
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PruNet: Class-Blind Pruning Method For Deep Neural Networks / Marchisio, Alberto; Abdullah Hanif, Muhammad;
Martina, Maurizio; Shafique, Muhammad. - ELETTRONICO. - 1:(2018), pp. 1-8. (Intervento presentato al convegno
International Joint Conference on Neural Networks tenutosi a Rio de Janeiro (BR) nel 8-13 luglio 2018)
[10.1109/IJCNN.2018.8489764].

Original

PruNet: Class-Blind Pruning Method For Deep Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IJCNN.2018.8489764

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2715856 since: 2018-11-07T10:46:08Z

IEEE

PruNet: Class-Blind Pruning Method for Deep
Neural Networks

Abstract— Deep Neural Networks are very memory and computa-
tionally intensive. They are unfeasible to deploy in real time or mobile
applications, where power and memory are constrained. Introducing
sparsity in the network is a way to reduce those requirements. We propose
a methodology that applies iteratively a magnitude-based pruning, called
Class-Blind, to compress a Neural Network and obtain a sparse model.
It can be applied to any kind of DNN, from a shallow one to a Deep
Convolutional Network. We demonstrate that retraining after pruning is
essential to restore accuracy. With our methodology we are able to reduce
by around two orders of magnitude the model size, without affecting
the accuracy. Our method requires many iterations of pruning and
retraining, but can achieve up to 190X Memory Saving Ratio (LeNet on
MNIST) with respect to the baseline model. Similar results are obtained
also for more complex tasks (e.g., 91X for VGG-16 on CIFAR100). If
we combine this work with an efficient coding for sparse networks, like
Compressed Sparse Column (CSC) or Compressed Sparse Row (CSR),
we can obtain a reduced memory footprint. Our methodology can be
complemented by other compression techniques, like weight sharing,
quantization or fixed-point conversion, that allows to further reduce
memory and computations.

I. INTRODUCTION

Recent developments have allowed to train very Deep
Neural Networks (DNN) and achieve high level accuracy
in computer vision task [15], [19], [28], [30]. Even though
they can beat humans in image classification task [35], they
require a huge amount of storage and memory accesses. In real
applications, DNN inference is not easy to deploy because it
usually exceeds the available resources on mobile platforms
and does not meet real-time constraints, because of GPU
limited bandwidth. For this reason, many researchers in deep
learning community have focused on DNN compression and
efficiency improvements. There are numerous variants of com-
pression techniques, that include different pruning methods
and reduced precision representation.

Our contribution. We propose a magnitude-based pruning
method, called Class-Blind, as described by See et al. [27].
Our methodology requires many iterations of pruning and
retraining, but we are able to achieve a significant compression
with respect to the baseline model. As a side effect, pruning
has a regularizing property, because during the first stages
of pruning, the sparse networks outperforms the original one
in terms of accuracy. The process of iteratively pruning and
retraining is effective, because it allows to progressively adjust
the parameters and maintain a good level of accuracy. Our
methodology has been tested both on a simple task (digit
recognition on MNIST dataset, with quite simple networks,
like LeNet-5 and LeNet-300-100 [20]) and on more complex
configurations (VGG-16 net [28] on CIFAR-10, VGG-16 [28],

AlexNet [19] and GoogleNet [30] on CIFAR-100). If we com-
bine this work with an efficient coding for sparse networks,
like CSC or CSR, we can achieve similar benefits as reported
in [12]. We do not discuss such coding methods in our work.

An overview of our work is shown in Figure 1. The rest
of the paper is organized as follows: in Section II we recall
and summarize the work by other researchers on the same
field subject; Section III explains what are the motivations of
our research and the reasons why we are choosing to work
on this topic; in Section IV we present our methodology,
that represents the fundamental aspect of our contribution;
Section V describes an example, which provides us useful
intuitions; the experiment section (Section VI) reports the most
significant results; Section VII concludes the article.

Fig. 1: General overview of our contribution.

