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Abstract

In this review we present the potentialities and the achievements
of the use of non-classical photon number correlations in twin beams
(TWB) states for many applications, ranging from imaging to metrol-
ogy. Photon number correlations in the quantum regime are easy
to be produced and are rather robust against unavoidable experi-
mental losses, and noise in some cases, if compared to the entan-
glement, where loosing one photon can completely compromise the
state and its exploitable advantage. Here, we will focus on quantum
enhanced protocols in which only phase-insensitive intensity measure-
ments (photon number counting) are performed, which allow probing
transmission/absorption properties of a system, leading for example
to innovative target detection schemes in a strong background. In this
framework, one of the advantages is that the sources experimentally
available emit a wide number of pairwise correlated modes, which can
be intercepted and exploited separately, for example by many pixels
of a camera, providing a parallelism, essential in several applications,
like wide field sub-shot-noise imaging and quantum enhanced ghost
imaging. Finally, non-classical correlation enables new possibilities in
quantum radiometry, e.g. the possibility of absolute calibration of a
spatial resolving detector from the on-off- single photon regime to the
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linear regime, in the same setup.

i.ruoberchera@inrim.it

1 Introduction

Quantum correlations are the subject of deep interest since their exploitation
could open unprecedented opportunities in several fields, ranging from the
very foundations of quantum mechanics [1] to cosmology [2, 3] and represent
the basic resource for the development of quantum technologies as fundamen-
tal metrology [4, 5], quantum communication [6, 7], quantum biology [8, 9],
quantum imaging and sensing [10, 11, 12, 13, 14, 15, 16, 17, 18].

Quantum enhanced measurement protocols aim at reducing the uncer-
tainty in the estimation of some physical quantities of a system, measuring
some modification of an optical probe state, below classical shot noise limit
(or standard quantum limit) scaling as n−1/2, where n is the number of par-
ticles of the probe. Most theoretical investigations have been addressed to
the use of entangled states to change this scaling with a stronger one, up to
the ultimate limit imposed by quantum mechanics, n−1, known as Heisenberg
limit. Many measurement schemes have been proposed [19, 20], and some ex-
perimental proof of principle have been realized [21, 22, 23, 24, 25, 26, 27, 28]
in this direction, typically using entangled state of the form 2−1/2(|n0〉+|0n〉)
(NOON state), where the n photons are distributed in the two paths of an
interferometer accordingly. While two photon entangled states are quite
routinely produced by post selected (double photon detection events) Spon-
taneous Parametric Down Conversion (SPDC) in very low gain regime, in
practice generating and detecting n > 2 NOON state is really challenging.
Even worse, entanglement itself is extremely fragile to the losses, for example
loosing a single photon from a NOON state projects it in a classical mixture.
Other quantum states, entangled and squeezed, have been considered, which
are more resilient to experimental imperfections [13], but nevertheless reach-
ing Heisenberg limit for a large number of photons, is probably a chimera. In
fact, it has been recently shown that in presence of decoherence the Heisen-
berg limit (and, more in general, any change of the scaling with the photon
number in the uncertainty different by the shot noise limit) is out of reach
[29, 30]. Rather, the enhancement with respect to the standard quantum
limit is at most by constant factor, for example it takes the form

√

(1 − η)/η
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in presence of a loss factor (1 − η) [31, 32].
On the other side, the same advantage can be obtained more easily by

exploiting non-classical Gaussian states [33], which are relatively easy to
produce experimentally, such as squeezed vacuum generated by SPDC and
Optical Parametric Oscillators (OPO). Single-mode squeezing [34, 35, 36, 37]
in one of the quadratures (generated by OPO) has been the first quantum
property considered for quantum metrology, in particular for enhanced in-
terferometry [38] and the more successful from the practical point of view,
leading to a real sensitivity improvement of the modern gravitational wave
detectors [35, 39] and also to promising application to the photonic force
microscopy for biological particle tracking [40, 41] and beam displacement
measurement [42].

A fundamental property of two-mode squeezed vacuum, is that the state is
entangled in the photon number basically assuming the form

∑∞
n=0 cn|n〉|n〉,

meaning that two ideal detectors intercepting each modes respectively al-
ways measure the same number of photons. This correlation is strongly non-
classical and does not involve any measurement of the phase. Essentially,
all the optical measurements, which aim at the estimation of an absorption,
transmission and reflection can be enhanced by using photon number corre-
lation. The idea is that using one beam of the pair as a probe and the other
as a reference, the strong correlation help to detect slight modifications of the
signals when the two beams are compared. This scheme allows an enhance-
ment in sensitivity that can be exploited in different fields, like interferome-
try [43, 44] or imaging [14, 15]. While the direct measurement of the photon
number only, i.e. of the intensities, introduces some limitations in the field
of applicability, it is experimentally more feasible in many situations, even in
a realistic scenario including noise and losses. It is emblematic in this frame-
work, the possibility of detecting partially reflecting objects with significant
enhanced sensitivity exactly when the background at the receiver is much
more intense than the returning probe, just measuring non-classical photon
number correlations [45]. We mention that bright TWB states with strong
non-classical correlation have been recently obtained by four wave mixing in
hot atomic vapour and some groups have demonstrated the great potential-
ity of this source in imaging and sensing applications [46, 47, 48, 49, 50, 51].
These considerations can be extended to multi-mode spatial case. Indeed,
when twin beams are produced through traveling wave parametric down
conversion, or by four wave mixing [52], the emission is approximatively a
product of a large number of two-modes (spatial) squeezed states which can
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be intercepted and detected independently at the same time. Modern high
sensitivity multi-pixel detectors, like Charge Coupled Device (CCD) cam-
eras can exploit this parallelism for improving the sensitivity of wide-field
imaging applications. For example one of the goals, which has been recently
demonstrated, is the realization of a new wide-field microscope operating
below the shot-noise-limit [53]. One of first application of SPDC entangled
photons has been ghost imaging (GI)[54, 55], whose goal is the reconstruc-
tion of the spatial transmission/reflection profile of an object by using a
single pixel detector. Eventhough GI has been demonstrated exploiting ei-
ther classical correlations and computational methods (exploiting random
light pattern generated by a computer and spatial light modulator), the use
of non-classical correlations instead of classical ones can provide sensitivity
advantage in very low illumination [56, 57].

Finally, non-classical correlations have disclosed new possibilities in quan-
tum radiometry [58], e.g. the possibility of absolute calibration of detectors,
erasing the need of comparison with calibrated standards. The first proposal
for calibrating single photon detector has been formulated by Klyshko [59]
just after the discover of SPDC process and nowadays it is an established
technique [60], currently used in metrological institutes. Generalizing the
method to the domain of analog detectors and spatially resolving detectors
has lead recently to the first absolute calibration (of a EMCCD and a ICCD
camera) from the on-off single photon regime to the linear regime, in the
same setup, by tuning the intensity of the SPDC pump laser [61, 62, 63].

One of the main goals of this review is to give the reader all the elements
for understanding with a certain level of detail the origin of the quantum
advantage in the applications mentioned before, in particular linking clearly
the sensitivity improvement with the degree of non-classicality measured by
appropriate parameters. Since the losses are unavoidable in optical measure-
ment and they usually affect quite a lot the performance of quantum strate-
gies, we always take them into consideration in the derivation of the results.
The review is structured in the following way. In Sec. 2 we introduce some
basic elements of the quantum photodetection model. In Sec. 3 we discuss
the non-classical photon statistics and phododetection statistics, how they
can be quantified and the boundary between classical and quantum world.
Sec. 4 presents in some detail the generation of photon-number entangled
states in a spatially multi mode regime by SPDC and the issues related to
the efficient detection of non-classical correlation in the far field of the emis-
sion. Following Sec.s 5-6-7-8 are devoted to the presentation of noticeable
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applications of quantum photon number correlations, in particular sub-shot
noise imaging, target detection against a preponderant noise (quantum illu-
mination), quantum enhanced ghost imaging and finally absolute calibration
of detectors, respectively.

2 Quantum theory of photodetection and quan-

tum efficiency

The complete and consistent quantum theory of photo-detection, relating
photo-counts distribution to the intrinsic statistical nature of light and its
coherence properties, was introduced by Glauber in 1963 [64, 65]. For a
long time only strongly incoherent sources were available and the descrip-
tion of light was confined to the Planck’s distribution. One of the first and
groundbreaking experiment investigating the statistics and coherence of the
light was realized in 1956 by Hanbury Brown and Twiss who shown the
tendency of stars light to generate a photo-current correlation among two
detectors if sufficiently close each other, demonstrating the photon-bunching
effect in thermal light [66, 67]. On the other side the invention of the laser
(and maser before) has led to the measurement of different kinds of statis-
tics, from poissonian (which is the peculiarity of the laser itself) to strongly
super-poissonian, for example if a laser is scattered by a rotating ground
glass disc as reported by Arecchi in [68]. These new observation and phe-
nomenology led to a theoretical effort to deeply understand the relationship
between the intrinsic statistical nature of different kinds of sources and the
process of photo-detection. In a photo-detector, the absorption of a pho-
ton generates a signal (usually an electric pulse) which represents a photon
count. The statistics of these counting events is a faithful representation of
the photon statistics only if the detector has ideal characteristics, namely
infinite spectral bandwidth (the electric pulse is close to a delta-function in
time), linear response with the number of photons and perfect quantum effi-
ciency (each photon impinging the detector generates a count). Nevertheless,
non-idealities of detectors can alter the desired one-to-one relation between
the impinging photon and the generated counts.

For instance, in a linear photo-detector, the effect of a non unit quantum
efficiency η, can be modeled as the random evolution of the field after passing
through a beam splitter (BS) with transmission equal to η [69]. Introducing
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a bosonic photon annihilation operator â, such that [â, â†] = 1, the unitary
input-output relations of the BS provide the expression of the transmitted
and reflected fields b̂1 and b̂2 respectively of the incoming field â:

b̂1 =
√
η â+ i

√

1 − η v̂ (1)

b̂2 =
√

1 − η v̂ + i
√
η â (2)

where v̂ is the mode operator corresponding to the second input port of the
BS, which is considered here in the vacuum state |0〉.

Figure 1: Model of a linear photo-detector with quantum efficiency η corre-
sponding to the transmissivity of the beam splitter.

