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Abstract—Content caching on the edge of 5G networks is an
emerging and critical feature to quench the thirst for content of
future connected cars. However, the tight packaging of 5G cells,
the finite storage capacity at the edge, and the need for content
availability while driving motivate the need to develop smart
edge caching strategies adapted to the mobility characteristics
of connected cars. In this paper, we propose a scheme called
RICH (Roadslde CacHe), which optimally caches content at edge
nodes where connected vehicles require it most. In particular, our
scheme is designed to ensure in-order delivery of content chunks
to end users. Unlike blind popularity decisions, the probabilistic
caching used by RICH accounts for the user mobility information
that the system can realistically acquire. Furthermore, we provide
a complete system architecture and define the protocols through
which the different system entities can interact. We assess the
performance of our approach against state-of-the-art solutions,
under realistic mobility datasets and system scenarios. Our
RICH edge caching scheme improves significantly the content
availability at the caches and reduces the required backhaul
bandwidth, with beneficial effects for both the end users and
the network operators.

Index Terms—Edge caching, prefetching policy, vehicular net-
works.

I. INTRODUCTION

Connected cars are considered by drivers as a projection of
their homes on the road, and the same seamless connectivity
and content-based services are expected on the road as well.
Communication of connected cars with the network infras-
tructure can support a wide variety of applications, ranging
from critical, safety-related applications to the provision of
entertainment services (e.g., video distribution). An example
of the former category is “See-Through” [1], an advanced
driving assistance automotive use case, where vehicles receive
video stream of road conditions from vehicles in front of
them to clear the obstructed view and perform actions such
as overtaking and lane changing. Given the latency-sensitive
nature of these applications, a deployment of servers and
content at the network edge, hence close to vehicular users, is
highly desirable [2]. This requirement, along with the expected
increase in the number of connected cars, calls for a significant
redesign of the network architecture in order to support
high-performance connectivity and reduce the core network
congestion due to cloud-based content and applications.

Mobile Edge Computing (MEC), one of the key tech-
nologies for 5G networks, provides computing and storage
platforms at the edge of the mobile network [3], [4]. MEC

can therefore be used to push content to edge nodes, in
close proximity to connected cars. A major limitation of this
approach, however, is that edge nodes do not have the same
storage flexibility as the cloud, and efficient strategies have to
be developed to store the right content at an Edge Node (EN)
(e.g., cellular base station, AP, roadside unit). Also, the thirst
for wireless capacity has led to a reduced coverage size of
ENs, which requires content to be replicated in multiple ENs
to meet the user demand.

It is worth stressing that, although caching policies have
been widely investigated (e.g., [5]-[7]), connected cars add
significant challenges to the problem of edge caching. They
are, indeed, highly-mobile vehicles, thus storage strategies
should be optimized not with respect to the current content
popularity, rather to the expected content popularity among
users that are about to enter the coverage of ENs. Furthermore,
the dynamics of connected cars, augmented by the limited
coverage size of ENs, require content to be stored where cars
have a chance to actually download it, i.e., in slow-speed areas
such as congested intersections.

Most of the existing mobility-based caching policies, e.g.,
in [8], [9], require full knowledge of the trajectory of each
car, rising concerns about drivers’ privacy. Also, they are not
tailored to in-sequence delivery of content [10]-[12], typically
required by future on-board streaming applications. A major
design challenge for caching policies is therefore to rely only
on coarse mobility information (sequences of waypoints, dwell
time, etc.), while supporting in-sequence content delivery.

In this paper, we propose RICH (Roadslde CacHe), a
prefetching policy for edge caching specifically adapted to
highly dynamic environments with a coarse knowledge of car
trajectories. We consider an urban environment where cars
can connect to ENs, in order to download content, as shown
in Fig. 1. Our approach is based on the knowledge of the
sequence of travel waypoints, and some aggregate statistics
about the distribution of the dwell time under the coverage
of each EN. Note that this is in accordance with the current
trend in 5G systems [13], which foresees a dynamic caching
system to prefetch content in the ENs, based on future demand
estimation obtained by users’ context information, such as
direction and speed.

Furthermore, unlike classical works on caching, we consider
a data streaming application in which the content is divided
into fixed-size chunks, strongly correlating the download
process at each EN, due to the in-sequence chunk delivery.
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Fig. 1. Scenario: a car traversing multiple Edge Nodes (ENs).
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Fig. 2. Network caching architecture

Importantly, we also account for the correlation that mobility
introduces in the request process among different ENs. Indeed,
the instantaneous popularity of a chunk at an EN depends on
the actual temporal and spatial trajectory of all cars interested
in the corresponding content. The goal of our strategy is thus to
cache in advance the chunks in the sequence of ENs traversed
by the car, by choosing the chunks that will be most likely
downloaded at each specific EN. This increases the cache hit
probability, i.e., the probability that the content chunks are
downloaded directly from the cache, which in turn greatly
reduces the backhaul traffic and content access delay.

In more detail, our novel contributions are as follows:

o Architecture and protocol: we introduce a split content
caching architecture, with a centralized module located
in the backhaul, which manages the content stored in the
caches located at the ENs. This centralized approach is
amenable to being realized through the Software Defined
Networking (SDN) paradigm. We also define the system
protocol governing the interaction between various enti-
ties in the vehicular network.

o Analytical formulation: we describe an analytical model
capable of predicting the probability of downloading a
chunk of a content from a given EN.

o Caching scheme: we leverage the previous model to
develop a mobility-aware prefetching strategy that selects
what (i.e., which chunk) and where (i.e., in which ENs)
to cache, based on the distribution of the dwell times.

o Implementation: we evaluate our solution under a realistic
urban traffic dataset of the city of Bologna. Our sim-
ulation model is comprehensive and it closely mimics a
real scenario. We compare our proposed RICH scheme to
two state-of-the-art prefetching policies: pure popularity-
based caching (POP) and a mobility-aware caching strat-
egy called netPredict [8].

II. NETWORK ARCHITECTURE

We consider an urban scenario in which vehicular users
traverse coverage areas of several ENs, where each EN is
responsible for the communication in a specific geographical
area, as depicted in Fig. 1. Due to the dynamic nature of
the vehicular network, along with a large number of users
and a volatile wireless channel, users downloading data may
experience severe service disruptions. Our goal is to design a
caching architecture that provides users with a timely delivery
of the content, while also reducing the backhaul bandwidth
consumption.

We focus on a challenging application such as content
streaming, for which in-order delivery should be ensured. We
let ENs cache parts of the content requested by the vehicular
users, and we envision the presence of a Prefetcher module
that instructs, in advance, each EN on which part of the content
to store. In this way, the content portion that each user is
expected to download from an EN, will be readily available
for delivery at the EN when actually reached by the user.