II. RELATED WORK

Making DNN inference manageable on mobile applications
has become a very attractive topic and a large variety of ideas
have been proposed. Vanhoucke et al. [32] propose a fixed-
point implementation, achieving a considerable speedup. Other
works include low-rank approximations for weight matrices
(Denton et al. [7], Jaderberg et al. [18]), weight sharing
(Chen et al. [3], Han et al. [12]), reduced precision (Lin
et al. [23], Courbariaux et al. [6], Gupta et al. [11], Lin et
al. Venkatesh et al. [33]) or even binary weights (Lin et al.
[22], Courbariaux et al. [5], Courbariaux and Bengio [4]).
Hinton et al. [17] proposed the ’distillation’ technique, that
leads to the teacher-student approach. These techniques are
orthogonal to connection pruning, as explained by Han et
al. [12], where a good compression rate have been obtained.
There exist several varieties of pruning methods. Structured or
channel pruning (Anwar et al. [1], Li et al. [21], Wen et al.

1

[34], He et al. [16]) allows to achieve a significant inference
speedup. Recently, Changpinyo et al. [2] demonstrated also
other benefits of channel-wise sparsity, but the accuracy drop
limits its deployment in practice. Based on Optimal Brain
Surgeon (Hassibi et al. [14]), Dong et al. proposed a layer-wise
pruning approach [8] that leads to a significant compression
ratio, but it requires the computation of reverse Hessian matrix.
Molchanov et al. [25] introduced a new way to introduce
sparsity in DNNs, called ”variational dropout” The original
dropout technique, introduced by Srivastava et al. [29] is
modified in a way that some connections are permanently
removed from the network. Inspired by this work, Louizos et
al. [24] applied successfully variational dropout, obtaining an
efficient coding scheme. Recently, Federici et al. [9] combined
this work with Soft Weight Sharing (Ullrich et al. [31]),
obtaining state-of-the-art values of compression rates.

Another widely used pruning procedure is the so called
magnitude-based method: Han et al. [13] obtained a good
compression ratio without sacrificing the accuracy and demon-
strated in [12] that pruning can be successfully combined
with other compression techniques, like weight sharing, quan-
tization and Huffman coding. Zhu and Gupta [36] showed
that, having the same memory footprint, a large sparse model
(obtained by pruning and retraining) outperforms the small
dense one in terms of accuracy. The main drawback of this
approach is the increase of time and computation during
training. In order to overcome this effect, Narang et al.
[26] proposed a way to prune the network during training,
with the purpose of limiting the overall computational effort
during the training phase. However, this method leads to an
accuracy loss and the final sparsity which can be obtained is
far from the ones achieved with other approaches. Another
important result has been obtained by Guo et al. [10]: they
were able to significantly compress the model without loss in
accuracy. Their approach is more complex than the other ones,
because they exploit two operations: pruning and splicing. The
splicing operation is effective because it allows to restore some
important connections that were erroneously pruned in the
previous step. A deeper analysis on magnitude-based methods
was made by See et al. [27]. They showed that there are
different pruning schemes leading to different results, while
in general, despite their simplicity, magnitude-based pruning
methods are effective also on Neural Machine Translation
applications. A more detailed explanation of these methods
is reported in Section III-B.

III. MOTIVATIONS

DNN pruning has become a hot topic nowadays because of
its efficiency and it is becoming widely used in everyday appli-
cations for improving the performance efficiency of inference
in embedded platforms. Our contribution is to propose a simple
and efficient method to reduce the memory requirements
during inference in mobile applications, where the memory
occupied by the model and the power consumption are an
issue, as well as real-time constraints. For this reason, the
overhead introduced by an iterative approach of retraining, as

explained in the work of Han et al. [13], has been considered
less relevant. Iteratively pruning and retraining the network
implies a much more intensive computational effort with
respect to the standard training. However, this process can be
performed in large data-centers, provided with powerful GPUs
and optimized accelerators for Deep Learning, in such a way
that time and power consumed are still acceptable.