The photon statistics of the transmitted beam b̂1 correspond to that of the
input beam after the random selection process has taken place (See Fig. 1).
The evolution of the statistics of the number of photons of the incoming field,
n̂ = â†â, can be easily calculated from Eq. (1) using bosonic commutators
[70]:

〈N̂〉 = 〈b̂1
†
b̂1〉 = η〈n̂〉 (3)

〈∆2N̂〉 = 〈b̂1
†
b̂1b̂1

†
b̂1〉 − 〈b̂1

†
b̂1〉2 = η2〈∆2n̂〉 + η(1 − η)〈n̂〉

where 〈N̂〉 is the mean value of the measured photon number operator
and 〈∆2N̂〉 is its variance. In Eqs.(3), the definition of the quantum efficiency
as the ratio between the detected and the incoming mean number of photons
is recovered and the modification of the statistics when η < 1 is clearly
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expressed. Note that any kind of photon loss, not necessarily at the detection
stage, can be treated in the same way, so that the same formulas in Eq. (3)
can be applied in a broad range of situations where η can assume a different
role, which will be specified time by time. Coherent states, with 〈∆2n̂〉 = 〈n̂〉,
and thermal states with 〈∆2n̂〉 = 〈n̂〉(1 + 〈n̂〉), maintain the same statistical
properties, just with a rescaled mean value. On the other side, losses in the
detection process are the responsible of the degradation of sub-Poissonian
statistics(〈∆2n̂〉 < 〈n̂〉), which is a signature of the quantum features of light
as we will see in the Sec. 3. As a matter of fact, in the expression of the
variance, the second term is a Poissonian noise, arising from the bosonic
commutators, occurring even if the incoming field is green free from photon
number fluctuation, (∆2n̂ = 0), for example a Fock state |n〉 eigenstate of the
photon number operator. In presence of high losses (η ≪ 1) the photocount
statistics tends to the Poissonian one, vanishing the peculiar inner statistical
properties of the field.

Also correlations are affected by the process of detection. Considering, for
example, the covariance of two modes 〈∆n̂1∆n̂2〉, undergo two independent
detection processes with quantum efficiencies η1 and η2 respectively, it evolves
as

〈∆N̂1∆N̂2〉 = η1η2〈∆n̂1∆n̂2〉.

3 Non-Classical Photon Statistics

Ideal photodetection, without losses, provides precise information on the
intrinsic statistical nature of the impinging light. Therefore, the analysis of
the fluctuation in the photon-counts can be used to trace a discrimination
between the quantum and classical nature of the light, where the boundary
is represented by the coherent states [65, 71, 72].

Coherent states, experimentally generated by ideal laser, can be repre-
sented as a displaced vacuum state:

|α〉 = D(α)|0〉 = exp(αâ† − α∗â)|0〉 (4)

and are eigenstates of the annihilation operator, â|α〉 = α|α〉, where α is a
complex number. In the photon number basis, the single mode state |α〉 can
be expressed as:

|α〉 = e|α|
2/2

∞
∑

n=0

αn

√
n!
|n〉 (5)

7



from which is possible to calculate the photon number distribution p(n), that
turns out to be Poissonian:

p(n) = |〈n|α〉|2 = e−〈n̂〉2 〈n̂〉n
n!

(6)

with photon-number variance equal to the mean photon number, 〈∆2n̂〉 =
〈n̂〉. The relative uncertainty in the mean photon number ∆n̂/〈n̂〉 = 1/

√

〈n̂〉
is usually referred as to “shot-noise level”. As a consequence the shot-noise
level establish a lower bound to the uncertainty of any classical measurement
using classical light as a probe. This point can be clarified through the
Glauber-Sudarshan representation [65, 72, 73, 74]. Coherent states phase
and modulus completely span the phase-space (actually they form an over
complete base) any arbitrary state with density matrix ρ, can be represented
as a weighted combination of coherent states

ρ =

∫

d2αP (α)|α〉〈α|, (7)

where P (α) is a quasi-probability distribution. Because ρ is Hermitian and
has unit trace, P (α) is real and normalized to the unity. However, it not
always behaves as a well defined probability density, for example can assume
negative values or can be more singular than a delta function. They are
considered classical states of light the ones having P (α) ≥ 0 [69], then be-
having a true probability density function. This definition is motivated by
the fact that for such states the photon statistics predicted by the quantum
photodetection theory coincide with the ones derived in the framework of the
semiclassical theory of photo-detection [75], where the incoming field is con-
sidered as classical wave and the shot noise is the result of a random process
due to the discreteness of the electron charge [76, 77] generated inside the
detector (for all the three paradigms of direct, homodyne and heterodyne
detection).

From Eq. (7), it follows that quantum expectation values of normally
ordered operators are expressed through the integral of the corresponding
classical quantities weighted with the quasi-probability distributions, as

〈(â†)m(â)n〉 =

∫

d2αP (α)(α∗)mαn (8)

In particular, the expression of the photon-number variance within the Glauber-
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Sudarshan representation is [74]:

〈∆2n̂〉 = 〈â†â〉 + 〈(â†)2(â)2〉 = 〈n̂〉 +

∫

d2αP (α)(|α|2 − 〈|α|2〉)2 (9)

and shows a first term due to the discreteness nature of the light, the shot
noise, and a second normally ordered term, usually called second order
Glauber correlation function G(2) that can be interpreted as a quasi-classical
variance. For classical states, with P (α) ≥ 0, the integral is positive or null,
and the fluctuations are Poissonian or super-Poissonian. For non-classical
states, in which the quasi-probability assumes negative value (single pho-
tons, squeezed states, or entangled state) it is possible to have a negative
integral, allowing sub shot noise fluctuations.

According to the discussion above it is usefull to introduce a specific
parameter to measure the non classicality of a state. We consider the Fano
factor F = 〈∆2n̂〉/〈n̂〉 [78] or the Mandel’s Q parameter [79]:

Q =
〈∆2n̂〉 − 〈n̂〉

〈n̂〉 = F − 1 (10)

The value of the Fano factor F = 1 (Q = 0) establishes a bound between
classical and non-classical photon statistics; F is lower bounded by the unity
for classical states, while specific non-classical states can have 0 ≤ F < 1
(−1 ≤ Q < 0).

As pointed out in Section 2, the statistics of a state are deteriorated by
the losses in the photodetection process (including both losses in the optical
path and the detector quantum efficiency). The detected Fano factor in
presence of optical losses η becomes Fdet = ηF + 1 − η, as it descends from
Eq. (3). Thus, in presence of losses, the lower bound for a non-classical state
is Fdet = 1 − η.

3.1 Two mode non-classical statistics

In analogy to Eq. (7), a classical two-mode (bipartite) state is represented
by a Glauber-Sudarshan probability density function P (α1, α2) ≥ 0

ρ1,2 =

∫

d2α1d
2α2P (α1, α2)|α1〉|α2〉〈α1|〈α2|. (11)

Considering two fields with mean detected photon number N1 and N2, we can
quantify the degree of correlation between the modes and its non-classical
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feature defining the noise reduction factor σ as the ratio between the variance
of the difference in the number of photons, normalized to the noise of two
subtracted coherent states [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]:

σ =
〈∆2(n̂1 − n̂2)〉
〈n̂1 + n̂2〉

=
〈∆2n̂1〉 + 〈∆2n̂2〉 − 2〈∆n̂1∆n̂2〉

〈n̂1 + n̂2〉
(12)

The noise reduction factor represents the equivalent of the Fano factor for a
bipartite state; in this case, the shot noise level is given by the sum of the
shot noise of the two modes 〈n̂1+n̂2〉. For classical bipartite states, σ is larger
than 1, ad reach the unit only in the case of coherent states. For non classical
beams, quantum correlations can lead to 0 ≤ σ < 1. As already mentioned,
what limits σ are the optical losses experienced by the two fields. From
Eq. (3), considering two modes subject to the same transmission-detection
efficiency η1 = η2 = η,

σdet = ησ + 1 − η. (13)

The lowest bound in presence of losses is therefore σdet = 1 − η.
A demonstration of the classical limit of the correlation can be easily

achieved in a specific case. Let us consider a two mode state generated by
splitting a single mode â with a beam splitter of transmittance τ . In the case
of ideal photodetection, the statistics of the output modes can be computed
using the input-output relations of the BS in Eq.s (1) (with τ = η) as:

〈∆2n̂1〉 = 〈b̂1
†
b̂1b̂1

†
b̂1〉 − 〈b̂1

†
b̂1〉2 = τ 2〈∆2n̂〉 + τ(1 − τ)〈n̂〉 (14)

〈∆2n̂2〉 = 〈b̂2
†
b̂2b̂2

†
b̂2〉 − 〈b̂2

†
b̂2〉2 = (1 − τ)2〈∆2n̂〉 + τ(1 − τ)〈n̂〉 (15)

〈∆n̂1∆n̂2〉 = 〈b̂1
†
b̂1b̂2

†
b̂2〉 − 〈b̂1

†
b̂1〉〈b̂2

†
b̂2〉 = τ(1 − τ)[〈∆2n̂〉 − 〈n̂〉] (16)

The last expression reveals that in order to have a non-null covariance the
statistics of the incoming light must be super-poissonian, which also means
that a split coherent state does not generate any correlation, while a thermal
beam does. Using the relations (14-16) into Eq. (12) one can express the
noise reduction factor as:

σ = (F − 1)(2τ − 1)2 + 1 (17)
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where F = 〈∆2n̂〉/〈n̂〉. For a balanced 50:50 (τ = 1/2) beam splitter this
leads to the classical limit σ = 1, irrespective to the statistical properties of
the incoming beam, either sub-poissonian or super-poissonian. This means
that the correlated super-poissonian fluctuations of the two modes are sup-
pressed in the subtraction, except the shot noise. On the other side, for un-
balanced beam splitter, i.e. τ 6= 1/2, an incoming field with sub-poissonian
statistics generates non-classical correlations (σ < 1) at the output ports.

Another parameter that can be used as an indicator of non classicality
for two mode states is the Cauchy-Schwarz parameter [91]:

ε =
〈: ∆n̂1∆n̂2 :〉

√

〈: ∆n̂1 :〉〈: ∆n̂2 :〉
(18)

where 〈::〉 is the normally ordered quantum expectation value. While σ is de-
teriorated by the losses, ε is remarkably immune to them and for this reason
it allows accessing experimentally to the non classical features, even for in-
efficient detection process. However, noise added to the detection degradate
its value (See Sec. 6). For classical states of light, with a positive Glauber-
Sudarshan P function, the Cauchy-Schwarz parameter is ǫ ≤ 1, while for
states with a negative (or singular) P function this limit can be violated.
In the case of correlated thermal beams, obtained by a 50:50 BS, the most
used classically correlated states (for example, the classical ghost imaging
protocols, see Sec. 7), 〈: ∆2n̂1 :〉TH = 〈: ∆2n̂2 :〉TH = 〈∆n̂1∆n̂2〉TH = 〈n̂〉2,
as can be simply derived by Eq. (14,16), by introducing the thermal variance
〈∆2n̂〉 = 〈n̂〉(1 + 〈n̂〉). The Cauchy-Schwarz parameter for a split thermal
beam is εTH = 1 saturating the classical bounds. This demonstrates that
thermal split beams show the best possible correlation allowed for classical
states. They represent the classical benchmark for comparing the quantum
enhanced performance in some emblematic imaging and sensing protocols,
see Sec. 6 and 7.

