical model simulates the 

real EMA taking also into account the effects of BLDC 
degradation and non

rotor eccentricity [2
travels, compliance and backlashes acting on gearbox 

8], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

EMA Failures
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 
extensive and detailed [30
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
31], mechanical (e.g. gearboxes and 

or structural failures 
regards the main failure modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC 

This EMA numerical model
is consistent with th

 

Proposed EMA Matlab

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 

system (EMA Dynamic Models)
named as 

allows simulating the aerodynamic forces (if any) 
ntrol surface driven by the EMA.

This numerical model simulates the 
to account the effects of BLDC 
non

rotor eccentricity [2
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

Failures
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

30]. EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures 
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 
interaction between the BLDC rotor and stator.

This EMA numerical model 
is consistent with the block diagram of 

Proposed EMA Matlab-Simulink block diagram

It consists of the following five
an input block (named as Com in Fig. 2) generating 
the various position commands
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 
torque developed by the mot

regulated by the three
a block simulating the EMA mechanical behavior by 

system (EMA Dynamic Models)
named as 

allows simulating the aerodynamic forces (if any) 
ntrol surface driven by the EMA.

This numerical model simulates the 
to account the effects of BLDC 
non-linearities such as partial 

rotor eccentricity [2
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

Failures
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures 
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 

rotor and stator.
 is widely described 

e block diagram of 

Simulink block diagram

It consists of the following five blocks:
an input block (named as Com in Fig. 2) generating 
the various position commands; 
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 
calculating the reference current 
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 
torque developed by the motor as a function of the 

regulated by the three-phase inverter
a block simulating the EMA mechanical behavior by 

system (EMA Dynamic Models)
named as 

allows simulating the aerodynamic forces (if any) 
ntrol surface driven by the EMA.

This numerical model simulates the 
to account the effects of BLDC 

linearities such as partial 
rotor eccentricity [2

travels, compliance and backlashes acting on gearbox 
], ADC conversion of the feedback 

nals, electrical noise acting on the signal lines and 
electrical offset of the position transducers [

acting on bearings, gears, hinges and screw

Failures Model
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures 
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 

rotor and stator.
is widely described 

e block diagram of 

Simulink block diagram

blocks:
an input block (named as Com in Fig. 2) generating 

 
an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

 Iref 
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 

or as a function of the 
phase inverter

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models)

named as TR
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA.
This numerical model simulates the 

to account the effects of BLDC 
linearities such as partial 

rotor eccentricity [2
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

Model
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures 
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 

rotor and stator.
is widely described 

e block diagram of 

Simulink block diagram

blocks: 
an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

 [21
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 

or as a function of the 
phase inverter

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models)

TR in Fig. 2
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA.
This numerical model simulates the behavior

to account the effects of BLDC 
linearities such as partial 

rotor eccentricity [22
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

Model
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In gen
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures 
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 

rotor and stator.
is widely described 

e block diagram of 

Simulink block diagram

 
an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

21]; 
a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 

or as a function of the 
phase inverter

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models)

in Fig. 2
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA.
behavior

to account the effects of BLDC 
linearities such as partial 

2]-[25
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [
acting on bearings, gears, hinges and screw

Modelling
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 
hardware and software items. In general, their 
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

or structural failures [31
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model 
detailed, in particular regarding the electromagnetic 

rotor and stator. 
is widely described 

e block diagram of 

Simulink block diagram

an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power 
electronics: this block calculates the mechanical 

or as a function of the 
phase inverter [1

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models)

in Fig. 2
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA.
behavior

to account the effects of BLDC 
linearities such as partial 

25], end
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

electrical offset of the position transducers [7] and dry 
acting on bearings, gears, hinges and screw

ling 
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 

eral, their 
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27
], mechanical (e.g. gearboxes and 

31]-[32
modes affecting BLCD motors, 

], they are generally due to prog
turn type short circuits on the stator coils

D. Belmonte, M. D.

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

algorithm. It must be noted that this model is very 
detailed, in particular regarding the electromagnetic 

is widely described 
e block diagram of Fig.