Since the number of parameters in a network is directly
proportional to the number of computations at the inference
stage, an effective and commonly used parameter to evaluate
pruning methods is the Compression Ratio (CR: the ratio
between the number of parameters in the original model and in
the sparse model, respectively), as described in Equation (1).

CR =
parametersoriginal model

parameterssparse model
(1)

Consequently, once we have obtained a sparse structure, we
can use the same storing methods proposed by Han et al. [12],
like Compressed Sparse Row (CSR) or Compressed Sparse
Column (CSC). Moreover, pruning represents only the first
step of DNN compression: works made by Han et al. [12] and
Federici et al. [9] showed that other compression techniques
are orthogonal to pruning and can be applied in further stages.

Our contribution focuses on an efficient way to apply prun-
ing, based on Class-Blind method, that outperforms the results
obtained by Han et al. [13], without a relevant accuracy loss.
A detailed description of the Class-Blind method, compared to
other magnitude-based methods, is reported in Section III-B.

A. Efficiency of magnitude-based pruning
Among all DNN compression methods analyzed in Sec-

tion II, we choose to use a magnitude-based pruning method.
Despite the effectiveness in terms of CR of methods based on
Variational Dropout by Molchanov et al. [25] and Bayesian
Compression by Louizos et al. [24], the complexity intro-
duced by considering weights as a distribution makes these
approaches difficult to deploy in everyday applications.

On the contrary, the results obtained by Han et al. [12],
[13] on AlexNet [19] and VGG-16 [28] trained on ImageNet
dataset look very attractive for what concerns accuracy. How-
ever, some details of the pruning process (threshold value,
number of retraining iterations) performed by Han et al.
have not been revealed in their publications. This is another
important motivation for our work: trying to obtain result
comparable (or better) than Han et al. [13], using a clearer
methodology. Moreover, See et al. [27] showed as a side effect
that magnitude-based pruning introduces a regularizing effect.
That is the reason why low pruned models outperform their
respective baseline models. As a consequence, our idea is to
further prune and retrain the network (in an iterative way)
beyond the level where the accuracy increases, in order to
maximize the compression ratio, while keeping the accuracy
loss acceptable.

B. Efficiency of Class-Blind method
See et al. [27] gave a great contribution to our work,

because they analyzed three different magnitude-based pruning

2

schemes. Despite they applied those schemes on Neural Ma-
chine Translation application only, their concepts are the key
for our work, because they can be applied also to other appli-
cations, like image classification. They based the differences
on the concept of ”class”, which means a group of neurons
performing similar operations. We revisited that concept for
Feed-Forward Neural Networks and we assume that each class
can be seen as a weighted layer of the network. In the work
by See et al. [27], the concept of class was a little bit different,
because it is related to Recurrent Neural Networks for Neural
Machine Translation applications. In the followings, we refer
to class and layer as synonyms.

The three pruning schemes that were presented by See et
al. [27] are the following:

1) Class-Distribution (CD): select threshold T, common for
every layer, and compute the standard deviation σ of
each layer. Then, for each layer, prune parameters below
σT. This method is used by Han et al. [13]. The threshold
T is equal across each layer, but the product σT can vary.
Finding the optimal value of T can be tricky.

2) Class-Uniform (CU): select a certain percentage x and,
for each layer, prune the smallest x% parameters. Easier
to implement than CD. In this way pruning is equally
distributed among all the layers. However, the accuracy
drop is not minimized.

3) Class-Blind (CB): select a certain percentage x and
prune the smallest x% parameters, regardless of which
layer they belong to. In this way some layers are pruned
more than others. This method is adopted by See et al.
[27], showing that it is the most efficient among these
three.

Based on the results obtained by See et al. [27], we decided to
use the Class-Blind method, not only because of its simplicity,
but also because it outperforms the other schemes.