In the proposed architecture shown in Fig. 2, the Prefetcher
is located in the network backhaul, along with a Data Store
module. Both of them are connected with all the ENs. The
Data Store provides a catalog for all the contents, each of
which is assumed to be composed of a sequence of chunks,
each univocally identified. The Prefetcher can acquire (e.g.,
through the user’s navigation system) or predict the sequence
of ENs that the user will traverse in the near future. Also,
thanks to past measurements, the distribution of the cars’ dwell
time under each EN is known to the Prefetcher, as well as the
available storage in the caches of the ENs and of the users’
content requests. Based on such information, the Prefetcher
defines which chunks of which content should be cached in
advance at which EN, and instructs the ENs accordingly. Upon
getting the instructions from the Prefetcher, each EN retrieves
the needed chunks from the Data Store before arrival of the
user in the coverage area. This allows leveraging non-real-
time data transfer and thus relaxes the QoS requirements for
the content transfer into the caches.

Each EN is responsible for providing streaming service to
the user, and, in order to provide timely content delivery, it
utilizes a local caching storage, divided in two parts:

o the Prefetch Cache, which contains the chunks prefetched
from the Data Store, as per Prefetcher’s instructions;

o the Standard Cache, which stores chunks that were not
available in the Prefetch Cache at the time the user
requested them, and they have been retrieved from the
Data Store.

Notably, the latter cache mimics the behavior of a standard
caching system, where a new chunk is stored just after a
cache miss is experienced. On the contrary, the Prefetch Cache
behaves similarly to a content delivery network (CDN) node,
where the content is proactively stored into the node.
Moreover, the EN carries out its tasks via two agents:
o the Streaming Agent reads the chunks from the cache and

streams them to the user; one separate stream is managed
for each user under coverage;



o the Caching Agent interacts with the Prefetcher, fetches
chunks from the Data Store, inserts the prefetched/missed
chunks into the Prefetch/Standard Cache, and manages
both the Prefetch and the Standard Cache according to
the adopted eviction policy.

A. System protocol

The Streaming Agent contacts the Caching Agent whenever
a new content request arrives, as well as whenever a requested
chunk is not available in the cache. The Caching Agent,
in turn, informs the Streaming Agent as the needed chunk
becomes available in the cache. The interactions between the
aforementioned entities are further clarified by the space-time
diagrams in Figs. 3 and 4, which depict the protocol followed,
respectively, when a user starts requesting a content and while
the car connects with the subsequent ENs to complete the
content download, if necessary. In both cases, the proposed
protocol is composed of two phases:

o prefetching phase: an EN prefetches the chunks from the
Data Store, as per Prefetcher’s instructions, and the EN
serves the user on the basis of the chunks stored in the
Prefetch Cache;

o data recovery phase: the EN fetches the missing chunks
from the Data Store and sends them in sequence using
both the Prefetch and the Standard Cache, if needed.

In both figures, chunks downloaded from the Prefetch and
from the Standard Cache are depicted in green and red,
respectively. All control messages are depicted in blue.

We assume, for simplicity, that a generic content c is divided
into equal sized chunks, and we define K. as the set of all
the corresponding chunk identifiers. Let k& € K. be a generic
chunk identifier of content ¢ and d.. ;, denote the corresponding
actual data. Let v be a generic user and/or its car (the notation
is summarized in Tab. I).

In more details, Fig. 3 refers to a scenario in which car v
enters the coverage area of the first EN along its path and the
user requests the first chunk k; of content c¢. At the EN, the
request is forwarded to the Prefetcher!. Since the Prefetcher
knows the sequence of ENs the car will traverse, it can run
the prefetching policy (described in Sec. III) and instructs the
first EN to prefetch the set 1 C K. of chunks of content
c. The EN, through the Caching Agent, checks which of the
required chunks are already available in the Prefetch Cache
and sends a message to the Data Store asking for the missing
ones, denoted by o C K. The Data Store sequentially sends
the chunks to the EN, i.e., all chunks [d. x]kex,. The Caching
Agent inserts the received chunks in the Prefetch Cache and
informs the Streaming Agent about the data availability. Then
the Streaming Agent initiates the data stream towards the user,
sending the chunks in sequence.

If a chunk is not available in the Prefetch Cache, the
system enters the data recovery phase, as the data must be

The actual implementation of this step is more complex since the request
is sent to the Streaming Agent, which registers a new stream for the user and,
in turn, forwards the chunk request to the Prefetcher through the Caching
Agent. In the following we will omit such level of details in the interaction
among the modules internal to the EN.

TABLE I
NOTATION
v A generic user and/or its car
c Content identifier
k Generic chunk identifier

Ke The set of all chunk identifiers of content ¢
Data corresponding to chunk k of content ¢
A generic subset of K. representing the chunks
of content c instructed-to-be/actually prefetched

retrieved directly from the Data Store. The latter situation may
happen in two cases: (i) some prefetched chunks were evicted
from the cache to make space for other chunks; (ii) all the
prefetched chunks have been transmitted and the car is still
under coverage. In both cases, the Streaming Agent attempts
to serve the car by getting the chunks from the Standard Cache.
Otherwise, the missing chunks, denoted by K3 C K., are
fetched from the Data Store for transmission to the user. s
is chosen large enough to compensate for the round-trip time
from the Prefetch Cache to the Data Store and to guarantee a
continuous streaming from the Data Store to the user, using
the EN as relay until the car leaves the coverage area.

Fig. 4 shows only the prefetching phase occurring at the
second EN and at the subsequent ENs traversed by the car.
The eventual data recovery phase is omitted as it is identical
to the one in Fig. 3. When the car enters the coverage of the
first EN, the Prefetcher instructs all the subsequent ENs to
prefetch the required chunks before the arrival of the car in
their coverage areas. This ensures that the user experiences no
delay due to content prefetching in the subsequent ENs?. As
shown in Fig. 4, the EN receives a message to prefetch the
chunks K5 C KC.. For the subset K¢ of chunks in K5 that are
not yet available in the cache, the EN asks the Data Store and
stores the corresponding chunks in the Prefetch Cache.

When the car enters the EN coverage, it sends a chunk
request for the first missing chunk k. The EN forwards this
message to the Prefetcher in order to notify it about the car
entrance in the coverage area. The EN is responsible to send all
the required chunks to the car which are available in the local
cache. Eventually, the Prefetcher may trigger a data recovery
phase to compensate for missing chunks in the cache.

III. RICH PREFETCHING POLICY

Given the caching architecture discussed above, our goal is
to maximize the Prefetch Cache hit probability across all cars.
Indeed, the user throughput increases whenever the desired
chunks are locally downloaded from the EN and not from the
backhaul, while leading to better utilization of the backhaul
network resources. We therefore propose an efficient strategy
to be run at the Prefetcher, which selects the chunks to store
in the Prefetch Cache (hereinafter simply called cache) of the
ENs traversed by a car. We recall that the car path is expressed
as the sequence of traversed ENs, and the distribution of the
dwell time under the ENs is obtained through historical data.

2Note that the delay due to non-overlapping coverage areas, if any, can be
avoided by assuming a sufficiently large playout buffer at the user; the buffer
size would depend on the type of network deployment.
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Fig. 4. Protocol followed by the ENs after the first EN traversed by the car.

Note that the above caching problem could be formalized
as an ILP problem by discretizing the time into steps and
associating a binary decision variable with each step, each
EN, and each chunk of every content, expressing whether that
chunk of that particular content is stored in a particular EN
at that time step. Then, assuming that the sequence of ENs
traversed by the cars, the time at which they enter an EN, and
the cars content demand are known, we could express formally
the hit probability to maximize over all cars and all chunks.
However, such formulation would need global knowledge of
the system dynamics over an extended period of time; also,
given that the cars dwell time is random, its solution would
require stochastic optimization methods. In light of the limited
knowledge that is available in practice and of the problem
complexity, below we design an approximated method, which,
as shown in Sec. V, proves to be very efficient.