4 Spatially Multi-Mode Photon Number Cor-

relation: Generation and Detection

Actually, the most efficient ways to produce quantum correlations between
optical fields are based on SPDC [92, 93, 94, 95, 96]. This physical phe-
nomenon was discovered at the end of sixties [59, 97] and in recent years,

11



thanks to the development of new kinds of laser systems and photon detec-
tors, it is exploited in the most advanced quantum technologies like quan-
tum key distribution [98, 99, 100, 101, 102], quantum computing [103, 104,
105, 106], tailoring of quantum states [107, 108, 109, 110, 111], quantum
imaging [15, 112] and quantum sensing [113]. Moreover, SPDC is exploited
in several experiments concerning the foundation of quantum mechanics
[114, 115, 116, 117, 118]. SPDC is due to the interaction between an intense
optical field, usually called pump beam, and a non-linear optical medium.
Basically, the phenomenon consists in the decay of one photon of the pump
beam into two photons preserving energy and momentum:

ωp = ω1 + ω2

kp = k1 + k2 (19)

where ωp is the frequency of the pump photon and ω1, ω2 are the frequen-
cies of the photons emitted by SPDC, and where kj (with j=p,1,2) are the
corresponding wave vectors (see Fig. 2).

Figure 2: Schematic representation of the spontaneous parametric down con-
version.

In this section we will describe the physics of the SPDC process, not
limited to the low gain regime (as in [92, 93, 94, 95]) and considering a
multimodal emission both in frequency and momentum [119]. For alternative
treatment see, for example, [96, 120, 121].

4.1 Spontaneous Parametric Down Conversion

In non-linear optics, the dielectric polarization P is expanded as [69, 122]:

P = χ1E + χ2EE + χ3EEE + ... (20)
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For higher strength of the electric field (E), the higher order non liner terms
becomes important. Except χ1 being the linear susceptibility coefficient, χ2,
χ3 (..χn) are called non linear susceptibility coefficient of the medium. Taking
into accounts non-linear effects until the second order, the field Hamiltonian
in a non-magnetic medium, H =

∫

V

1
2
~E · (ǫ0 ~E + ~P ) can be written as:

H(t) =

∫

V

[

1

2
ǫ0E

2(r, t) +X1(r, t) +X2(r, t)

]

dV, (21)

with

X1(r, t) =
1

2
χ1
i,jEiEj (22)

X2(r, t) =
1

3
χ2
i,j,kEiEjEk, (23)

where the summation on repeated indexes is understood and where here
the interaction extends over the volume V of the non-linear medium. The
last expression represents the non-linear interaction involving three electric
fields and it is responsible for two fundamental optical non-linear processes:
the Second Harmonic Generation (SHG) and the PDC. The corresponding
interaction Hamiltonian is:

HI(t) =
1

3

∫

V

χ2
i,j,kEiEjEkdV, (24)

In PDC, the nonlinear effect is small and the probability that a pump photon
is down converted into two emitted photons is very low. The pump is usually
very intense and not significantly depleted by the interaction, thus can be
treated classically whereas the quantum description of the down converted
fields is essential. It can be written as:

Êj(r, t) ∝
∫

[

âkj
ei(kjr−ωjt) +H.C.

]

d3kj , (25)

where the indexes can be j = 1, 2. The electric field of a classical monochro-
matic pump propagating along Z axis direction is:

Ep(r, t) = Ap(ρ)ei(kpz−ωpt) (26)
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where, ρ is the coordinate vector in the transverse X-Y plane. Considering
each wave vector divided into the longitudinal component(pump direction),
kjz, and transverse component, qj , the interaction Hamiltonian becomes:

HI(t) ∝
∫

χ(2)Ap(ρ)ei(kp−k1,z−k2,z)zei(q1+q2)ρe−i(ωp−ω1−ω2)t

×âω1q1âω2q2dω1dω2dq1dq2dρdz (27)

Initially the down converted fields are in the vacuum state, and upon the
interaction, the evolved state in the Schrödinger picture follows:

|ψ〉 = Ŝ|0〉 = exp

[

− 1

i~

∫

HI(t
′

)dt
′

]

|0〉 (28)

Considering L the length of the crystal, the integral along z direction results:

∫ L

0

ei(kp−k1z−k2z)zdz = Lei∆kz/2sinc (∆kL/2) , (29)

where ∆k = kp − k1z − k2z is the longitudinal phase mismatch. In the limit
L→ ∞, the sinc function becomes a delta function and the integral term is
different from zero for perfect phase matching condition, i.e ∆k = 0. In the
realistic situation, the finite thickness of the crystal allows a certain phase
mismatch, whose measure is given by the width of the sinc central peak,
inversely proportional to the crystal length.

Similarly, the surface integral in the transverse direction ρ leads to the
Fourier transform of the pump profile A(ρ). In the approximation of plane
wave, A(ρ) = A0, we have

∫

S

A(ρ)ei(q1+q2)ρdρ = A0δ(q1 + q2), (30)

In this approximation, the down converted modes are perfectly correlated in
the transverse direction, i.e. the signal modes with transverse momenta q is
correlated to the corresponding idler momenta (−q).

The integral over the interaction time of Eq. (28) leads to:

∫

e−i(ωp−ω1−ω2)tdt = δ(ω1 + ω2 − ωp). (31)
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This allows to express the frequencies as ω1 = ωp

2
+ Ω and ω2 = ωp

2
− Ω,

where ωp

2
is the degenerate frequency. With this simplification, the evolution

operator becomes:

Ŝ = exp

[
∫

(

f(q,Ω)â†q,Ωâ
†
−q,−Ω −H.C.

)

d2qdΩ

]

(32)

where the phase matching function f(q,Ω), contains information about the
strength of interaction (proportional to the length of the non-linear medium
and the pump amplitude) and the spatio-temporal bandwidth of the down
converted fields:

f(q,Ω) = χ(2)A0Le
i∆z/2sinc

(

∆k(q,Ω)L

2

)

The quantum state of SPDC modes at the start of the process is a vacuum
state and due to the time evolution becomes:

|ψ〉 = exp

[
∫

(

f(q,Ω)â†q,Ωâ
†
−q,−Ω −H.C.

)

d2qdΩ

]

|0〉, (33)

Considering discrete values of q, Ω, the integral can be replaced by the
summation:

|ψ〉 = exp

[

∑

q,Ω

f(q,Ω)â†q,Ωâ
†
−q,−Ω −H.C.

]

|0〉 (34)

Since the operators appearing in Eq. (34) corresponding to different pairs
of modes (q,Ω) 6= (q′,Ω′) commute with each other, following the Baker-

Campbell-Hausdorff formula, i.e ex(Â+B̂) = exÂ ·exB̂ for [Â, B̂] = 0, the above
state can be written in the direct product form as follows:

|ψ〉 =
⊗

q,Ω

Ŝ(q,Ω)|0〉 =
⊗

q,Ω

exp
[

f(q,Ω)â†q,Ωâ
†
−q,−Ω −H.C.

]

|0〉 (35)

In the plane wave pump approximation the SPDC can be seen as a col-
lection of independent states, each one involving two-mode with correlated
transverse momenta and frequencies. Expanding the exponential it is pos-
sible to rewrite the state as a product of two-mode entangled states in the
photon number (multimode TWB) [119]:

|ψ〉 =
⊗

q,Ω

|TWB〉q,Ω =
⊗

q,Ω

∑

n

cq,Ω(n)|n〉q,Ω|n〉−q,−Ω (36)
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where the probability amplitude cq,Ω(n) ∝
√

µn/(µ+ 1)n+1 is a coefficient
that can be considered constant and it is related to the mean number of
photons in the mode (q,Ω), µ = sinh2 |f(q,Ω)|.

4.2 SPDC photon statistics

We are now interested in the statistical distribution of photons for a couple of
conjugated modes, indicated by â(q,Ω) → â1 and â(−q,−Ω) → â2. To calculate
this it is convenient to consider one of the evolution operators in Eq. (35)
(the so called two-mode squeezing operator):

Ŝ1,2 = exp
[

f(q,Ω)â†1â
†
2 −H.C.

]

(37)

acting only on conjugated modes. For simplicity, we rewrote the complex am-

plitude as f(q,Ω) = reiθ where r(q,Ω) = A0L sinc
(

∆k(q,Ω)L
2

)

and θ(q,Ω) =

∆k(q,Ω)z/2. The real quantity r is usually referred as squeezing parameter.
The input-output relation for mode 1 and mode 2 follows as [119]:

Ŝ†
1,2â1Ŝ1,2 = U1â1 + V1â

†
2 (38)

Ŝ†
1,2â2Ŝ1,2 = U2â2 + V2â

†
1, (39)

where:

U1 = U2 = cosh(r), (40)

V1 = V2 = eiθ sinh(r). (41)

Now we are able to calculate the mean photon number for the mode j
(j = 1, 2):

µ = 〈â†jâj〉 = 〈0, 0|Ŝ†â†jâjŜ|0, 0〉 (42)

= 〈0, 0|Ŝ†â†jŜŜ
†âjŜ|0, 0〉

= 〈0, 0|
[

â†1 cosh (r) + â2 sinh (r)e−iθ
]

×

×
[

â1 cosh (r) + â†2 sinh (r)eiθ
]

|0, 0〉
= sinh2(r).

where we have used the unitary condition Ŝ†Ŝ = 1.
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It is possible deriving the statistical momenta of superior orders by fol-
lowing the same steps as in the previous calculation. In particular we are
interested in the second order moments (normally ordered):

〈: n̂1n̂2 :〉 = 〈â†1â†2â1â2〉 = sinh2(r) cosh2(r) + sinh4(r) (43)

= 2µ2 + µ.

〈: n̂1n̂1 :〉 = 〈: n̂2n̂2 :〉 = 2 sinh4(r) = 2µ2 (44)

and in the variance of single modes and their covariance:

〈(∆n̂1)
2〉 = 〈: n̂1n̂1 :〉 − 〈n̂1〉2 + 〈n̂1〉

= 〈n̂1〉(1 + 〈n̂1〉) = µ(1 + µ) = 〈(∆n̂2)
2〉 (45)

〈: ∆n̂1∆n̂2 :〉 = 〈: n̂1n̂2 :〉 − 〈n̂1〉〈n̂2〉
= 〈n̂1〉(1 + 〈n̂1〉) = 〈n̂2〉(1 + 〈n̂2〉) = µ(1 + µ) (46)

From Eq. (45) it can be seen that the single mode of the SPDC radia-
tion has a thermal statistics whit a super poissonian component equal to µ2

(excess noise).

4.3 Detected photon statistics

In the previous paragraph we have derived the statistical behaviour of SPDC
photons emitted in two conjugated modes. Here we are interested in the
statistical behaviour of the detected photons 〈N̂j〉.