IV. METHODOLOGY

We now propose a general methodology, called ”PruNet”,
that can be applied to sparsify a neural network. We do not
describe the baseline training procedure, since it is out of the
scope of our work. Then, we start from a pre-trained model
of the network, i.e., already trained over the same dataset that
will be applied for the pruning phase.

Figure 2 summarizes our methodology in a schematic way.
First of all, we set the hyper-parameters. Some intuitions about
how to choose these values are explained in Section V-A. We
reduce the initial learning rate with respect to the one used for
the baseline training (e.g., if the baseline initial learning rate is
0.01, the initial one in each retraining phase could be 0.003).
If the network contains some dropout layers, the dropout rate
must be changed according to the rule proposed by Han et al.
[13]:

Dr = Do

√
Cir

Cio
(2)

where Dr is the dropout rate during retraining, Do the original
dropout of the baseline training, Cio and Cir are the number of

connections of layer i for the original network and the sparse
one, respectively. The number of training epochs is scaled by
a factor 2X. While Han et al. [13] retrain convolutional layers
and fully-connected layers separately, we perform retraining
on the whole network at the same time.

Another group of hyper-parameters to set is composed
by the ones introduced for our purpose: pruning percentage,
maximum acceptable accuracy loss and pruning iterations. We
have to fix only the first two values, since the number of
pruning iterations depends on the other two. We choose to
set the pruning percentage to a mid-range value, according
to the trade-off reasons explained in Section V-A. In this
way, at each pruning iteration, the number of weights is
reduced. The choice of the maximum accuracy loss is delicate,
because it depends on the application. However, as shown in
Figure 3, the curves become very steep toward high MSR. As a
consequence, the most appropriate value lies around the focal
point of an exponential fitting curve (black line of Figure 3).

Then, the iterative process starts. For each iteration we
perform the following operations:

1) Sort the weights of the whole network in ascending
absolute value order and mark the X% lowest ones
according to the pruning percentage.

2) Apply a mask for each layer: a 0 corresponds to a pruned
weight, while a 1 stands for a not pruned weight.

3) Retrain the (sparse) network, then compute the accuracy
loss.

Finally, if the accuracy loss is still below the threshold, loop
back to the next iteration, otherwise the process is terminated.
Note that the final model is not the one at the last iteration,
but the previous one. Since we exit from the loop when the
accuracy is not acceptable, we have to restore the model at
the previous step, so as to comply with the constraint.

V. CASE STUDY OF A SIMPLE TASK

This section will give some useful intuitions that have been
essential to formulate the more generic methodology described
in Section IV, as well as a comparison between our approach
and the Class-Uniform method. For this purpose, we train and
prune LeNet-5 (developed by LeCun et al. [20]) on MNIST
dataset. The network is quite shallow, because it has only
two convolutional layers and two fully-connected layers, but
it has been referenced as example throughout the literature
very frequently. MNIST dataset is a collection of handwritten
digits, grouped in 10 categories. It contains 60000 training
images and 10000 test images.

We first trained the dense network, like described by LeCun
et al. [20], obtaining an accuracy of 99.13 %. Hardware and
software setup is reported in Section VI-A. Afterwards, several
pruning experiments, varying some parameters, have been
performed.

A. Intuitions

The pruning process is delicate, because removing connec-
tions from the network implies an accuracy loss. However,
as successfully explained by Han et al. [13], the retraining

3

Fig. 2: Summary scheme of methodology.

process is fundamental to recover from the errors. They
suggest an adjustment for the dropout rate, since the sparsity
introduces itself another form of regularization. Indeed, the
dropout rate should be changed according to that.

Another important hyper-parameter to consider is the learn-
ing rate. Usually, it is not constant during the whole training
process, but it decreases after a certain amount of training
epochs. At the first training step, all the weights and biases of
the network are initialized as their default value. The pruning
process, however, does not change the remaining parameter
values. That is equivalent to retrain the sparse network from
a pretrained model. As a consequence, the starting learning
rate during retraining can be lower that the respective value
set for the first train. As a demonstration of this intuition, See
et al. [27] propose to divide by 2 the starting learning rate
of the original model. Selecting that value is not an easy task
and cannot be generalized for every setup, because it depends
on the network and the dataset. Moreover, at each retraining
iteration it is possible to further tune this value. Since the
retraining process has some similarities to transfer learning
(i.e., the network is not trained from scratch), the total number
of epochs during retraining can be reduced with respect to the
ones adopted for the baseline training.