We start by motivating our approach using a toy-case exam-
ple and highlighting the benefits of knowing the distribution
of the cars dwell time under an EN. Then we theoretically
evaluate the probability that a specific chunk is downloaded
from an EN by a tagged car, which will be used to define our
prefetching policy. Indeed, our approach consists in letting
each EN store those chunks whose probability to be down-
loaded by a car is above a given threshold.

A. A toy-case example

Consider a single EN covering the area of an intersection
controlled by a traffic light. The dwell time of each car and,

thus, the number of downloaded chunks depends on the traffic
light state. Let us now focus on the subset of cars that request a
specific content starting from its first chunk. Assume that 80%
of these cars experience green light, thus the corresponding
dwell time under the EN is small and the users (labeled by
“fast”) can download up to 10 chunks. The 20% of these cars
experience red, thus the corresponding dwell time under the
EN is large and the users (labeled by “slow”) can download
up to 100 chunks. Hence, the average number of chunks that
can be downloaded by a car is 28.

Assume now that the system adopts a prefetching policy
that makes its decisions based on the average number of
chunks downloaded by the users, as, e.g., the state-of-the-art
netPredict policy discussed later in Sec. IV-C. Such a policy
will store just the first 28 chunks of the content in the cache.
This can be seen as an inefficient decision for both kinds of
users. Indeed, for the fast users, able to download just the first
10 chunks, the additional 18 chunks stored in the cache are
completely useless and a waste in terms of cache occupancy.
For the slow users, able to download up to 100 chunks, the
cache is heavily underutilized since only the first 28 chunks
are available.

In our work we propose instead to exploit the distribution
of the dwell time under each EN to increase the performance
of the overall caching system. Indeed, in the above example,
two more clever solutions can be easily envisaged. The first is
to store 10 chunks only: the slow users still experience cache
misses as in the netPredict case, however we now avoid the
waste of cache occupancy in the case of fast users and save
room for other content. The second solution, instead, stores
the first 100 chunks: in this way, all the users will find the
requested chunks in the cache, at the cost of a higher cache
occupancy.

Note that the possible inefficiencies arising in a single EN
(i.e., cache) scenario are exacerbated in the presence of a
sequence of ENs, due to the required in-sequence delivery of
the chunks. Thus, we advocate the use of prefetching policies
that are aware of the dwell-time distribution, and not only of
the average dwell time under an EN, as, e.g., netPredict does.

B. Chunk download probability for large caches

We now derive the probability that a user successfully
downloads a chunk from the cache. Let us focus on one car
and one specific content that a user wishes to download from
the traversed ENs. Assume that EN i, with 1 <7 < N, is the
ith EN along the path of the car, composed of N ENs.

We start by defining the chunk delivery process under a best-
case scenario in which all ENs cache the whole content. This
implicit assumption of very large cache is aimed at devising
a simple model that will be tailored to small caches later in
this section.

Let Y; be the random variable representing the last chunk
received from EN ¢ > 1, and let Y; = 0 by definition. Then
the set of chunks downloaded from EN i is given by: {k|k €
(Y;—1,Y;]}. Thus the probability that chunk % is downloaded
from EN ¢ > 1 is, for any k € {1,..., K},

$i(k)=P(k € (Yo, Y)=P(Y; 2k A Yiy <k) (1)



Note that if NV is large enough, the content will be downloaded
for sure from some EN, thus >_°°, ¢;(k) = 1.

Let X; be the random variable representing the total number
of chunks downloaded from EN ¢ by the user. The probability
density function (pdf) of X; depends mainly on two factors:
(1) the mobility of the car, since, e.g., longer dwell times under
the EN coverage typically imply larger amounts of download
data, and (2) the actual throughput obtained by the user when
connected to the EN, which in turn depends on the wireless
data rate and on channel contention among other users. In
Sec. IV-A, we will describe how to compute the pdf of X; in
the urban scenario under study.

Based on our definitions, it is easy to see that for ¢ > 1,

Y=Y+ Xi=) X;. @
j=1

The theorem below relates the download probability ¢;(k) to
X;.

Theorem 1: Given a car traversing a sequence of ENs, the
probability to download a specific chunk k£ from EN i, with
1 <4 < N, can be expressed as

k—1
¢i(k) =D P(X;>k—nlYi1=n)P(Yi1=n). 3
n=1

Proof: Given (2), we can write (1), for any 7 > 1, as:

di(k) = P(Yia+Xi>k AN Y <k)
k—1
= Y P(Xi>k-Yi4[Yi=n)P(Yi1 =n)
n=1
k—1

= Y P(Xi>k—n[Yi1=n)P(Yi1=n).
n=1
|

Note that, as expected, for ¢ = 1 the expression in (3)
becomes ¢1(k) = P(X; > k) since the user will download
chunk k from the first EN only if the total amount of
downloaded chunks from EN 1 is greater than k. Now, thanks
to the well-known property of the expectation of non-negative
integer random variables, we can claim:

Property 1: Zszl ¢:(k) = E[X;].

The following corollary holds in the special case when the
car dwell times under the ENs are i.i.d. random variables. Note
that this case is addressed here for completeness, as well as
to provide a more explicit expression of the ¢’s, however our
approach does not require such an assumption.

Corollary 1: Let the random variables X;’s be i.i.d. and
defined on a positive support. Let fx (k) be their discrete pdf.
Then, for any ¢ > 1, we have:

di(k) = (fx * ¢i1) (k) “)

where * is the convolution operator.

The proof is reported in Appendix A. The complexity of

computing the convolution for all ENs is O(N2K?). Notably,

such computation can be done offline, based on past statistics.
We now consider the case of an EN cache of limited size.

Let M; be the available space in terms of chunks at EN 1.

Then we can introduce a discrete random variable, )A(i, which
represents the total number of cached chunks downloaded from
EN ¢ by the user, given the available room in the cache of EN
i. The pdf of X; is given by:

P (X,- - x|Mi) ={ PX;>2) =M 5)
0 x> M;.

Indeed, it is not possible to download more than M; cached
chunks, and the events corresponding to a number of down-
loaded chunks larger than M; in the original model with
large cache size, now correspond to downloading all the M;
available chunks.

Given the above distribution, the probabilities ¢;(k) can be
computed as in (3), or when )?,-’s are i.i.d. as in (7) .

To further clarify the behavior of the download probability
at each EN, we provide an example below.