Simulink block diagram 

an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

characteristics of the power control 
electronics: this block calculates the mechanical 

or as a function of the 
14];

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models)

in Fig. 2) which 
allows simulating the aerodynamic forces (if any) 

ntrol surface driven by the EMA. 
behavior of the 

to account the effects of BLDC 
linearities such as partial 

], end
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

] and dry 
acting on bearings, gears, hinges and screws [2

 
Since the use of electromechanical actuators in the 

cal field is quite recent, the statistics about their 
failure modes and the related effects are still not very 

EMAs can be subjected to a 
wide number of possible failure modes, involving both 

eral, their 
progressive failures can be classified into four main 

: electronics (e.g. ACE and sensors) [27]-[
], mechanical (e.g. gearboxes and 

32]. As 
modes affecting BLCD motors, 

], they are generally due to progressive 
turn type short circuits on the stator coils 

D. L. Dalla Vedova, P. Maggiore

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.

is very 
detailed, in particular regarding the electromagnetic 

is widely described in 
Fig. 2.

 

an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator
control electronics, closing its feedback loops and 

a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

control 
electronics: this block calculates the mechanical 

or as a function of the 
]; 

a block simulating the EMA mechanical behavior by 
system (EMA Dynamic Models); 

) which 
allows simulating the aerodynamic forces (if any) 

 
of the 

to account the effects of BLDC 
linearities such as partial 

], end-of
travels, compliance and backlashes acting on gearbox 

], ADC conversion of the feedback 
nals, electrical noise acting on the signal lines and 

] and dry 
[29].

Since the use of electromechanical actuators in the 
cal field is quite recent, the statistics about their 

failure modes and the related effects are still not very 
EMAs can be subjected to a 

wide number of possible failure modes, involving both 
eral, their 

progressive failures can be classified into four main 
[28], 

], mechanical (e.g. gearboxes and 
]. As 

modes affecting BLCD motors, 
ressive 

 and 

L. Dalla Vedova, P. Maggiore

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.      

98

is very 
detailed, in particular regarding the electromagnetic 

in 
2. 

 

an input block (named as Com in Fig. 2) generating 

an ACE block that simulates the real EMA actuator 
control electronics, closing its feedback loops and 

a block that simulates the dynamic response of the 
electric motor (BLDC EM Model) implementing the 
electromagnetic model of the trapezoidal BLDC 

control 
electronics: this block calculates the mechanical 

or as a function of the 

a block simulating the EMA mechanical behavior by 
 

) which 
allows simulating the aerodynamic forces (if any) 

of the 
to account the effects of BLDC 

linearities such as partial 
of-

travels, compliance and backlashes acting on gearbox 
], ADC conversion of the feedback 

nals, electrical noise acting on the signal lines and 
] and dry 

]. 

Since the use of electromechanical actuators in the 
cal field is quite recent, the statistics about their 

failure modes and the related effects are still not very 
EMAs can be subjected to a 

wide number of possible failure modes, involving both 
eral, their 

progressive failures can be classified into four main 
28], 

], mechanical (e.g. gearboxes and 
]. As 

modes affecting BLCD motors, 
ressive 

and 

 
L. Dalla Vedova, P. Maggiore

         

98 

rotor static eccentricity (
C
overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

motor 
misalignment 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 
of the stator. 

(
reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

  

whe

of the BLDC motor (e.g. winding resistance, 
inductance and 
modelled
proposed in 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of
counter
method acts on the three 
each 
Model block (
modulation functions 

L. Dalla Vedova, P. Maggiore

               

rotor static eccentricity (
Circuit
overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

The Rotor
motor 
misalignment 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 
of the stator. 

 

Fig. 3. 
 
As shown in Fig. 3, the local value of the radial gap 

(ϑr), in case of RSE, varies during the motor rotation as 
reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 

  

whe

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 
inductance and 
modelled
proposed in 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of
counter
method acts on the three 
each 
Model block (
modulation functions 

L. Dalla Vedova, P. Maggiore

           

rotor static eccentricity (
ircuit 

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

The Rotor
motor 
misalignment 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 
of the stator. 