Using Class-Blind pruning method, a new hyper-parameter
has been introduced: the pruning percentage. It represents

how many weights are going to be pruned away permanently
from the network. Han et al. [13] demonstrated that iterative
pruning (and retraining) is more efficient than doing the same
procedure in a single iteration. In order to avoid possible
terminology misunderstanding, we refer to pruning percentage
as the amount of parameters that are going to be pruned at
each iteration (e.g., after 50% pruning at the first iteration, if
we prune again with a pruning percetage equal to 50%, we
obtain 25% parameters with respect to the original model).
It is worth noting that pruning percentage should not be
confused with the Compression Ratio (Equation (1)). If we
neglect the overhead due to a sparse memory coding scheme,
the CR can be equaled to the Memory Saving Ratio (MSR):
the ratio between the amount of memory occupied by the
original model and the amount required by the sparse model
(Equation (3)).

MSR =
memoriginal model

memsparse model
(3)

Choosing this value have a huge impact on the success of
our procedure, since it defines the ability of the network to
recover the accuracy from the error introduced by pruning.
It has implications also on retraining time / retraining epochs,
while their respective relations are quite complex. Empirically,
we can assume that:

• A low value of pruning percentage allows a lower re-
training effort to restore the accuracy, but requires high
expense in training time due to more iterations.

• A faster approach can be obtained using an high value
of pruning percentage, but it implies higher damages to
the network, that cannot always guarantee an optimal
recovery at the retraining stage.

According to the aforementioned considerations, a middle-
range value looks more attractive. At each iteration, the value
could either remain constant or change. While it is simpler
to keep the pruning percentage constant at every iteration, a
possible design could be starting with high value in the first
stages and progressively decreasing it.

Since our final goal is to maximize the compression ratio,
while maintaining an acceptable accuracy, we define another
parameter, the Accuracy Loss (AL, Equation (4)), which is
the relative difference of accuracy between the sparse and the
original model.

AL =
Accsparse model −Accoriginal model

Accoriginal model
(4)

Considering acceptable, for example, an Accuracy Loss
of 0.1%, we are able to set the number of pruning (and
retraining) iterations such that the accuracy loss stays below
that threshold. Thanks to the regularizing effect of pruning,
explained by See et al. [27], for relatively low values of MSR,
the Accuracy Loss reaches negative values, while at a certain
point it grows exponentially. The behavior is shown explicitly
in Figure 3 for our current setup (LeNet-5 on MNIST). The

4

graph looks very promising, because it outperforms by around
a factor 10 the results obtained by Han et al. [12] on a similar
approach. This has been obtained by running simulations,
using Class-Blind method, with different (constant) pruning
percentages, from 40% to 90%, and setting the threshold of
AL equal to 0.1%. Overall, the figure shows that for low
MSR, the sparse network outperforms the baseline, due to
the regularizing effect introduced by pruning. The accuracy
loss remains quite stable, until a certain point (around a MSR
of 100X) where it starts growing exponentially. In the first
part the pruning percentage is not strictly relevant, since the
accuracy loss lies in the range [-0.2,0]. For higher MSR,
however, the difference is more significant: while for high
pruning percentages the Accuracy Loss grows very quickly,
a lower pruning percentage allows to better recover from that
error, thus pushing the MSR to the maximum.

Fig. 3: Accuracy Loss with respect to Memory Saving Ratio
in LeNet-5. Box A: accuracy is slightly improved because
pruning+retraining has a regularizing effect. Box B: accuracy
drops significantly because the number of parameters becomes
too low.