Example 1: Consider a toy scenario in which a car
traverses four ENs and large-sized caches are available.
X;’s are i.i.d. with a symmetric triangular distribution
and mean value equal to 10 chunks, i.e., the average
number of chunks downloaded at each EN is 10. Fig. 5
shows the download probabilities ¢;(k) at each EN i
for each chunk %, computed by applying Corollary 1.
From Fig. 5, we observe that at the first EN ¢, (k)
decreases as k increases since the randomness in the
mobility reduces the probability of downloading further
chunks. Due to the limited support of the distribution
of X1, ¢1(k) becomes zero for k > 20 chunks. At the
second EN, ¢» (k) is now bell-shaped, since values of k
close to zero correspond to the case in which X; takes
very small values (which is unlikely), i.e., the car speed
is very high under the coverage of the first EN, hence
the user does not have enough time to download any
chunk. The maximum is obtained around 15, which is
reasonable since in the case of deterministic mobility
with X; = 10 chunks for any ¢, the chunks to be
downloaded would be exactly in the interval [10,20],
which is symmetric around 15. The chunk download
probability from the following ENs (7 > 2) still exhibits
a bell-shaped behavior, but with a larger support. This is
due to the higher uncertainty on downloading a specific
chunk from a given EN, which, in turn, is due to
the increased randomness in the number of previously
delivered chunks.

C. The RICH prefetching algorithm

Based on the previous definition of the chunk download
probability, we define our prefetching policy. The goal of our
scheme is to ensure that the probability with which a user
can download a chunk from any of the ENs is greater than a
given threshold 7, with 7 € [0, 1]. Our scheme thus identifies
the smallest set of ENs that should cache each chunk so that
its download probability exceeds 7. This set depends on the
combined probabilities of downloading the chunk from each



Algorithm 1 RICH prefetch with a single-threshold
Require: 7 > Probability threshold
Require: {¢;(k)};r > Download probability for any chunk
and for any EN
I: for k=1,...,K do > For any chunk &
2: Sk)y=0,p,=0 > Init
3: F(k) < {¢pi(k)|¢i(k) > 0}; > Store download prob.
in descending order for chunk &
4 while 7 (k) # 0 and pr < 7 do
5 Dtop <— remove the highest prob. from F(k)
6: itop < EN index corresponding to piop
.
8
9

> Check threshold

Pk = Pk +Prop > Accumulate the probabilities
S(k) = S(k) U {itp} > Update the list of ENs
: end while
10: end for
11: return {S(k)}x
12: return py

> ENs where to prefetch each chunk
> Final download probability

EN. Thus, setting 7 allows controlling the maximum amount
of chunks to be downloaded from the backhaul.

The pseudocode of RICH is reported in Alg. 1, which, for
each chunk k, returns the set of ENs, S(k), that must store k
according to the RICH prefetch policy. After the initialization,
for each chunk % (lines 1-10), RICH considers the set F (k)
of corresponding download probabilities (line 3). To avoid
degenerate solutions, RICH just considers the ENs for which
it is possible to download chunk k, i.e. ¢;(k) > 0. Now the
algorithm iterates (lines 4-9) on all the download probabilities
in decreasing order (line 5). Chunk k is now stored at the EN
i corresponding to the highest ¢; (k) value. If ¢;(k) is already
greater than 7, no other EN should cache k. Otherwise, the EN
corresponding to the second top value of ¢;(k) should store
the chunk too. Eventually, chunk & will be cached at as many
ENs, associated to the top ¢;(k) values, as necessary so that
the sum of their ¢;(k) exceeds 7. Notably, the probabilities
can sum up since referring to disjoint events.

At the end of the procedure, pj represents the estimated
download probability of chunk %k from any EN in S(k), thus
with |{S(k)}| copies of chunk k. Whenever p, > 7, the
prefetching procedure has run successfully. Otherwise, it fails
since it is not possible to find any set of ENs where to prefect
the chunk in order to satisfy 7. In such a case, we do not
store any copy of the chunks. Note also that the last ENs of
the path experience a significant border effect since there are
not subsequent ENs where to prefetch the chunks. In Alg. 1,
the computation complexity of each loop is O(N log N + N),
due to the sorting in line 3 and the fact that each chunk can
be stored in at most N ENs. Thus the overall complexity is
O(KNlogN).

To understand the effect of setting 7, we consider some
extreme cases. If we set 7 = 0, a single copy of each chunk
is stored in the most probable EN. Whereas, if we set 7 = 1
and the threshold is reached, the chunk is stored in any EN
for which the download is possible. Thus the value of 7 can
be numerically optimized to maximize a given performance
metric, i.e., the overall cache hit probability.

In the example of Fig. 5, we show the different ¢;(k)
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Fig. 5. Download probability for each EN and overall download probability,
Py, for the RICH caching policy with a single threshold 7 = 0.8, given a toy
example scenario with E[X;] = 10 chunks.
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Fig. 6. Number of copies for the single-threshold and multiple-thresholds
RICH prefetching scheme.
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Fig. 7. Example of number of copies for two subsequent ENs.

corresponding to a simple triangular distribution for X; with
E[X;] = 10 chunks. We also show the final p;, obtained with
RICH by setting 7 = 0.8. The non-monotonic behavior of py, is
due to the different number of copies that are stored at the ENs
for different chunks, as shown by the curve labeled “single-
th” in Fig. 6. The behavior of the number of copies is due to
two different effects. Intuitively, as k increases, the uncertainty
about the possibility to download chunk k increases, thus the
RICH caching algorithm compensates it by creating a higher
number of copies. Indeed, in Fig. 6 the number of copies grows
from 1 to 3. At the same time, the uncertainty is usually larger
for the chunks which are “between” two ENs and thus the
number of copies can be non-monotonic, as shown around
chunk 26 in Fig. 6. To understand this second effect, consider
the example shown in Fig. 7, depicting ¢;(k) and ¢;41(k)
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Fig. 8. Download probability for each EN and overall download probability,
pg, for the RICH caching policy with multiple thresholds, being 71 = 0.8
(for k € [1,10]) and 72 = 73 = 74 = 0.4 (for k > 10).

for two subsequent ENs. The most probable chunks at each
EN (whose download probability is greater than 7) will be
stored as just one copy, whereas the other chunks (between
the most probable chunks) will be stored as two copies, due
to the uncertainty in the precise moment when the car will
enter EN ¢ + 1.

1) Coping with uncertainty: We now propose two further
enhancements to our scheme, in order to efficiently cope with
chunk requests that are farther in the future.

Multi-threshold RICH policy. Our intuition is that a fixed
threshold 7, as the one used in Alg.1, may be unfit for
chunks that are expected to be downloaded in farther ENs,
for which the level of uncertainty is larger. Indeed, for such
chunks the single-threshold RICH policy will naturally require
a very large number of copies, thus wasting precious space
in the cache that could be better used for other users. We
can therefore consider a dedicated threshold 7; for each EN
i, leading to a decreasing sequence of thresholds {7;};. The
actual values of the thresholds can be optimized numerically
to maximize the cache hit probability. We define instead the
range of chunks for which threshold 7; is adopted for EN ¢
as the set of all the chunks such that ¢;(k) > ¢;(k), for any
other EN j # 4. The reason for this choice is that the chunks
with the largest download probability at one EN must affect
the actual threshold value to use at such EN. Importantly, the
complexity of optimizing the thresholds grows as IV, i.e., the
number of ENs in the path, and not as the number of chunks
in a content (which may be arbitrary large, depending on the
specific kind of content).