 

Fig. 3. 
 
As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 

 

where 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 
inductance and 
modelled
proposed in 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of
counter
method acts on the three 
each motor 
Model block (
modulation functions 

L. Dalla Vedova, P. Maggiore

     International Review of Aer

rotor static eccentricity (
 (SC) 

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

The Rotor
motor ζ 
misalignment 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 
of the stator. 

Fig. 3. Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 

 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 
inductance and 
modelled 
proposed in 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of
counter-electromotive forces (
method acts on the three 

motor 
Model block (
modulation functions 

L. Dalla Vedova, P. Maggiore

International Review of Aer

rotor static eccentricity (
(SC) is

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

The Rotor 
 is defined as the ratio between the 

misalignment 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 
of the stator.  

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 

0

0

x
g

 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 
inductance and 

 through the simplified numerical model 
proposed in 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
method acts on the three 

motor branch) 
Model block (
modulation functions 

L. Dalla Vedova, P. Maggiore

International Review of Aer

rotor static eccentricity (
is usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

 Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

misalignment x0 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 

g g

0

0

x
g

 . 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 
inductance and counter

through the simplified numerical model 
proposed in [33
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
method acts on the three 

branch) 
Model block (Fig. 
modulation functions 

L. Dalla Vedova, P. Maggiore

International Review of Aer

rotor static eccentricity (
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

 and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

 r rg g  

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

counter
through the simplified numerical model 

33]. 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
method acts on the three 

branch) 
Fig. 

modulation functions 

L. Dalla Vedova, P. Maggiore 

International Review of Aer

rotor static eccentricity (
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation.

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

r rg g   

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

counter-
through the simplified numerical model 

]. In particular, t
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
method acts on the three 

branch) implemented in the BLDC EM 
Fig. 1), 

modulation functions 

International Review of Aer

rotor static eccentricity (e.g. due to
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 
at the ends of the short-circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phas
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 
amplifies its propagation. 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on

0r rg g   

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

counter-electromotive forces
through the simplified numerical model 

In particular, t
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
method acts on the three C

implemented in the BLDC EM 
1), by 

modulation functions Kei

International Review of Aerospace Engineering, Vol. 11, N. 3

e.g. due to
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 
the increase of the phase current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

 
Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 
magnetic flux depending on the rotor position

0 1 cosr rg g   

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces
through the simplified numerical model 

In particular, t
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (
CEMF constants 

implemented in the BLDC EM 
by modulating their 

i as a function of coil 

ospace Engineering, Vol. 11, N. 3

e.g. due to
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

the rotor position

1 cosr r   

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces
through the simplified numerical model 

In particular, t
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

electromotive forces (CEMF) coefficients; 
EMF constants 

implemented in the BLDC EM 
modulating their 
as a function of coil 

ospace Engineering, Vol. 11, N. 3

e.g. due to bearing wears).
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

the rotor position

1 cosr r   

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces
through the simplified numerical model 

In particular, the
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
EMF constants 

implemented in the BLDC EM 
modulating their 
as a function of coil 

ospace Engineering, Vol. 11, N. 3

bearing wears).
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical r

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

the rotor position

 1 cosr r  

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces
through the simplified numerical model 

heir
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
EMF constants 

implemented in the BLDC EM 
modulating their 
as a function of coil 

ospace Engineering, Vol. 11, N. 3

bearing wears).
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
adjacent turns of the same phase (turn-to-
then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

Schematic of the BLDC Motor geometrical reference system

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

the rotor position

r r    

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces
through the simplified numerical model 

ir effects 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
EMF constants 

implemented in the BLDC EM 
modulating their 
as a function of coil 

ospace Engineering, Vol. 11, N. 3

bearing wears).
usually due to thermal effects (e.

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings. 