Figure 3, however, shows only the general behavior of the
network, while many aspects cannot be seen directly. Introduc-
ing a magnitude-based sparsity implies removing weights that
have a low absolute value. For this reason, showing the weight
distribution can be useful to understand the pruning process
and what actually happens inside the neural network. Fig-
ures 5(a) to 5(l) show the weight distribution of our reference
network, LeNet-5 (architecture reported in Figure 4), at each
pruning stage. Every figure shows a separate distribution for
each layer of the network, where L1 and L2 stand for the first
two convolutional layers, and L3 and L4 stand for the third and
fourth (fully-connected) layers. Each graph has been obtained
by subdividing the weights in intervals, counting the weight
values belonging to each interval and plotting histograms.
Each red curve represents the fitting normal distribution.

In the first figures, until the seventh pruning and retraining
stage (Figure 5(h)), the total number of parameters is pro-

Fig. 4: LeNet-5 architecture for our experiments.

gressively decreasing, but at the same time, for every layer,
there is a clear peak centered at 0. Thus the large majority of
weights have small absolute value. Starting from the eighth
stage (Figure 5(i)), the distributions are becoming smoother.
Finally, in the last stages, the pruning effect introduces a hole
around zero. This result means that the network is approaching
its limit, because the retraining procedure is not able to recover
completely from the error generated by pruning. In other
words, in the last stages, few weights are remaining. Then,
also the weights with middle range value are pruned. As a
drawback, the accuracy is getting lower.

B. Class-Uniform vs. Class-Blind

Similar experiments, setting the pruning percentage to
50%, have been carried on using Class-Uniform method.
This approach is less flexible, because it does not allow
to have sparsity unbalance across layers. Figure 3 shows
also a comparison between the two methods at the same
conditions (pruning percentage of 50%): it is clear that Class-
Blind method outperforms the Class-Uniform one, since in the
latter configuration, the Accuracy Loss start growing rapidly
after the 5th iteration (MSR = 31), while the former one
allows to reach the 8th one (MSR = 191). The reason of
that behavior can be explained again looking at the weight
distribution graphs. Looking at Figure 6, that represents the
weight distribution across each layer of LeNet-5 after the fifth
iteration, it is evident that sparsity penalizes very heavily the
layer 1, that contains few parameters. On the contrary, layer
3, that contains the majority of weights, could have been
sparsified more, as with Class-Blind method in Figure 5(f).

VI. EXPERIMENTS

We apply our methodology not only to LeNet-5 on MNIST
dataset, which corresponds to the example provided in Sec-
tion V, but also on other tasks: LeNet-300-100 on MNIST
(Section VI-B), VGG-16 on CIFAR-10 and CIFAR-100 (Sec-
tion VI-C), two other networks, AlexNet and GoogleNet, on
CIFAR-100 (Section VI-D). A summary of results is reported
in Table I, which shows quantitatively the Memory Saving
Ratio and the Accuracy Loss due to our proposed method-
ology. While a shallow Convolutional Neural Network like
LeNet-5 can be pruned to achieve the best result in terms of
MSR, also deeper networks (VGG-16 and AlexNet) are able to
achieve competitive MSR, compared to the other state-of-the-
art methods reported in Section II. The complete setup, as well
as the simulation environment, is described in Section VI-A.

5

(a) Weight distribution of LeNet-5, after the standard training phase.

(b) Weight distribution of LeNet-5, after the first pruning & retraining stage.

(c) Weight distribution of LeNet-5, after the second pruning & retraining
stage.

(d) Weight distribution of LeNet-5, after the third pruning & retraining stage.

Fig. 5: Weight distribution of LeNet-5, across different pruning
& retraining stages.

(e) Weight distribution of LeNet-5, after the fourth pruning & retraining stage.

(f) Weight distribution of LeNet-5, after the fifth pruning & retraining stage.

(g) Weight distribution of LeNet-5, after the sixth pruning & retraining stage.

(h) Weight distribution of LeNet-5, after the seventh pruning & retraining
stage.