Fig. 8 shows the same scenario as in Fig. 5 but using
different values of threshold for the four ENs. Only 7, = 0.8,
while all the other thresholds are equal to 0.4. The final py is
lower with respect to the single threshold case for £ > 10, but
this is due to the smaller number of stored copies (usually 1
for most of the chunks), as shown in Fig. 6. This reflects the
intuition that for the chunks whose uncertainty is large, it is
better not to “waste” cache storage with multiple copies.

Refreshing the policy. Due to the high level of uncertainty,
for “far-in-the-future” chunks, RICH compensates with a high
number of copies, wasting a large amount of cache storage
while achieving a marginal performance improvement. Thus,
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Fig. 9. Reference urban area in the city of Bologna. Circles represent EN
locations and the corresponding coverage areas (distance is expressed in
meters).

we design RICH to prefetch contents just on the initial se-
quence of ENs, and to refresh the prefetching decision before
entering the first EN not considered in the previous decision.
This approach permits to better trade the effectiveness of the
prefetching decision with the time to prefetch the content.

2) Eviction policy: Consider now a generic scenario with
multiple users served by one EN. Since the EN cache is finite,
we need an eviction policy determining which chunks should
be removed when the cache is full and which new chunks
must be inserted. We adopt the following policy: the chunks
removed with higher priority are the ones that have been
already delivered, i.e., those destined to users not anymore
under coverage. Among these chunks, the ones with the lowest
download probability are evicted first. In this way, we can
efficiently exploit the cache under chunk demands that vary
in both space and time.

IV. SIMULATION SCENARIO AND METHODOLOGY

Here, we first introduce the scenario and the real-world
vehicular traces used to investigate the performance of RICH.
Then we describe the methodology adopted for the comparison
of RICH against state-of-the-art solutions.

A. Reference scenario

We take as reference scenario a real-world 2 km x 2 km ur-
ban area of the Italian city of Bologna, illustrated in Fig. 9. The
detailed vehicular mobility traces were obtained to reproduce
the experimental data gathered through the traffic detectors
available at the intersections [14]. The total trace duration
is 79 minutes comprising 11,079 vehicles (approximately,
950 are simultaneously on the map) and representing 120
minutes of the morning rush hours, under quite stationary
traffic conditions.

In the above urban section, we select the major traffic
arteries and place eight ENs along them, as represented in
Fig. 9 in correspondence of main intersections regulated by
a traffic light. Let R={A,B,C,D,E,EG,H} be the set of ENs;
all ENs have the same cache size. We assume an ideal radio
range of 100 m at each EN, thus the coverage areas of
subsequent ENs (denoted by circles in the figure) do not
overlap. Note however that, even if we consider here non-
overlapping coverage areas, our scheme can be applied under
any scenario.



TABLE II
OMNET++ SIMULATION PARAMETERS

TABLE III
NUMBER OF CARS UNDER EACH EN IN BOLOGNA URBAN AREA

Parameter Value Parameter Value EN A B C D E F G H
WiFi 802.11a WiFi active scan false Avg. cars  27.51 1336 788 452 835 6.02 342 279
Frequency band 5 GHz Beacon interval 100 ms Total cars 1580 1510 527 382 337 1456 161 206
Bandwidth 10 MHz  Receiver sensitivity -85 dBm
Max bitrate 54 Mbps  SNIR threshold 4 dB
Rate control AARF Background noise power -101 dBm TABLE IV
MTU 1 kbytes  Pathloss type Free space SIGNIFICANT PATHS IDENTIFIED IN BOLOGNA URBAN AREA
Tx power 33 dBm Pathloss coefficient 3
Antenng gain 1 dB Max f:omrpumcatlon range 110 m Path ABC ABF CDE FBA FBC HDC HGA
Retry limit 7 Max interference range 200 m

No. of cars 54 555 337 810 91 45 161

To investigate the effect of the prefetching policy across
multiple ENs, we consider only those cars in the trace that
enter the coverage of any three ENs. Among the large number
of the possible combinations of three ENs, we consider only
the ones with a large number of users and call them significant
paths. In total, we identify 7 significant paths with a minimum
number of cars equal to 45 each (see Tab. IV for details),
obtaining 2,053 cars in total following a significant path. Given
the vehicular traces of all the cars traversing the significant
paths, for each EN we derive the empirical distribution of the
car dwell times, needed by the Prefetcher.

Finally, although RICH can be implemented on any
Infrastructure-to-Vehicle technology (ITS-G5/DSRC, WiFi or
LTE), we opted for the IEEE 802.11a WiFi standard, yet
operating on the 5.9 GHz frequency band. The reasons for
this choice are twofold. First, since our application is not
strictly safety related, we would not use ITS-G5 to transmit
on the ITS-G5 bands (at least 5.875-5.905 GHz). Nevertheless,
we want to avoid transmitting on the WiFi bands at 5.4 GHz
so as to not interfere with non-vehicular communications and
increase the capacity available for content streaming delivery.
Second, ETSI is preparing a deregulation of the ITS band to
allow WiFi access, e.g., 802.11a, under a ‘detect-and-avoid’
principle against ITS-GS5 technology [15], [16]. Thus, accord-
ing to C-ITS [17], we test RICH on the Service Channel 1
(SCH 1) at 5.875-5.885 GHz and, accordingly, ignore potential
coexistence with ITS-GS.

B. Simulation methodology

We developed a discrete-event simulator, based on OM-
NeT++ [18], which models the network architecture in Fig. 2
with 8 deployed ENs, as in Fig. 9. Even if in our model we
implemented both the Prefetch and the Standard Caches, in
the following we will investigate just the performance due to
the Prefetch Cache.

We assume an ideal communication link from the ENs
to the Prefetcher, with a propagation delay equal to 10 s,
corresponding to a Prefetcher located physically in the same
urban area. Instead, the Data Store is connected to the ENs,
with a 100 Mbps communication link and a propagation delay
of 2 ms. We model the wireless access network with a detailed
802.11a model provided in Inet-Framework 3.3 [19]. The
simulation parameters are defined in Table II.

Each significant path comprises 3 ENs: we run the prefetch-
ing policy and evaluate the performance at the first two,

to avoid the border effect due to the last EN, described in
Sec. III-C. Table III shows the statistics about the temporal
average of the number of users under each EN (given that
at least one car is present), and the total number of distinct
cars under coverage. EN A is located at the most crowded
intersection, thus we expect heavy congestion and lower per-
user throughput. On the other hand, H is at the least crowded
intersection, for which we expect the least number of users on
average, thus high per-user throughput.

To evaluate the download probability for any chunk and
for any EN, ie. {¢;(k)};r, we must determine the number
of downloaded chunks X; at each EN. Let W; be the random
variable of the dwell time of a generic car under EN i. Let b be
the total bandwidth available when a user is under coverage
of an EN. Let u; be the average number of cars under the
coverage of EN i. Let s be the total size in bits of each chunk.
Approximatively, we can claim that:

Wb
s

X; 6)
Replacing the empirical values of W; and u; (given in Ta-
ble III) in (6), we estimate the distribution of X;, and then
the empirical @;(k) for any EN ¢ and chunk k. Finally, we
evaluate X; to take into account the finite cache, by applying
(5).