This type of failure usually starts between some 
-turn failure), 

then it grows until propagates to the ent
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

 

eference system

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

the rotor position ϑ

 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, 

electromotive forces) have been 
through the simplified numerical model 

effects 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
EMF constants Ce

implemented in the BLDC EM 
modulating their trapezoidal 
as a function of coil 

ospace Engineering, Vol. 11, N. 3

bearing wears).
usually due to thermal effects (e.g. motor 

overheating or stator current peaks) which locally 
compromise the insulation of the coil windings.  

This type of failure usually starts between some 
turn failure), 

then it grows until propagates to the entire coil 
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the 

and the nominal radial air gap g
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

eference system

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

ϑr: 

 

The effects of these failures on the electrical features 
of the BLDC motor (e.g. winding resistance, windings 

) have been 
through the simplified numerical model 

effects on 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
Cei (one for

implemented in the BLDC EM 
trapezoidal 

as a function of coil 

ospace Engineering, Vol. 11, N. 3

bearing wears). Short 
g. motor 

overheating or stator current peaks) which locally 

This type of failure usually starts between some 
turn failure), 

ire coil 
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
is defined as the ratio between the rotor 

and the nominal radial air gap g0; as 
shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

eference system

As shown in Fig. 3, the local value of the radial gap 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

 

The effects of these failures on the electrical features 
windings 

) have been 
through the simplified numerical model 

on 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; 
(one for

implemented in the BLDC EM 
trapezoidal 

as a function of coil 

ospace Engineering, Vol. 11, N. 3 

hort 
g. motor 

overheating or stator current peaks) which locally 

This type of failure usually starts between some 
turn failure), 

ire coil 
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
rotor 
; as 

shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

eference system 

As shown in Fig. 3, the local value of the radial gap g
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

 (1)

The effects of these failures on the electrical features 
windings 

) have been 
through the simplified numerical model 

on the 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of

EMF) coefficients; this 
(one for

implemented in the BLDC EM 
trapezoidal 

as a function of coil SC

 

hort 
g. motor 

overheating or stator current peaks) which locally 

This type of failure usually starts between some 
turn failure), 

ire coil 
(progressively increasing the failure magnitude). In fact, 

circuited coil the commanded 
voltage remains almost the same, but, as the damage 
grows, its overall resistance diminishes; this determines 

e current (i.e. the current 
circulating in the winding) and, therefore, causes a 
localized heating in the conductor which, gradually, 

Static Eccentricity (RSE) of an electric 
rotor 
; as 

shown in Fig. 3, the said misalignment equals to the 
distance between the rotor axis and the axis of symmetry 

g 
), in case of RSE, varies during the motor rotation as 

reported in (1). For motors having two or more polar 
couples, this fault generates a periodic modulation of the 

(1) 

The effects of these failures on the electrical features 
windings 

) have been 
through the simplified numerical model 

the 
magnetic coupling between stator and rotor have been 
simulated by varying values and angular modulation of 

his 
(one for 

implemented in the BLDC EM 
trapezoidal 

SC 



 
D. Belmonte, M. D. L. Dalla Vedova, P. Maggiore 

Copyright © 2018 The Authors. Published by Praise Worthy Prize S.r.l.                          International Review of Aerospace Engineering, Vol. 11, N. 3 

99 

percentage, RSE ζ and angular position ϑr: 
 

   1 cos     -    , ,i i i rke Ke Ce i a b c       (2) 
 
As proposed in [34], the three constants kea, keb, kec 

obtained from (2) are used to calculate the counter-
electromotive forces induced on the stator windings and, 
therefore, to evaluate the value of the mechanical torque 
contributions generated by the three motor phases. 

Indeed, an early identification of these failure 
precursors allows adopting countermeasures able to limit 
an increasingly faster propagation of failures on sensors 
and electrical components [35]-[36]. It should be noted 
that the BLDC EM subsystem of the proposed EMA 
numerical model (shown in sections II and III) is 
implemented in the Simscape Power Systems™ 
multidomain simulation environment; therefore, unlike 
some algorithms available in the literature (often based 
upon a linear modelling of the EM phenomena), it is able 
to calculate the instantaneous value of each phase current 
(Ia, Ib, Ic) even in the case of unbalanced stator EM 
circuit (such as, for instance, in case of partial coil short 
circuit or rotor static eccentricity).  