According to the simple detection model of Sec. 2, Eqs. (3), and the
results of Sec. 4.2, it easily follows that:

〈N̂j〉 = ηj〈â†j âj〉 = ηjµ, (47)

〈(∆N̂j)
2〉 = η2jµ

2 + ηjµ, (48)

and the measured covariance is:

〈: ∆N̂1∆N̂2 :〉 = η1η2µ(1 + µ). (49)

Now it is possible to calculate the parameters that quantify the degree of
correlation between two modes and, in particular, the noise reduction factor
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σ defined in Eq. (12). As described in Sec. 3.1, the noise reduction factor
allows discriminating between classical states of light and quantum states
of light. If σ ≥ 1 we are in presence of classical light like thermal light or
coherent light, if σ < 1 we have quantum correlated light.

Substituting the statistics of two conjugated modes of SPDC, Eqs.(45,46),
in the definition of Eq. (12) we obtain perfect correlations in the ideal loss
less case i.e.:

σ = 0, (50)

while when losses are considered, according to Eq. (13) we have:

σdet ≃ 1 − η

where we assumed η1 = η2 = η. For unbalanced losses, the noise reduction
factor becomes:

σdet = 1 − η̄ +
(η1 − η2)

2

2η̄

(

µ+
1

2

)

, (51)

where µ is the mean number of photons per mode and η̄ is the mean quantum
efficiency. Eq. ?? shows how the measured noise reduction factor between two
conjugated modes is always smaller than 1 in the case of identical quantum
efficiency. Otherwise, if we have η1 6= η2 there is an additional positive term,
proportional to the mean value of photons per mode, which arise from a non
perfect cancellation of the excess noise of the thermal fluctuation. This can
lead to measure σdet > 1, losing the non classical signature, even in case of
perfectly correlated quantum light.

These results are valid in the plane wave pump approximation. In the
experiments the momentum distribution of the pump, which can not be a
delta function, generates an uncertainty in the relative momentum (direction
of propagation) of correlated photons. Therefore, a full study of the modes
collection inside finite detection areas is needed for describing the experimen-
tal results and some issues related to the detection of non-classical features
of multimode squeezed vacuum.

4.4 Modes collection in the far field

In the far field region, obtained at the focal plane of a thin lens in a f − f
configuration, any transverse mode q is associated with a single position x

according to the geometric transformation (2cf/ω)q → x, where c is the
speed of light. The exact condition q1 +q2 = 0 for correlated photons, which
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comes from the integral in Eq. (30) in the plane wave pump approximation,
becomes in the far field a strict condition on their positions, x1+x2 = 0. For
degenerate frequencies, ω1 = ω2 = ωp/2, correlated photons reach symmetric
positions with respect to the pump intersection point (x = 0). A more
realistic Gaussian distributed pump with angular spread ∆q leads to un
uncertainty on the position of correlated photon, x1 + x2 = 0 ± ∆x, where
∆x = (2cf/ωp)∆q represents the size, in the far field, of the coherence area
Acoh in which it is possible to collect photons from correlated modes. It is
possible to visualize coherence areas in the high gain regime (r > 1) where
they appear like correlated spots (speckles) around symmetrical positions x

and −x, where the center of symmetry (CS) is basically the pump-detection
plane interception. These correlations in photon numbers can be appreciated
in Fig. 3.

Figure 3: Far field emission of TYPE II SPDC in the non-linear high gain
regime, in which super-poissonian fluctuation is responsible for the speckled
structure. The rings showed correspond to a spectral selection of 10nm
around the degeneracy.

It is possible to measure the size of this coherence area by performing the
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spatial cross-correlation between the two beams:

c(ξ) =
∑

x

〈δN̂1(x)δN̂2(−x + ξ)〉
√

〈[δN̂1(x)]2〉〈[δN̂2(−x + ξ)]2〉

where ξ = (x, y) is the shift.
It is obvious that, in order to collect most of the correlated photons, two

symmetrically placed detectors must have sensitive areas Adet larger than the
coherence area Acoh. Referring to Fig. 4 we collect photons over two equal
and symmetric areas Adet,j (j = 1, 2) containing a large number of transverse
spatial modes Mc = Adet,j/Acoh, and for a time sufficient to collect many
temporal modes Mt = Tdet/Tcoh. However, there are modes Mb on the
detectors border which are only partially detected, namely with efficiency
β that can be assumed equal to 1/2 on average. Moreover, experimental
misalignment, δ, can leads to collect some uncorrelated modes Mu. Even if
it is possible to optimise the experiment in order to reduce the contribution of
Mb and Mu, it is anyhow necessary to take them into account for a complete
description of the physical scenario.

Figure 4: A scheme of the correlated modes Mc, the uncorrelated Mu and
the partially correlated modes Mb, when we assume to have a misalignment
with respect to the center of simmetry (CS) indicated by the blue dot

Since each SPDC couple of modes is independent from the others, the
variance and covariance of a state with M pairs are M times the values of a
single pair. Therefore, taking into account the contribution of the different
kinds of involved modes and the single/two mode statistics in Eq. (47,48,49)
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one has:

〈N̂j〉 = (Mc + Mu + Mbβ)ηjµ (52)

〈(δN̂j)
2〉 = (Mc + Mu)ηjµ(1 + ηjµ) + Mbβηjµ(1 + βηjµ) (53)

〈δN̂1δN̂2〉 = (Mc + Mbβ
2)η1η2µ(1 + µ). (54)

where µ is the mean photon number per mode and η1 and η2 are the detection
efficiencies on the two channels.

Substituting the previous expressions into the definition of the noise re-
duction factor in Eq. (12) we have (η1 = η2 = η):

σdet ≃ 1 − ηA (55)

The quantity 0 < A < 1 can be interpreted as a collection efficiency of
correlated photons pairs (or modes) and assumes the form:

A = (Mc + Mbβ
2 −Muµ)/(Mc + Mu + Mbβ) (56)

It is possible to evaluate this collection efficiency using just some basic geo-
metrical considerations: in Fig. 4 we call δ the misalignment, r is the coher-
ence radius at the detection plane and L the linear size of a detection region.
Under the conditions L > 2r and δ ≪ L, different types of modes are related
to the measurable parameters as:

Mu = 2Lδ/πr2, (57)

Mc = [(L− 2r)2 − 2Lδ]/πr2, (58)

Mb = 2L/r. (59)

By introducing the dimensionless parameters X = L/2r and D = δ/2r, the
collection efficiency becomes:

A =
X(πβ2 − 2D(µ+ 1) − 2) +X2 + 1

X2 + (πβ − 2)X + 1
(60)

Thus, in the limit µ → 0, the measured noise reduction factor in Eq. (55)
does not depend on the mean number of photons. In the asymptotic limit
X ≫ 1, i.e. when the detection size is much larger than the correlation
area, A approaches the unity and the NRF reaches the value in Eq.(51),
the one of two correlated modes in the monochromatic plane wave pump
approximation.
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5 Sub-Shot-Noise absorption Imaging

Absorption measurements are used in many fields of science, ranging from
spectroscopy, to estimate the chemical concentration of compound of gases
and solutions using the Beer-Lambert law, to astronomy, atomic and molec-
ular physics and biological microscopy. Wide field absorption microscopy, is
the simplest, fastest, less expensive and oldest imaging modality used, for
example, for live-cell imaging. It has the advantage of requiring the lowest
photon dose, especially for absorption light imaging. It is recognized by the
biologist that the lowest photon dose should be used to probe and investi-
gate biological processes [123], since the bright illumination can affect the
regular biochemistry pathway or induce photo toxicity and damage [8]. As
a drawback at low level of illumination, where few hundreds (or thousands)
of photons per pixel (or frame) are collected, the photon shot noise starts to
be an issue for the image quality and limits the information retrieved on the
sample.

Sub-shot-noise (SSN) absorption measurement has been demonstrated in
dated work [124] using SPDC source, and recently re-proposed with the help
of modern and more efficient devices and exploiting heralded single photon
sources [125, 126]. However, these works focus on the estimation of a single
value of the absorption, because only two correlated modes are exploited in
a differential imaging configuration, see Sec. 5.1. Sub shot noise wide field
imaging (SSNWFI), where the whole spatial structure of the absorption pro-
file is reconstructed, requires the exploitation of many, namely thousands,
pair-wise correlated spatial modes which must be efficiently detected sepa-
rately by a matrix of pixels. Thus, multi-mode quantum correlations gener-
ated by SPDC described in Sec. 4, represent a valid tool for reaching SSN
sensitivity in each pixel of the image [127, 128]. This section will provide a
detailed description of SSN absorption measurements, presenting the latest
achievements in the field [53, 129].

5.1 Absorption measurement

In absorption imaging the sample is illuminated by a probe state and the
transmitted pattern is detected by the pixels of a 2D matrix, e.g. a CCD
camera. The uncertainty of the absorption coefficient α, estimated by the
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measurement of the photon number 〈N̂〉 detected by each pixel [130] is:

∆α =

√

∆2〈N̂〉
∣

∣

∣

∂〈N〉
∂α

∣

∣

∣

. (61)

In the following we will consider the uncertainty ∆α in two different mea-
surement schemes, in the following referred as to direct (DR) and differential
(DIFF) imaging, respectively.

The direct imaging scheme is represented in Fig. 5(a). A single probe
beam is addressed to the object and the transmitted part is collected by the
detector.

Figure 5: Simple sketch of the different imaging schemes. (a) Direct imaging.
(b) Differential classical imaging, where classical correlated beams are gen-
erated by a balanced beam splitter. (c) Differential imaging with quantum
correlated beams generated by SPDC.

.