We remark that, we account for content popularity while
evaluating the performance of RICH. Indeed, each time a
new car enters the coverage of any EN for the first time, it
generates a content request according to a Zipf’s distribution
with exponent oo = (.75, coherently with the value observed in
[20]. The size of one content is 2,600 chunks, with each chunk
being 65 kbytes large. The normalized cache size is defined
as the cache size divided by the total size of all contents in
the catalog. The size of the catalog is 10 contents.

The performance metrics we consider are as follows>:

e cache throughput [bit/s|: average amount of data re-
ceived by the user over time and directly downloaded
from the cache;

e cache hit probability, Pn; € [0,1]: fraction of chunk
requests that are satisfied by directly downloading the
chunk from the cache, i.e., in the event of a cache hit;

3The above statistics are computed considering the total time period during
which a car was under the coverage of any of the ENs.



o backhaul traffic [bit/s]: average amount of data down-
loaded from the server over time, i.e., due to the event
of a cache miss;

e normalized backhaul overhead: total amount of additional
traffic transferred between the Data Store and the ENs
with respect to amount of traffic delivered to the users,
normalized to the traffic delivered to the users; it can be
also negative in case of content reuse in the cache;

o normalized cache size, C € [0,1]: size (i.e., maximum
allowed occupancy) of each cache, normalized to the
catalog size;

o network cache occupancy € [0, N]: average total cache
occupancy across the ENs, normalized to the catalog size.

C. Alternative prefetching policies

Below we describe our benchmark schemes.

POP: it is a mobility-agnostic approach that prefetches
contents in decreasing order of popularity till storage satu-
ration. It requires knowledge of the popularity level of all the
contents in advance, but it is provably optimal in terms of hit
probability for a single cache and under a stationary content
request process [20]. We tailor the behavior of POP to our
data streaming scenario, in which each content is divided into
chunks. POP stores the chunks of the most popular contents
in sequence; if the cache space is not sufficient for the whole
content, only the initial chunks of the content are stored.

netPredict [8]: it exploits both spatial and temporal pre-
dictions of the car path based on the previous history. For
a fair comparison with RICH, we assume that the spatial
prediction in netPredict is perfect and, hence, the sequence
of ENs traversed by the car is known in advance. Based on
the knowledge of the average dwell time under each EN and
the value of the average bandwidth available at each EN,
netPredict stores a number of chunks given by their product.
Thus, the adopted communication model in [8] is identical
to (6), but exploits just E[X;] instead of the distribution of
X; as in RICH. In a nutshell, netPredict can be seen as a
special case of RICH for deterministic X;.

D. Statistical analysis of the reference scenario

Cars may arrive under the coverage of the ENs following
various paths, as shown in Table IV. Also, the number of cars
on each path is different. Considering such traffic conditions,
the dwell time distributions (and hence the distributions of X;)
of the cars at the ENs show interesting statistical properties
(see the values in Table V for a cache size of 2,600 chunks).
We observe that, if incoming cars at some EN ¢ take different
paths (with a significant number of cars in each path), the
distribution of X; shows high value of skewness and kurtosis.
For example, Table IV shows that EN B is involved in several
paths. Since cars enter B’s coverage with different incoming
and outgoing roads, the distribution of Xz shows the highest
value of skewness and kurtosis. A similar behavior can be
observed in case of ENs A, D, and H. On the other hand, the
incoming cars under the coverage of E and G follow only the
paths CDE and HGA, respectively. Hence, the distributions of
XEg and X show lower values of skewness and kurtosis.

TABLE V _
STATISTICAL DESCRIPTION OF EMPIRICAL Xi IN BOLOGNA URBAN AREA.

EN A B C D E F G H
Skewness  2.11 248 041 174 -0.11 -0.15 -0.18 1.62
Kurtosis 857 11.60 271 689 2.63 222 1.68  5.98

TABLE VI

OPTIMAL THRESHOLDS FOR DIFFERENT CACHE SIZES.

CACHE SIZE OPTIMAL THRESHOLD
#contents  #chunks T1 T2 3

1 2600 0.88 0.67 0.70

2 5200 092 0.58 0.67

3 7800 0.99 0.57 0.67

4 10400 0.99 0.57 0.67

5 11000 0.99 0.57 0.67

V. NUMERICAL RESULTS

As the first step, we use an exhaustive approach to find
the combination of the thresholds 7; at the three ENs for
maximizing the cache hit probability. Table VI shows the
values we obtained for different cache sizes, assumed to be
the same at all ENs. In general, the optimal threshold value
in the first EN, 7, is higher than the others due to the
smaller uncertainty on the cars mobility in the first hop. By
construction, 73 depends on the chunks that are most probably
downloaded from EN 3. However, such chunks can also be
downloaded from EN 2. The higher value of 75 as compared to
79 allows some additional chunks to be stored in EN 2, which
increases the cache hit probability. For cache size > 7800
chunks, the optimal value of the thresholds does not change,
because the large cache capacity is never fully utilized.

Edge network performance. We now evaluate the per-
formance of the three policies at the network edge, which
directly impacts the content access delay. Fig. 10(left) depicts
the cache hit probability as a function of the normalized cache
size C, for POP, netPredict and RICH prefetching schemes.
As expected, a larger cache size improves the performance
of all caching schemes, even if beyond C' = 0.2 the cache
hit probability for RICH and netPredict becomes constant
since under the two policies the cache is never full. However,
RICH outperforms netPredict and POP up to 33% and 190%
respectively, for small cache size. This is due to the higher
effectiveness of the RICH policy, which tends to store chunks
only in those ENs from where they can be downloaded with
high probability. For very large cache size (C' > 0.75), POP
achieves higher cache hit probability as compared to RICH.
This is because the cache is always fully occupied for POP
and at C' = 1 each cache stores every content in the catalog,
hence a hit is always guaranteed. Fig. 10(center) shows the
network cache occupancy for the three caching schemes. By
construction, regardless of the cache size, the cache occupancy
is highest for POP. In comparison with netPredict, the cache
occupancy of RICH is slightly higher but the gain in the
other performance metrics (e.g., cache hit probability, cache
throughput and backhaul traffic) is significantly larger. Finally,
Fig. 10(right) shows that RICH achieves a cache throughput of



1 8 100 N
RICH —8—
L 7 POP —4— L
o8 5 netPredict - 50 3
=6 a
g £
> E 2
Z 06/ g° 5 60
) © a.
2 " 24 £ @
a 51 g
= 04 3 £ 40
= 5 B
N S
z S 20
02 RICH —&— RICH —8—
POP —&— 1 POP —&—
netPredict netPredict
0 . . . ¢ 0 . . . . 0 . . . ¢
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Normalized cache size

Fig.

°
S

Normalized cache size

Normalized cache size

10. Urban Bologna scenario: cache hit probability (left); network cache occupancy (center); cache throughput (right).

RICH —&— RICH —8— RICH —5—
80 POP —&— - POP —4&— POP —A—
netPredict g netPredict 2.5 netPredict
=70 £ 05
B £ 0.5
£ g
= 60 3 5
= El z
250 Z E
E0 [ Z 0 2 s td
EPE £ z
E 2 2 2
£30 2 1
& 20 03 i ] L
* — 0.5
1o r 2 RS ——-— d
0 -1 0
0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 06 08 1

Normalized cache size

Normalized cache size

Normalized cache size

Fig. 11. Urban Bologna scenario: backhaul traffic (left); normalized backhaul overhead (center); joint user/operator utility function (right).

up to 83 Mbps (i.e., around 11.9 Mbps per single EN/cache),
while the maximum value for netPredict is 64 Mbps.