Fig. 5: (continued) Weight distribution of LeNet-5, across
different pruning & retraining stages.

6

(i) Weight distribution of LeNet-5, after the eighth pruning & retraining stage.

(j) Weight distribution of LeNet-5, after the ninth pruning & retraining stage.

(k) Weight distribution of LeNet-5, after the tenth pruning & retraining stage.

(l) Weight distribution of LeNet-5, after the eleventh pruning & retraining
stage.

Fig. 5: (continued) Weight distribution of LeNet-5, across
different pruning & retraining stages.

Fig. 6: Weight distribution of LeNet-5, after the fifth pruning
& retraining stage, using Class-Uniform method.

Dataset Network AL MSR
MNIST LeNet-5 0.11097% 190.75X
MNIST LeNet-300-100 0.07165% 107.072X

CIFAR-10 VGG-16 -0.2143% 115.382X
CIFAR-100 VGG-16 -0.8324% 91.462X
CIFAR-100 AlexNet 0.0772% 62.727X
CIFAR-100 GoogleNet 0.0772% 15.136X

TABLE I: Experiment results in terms of Accuracy Loss and
Memory Saving Ratio.

A. HW/SW Setup

We use pyTorch framework [37] for our experiments. We
implement sparsity as masked layers, where each mask is mul-
tiplied with the weight matrix during the retraining process.
The accuracy has been computed by running inference on the
validation set, while MSR has been evaluated as the ratio
between the nonzero parameters of the baseline model and
the nonzero ones of the sparse model. The experiments have
been run on Nvidia GTX 1070 GPU, whose specs are reported
in Table II. A schematic view of the process flow is reported
in Figure 7.

Fig. 7: SW to HW setup

NVIDIA GTX 1070 specs
CUDA cores 1920

Memory 8 GB DDR5
Mem. interface width 256-bit

Mem. bandwidth 256 GB/s
Single precision Flops 6.5 TeraFLOPS

Power requirement 150 W

TABLE II: GPU specs

B. LeNet-300-100 on MNIST

LeNet-300-100 is a Neural Network consisting of three
fully-connected layers, as described in [20]. We applied our
methodology to this Network on MNIST dataset, obtaining a
sparsity percentage of 0.93%, which corresponds to a Memory
Saving Ratio of 107X. Such result has been achieved after the
seventh iteration with constant pruning percentage of 50%.
The initial learning rate has been reduced accordingly, from
0.01 of the train-from-scratch process, to 0.003 for retraining.

7

C. VGG-16 on CIFAR-10 and CIFAR-100

VGG-16 network is a quite deep neural network, with
13 convolutional layers and 3 fully-connected ones. The
model used to be trained on ImageNet dataset is described
by Simonyan and Zisserman [28]. We applied some minor
modifications to adapt it for other datasets: CIFAR-10 and
CIFAR-100. Both datasets are composed of 50000 training
images and 10000 test images. While CIFAR-10 contains 10
different classes of images, CIFAR-100 has 100 classes. We
applied our methodology on this network and the two datasets
provide different results: we obtained a sparsity percentage of
0.87% on CIFAR-10 and 1.09% on CIFAR-100; the respective
Memory Saving Ratios are 115X and 91X. For both config-
urations, the starting learning rate has been set to 0.003 and
the pruning percentage to 50%.

D. AlexNet and GoogleNet on CIFAR-100

Again, CIFAR-100 dataset has been used for training other
two DNNs, AlexNet [19] and GoogleNet [30]. Since in their
respective original papers, the two networks were designed
to be trained on input images of size 224x224, they have
been adapted to the size of CIFAR-100 images (32x32).
For AlexNet we achieved a MSR equal to 63X, while for
GoogleNet 15X. Note that the MSR for GoogleNet is quite
low compared to the other experiments, because this DNN is
already more sparse than the others in the original form. For
this reason, we are not able to compress much the network
without affecting the accuracy. The starting learning rate used
for AlexNet is 0.003, while the respective value for GoogleNet
is 0.03. The pruning percentage set for both processes is 50%.