The losses due to the sample can be modeled by a beam splitter with
transmission coefficient 1−α. Referring to Eq. (3) of Sec. 2 and substituting
η with 1 − α, the mean detected photon number is 〈N̂〉 = (1 − α)〈n̂〉 where
〈n̂〉 is the mean number of the detected photons as it would be without the
object. The variance of the outgoing beam becomes:

〈∆2N̂〉 = (1 − α)2
[

〈∆2n̂〉 − 〈n̂〉
]

+ (1 − α)〈n̂〉. (62)

Substituting Eq. (62) in Eq. (61), the uncertainty in the absorption estima-
tion for the direct imaging scheme is

∆αDR =

√

(1 − α)2 [F − 1] + (1 − α)

〈n̂〉 , (63)
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where F is the Fano factor defined in Sec. 3, as it would be measured in
absence of the object. For a classical probe state (lower bounded by F = 1),
the sensitivity scales as ∆αDR =

√

(1 − α)/〈n̂〉 which represents the shot
noise limit. Furthermore, from Eq. (63) it is evident that, using a probe
state with non classical statistics, i.e. a value of F smaller than the unit,
allows going beyond the shot noise limit. It can be demonstrated that a Fock
state |n〉, with F=0, allows to reach the ultimate quantum limit in precision
of absorption estimation. A Fock state with n = 1 can be approximated
experimentally by an heralding single photon source and it has been used
recently in an absorption spectroscopy experiment [126]. However, as dis-
cussed in Sec. 3, Fano factor is deteriorated by the detection loss η. Thus,
the non-classical behaviour in terms of noise reduction is lower bounded by
Fdet = 1 − η. It is important to note that splitting a single mode beam in
N pixels leads to a detection probability of the order of η ≤ 1/N for each of
them, ruling out the possibility of using a single mode for reaching sub-shot
noise sensitivity. Even if sub-Poissonian light (F < 1) in single mode or few
modes have been obtained, experimental complications in their generation
and simultaneous detection limit their use for imaging, where higher num-
ber of non-classical spatial modes are needed, each mode addressing a single
pixel. On the other side, as we have shown in Sec. 4, SPDC process produces
naturally pair of beams, which are (individually) spatially incoherent (con-
taining thousands of independent spatial modes) but are locally correlated
in the photon number. Even if fluctuations of a single spatial mode in one
beam are super-poissonian, due to photon number entanglement these fluc-
tuations are perfectly replicated in the correlated mode of the second beam.
This property can be applied in a differential imaging scheme as described
in the following.

Differential imaging exploits the correlation properties of two beams in-
stead of one. These can be, for example, twin beams generated by SPDC
as represented in Fig. 5(c),or a thermal beam split by a 50:50 BS, depicted
in Fig. 5 (b). The scheme is the following: one of the two beams impinges
on a absorbing object, with transmittance (1 − α), before being detected.
The other beam is directly detected, playing the role of reference for the
noise. Assuming for simplicity the same detection losses along the two op-
tical paths, the difference of mean photon numbers is proportional to the
absorption coefficient:

〈N̂−〉 = 〈N̂2 − N̂1〉 = α〈n̂〉 (64)

24



The variance in the photon number difference can be expressed in terms
of the Fano factor and the NRF, σ, defined in Eq. (12), in absence of the
object, as:

〈∆2N̂−〉 = [α2(F − 1) + α + 2σ(1 − α)]〈n̂〉. (65)

Therefore, the sensitivity in differential scheme can be evaluated according
to Eq. (61), where N → N−, as:

∆αDIFF =

√

α2(F − 1) + α + 2σ(1 − α)

〈n̂〉 . (66)

The expression of the classical differential scheme (DC) can be obtained from
Eq. (66) by substituting σ = 1. For a weakly absorbing object, α → 0, the
term α2(F −1) is very small even for the super-Poissonian source and can be
neglected. Thus, the uncertainty in the differential classical scheme becomes
∆αDC =

√

(2 − α)/〈n̂〉, which is a factor of
√

2 larger than the direct imaging
for small α. The uncertainty achieved by the quantum correlations with
σ < 1, namely ∆αSSN = ∆αDIFF (σ < 1) can be compared to both the
direct and the classical differential imaging by using Eq. (63) and Eq. (66)
in the relevant limits discussed before:

∆αSSN

∆αDC

= SNRDC

SNRSSN
=

√

α + 2σ(1 − α)

2 − α
≈ √

σ (67)

∆αSSN

∆αDR
= SNRDR

SNRSSN
=

√

α + 2σ(1 − α)

1 − α
≈

√
2σ.

Here, we have introduced the signal to noise ratio, SNR = α/∆α, as an
equivalent figure of merit of the measured sensitivity. From Eq. (67), it
is clear that the advantage of quantum correlation can be quantified by the
value of the non-classical parameter σ, which for twin beam is lower bounded
only by the loss factor σ = 1 − η (see Sec. 4.3). In particular the SSN
condition, σ < 1, guaranties an advantage with respect to the differential
classical scheme, while a more restrictive condition, σ < 1/2, is needed for
the SSN scheme to beat the direct (shot-noise limited) one. This condition
corresponds to the requirement of an overall loss in the detection of correlated
photons smaller than 50%.

Actually one of the difficulties of the technique, when addressed to SS-
NWFI is to achieve a good collection efficiency of the correlated modes in the
far field without sacrificing the spatial resolution. This is due to the trade-off
between the collection efficiency and the pixel size as discussed in Sec. 4.4.
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Figure 6: Two sets of typical images taken from the experiment in [129] are
shown: SSN image (left) obtained by subtracting the quantum correlated
noise; differential classical image (middle); direct classical image (right). The
pixel size is L = 480µm2, obtained by hardware binning of the physical pixels
of the CCD to fulfill the condition L > 2r. For both sets of images the mean
number of photons per pixel is 〈N̂〉 ≈ 7000
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5.2 SSNWFI:experimental results

The first experimental demonstration of the SSNWFI involving many spatial
modes has been given in 2010 [129]. Fig. 6 presents the advantage of the
quantum differential imaging over direct and differential classical schemes.
The weak absorbing π shaped object is hidden in the noise for both the
classical imaging techniques, whereas its shape can be clearly identified in
the image obtained using the SSN schemes of Fig. 5(c).

Figure 7: Experimental noise reduction factor (NRF) and signal-to-noise ra-
tio (SNR) in function of the resolution in the focal (object) plane L. Black
dots represent the NRF. The red dots are the SNR of the sub-shot-noise im-
ages normalized to the one of the direct images. For L ≥ 15µm there is the
advantage of the quantum protocol. Analogously, the blue series shows that
advantage of the sub-shot-noise imaging with respect to the differential clas-
sical imaging is present at any spatial resolution and reaches values of more
than 80%. Solid lines correspond to the quantum enhancement predicted by
Eq.s (67), when the estimated values of the NRF are considered.
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It is important to mention that in the experiment discussed in [129],
the image was obtained without any imaging lenses, basically revealing the
shadow of the object placed closed to the detection plane. Thus, the res-
olution was not high enough for any potential application in real world,
especially in microscopy, where the technique would be naturally addressed.
Moreover, the average NRF achieved was just slightly below 0.5, enough
for surpassing the differential classical imaging but not sufficient to provide
a real exploitable advantage with respect to the direct imaging in realistic
conditions.

Figure 8: The direct (DR) image, the differential classical (DC), and the
sub-shot-noise (SSN) one are compared in each panel for the same value of
the spatial resolution d. Upper-right panel is the image of the object after
the average over 300 shots.

Very recently, an important step forward has been done with the realiza-
tion of SSNWFI in a real microscopic configuration [53]. A noise reduction
such as σ = 0.8 has been obtained for each pixel in a matrix of approxi-
mately 8000 pixels, and a spatial resolution of 5 µm at the sample. This
noise reduction is enough to beat differential classical imaging, and the reso-
lution is sufficient for the imaging of complex structures, like cells. Reducing
the resolution of one third, allows to easily overcome the performance of the
direct imaging scheme. The trade-off between the noise reduction and the
resolution, according to the model of the collection efficiency developed in
Sec. 4.4, is reported in Fig. 7 together with the improvement in the SNR
with respect to both differential and direct shot noise limited classical imag-
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ing schemes. The main difficulties in comparison to classical microscopy are
that the imaging systems should be able to reduce the aberration without
introducing any losses. Fig. 8 shows the experimental image profile of the
sample (a “φ”-shaped few nanometer thick deposition with absorption coef-
ficient α = 1%) at different resolution scale L (L = d · 5µm). From L = 15µ
(d = 3) the object start to appear in the SSN image, while remains almost
undefined in the classical images.

Finally, we mention that differently from previous proof of principles of
quantum enhanced phase-contrast microscopy exploiting NOON states (with
N = 2)[23, 24, 25, 26], the SSN wide field microscope can offer the possibility
of dynamic imaging without scanning the whole sample.

6 Target Detection in Preponderant Noise

The main stream of quantum enhanced measurement protocols focuses on
the reduction of the uncertainty below shot noise limit (or standard quan-
tum limit) which derives from the intrinsic quantum fluctuation of the probe
beam and scales as (n)−1/2, with n mean photon number. In this context it
is recognized that quantum strategies, which in the ideal case outperforms
classical counterparts, are highly penalized in the real world by the unavoid-
able decoherence processes like noise and losses. In particular it has been
shown that in presence of decoherence the Heisenberg limit ∝ (n)−1 and in
general any chance of a more favorable scaling of the uncertainty with the
photon number can not be achieved. Rather, the enhancement is of the form
k(n)−1/2 where k is a constant factor, for example k =

√

(1 − η)/η in pres-
ence of a loss factor of (1 − η). From this view point, it seems that there
is not much to do if not technologically reducing the losses and noise in the
experiments as much as possible.

A completely different paradigm is the one proposed by Lloyd in 2008
[131], named Quantum Illumination (QI), where the goal is to provide a
quantum improvement in target detection (Radar like configuration) in pres-
ence of a strong, dominant thermal background. The goal is to discriminate
between the presence (H1 hypothesis) and the absence (H0 hypothesis) of a
partially reflecting target (ηP being the reflection coefficient). In this case,
the preponderant source of noise is not the one affecting the probe, but is
brought by the background. Indeed the works in Ref.s [132, 133] have shown
that a scheme as represented in Fig. 9, where one beam from SPDC is used
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as a probe and a joint measurement is performed on the returned probe and
the second entangled beam, delivers a 6 dB (a factor 4) improvement in the
error probability exponent with respect to the best classical strategy. Fur-
ther improvements can be in principle obtained by using photon-subtracted
two-mode-squeezed states [134], although their production is experimentally
extremely challenging. Two outstanding features of quantum illumination

Figure 9: Scheme of the quantum illumination protocol proposed in [132],
whose aim is to establish the presence of a target. One beam of the twin-
beam is used as a reference, while the other, dubbed as probe, interacts with
the target, if present. The reflected part of the probe mixes with a strong
thermal background and goes to a detector, where a joint measurement is
performed with the reference beam. ηR models losses on the reference path.

are that its advantage does not depend neither on losses or on the noise
the probe experiences during the propagation and the interaction with the
target. It is important to note that both these processes cause decoherence
and therefore the initial entanglement is completely lost at the detection
stage. This property is very valuable, since representing the first example of
a quantum protocol robust to noise and losses.