Therefore, SC and RSE failures are related to the 
corresponding dynamic response of stator phase currents 
(that will be adopted as failure precursors) by means of 
an algorithm based on the Fourier spectral analysis of 
these three signals; in order to attenuate high-frequency 
noises and disturbances affecting the said signals, each 
phase current is previously filtered by a third order low-
pass filter [37]. 

IV. EMA Spectral Algorithm                           
and Operating Map 

The behavior of the simulated EMA actuation system 
has been evaluated analyzing its dynamic response for a 
very high step position command in order to quickly 
saturate the electromechanical actuator controller and, 
then, reachingits maximum actuation velocity (without 
aerodynamic load).  

Indeed, this kind of input allows to quickly saturate 
the EMA control rings generating an open-loop dynamic 
response [34] (i.e. following this step position command, 
the actuator starts and, after a short transient time, 
reaches its maimum no-load velocity). 

The whole test simulation time amounts to one second 
and, for each simulation, all filtered phase currents (Ia, Ib, 
Ic) have been acquired and used as prognostic precursors 
to evaluate contemporary the corresponding RSE and the 
percentage of SC relative to each stator phases. 

The Root Mean Square (RMS) of a given signal time 
history represents a measure of its overall energy and it is 
often used to extract signal features and trending data for 
FDI fault detection and identification processes. To avoid 
numerical problems of aliasing, the time history of the 
signal must be digitized by a proper sample rate of 10-6 
samples/s (for a total of 10+6 samples); then, the RMS 

value can be estimated as shown in (3): 
 

 
 2

1

1 N

i
RMS X i

N 

   (3) 

 
The RMS algorithm is applied for each filtered phase 

current (Ia, Ib, Ic) as a function of the percentage of turns 
of the stator coils still not short-circuited (Ni, where i= a, 
b, c refers to the different stator phases of the three-phase 
BLDC motor); operatively speaking, the results reported 
in this paragraph are calculated as a function of a 
progressive SC acting on the coil of the phase "a", with 
Na varying from 75% to 100% with a 1% increasing step. 

Three signals called IaRMS, IbRMS, and IcRMS are 
calculated: Fig. 4 shows their evolutions as a function of 
Na in case of RSE = 0.  

 

 
 

Fig. 4. Evolution of the three RMS phase currents as a function of Na 
(working coils percentage) for RSE = 0%. The black arrows highlight 

the CPs respectively between Ia RMS (asterisk) - Ib RMS (squares),  
and Ia RMA (asterisk) Ic RMS (diamonds) 

 
The progressive SC degradation of the single phase 

“a” induces an increasing of the three phases current 
RMS as a function of Na percentage. 

Moreover, the stator phase damaged by progressive 
SC degradation puts in evidence an growing slope of its 
phase current, higher than the other ones, that increases 
proportionally with the said failure (Fig. 4). 

The Ia RMS, identifies two critical points, called 
Crossing Points (CPs), in which it crosses the other 
currents functionsIb RMS and Ic RMS (relating to the initial 
operating condition with Nb = Nc = 1).  

The SC degradation, acting on phase “a” unbalances 
the stator electrical circuit influencing the other 
alimentation phases, although these are operating in 
nominal conditions without SC, and modifying the 
corresponding RMS values of the filtered phase currents.  

Important information is given by the evaluation of 
the CPs related to short coil degradation percentage on 
evaluating RMS of filtered phase currents calculated by 
the authors’ EMA simulation model. 

Therefore, the proposed methodology can evaluate 
with suitable accuracy the working coils percentage Na 
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for a single damaged phase by using the aforesaid failure 
map, by considering the CPs as results of a real-time 
measurement, performed by the EMA numerical model 
under the same operational conditions. 