VII. CONCLUSIONS

In this paper we present a simple but at the same time
effective methodology, based on Class-Blind pruning scheme,
to compress wide and dense Neural Networks (GoogleNet is
considered a less dense one, as explained in Section VI-D)
from 60X to 190X, without affecting the accuracy. This result
allows to reduce memory and computational requirements,
making inference more feasible to deploy on mobile appli-
cations. Since our ”PruNet” method is orthogonal with other
compression techniques, like quantization and weight sharing,
the memory savings can be improved further.

REFERENCES

[1] S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep convo-
lutional neural networks. arXiv preprint arXiv:1512.08571, 2015.

[2] Soravit Changpinyo, Mark Sandler, Andrey Zhmoginov. The power of
sparsity in convolutional neural networks. In ICLR, 2017.

[3] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger,
and Yixin Chen. Compressing neural networks with the hashing trick.
In ICML, 2015.

[4] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to +1 or 1.
arXiv preprint arXiv:1602.02830, 2016.

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In NIPS, 2015.

[6] Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. Training
deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[7] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and
Rob Fergus. Exploiting linear structure within convolutional networks
for efficient evaluation. In NIPS, 2014.

[8] X. Dong, S. Chen, and S. J. Pan, Learning to prune deep neural networks
via layer-wise optimal brain surgeon, arXiv preprint arXiv:1705.07565,
2017.

[9] Marco Federici, Karen Ullrich, Max Welling, Improved Bayesian Com-
pression. In NIPS, 2017.

[10] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient dnns. In NIPS, 2016.

[11] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In CoRR,
2015.

[12] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. In ICLR, 2015.

[13] S. Han, J. Pool, J. Tran, and W. Dally, Learning both weights and
connections for efficient neural network. In NIPS, 2015.

[14] Babak Hassibi, David G Stork, et al. Second order derivatives for
network pruning: Optimal brain surgeon. In NIPS, 1993.

[15] K. He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image
recognition. In CVPR, 2016.

[16] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep
neural networks. In ICCV, 2017.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. In NIPS, 2015.

[18] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. In NIPS, 2014.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (NIPS), pages 10971105, 2012.

[20] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. In Proceed-
ings of the IEEE, 1998.

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[22] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua
Bengio. Neural networks with few multiplications. In ICLR, 2016.

[23] Darryl D Lin, Sachin S Talathi, and V Sreekanth Annapureddy. Fixed
point quantization of deep convolutional networks. arXiv preprint
arXiv:1511.06393, 2015.

[24] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compres-
sion for deep learning. In NIPS, 2017.

[25] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies
deep neural networks. arXiv preprint arXiv:1701.05369, 2017.

[26] Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen.
Exploring sparsity in recurrent neural networks. In CoRR, 2017.

[27] Abigail See, Minh-Thang Luong, and Christopher D. Manning. Com-
pression of neural machine translation models via pruning. In CoNLL,
2016.

[28] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[29] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. Dropout: A simple way to prevent neural networks from
overtting. In Journal of MachineLearning Research, 2014.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

[31] K. Ullrich, E. Meeds, and M. Welling. Soft Weight-Sharing for Neural
Network Compression. ICLR, 2017.

[32] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the
speed of neural networks on CPUs. In NIPS, 2011.

[33] Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating
deep convolutional networks using low-precision and sparsity. arXiv
preprint arXiv:1610.00324, 2016.

[34] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In Advances In NIPS, 2016.

[35] R. Wu, S. Yan, Y. Shan, et al., Deep image: scaling up image recognition,
arXiv preprint, arXiv: 1501.02876, 2015.

[36] Michael Zhu and Suyog Gupta. To prune, or not to prune: explor-
ing the efficacy of pruning for model compression. arXiv preprint
arXiv:1710.01878, 2017.

[37] pyTorch framework: https://github.com/pytorch/pytorch

8