The optimal classical illumination is known to be product of K identical
coherent states |α〉 and a homodyne-detection receiver [132, 135]. Homodyne
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detection measures the quadratures of the incoming field, in particular x̂ =
(â+ â†)/2. In this case 〈x̂〉 = 〈x̂P 〉 + 〈x̂B〉, where 〈x̂P 〉 =

√
ηPn (n = |α|2) is

the quadrature of the coherent probe after the object interaction and 〈x̂B〉 =
0 is the quadrature of the thermal noise, which has zero-mean value. In
the limit nB ≫ n the noise of the measurement is dominated by the noise
on 〈x̂B〉, equal to 〈x̂2B〉 = (2nB + 1)/4 . The signal to noise ratio in the
discrimination of the object presence is therefore:

SNRcoh =

√

KηPn
2〈δ2x̂B〉

=

√

KηPn
nB + 1

2

As mentioned, entanglement, in particular the multi-mode SPDC state
(see for example Eq. (36)), provides an advantage of a factor 4 in the ex-
ponent of the error probability, which is proportional to SNR [136]. The
structure of the optimal 6dB-enhancement receiver is not known, however
sub-optimal receivers with 3dB advantage has been already proposed and
realized. They are based on non linear interferometer, i.e. a phase sensi-
tive low-gain (G − 1 ≫ 1) optical parametric amplifier (OPA). The idea is
that the OPA output depends on the phase relation between the returning
probe and the reference beam, while a completely dephased thermal beam
does not. This has enabled the experimental demonstration of the advantage
of quantum illumination both in detection of a low reflection phase object
[136] (a shift of the probe phase of 0 (π) correspond to the H1(H0) hypothe-
ses respectively), and for defeating passive eavesdropping attack in quantum
communication [137, 138]. In particular the difference between the output
signal in the two cases is proportional to the so-called phase sensitive cross
correlation 〈â1â2〉 between the signal and idler field, which for two-mode
squeezed state is

√

n(n + 1) largely exceeding the classical limit of correla-
tion for a source with the same mean photon number n, in the limit n ≪ 1.
Recently a remarkable microwave/optical QI experiment has been reported
as well [139]. Two electro-optomechanical converters are used to entangle
a microwave signal which is sent to the target region and an optical field
retained at the source. The microwave radiation reflected by the target is
then phase conjugated and upconverted into a second optical field that is
jointly-detected with the retained one.

Both the quantum sub-optimal and classical optimal receiver described
before are phase-sensitive measurement, requiring the probe to arrive at the
receiver with a precise, unperturbed phase relation with a local oscillator
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or/and the reference beam. This could be not practicable in many contexts,
also because it requires a precise mode matching at the receiver. Moreover,
a quantum memory is needed, for example realized by an adjustable optical
delay line (difficult to make if the distance of the object is not known a priori),
to store the reference beam meanwhile the probe is propagating forth and
back from the target object.

On the other side, in Ref. [45, 140] it has been proposed a version of
quantum illumination considering a restricted scenario in which only inten-
sity measurements (phase-insensitive) are exploited. The scheme is the one
of Fig. 10. Here a photon number measurement is performed independently
in the reference arm and in the probe arm, then the covariance of the two
quantities is evaluated. Another difference with respect to the scheme of Ref.
[132] is that the background field is not necessarily mixed to a beam splitter
with the probe but more realistically reaches independently the detector. It
is important to highlight that in this specific framework, even the classical
benchmark is different, with respect to the optimal one obtained in the more
general context using homodyne detection. Similarly the quantum strategy
cannot aim at achieving the optimal bounds of Ref. [132]. However, also
in the contest where only intensity measurements are allowed, the quantum
protocol maintains most of the appealing features of the original idea, like a
huge quantum enhancement under similar conditions, n ≪ 1 and nB ≫ 1,
and a robustness against noise and losses. Moreover, even in this case, the
advantage surprisingly survives when the quantumness at the detection state
is broken. As we will show in detail in the next section, the SNR improve-
ment provided by exploitation of quantum correlation in SPDC state with
respect to the classical benchmark of a direct measurement of the mean pho-
ton number of a the returned probe is ηR/

√
n, where, in this context, ηR

represents the losses on the reference channel. Moreover, introducing a fur-
ther limitation, which is that a measurement of the background alone is not
possible, i.e. the background and the reflected probe always come together
at the receiver, the best classical strategy cannot be the direct measurement
while is arguably the use of classical correlations. In this case the quan-
tum advantage scales as M/n = 1/µ, where M is the number of identical
modes collected in the single measurement and µ is the mean number of spa-
tial modes. Interestingly, this corresponds to the ratio of the total mutual
information of classical and quantum correlated states [141].

In the spirit of this review, which explores the non-classical photon num-
ber correlation and their application in quantum enhanced measurement,
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Figure 10: Scheme of the quantum illumination protocol proposed in [45],
where only intensity measurements are performed. As in Fig. 9 one beam of
the twin-beam is used as reference, while the other is the probe and interact
with the target if it is present. The beams are collected by two detectors: n1

is the number of the n photons of the reference beam which arrive at the first
detector, n2 is the sum of the photons eventually reflected from the target
and the photons from the thermal background, nB.
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in the next section we will describe in detail the realization of the quantum
illumination as a protocol based on photon number correlation measurement.

6.1 Intensity correlation based QI

Let us consider first the direct scheme in which a probe with mean photon
number n is addressed to the object and its reflected (transmitted) part
reaches a detector together with a much stronger background with mean
photon number nB. Note that in this case only one beam is used. In the
hypothesis H0 only the background reaches the detector and the measured
photon number is nB, while for H1 one has ηPn + nB, their difference being
the signal. The variance of the measurement is assumed to be dominated in
both cases by the background fluctuations 〈δ2n̂B〉. Thus, the signal to noise
ratio obtained by K measurements is:

SNRDr =

√
KηPn

√

2〈δ2n̂B〉
(68)

Even if the strategy described above seems the simplest and the most
natural approach, it assumes implicitly that it is possible to have a separate
estimation of the mean photon number of the background, for example by a
measurement made in absence of the object. If the background can not be
measured separately, for example because the object is constantly present (of
course this information is not available a priori), the previous method, simply
based on the discrimination of two average intensity levels can not be applied.
A second order measurement of the intensity is required instead, therefore we
consider 〈δn̂1δn̂2〉, where δn̂1 and δn̂2 are the fluctuations on the reference
and “probe+noise” beams respectively. In absence of the target, the back-
ground and reference are uncorrelated, thus the covariance 〈δn̂1δn̂2〉H0

is null
and it establishes the natural zero-offset for the measurement. In presence of
the target 〈δn̂1δn̂2〉H1

is, in general, different from zero and depends on the
exploited state, i.e. on the correlations in the photon number fluctuations
between the two beams. In order to calculate the SNR it is necessary to con-
sider also the uncertainty of the covariance. The fluctuation of this quantity
is by definition, for i = 0, 1:

〈

δ2(δn̂1δn̂2)
〉

Hi
≡
〈

(δn̂1δn̂2)
2〉

Hi
− 〈δn̂1δn̂2〉2Hi

. (69)

As before if we consider the fluctuation in n2 dominated by the back-
ground, both in presence and in absence of the target, i.e. δn2|H1

≈ δn2|H0
=
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δnB, it immediately follows: 〈δ2(δn̂1δn̂2)〉 = 〈δ2n̂1〉〈δ2n̂B〉. To evaluate SNR
it is now necessary to explicit the state of light used. Exploiting the quan-
tum correlation in photon number fluctuations of twin-beam state, accord-
ing to Sec. 4.3, 〈δn̂1δn̂2〉H1

= nηpηR(1 + n/M), where M is the number of
modes. Since each beam of twin beams is multithermal (with M modes):
〈δ2n̂1〉 = nηR(1 + ηRn/M), the SNR can be evaluated as:

SNRSPDC ≈
√
K〈δn̂1δn̂2〉H1

√

2〈δ2n̂1〉〈δ2n̂B〉
(70)

=

√
KnηPηR(1 + n/M)

√

2nηR(1 + ηRn/M)〈δ2n̂B〉

≈
√KηRnηP
√

2〈δ2n̂B〉
(71)

where the last approximation holds for n/M ≪ 1, i.e. when the mean photon
number per mode n/M = µ is small. We can now compare this result with
the SNR obtained with the direct measurement of the probe mean photon
number (when this is possible). It results an improvement for n < 1 as large
as SNRSPDC/SNRDr = (ηR/n)1/2.

It is also interesting to evaluate the advantage of the quantum correla-
tion with respect to the possible use of classically correlated states. First
line of Eq. (70) shows that classical and quantum scheme with the same
local statistics, only differ for the strength of the correlation, quantified by
the covariance 〈δn̂1δn̂2〉H1

. According to the generalized Cauchy-Schwarz in-
equality presented in Sec. 3, the covariance for classical beams is bounded
by ε = 〈δn̂Rδn̂P 〉/(〈: δ2n̂R :〉〈: δ2n̂P :〉)1/2 ≤ 1. Split thermal beams saturate
the inequality, εTH = 1, with 〈δn̂Rδn̂P 〉TH = ηRηPn

2/M , thus representing
the best classical strategy. On the other hand the SPDC quantum corre-
lation provides εSPDC = M/n + 1 with 〈δn̂Rδn̂P 〉SPDC = ηPηRn(1 + n/M).
Therefore, the comparison of the SNR with classical and quantum correlation
immediately gives:

SNRSPDC

SNRTH
= εSPDC =

M

n
+ 1 =

1

µ
+ 1 (72)

It is evident a dramatic quantum enhancement for a photon number per
mode µ = n/M ≪ 1. It is important to notice that, as anticipated, the
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enhancement does not depend on the background intensity and it is also
immune to the losses.

Finally we would like to trace a connection between the QI using an
OPA receiver of Ref. [136] and the intensity measurement based scenario
described above, showing that they have the same non-classicality /entan-
glement breaking condition. Indeed, for a zero-mean Gaussian distributed
bipartite state, the moment-factoring theorem allows to write the photon
number covariance in terms of the modulus of the phase sensitive cross-
correlation (which is the quantity measured by the OPA receiver in [136]):
〈δn̂1δn̂2〉 = |〈â1â2〉|2. On the other side the normal ordered variance for
a gaussian mode can be written in terms of the mean photon number:
〈: δ2n̂j :〉 = 〈â†j âj〉2. Therefore, the non-classicality breaking condition, rep-
resented in general by the violation of the Cauchy-Schwarz inequality, in the
framework of Gaussian states coincides with the entanglement breaking con-
dition |〈â1â2〉|2 ≤ 〈n̂1〉〈n̂2〉 reported in Ref. [136], valid for two conjugated
modes. Substituting in the Cauchy-Schwarz inequality the explicit expres-
sion of the photon statistics at the detectors, in the general multimode case,
the condition becomes:

ηPηRn
(

1 +
n

M

)

≤
[

η2R
n2

M

(

η2P
n2

M
+
n2
B

MB

)]1/2

(73)

In the limit of µ = n/M ≪ 1 the condition simplifies as nB ≥ ηP (MMB)1/2.
For example when single modes are detected M = MB = 1, a mean number
of background photons nB > 1 is enough to destroy Gaussian entanglement
and more in general non-classical photon statistics, nevertheless the enhance-
ment in the SNR remains.