The model-based test bench, considers a specific 
EMA model and the related technical parameters as 
simulation input, but it is possible to calculate other 
specific failure maps to evaluate short coils degradation 
by changing the input technical parameters. The failure 
map showed in Fig. 4 considers a fixed rotor static 
eccentricity equal to zero, but this approach is too 
simplified to give an exhaustive description of the 
interaction between short coil degradation phenomena 
and rotor static eccentricity. The rotor static eccentricity 
has a strong influence on the proposed method, because 
both the type of considered failures cause different 
effects on the chosen prognostic precursors in the 
described method.  

Indeed, the rotor static eccentricity due to mechanical 
wear reduces clearance between rotor and stator surfaces 
as shown in Fig. 3, so it is possible to associate to 
minimum clearance a minimum magnetic resistance to 
the minimum clearance. The RMS filtered phase current 
values decrease related to the minimum clearance at the 
same voltage; in the proposed test case, the supply phase 
“a” is at the same time interested by the short coil 
degradation and minimum clearance associated with 
rotor static eccentricity. In other terms, increasing rotor 
static eccentricity causes opposed effects related to short 
coil induced effects where the RMS filtered phase current 
increases, for the damaged phase, strongly with 
increasing coils degradation. Increasing RSE modifies 
the overall behavior of the failure map and, in particular, 
the position (in terms of Na and RMS current) of related 
CPs. In case of RSE equal to 50%, the percentage of SC 
damage (Na) associated with the corresponding CPs (Fig. 
5) results higher compared to the case of rotor static 
eccentricity equal to zero (Fig. 4). 

It should be noted that each of the aforesaid CPs maps 
is calculated considering only two of the three filtered 

phase currents, as shown respectively in Fig. 6 (referred 
to Ia RMS and Ib RMS) and in Fig. 7 (for Ia RMS  and IcRMS). 

 

 
 

Fig. 5. Evolution of the three RMS phase currents as a function of Na 
(working coils percentage) for RSE = 50%. The black arrows highlight 

the CPs respectively between Ia RMS (asterisk) - Ib RMS (squares),  
andIa RMA (asterisk) Ic RMS (diamonds) 

 
These failure maps could give an evaluation of the 

rotor static eccentricity, even though crossing points data 
presents scatter distribution as a function of Na working 
coils percentage. Scattered data could be interpolated by 
a least squares fitting interpolation function of third 
grade, to define a reference function able to identify 
given measured cross points, between two filtered phase 
currents, both the short coils degradation and an 
evaluation of a rotor static eccentricity.  

The reference interpolation function for Ia RMS, Ib RMS 
CPs is indicated in (4), whereas the interpolation function 
for Ia RMS, Ic RMSCPs is indicated in (5): 

 

 
3 2184 396 231 23 0X X X     (4) 

 

 
3 24984 14207 13511 4293 0- X X X     (5)  

 

 
 

Fig. 6. Evolution of Crossing Points between Ia RMSand Ib RMSas a function of RSE from 0% to 50% and progressive short coil degradation.  
The Crossing Points are classified as rotor static eccentricity intervals: from 0% to 12% (circle), from 13% to 19% (asterisk), 

from 20% to 27% (cross), from 28% to 38%(plus), from 39% to 50%(square) 
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Fig. 7. Evolution of Crossing Points between Ia RMS and Ic RMS as a function of RSE from 0% to 50% and progressive short coil degradation. 
The Crossing Points are classified as rotor static eccentricity intervals: from 0% to 12% (circle), from 13% to 19% (asterisk),  

from 20% to 27% (cross), from 28% to 38%(plus), from 39% to 50% (square) 
 

The proposed FMs consider a translation of the 
reference function to define upper and lower limits 
translating the reference curve to the maximum distance 
between scattering data and reference function added 
with a 30% margin. Therefore, the upper and lower 
translating functions define on diagram an evaluation 2D 
areas able to associate an interval of Short coil 
degradations with rotor static eccentricity evaluation for 
crossing points measurement, on real EMA under the 
simulated boundary conditions interval.  