Backhaul network performance. The performance gain
provided by RICH over both netPredict and POP can be ob-
served also in terms of backhaul traffic, since the higher cache
hit probability of RICH implies a lower probability to access
the server and retrieve the content from there. Fig. 11(left)
shows the overall backhaul traffic due to cache misses. In the
best case, RICH reduces such traffic by approximately 57%
and 70% as compared to netPredict and POP, respectively.

Fig. 11(center) highlights that RICH incurs lower backhaul
overhead as compared to the other policies for large enough
caches. In the best case, RICH achieves 27% and 67% lower
overhead than netPredict and POP, respectively. The lower
negative values of the backhaul overhead indicate better reuse
of the chunks stored in the cache. For small caches, RICH
incurs higher backhaul overhead due to higher number of
prefetched chunks and lower chunk reuse, but RICH still
achieves lower backhaul traffic as compared to the other
schemes (see Fig. 11(left)), thanks to the higher hit probability
and content reuse.

A joint user/operator view. Here we compare the perfor-
mance of the caching schemes in terms of joint user/operator
utility functions. The user utility is described as an exponential
function decreasing with 1 — P, since larger Pp;; implies
smaller latency to access the contents. The operator utility
instead is modeled as an exponential function decreasing with
the normalized cache size. Following a standard approach, we
express the joint utility function as the product of the user and
the operator utility, which is depicted in Fig. 11(right). Note
that RICH outperforms netPredict, regardless of the cache size.
Compared to POP, the RICH utility is significantly higher for
small cache sizes, while for larger caches RICH allows for a

great reduction in cache occupancy.

A. Errors in the knowledge of car mobility

To assess the robustness of RICH, we evaluate two kinds
of error in the system knowledge of the car mobility. The
former affects the dwell time under an EN, and, thus, the
actual number of downloaded chunks. The latter affects the
knowledge of the sequence of traversed ENs.

Errors in the dwell time. We add a random error € to
the dwell time experienced by a car. Let W be the observed
dwell time of a car under a given EN, and let wy,;, be the
minimum observed dwell time under the same EN, based on
past statistics. We set the actual dwell time W' of the car as:

W' = max{wmin, W + €}

where € is Gaussian distributed with average p and standard
deviation 0. When o = 0 s, all the dwell times under an
EN are deterministically shifted by p. When € > 0, the car is
slowed down, while, for € < 0, the car accelerates with respect
to its original speed.

Fig. 12(top) shows the cache throughput for different values
of v and for C' = 0.4 in the urban Bologna scenario, where the
average dwell time across all the ENs is 39 s. For i < —50 s,
most of the cars spend the minimum time under the coverage
of the ENs (W' & wpiy), thus the cache throughput becomes
very low. The cache throughput increases with p as the cars
get more time to download the chunks available in the cache.
For 1+ > 20 s, instead, the high coverage time does not have a
significant effect on the cache hit events. Indeed, all the stored
chunks have already been downloaded and the extra coverage
time cannot be exploited, thus the cache throughput decreases.

Fig. 12(bottom) shows the cache hit probability for different
values of p. For ;1 < 0 s, cars spend less time under coverage,
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Fig. 12. Urban Bologna scenario: effect of random error € in dwell time on
the cache throughput (top) and on the cache hit probability (bottom).

thus both caches hits and misses decrease. However, the cache
hit probability remains high due to the large amount of data
downloaded by cars under their first EN. For p > 0 s, the
cache hit probability decreases rapidly by increasing p, due
to the higher number of cache miss when the cars experience
a coverage time longer than expected. The hit probability is
almost unchanged for ¢ = 0 and 10 s, while it decreases at
most by 30% for o = 60 s, which is the worst case scenario.

Figs. 13(top) and 13(bottom) depict the backhaul traffic and
the normalized backhaul overhead. Both metrics are low when
1 < 0's, as cars spend less time under coverage, hence the
number of cache miss is small and few requests reach the
Data Store. When p > 0 s, both metrics increase due to the
significant increase in the number of cache miss. Notably, due
to the large content reuse, the backhaul overhead is negative.

In summary, only large errors in the dwell time (i.e., large
values of || or o) have an evident impact on the performance,
as they make the past statistics nearly useless. Otherwise, the
performance is just slightly affected by errors, confirming the
robustness of the proposed approach.

Errors in the car path. In the considered scenario, RICH
relies on the information on just two subsequent ENs traversed
by a car along its path. Additionally, it runs when a car enters
the coverage area of the first EN, thus guaranteeing some
intrinsic level of robustness. Nevertheless, a car could change
its actual trajectory by completely skipping the second EN
along its expected path — an event that could arbitrarily affect
the cache hit.

To understand the effect of errors in the cars path, we se-
lected at random a set of 20% and 50% of cars that would skip
the second EN along their path, in the urban Bologna scenario.
Fig. 14 shows the cache throughput (averaged over several
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throughput.

simulation runs) versus the cache size. The cache throughput
decreases by approximately 10% and 23% with respect to
the case where cars follow the original path, confirming the
robustness of the proposed approach.

B. More detailed knowledge on car mobility

We now analyze the benefit that a more detailed information
on the car mobility could bring. To this end, we classify the
cars in two categories: slow and fast. Slow cars are those
dwelling under the coverage area of an EN longer than 10s;
all others are classified as fast cars. Table VIII reports the
coefficient of variation of the resulting dwell time X;, with
and without such classification. As expected, for all ENs the
variance of the dwell time for slow and fast cars is smaller,
highlighting the gain brought by the additional information.

Figs. 15(top) and 15(bottom) depict the cumulative distri-
bution corresponding to X4 for EN A and Xy for EN H,
respectively, in the Bologna urban area, for cache size equal
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to 2600 chunks. For EN A, Fig. 15(top) shows that slow and
fast cars can download, on average, around 100 chunks and 30
chunks, respectively. Observing the average number of cars in
Table III, EN A is expected to be located at a very congested
intersection. Indeed, only few, slow cars experience a large
enough dwell time and a small radio congestion that allow
them to download all the 2600 chunks stored in the cache.
EN H, instead, appears to be located at a much less congested
intersection, according to the values in Table III. This implies
a lower radio congestion, hence, a higher download capability,
as shown in Fig. 15(bottom). Indeed, under EN H, fast users
download at least 170 chunks, with an average around 250,
whereas slow users download around 1000 chunks. For brevity,
we omit the distribution of the number of chunks downloaded
from the other ENs; the number of fast and slow cars per EN
is reported in Table VII.

Using the dwell-time distribution conditioned on the
fast/slow cars, we can obtain better results for both RICH
and netPredict. The cache throughput of RICH now reaches
about 91 Mbps (10% increase), while netPredict achieves
83 Mbps (30% increase). Similarly, the backhaul traffic is
further reduced to 6 Mbps (80% decrease) for RICH, while it
remains unchanged for netPredict. The performance of POP,
instead, is unaffected as POP is mobility agnostic.