6.2 Experimental implementation of quantum illumi-

nation

The experimental setup used in Ref. [45] for the realization of the intensity-
correlation based QI protocol is represented in Fig. 11a. Type II SPDC
generates pairs of correlated 5 ns-pulses with average number of PDC pho-
tons per spatio-temporal mode µ ∼ 0.1, which are then addressed to a high
quantum efficiency CCD camera. In the QI protocol (Fig. 11a) one beam
(the reference) is directly detected, while a target object (a 50:50 BS) is posed
on the path of the other one (the probe), where it is superimposed with a
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pseudo-thermal background produced by a laser beam scattered by an Arec-
chi’s rotating ground glass. When the object is removed, only the background
reaches the detector. The CCD camera detects, on different regions, both
the optical paths. In the classical illumination (CI) protocol (Fig. 11b), the
TWB are substituted with classical correlated beams, obtained by splitting a
single arm of PDC, that is a multi-thermal beam, and by adjusting the pump
intensity to ensure the same local statistics and spatial coherence properties
for the quantum and the classical source.

In this scheme, n1 and n2 are the photon numbers detected by pairs of
spatially correlated pixels in a single 5 ns-shot of the pump laser, as the one
represented in Fig. 11 c-d-e. Since K = 80 correlated pixels pairs are present,
it is possible to perform a spatial statistics which allows the evaluation of the
covariance 〈δn̂1δn̂2〉 in a single shot reducing thus the measurement time
needed for asserting the presence or the absence of the target.

Fig. 12 reports the measured ε versus the theoretical prediction. One
observes that for TWB εQI is in the quantum regime (εQI > 1) for small
intensities of the thermal background, reaching the value εQI ≃ 10 when
nB = 0. It rapidly decreases below the classical threshold according to the
condition in Eq. (73) when the background increases. For classical correlation
of split thermal beams, εTH is always in the classical regime, starting from
εTH = 1 for nB = 0, as expected.

In Fig. 13 an experimental comparison of the SNR for quantum and
classical illumination is presented. While the SNR unavoidably decreases
when the noise increases for both QI and CI (see Eq. (70)), the ratio between
them is constant regardless the value of nB, in agreement with the theoretical
prediction provided in Eq. (70), SNRSPDC/SNRTH = εSPDC ≃ 10. In
turn, the measurement time, i.e., the number of repetitions K needed for
discriminating the presence/absence of the target, is dramatically reduced of
100 times when quantum correlations are exploited.

7 Ghost Imaging

Ghost imaging (GI) is an imaging technique theoretically proposed in 1994
[54] and experimentally realised in 1995 by Pittman et al. [55], using non
classical states of light. Since then, this technique has attracted great interest
[143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154] for the wide field of its
possible applications and many GI schemes has been investigated accordingly
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Figure 11: Experimental setup and examples of acquired frames. a) Quan-
tum illumination (QI) b) Classical illumination (CI) c) Detected TWB, in
the presence of the object, without thermal bath. The region of interest is
selected by an interference filter centered around the degeneracy wavelength
(710 nm) and bandwidth of 10 nm. After selection the filter is removed. d)
Detected field for split thermal beams in the presence of the object, without
thermal bath. e) A typical frame used for the measurement, where the inter-
ference filter has been removed and a strong thermal bath has been added on
the object branch. The color scales on the right correspond to the number
of photons per pixel.
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Figure 12: Generalized Cauchy-Schwarz parameter ε in the case of quantum
illumination, εQI , and for the correlated thermal beams, εTH , as a function
of the average number of background photons nB (whith MB = 1300). The
solid lines represent the theoretical prediction for the estimated value of the
mean photon number per mode µ = 0.075.

[155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167].
The aim of this protocol is to retrieve the transmittance profile of an

unknown object without a direct spatially resolved measurement. To perform
ghost-imaging two beams, whose intensity fluctuations are correlated, are
used. As shown in Fig. 14 the first beam (beam1 ), without interacting with
the object, illuminates a spatial resolving detector, like a camera. The second
beam (beam2 ), after the interaction with the object, is sent to a bucket
detector without spatial resolution (e.g. a single-pixel photodetector). The
procedure is repeated and K frames of the camera, in correspondence of K
values of the bucket signal, are collected. It is not possible to obtain the
image of the object through signal from detector 1 or 2 separately, since the
first one has not interacted with the object, while the other has no spatial
resolution. Anyway, as we will see, correlating the signals from the two
detectors it is possible to retrieve the image.

In the first experimental realization of GI, SPDC correlated photon pairs
have been used, measuring coincidences by single photon detectors. Never-
theless, it was shown, both theoretically and experimentally, that also split
thermal light can be used to perform GI, although with a smaller visibility
[145, 146, 147, 148, 149, 150], as well as intense twin beams [151]. In [152]
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Figure 13: Signal-to-noise ratio (SNR) versus the number of background
photons 〈nB〉 normalized by the square root of K (number of correlated
pixel pairs in a single shot image). The red (black) markers refer to quantum
(classical) illumination. The curves correspond to the theoretical model.
Each experimental point is extracted from a statistic over a set of 6000 shots.

it is shown that even sunlight can be used, an interesting result in view of
future practical applications.

These results started an intense debate and a lot of works were addressed
to understand the differences between GI using classical (i.e. split thermal
light) or quantum (i.e. twin-beam state) light and to establish the usefulness
of quantum resources, in particular entanglement. To clarify the bound-
ary between classical and quantum GI, different configurations were imple-
mented and various measurements considered in order to find any evidence
that clearly distinguishes between the two cases. An exhaustive discussion
about the “quantumness” of GI is presented in [153]. In this work, competing
interpretations of this technique are unified in a unique theoretical frame and
misunderstandings about the role of entanglement are clarified. In particu-
lar it is shown the equivalence of the interpretations in terms of intensity-
fluctuation correlations and two-photon interference both for pseudo-thermal
or PDC light. From this argument it follows that experiments cannot dis-
tinguish between these two interpretations and therefore any GI experiment
can be reproduced both with classical or quantum light. The only difference
between these two schemes is in terms of visibility [56], or better of signal-
to-noise ratio (SNR), for an equal number of measurements [57]. This is a
consequence of the stronger correlations present in twin-beams and, in low-
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illumination conditions, this enhancement becomes important. We note that
the origin of this advantage is the same at the base of the quantum enhanced
target detection protocol described in Sec. 6.1. In this work we focus on
this aspect presenting a simple theoretical model of GI, evaluating the SNR
in quantum and classical case and discussing the quantum enhancement in
different regimes.

Before going into the details of GI technique let us review some of its
possible applications and recent developments in order to appreciate how
this technique offers important opportunities in a lot of different fields.

Since the image is retrieved from the 1-beam, which does not interact
with the sample, this method can be extremely useful in presence of phase
distortions on the 2-beam. This means that GI is particular interesting in
presence of an object into a diffusive medium, condition that appears in
several significant cases (as open air conditions or biological samples, where
tissues represent the diffusive medium). Several works analysed performances
of GI in turbid media, among the others [155, 156, 157]. Thanks to GI images
can be retrieved much better than in standard noncorrelated direct imaging
since it is insensitive to turbulence between the sample and the bucket detec-
tor while in [158] it is experimentally demonstrated that turbulence affects
GI if it is between the source and the object and a theoretical model for a
narrow sheet of turbulent air is presented. In the same article it is also pro-
posed a possible solution in order to diminish the effect of turbulence slighly
changing the GI apparatus. A concise but exhaustive theoretical treatment
of turbulence and other aspects of non-ideality is also presented in [153].

In addition GI can be useful in particular experimental conditions, for
example if the accessible volume in the proximity of the sample is limited: in
this case the light beam interacting with the object can be collected simply
with a single pixel detector as an optical fiber connected with a photodiode.
This possibility is explored for example in [159], where classical GI is applied
to magneto optical imaging to perform Faraday microscopy, where magnetic
samples are usually embedded in a small cryostat, with intense magnetic
fields generated by superconducting magnets. In this case the basic GI setup
is opportunely modified inserting a polarizer in front of the bucket detector.

Using conventional GI, then, it is possible to retrieve the image of an
object from reflected photons instead of the transmitted ones. This protocol
has been experimentally realised in [160] and can offer interesting opportu-
nities; in particular GI in reflection could find application as an alternative
to the conventional laser radar for standoff sensing. To this aim in [161] the
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vulnerability of reflective GI to atmospheric turbulence is studied.
Another possible GI configuration is the so called “computational GI”.

In the conventional GI with (pseudo) thermal light the two beams are usu-
ally obtained sending a laser beam to a time-varying (rotating ground-glass)
diffuser and then to a beam splitter. In [162] it was argued that the ground-
glass diffuser can be replaced with a programmable spatial light modulator
(SLM) and even a single beam and a single pixel detector is sufficient for
GI. Applying deterministic modulation to the SLM and then correlating this
precomputed modulation, opportunely processed, to the output of the bucket
detector is possible to retrieve the image of the object. Notice that in this
case only the bucket detector is used. Computational ghost imaging was
experimentally implemented by Bromberg et al. [163]. The same authors
further developed this technique introducing the compressive ghost imaging
method [164], also used later in [161].

Different works, as for example [165, 166, 167], explored the possibility of
the so called “two-wavelength GI”, taking advantage of the PDC peculiar-
ity to generate correlated beams even with very different optical frequencies,
providing the energy conservation in Eq. (19). Performing GI with beams
at a significantly different wavelengths can offer advantages: on one hand
high spatial-resolving and/or efficient detectors are not available at all wave-
lengths, on the other hand atmospheric turbulence and scattering effects
strongly depends on the wavelength. Therefore one can chose the suitable
wavelength for the spatial resolving detector operating in the reference pro-
tected channel and the most appropriate one for the open air propagation
trough turbulence or scattering media. Note that split thermal beams, do
not offer this possibility.

In conclusion several applications and extensions have been proposed.
The list provided above is far from being exhaustive. For instance, the use of
higher-order correlations to form ghost images the use of homodyne detection
instead of direct detection has also been considered [149, 168, 169].

In the following we will focus on the quantum enhancement provided by
twin-beams.

Quantum correlations are particularly effective at low illumination level.
In [170] the authors obtained a high-quality image of an object using less
than 0.5 photons per pixel exploiting by downconverted photons pairs from
SPDC. To achieve this result a GI-like protocol has been implemented, in
which an Intensified CCD camera (ICCD) is gated by the bucket detector
counts. Hence, a photon is measured by the resolving detector only if its
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correlated one hits the bucket detector. To improve the quality of the image
a post-processing reconstruction technique is applied, in particular exploiting
the natural sparsity in the spatial frequency domain of typical images and
the Poissonian nature of the noise on the experimental data. This method
has been tested on a biological sample (a wasp wing); as a matter of fact,
biological imaging could be one of the most important applications of imaging
at low illumination level since in this case samples can be sensitive to high
fluxes. Developing new techniques in this direction is therefore of extreme
interest.