In other words, the CP for filtered phase currents, in 
simulated failure conditions for both SC and RSE 
degradations, can define combined failure maps able to 
estimate the concurrent failures by identifying evaluation 
areas based on least squares fitting curves and related 
upper and lower translations. The failure map shown in 
Fig. 6, that is related to CPs between Ia RMS and Ib RMS, 
represents a more effective FDI tool than the other maps 
(based on CPs between Ia RMS and Ic RMSand shown in Fig. 
7), because it identifies well-defined RSE growing 
intervals, avoiding areas superposition that could reduce 
its accuracy. If the RSE percentage is higher than 30%, it 
could be necessary to select a higher alarm threshold 
(corresponding to the maximum deviation of the CPs 
with respect to the RMS current interpolating function); 
this value can be identified as a function of the CPs 
dispersion on the corresponding failure maps (Fig. 6 and 
Fig. 7). The RSE magnitude considered for prognostics is 
typically smaller than the 50% and its FDI upper limits is 
often evaluated around 25-30%; indeed, bigger RSE 
percentages could produce macroscopic failure effects on 
EMA behaviors (e.g. degrading its performances beyond 
acceptable limits and compromising its effectiveness).  

It should be noted that the evolution of these two 
progressive failure types (RSE and stator SC) presents 
two different time scales; in details, the RSE is mainly 
due to mechanical wear phenomena and, therefore, it is 
correlated to a growth dynamics typically much slower 
than the SC failures affecting the BLDC motor. 

In conclusion, this method can evaluate different fault 

conditions, performing the FDI analysis also in case of 
combined failures (e.g. RSE and stator SC). It should be 
noted that this fact is not in itself obvious because these 
failures generate contrasting effects on the adopted 
prognostic parameters (i.e. stator phase currents) that, 
sometimes, they could hide one each other. Other model-
based FDI methods presented in literature, implementing 
FEM analysis and/or statistical methodology, are 
interactively computed up to the convergence of suitable 
fitness functions (e.g. L1-norm or L2-norm error), in 
order to evaluate the EMA health status [38]. Therefore, 
the proposed method performs an early FDI analysis by 
calculating, in off-line mode, the aforesaid failure maps 
(based on an EMA high fidelity simulation model) and, 
then, by comparing the so obtained results with the 
corresponding prognostic variables provided by the real 
monitored EMA during a real-time experimental 
acquisition. At the operational level, especially if 
compared with FDI techniques based on high fidelity 
models, the proposed method (based upon off-line 
calculated failure maps and low fidelity approaches) 
requires reduced time of calculation and smaller 
computational resources and so, allowing periodical FDI 
checks (e.g. real-time or almost real-time controls during 
the flight or scheduled prognostic tests during the usual 
on-field maintenance procedures), it increases the safety 
of the whole system (i.e. the aircraft). 

V. Conclusion 
The proposed method allows to calculate specific 

operating maps for many different EMA models: it is 
possible to adjust the proposed numerical model to a 
particular type of EMA by setting some technical 
parameters and then define the corresponding operational 
map (in order to evaluate the coils degradation taking 
into account rotor static eccentricity effects).  

The EMA failure precursors (provided by the onboard 
monitoring system) are compared with the related 
operating map in order to evaluate, during a preflight 
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test, the percentage of coil short-circuit affecting a single 
alimentation phase, avoiding degraded flight command 
performances and so improving the safety margin of the 
whole actuation system. These operational maps are then 
integrated with the above said filtered RMS phase current 
module in order to guarantee an accurate evaluation of 
the health state of the real EMA (performed during 
maintenance operations and pre-flight tests, as indicated 
in previous paragraphs). The obtained results encourage 
the extension of the proposed technique to more 
challenging occurrences such as the interactions between 
electrical (e.g. SCs affecting the stator coils) and 
mechanical failures due to wear (e.g. RSE, dry friction 
and backlashes acting on mechanical transmission); in 
fact, these faults are frequently difficult to evaluate with 
suitable accuracy because they are usually characterized 
by very different time scales and sometimes produces 
opposite effects on prognostic precursor analysis.  

In order to achieve these goals, the proposed actuator 
model should be further developed, implementing new 
mathematical model representative of the considered 
phenomena and modeling in detail some critical 
components, so as to extending spectral analysis and 
investigating in a deeper way interactions due to these 
combined failures. 
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