VI. RELATED WORK

Several works have appeared on content caching at the edge
of the cellular network. In particular, [11] proposes an optimal
probabilistic content placement policy that maximizes the total
cache hit probability for random network topologies, based on
content popularity. Thus, unlike our work, the policy in [11] is

oblivious to the actual mobility pattern of the users. A hybrid
scenario, comprising MANET and cellular networks, is studied
in [12], where each node estimates the content popularity and
caches a content based on that. Importantly, this scheme can be
considered as a distributed implementation of the POP policy
that we use as benchmark in our work.

Regarding cellular backhaul networks, [21] investigates the
effect of different criteria to identify a web content when
accessing the caching system. The main idea is to avoid
different application-level identifiers for a content, so as to
prevent content items from being duplicated in the caches.
We remark that, in our study, we consider the streaming of
content through a chunk-based approach and we assume that
each chunk and each content are univocally identified.

Several works have employed cooperation among caching
nodes to improve performance in heterogeneous cellular net-
works. As an example, [22] introduces a hierarchical caching
architecture where caches are deployed in both small-cell
and macro-cell base stations, and both can satisfy a user
content request. Similarly, the work in [23] considers a cluster
of small-cell base stations as one cache entity. The base
stations adopt both cooperative caching techniques and co-
operative transmissions. Differently from the above studies,
our approach is based on a centralized prefetching scheme
orchestrating the caches deployed at the different ENs.

Few works have investigated caching schemes specifically
taking into account user mobility. [24] proposes a mobility-
aware cache placement strategy for Cloud Radio Access
Networks. The authors leverage on the user-mobility pattern
to analytically estimate the content-request rate in different
cells and minimize the network energy consumption. This
work differs from ours as our goal is to optimize the cache
hit probability. [25] proposes a mobility and popularity-aware
caching scheme for a heterogeneous cellular network, com-
prising macro-cell and small-cell base stations, where only the
latter are capable to cache contents. The goal of the caching
policy is to minimize the data downloaded from the macro-
cell base station. More relevant to our study is [8], which
considers the MobilityFirst network architecture introduced
in [26], and proposes an approach, called netPredict, aiming
to support smooth mobile content delivery. In MobilityFirst,
a global identifier is associated with each user, so that the
user mobility is recorded at each network node. Each of these
nodes is equipped with two distinct buffers, similarly to our
architecture in Fig. 2. The first one caches the most popular
content items, exactly as the POP policy considered in our
work. The second buffer is devoted to store the content based
on a prefetching policy leveraging on the predicted sequence
of nodes traversed by each particular user, and the average
dwell time and available bandwidth under each node. A similar
prefetching policy is proposed in [9] for a cellular network
scenario. Similarly to our work, the content is delivered to
users by base stations using a chunk-based approach. The
specific mobility of each user is used to identify the chunks
to prefetch along the user path. Unlike our study, however,
both [8] and [9] assume that the caching policy knows or
predicts the spatial and temporal trajectory of each user, in
order to estimate the time intervals in which the user will be



TABLE VII
NUMBER OF FAST AND SLOW CARS AT EACH EN IN THE URBAN BOLOGNA SCENARIO

EN A EN B EN C EN D EN E ENF EN G EN H
Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow Fast  Slow Fast Slow Fast Slow
376 1204 948 562 182 345 215 167 0 337 1456 0 68 93 120 86

TABLE VIII _
COEFFICIENT OF VARIATION OF X; AT EACH EN 4.

COEFFICIENT OF VARIATION

EN
Fast  Slow Combined
A 036  0.61 0.75
B 0.31 0.45 0.80
C 043 032 0.59
D 030 040 0.72
E - 0.32 0.32
F 0.04 - 0.04
G 038 0.17 0.44
H 033 040 0.70

covered by each base station. Our approach instead requires
only the knowledge of the distribution of the dwell times under
each edge node at aggregate level. This distribution can be
estimated locally by each EN and does not require the precise
knowledge of the car trajectory: only the sequence of ENs
is needed. This simplifies the prediction process and provides
better user privacy.

Another body of works relevant to our study is based on
the application of the Information-Centric Networking (ICN)
paradigm to vehicular networks. In particular, [27] proposes
an architecture for content-centric vehicular networks, which
is compatible with our proposed prefetching approach. [28]
presents a socially-aware vehicular information-centric sys-
tem, which leverages on caching, computing, and commu-
nication capabilities of smart vehicles for facilitating con-
tent availability to mobile users. Although in standard ICN-
based architectures network nodes reactively store contents
during delivery to the user, similarly to our approach [29]
and [30] propose to prefetch contents in ICN nodes. The
study in [30] formulates the problem of optimally placing
content chunks in the ICN-based network nodes as an integer
linear programming optimization problem, maximizing the
content retrieval probability. Moreover, forward error correc-
tion coding is adopted to reconstruct the whole content if
enough chunks have been received, independently from their
order. The work in [30] is thus based on a single content
retrieval and not on content streaming as in the RICH case.
Interestingly, the authors in [31] advocate that it is critical
to consider user mobility information for caching design in
content-centric wireless networks. They assume that the user
dwell time is estimated based on the available data, and
optimize the cache failure probability by solving a convex
optimization problem. However, the details of the estimator
for the dwell time are not provided. Similarly, [32] proposes a
mobility-aware cooperative caching scheme for content-centric
5G networks, where contents can be stored at the network edge
as well as in the vehicular cloud. Furthermore, MEC servers

are leveraged to compress the contents thereby enhancing the
storage capability of the edge nodes. The considered scenario
is similar to that of [29] where vehicles are assumed to
be moving at a constant speed, thus, the approach is not
applicable to our urban scenario.

Finally, a preliminary version of this work was included
in our conference paper [33], where the basic ideas of our
caching framework were sketched.

VII. CONCLUSIONS

In this paper we study how to efficiently provide connected
cars with streaming data as they drive along a road covered
by wireless Edge Nodes (ENs). Our RICH prefetching policy
determines the content chunks to store in the ENs caches,
based on the past statistics of the achievable data rates and
of the dwell time experienced by the cars under the coverage.
RICH requires only to know the sequence of ENs traversed by
a car, without any detailed information on its actual trajectory
and real-time traffic conditions.

Throughout extensive trace-driven simulations, our scheme
was shown to improve the cache throughput and to reduce the
backhaul traffic, with beneficial effects for both the users and
the network operators. Furthermore, RICH was shown to be
robust to possible errors in the knowledge of the cars path and
dwell time.
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APPENDIX A
PROOF OF COROLLARY 1

Proof: When X;’s are i.i.d.,

k—1
$i(k) = P(X >k —n)P(Yi_1 =n).

Thus, (3) can be rewritten as:

k—1 n

SP(X2k-n)d P(X=tY; p=n—1)

n=1 t=1
P (Y =n—1))

k—1

SP(X>(k—t)—2)-

k—1

S P(X =tY; 5 =2)P(Yio=2)
i

Y P(X =t)-

k—1
S PX>(k—t)—2)P(Yiia=2)

(fx * ¢i—1)(k).

(7