7.1 Theory of conventional GI

A scheme of a conventional GI technique experimental set-up is shown in
Fig. 14.

Figure 14: Ghost imaging schematic representation: two beams 1-beam and
2-beam, whose intensity fluctuations are correlated, are sent to two distinct
optical path: one containing a spatial resolving detector 1, and the other one
containing the object to be imaged and a bucket detector 2. The image of
the sample is retrieved correlating the output of the two detectors.

The image of the object is retrieved by measuring a certain function S(xj),
where xj is the position of the pixel j of the resolving detector, in arm 1.
In general S(xj) involves the correlation functions of the output of the two
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detectors:

S(xj) = f(E[N2], E[N1(xj)], E[N2N1(xj)], ..., E[Np
2N

q
1 (xj)]) (74)

where N2 is the total number of photons collected at the bucket detector and
N1(xj) is the number of photons collected in the j-th pixel of the resolving
detector.

Experimentally these quantities are evaluated averaging on the number
of acquisitions K: E[X ] = 1

K

∑K
k=1Xk.

The ghost image can be retrieved by exploiting different GI protocols,
namely, different expressions for S(xj) [171]. We focus on the covariance
between the two output (note that the covariance between the outputs has
been considered also in the quantum illumination protocol based on intensity
correlations described in Sec. 6.1):

S(xj) = Cov(N2, N1(xj)) ≡ E[{N2 −E[N2]}{N1(xj) − E[N1(xj)]}]

= E[N2N1(xj)] −E[N2]E[N1(xj)] (75)

Here, we consider that the portion of the beam 1 detected by the pixel in
x
(1)
j is locally correlated only with the corresponding portion of beam 2 at

the object plane position x
(2)
j . This can be obtained for example if the point-

to-point far field correlations of SPDC (described in Sec 4.4) are imaged in
the beam 1 at the detection plane, while in the beam 2 at the object plane.
Anyway, pairs of correlated spatial modes in split pseudothermal beams can
be likewise used in GI experiments. Hereinafter we will omit the apexes (1)
and (2).

In the following we compare spatially incoherent, locally correlated pseudo-
thermal beams and twin-beam states. The first state is usually obtained by
splitting a single pseudo-thermal beam through a beam-splitter. In this case
it holds (derived from Eq.s (47) and (48) considering M independent modes
and with the substitution ηj → Tj):

〈N̂(xj)〉TH = TjMµ (76)

〈

δ2N̂(xj)
〉

TH
= TjMµ(1 + Tjµ) = 〈N̂(xj)〉TH

(

1 +
〈N̂(xj)〉TH

M

)

(77)

where µ is the mean number of photons per mode, M is the number of modes
detected by each pixel and Tj is the transmission coefficient in correspondence
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of pixel j, which can include also the detection efficiency. For M ≫ 〈N̂(xj)〉
(µ≪ 1) we have

〈

δ2N̂(xj)
〉

TH
=
〈

N̂(xj)
〉

TH
: in this limit thermal light can

be described with a Poisson distribution, hence approaching the shot noise.
As described in Sec. 4 a twin beam state is a quantum state of light that

can be produced by the non-linear optical phenomenon of PDC and presents
perfect correlation in photon number fluctuation. This perfect correlation is
intrinsically quantum. Anyway, the single beam fluctuations follow the same
thermal statistics of Eq. (76) and Eq. (77).

The difference between split classical-thermal-light and twin-beams state
arises when considering the expressions for the covariance between photon
number fluctuations in the two beams (derived from the two-modes Eq. (49)
considering here the contribution of M pairs of independent modes):

〈δN̂2(xi)δN̂1(xj)〉TH = T2(xi)T1Mµ2δi,j (78)

〈δN̂2(xi)δN̂1(xj)〉SPDC = T2(xi)T1Mµ(1 + µ)δi,j (79)

where the Kronecker delta function δi,j takes into account that only pairs of
positions in the two beams are correlated. The transmission coefficient T1 on
the channel 1 is considered uniform over the spatial resolving detector. The
two statistics become asymptotically identical for µ ≫ 1 with a dependence
scaling as ∼ µ2, whereas for small number of photon per mode (µ ≪ 1)
twin beams scales more favorable, such as ∼ µ. This means that in twin-
beams, even the shot-noise component of the fluctuations, proportional to
µ, is correlated among the two beams: this is at the basis of the quantum
enhancement.

It is now evident that, by measuring locally the covariance of each pixel
with the bucket detector, it is possible to retrieve the object transmittance
profile T2(xi). Here, we report the demonstration for classical GI but the
principle is the same for quantum GI. In fact, writing the bucket detector
signal as N2 =

∑

i N̂2(xi) and then using Eq. (78), one has:

〈S(xj)〉TH = 〈δN̂2δN̂1(xj)〉TH (80)

=
∑

i

〈δN̂2(xi)δN̂1(xj)〉TH

= T1(xj)T2(xj)Mµ2 = T1T2(xj)Mµ2
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7.2 Thermal GI and Quantum GI performance

In order to quantify the quality of the reconstructed image of the object and
to compare quantum and classical GI we consider the signal-to-noise ratio
(SNR). For the sake of simplicity we assume the object to be characterize
by two levels of transmission, the lower one 0 6 T2− 6 1, and the higher
one 0 6 T2+ 6 1. Correspondingly, Rm is number of pixels which are locally
correlated with object points of transmission T2m (m = +,−). The SNR,
which represents the possibility of discerning among the two transmission
coefficients, is:

SNR =
|〈S+ − S−〉|
√

δ2S+ + δ2S−

(81)

where Sm, m = +,− are the values of the correlation function (for example
the covariance in Eq. (78-79)) in correspondence of T2m. Experimentally,
both the mean value, 〈Sm〉, and its variance δ2Sh can be estimated by per-
forming spatial averages over the regions + and − of the reconstructed image.
The theoretical values of these quantities, and therefore the value of SNR,
depend on the state of the light used. For evaluating 〈S+〉 and 〈S−〉, we use
Eq. (78) and Eq. (79) for classical and quantum case respectively. Similarly
as what has been done in quantum illumination in Eq. (69) the variance of
these quantities are obtained by:

〈δ2Sm(xj)〉 ≡
〈(δN̂2δN̂1(xj))

2〉 − 〈δN̂2δN̂1(xj)〉2
K ≃ 1

K〈δ2N̂2〉〈δ2N̂1(xj ∈ Rm)〉
(82)

The first equality in Eq. (82) is the definition of variance, while the second
one holds under the hypothesis of Rm ≫ 1: in this case the uncorrelated
components dominate. Considering Eq. (77) and that:

〈δN̂2〉 =
∑

j

〈δ2N̂2(xj)〉 =

=
∑

xj∈R+

〈δ2N̂2(xj)〉 +
∑

xj∈R−

〈δ2N2(xj)〉 =

= R−T2−Mµ(1 + T2−µ) +R+T2+Mµ(1 + T2+µ) (83)

we have:

〈δ2Sm〉 = K−1M2µ2T1(1 + T1µ)[R−T2−(1 + T2−µ) +R+T2+(1 + T2+µ)] (84)
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It is important to notice that this expression is the same both in thermal
and quantum case: this is a consequence of the thermal nature of the single
beam of a twin-beam state.

From the definition of SNR (Eq. (81)):

SNRTH =
√
K

√
T1µ(T2+ − T2−)

√

2(1 + T1µ)[R−T2−(1 + T2−µ) + T2+R+(1 + T2+µ)]
(85)

SNRSPDC =
√
K

√
T1(1 + µ)(T2+ − T2−)

√

2(1 + T1µ)[R−T2−(1 + T2−µ) + T2+R+(1 + T2+µ)]
(86)

As expected the SNR increases with the number of acquisitions K (namely
the total number of frames collected by the spatial resolving detector), while
the dependence on other parameters is more complex. For better under-
standing these expressions, the relevant physical limits are analyzed.

• Let us consider the case of µ≫ 1, which is the situation of high number
of photons per modes. In order to further simplify the expressions we
also consider the case of T2+ = 1 and T2− = 0 (the detector detects all
and only the photons that do not hit the object, modeled as perfectly
absorbing).

µ≫ 1 : SNRTH = SNRSPDC =
√
K T2+ − T2−√

2
√

T 2
2+R+ + T 2

2−R−

(87)

T2+ = 1;T2− = 0 : SNRTH = SNRSPDC =

√
K√

2R+

(88)

In this limit the same expressions are found both in classical or quantum
case. This result is not surprising and comes from the fact that for
µ ≫ 1 the expressions for the covariances converge asymptotically.
Looking at Eq. (87) it results that in this limit the SNR does not
depend on the transmittance on channel 1, T1.

• In the opposite case, for µ ≪ 1, the expressions become:

µ≪ 1 : SNRTH =
√
K

√
T1(T2+ − T2−)

√

2[R−T2− + T2+R+]
µ (89)
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SNRSPDC =
√
K

√
T1(T2+ − T2−)

√

2[R−T2− + T2+R+]
(90)

for T2+ = 1 and T2− = 0 : SNRSPDC =

√
K√

T1√
2R+

(91)

In this limit the difference between the two cases is evident: while in the
classical case the SNR decreases proportionally with µ and approaches
0 as soon as µ −→ 0, in the quantum case the SNR converges to a
constant value. It is important to notice that this constant depends on
K, and can therefore be arbitrary increased with a longer acquisition
time experiment.

Moreover, in both regimes considering T2+ = 1 and T2− = 0, SNR ∝
1√
R+

. For a fixed total area, a great R+ implies a small R−,hence a small

object: this result therefore explains the reasonable fact that it is more dif-
ficult to image a small object. We also recall that all these expressions for
SNR are obtained in the limit R+ ≫ 1, necessary hypothesis to consider N2

and N1 independent.
To conclude the comparison of classical and quantum GI and discuss the

quantum enhancement we can consider the ratio, G, of the two SNRs. From
the exact expressions in Eq. (85) and Eq. (86):

G =
SNRSPDC

SNRTH
=

1

µ
+ 1 (92)

From Eq. (92) is clear that to quantify the quantum enhancement it is
necessary to consider the mean photon number per mode µ we are working
at.

• For µ≫ 1, G −→ 1: in this regime, as it appears considering Eq. (87),
the quantum and classical case are equivalent in terms of SNR. The
quantum enhancement is in this case negligible.

• For µ ≪ 1, G −→ ∞: this is the regime where the quantum enhance-
ment is more important. Only using twin beam states it is possible to
retrieve the object profile.

As we pointed out in the introduction the analogy between GI and quan-
tum illumination is confirmed by Eq. (92) which is exactly the same as the
one in Eq. (72).
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Sometimes in practical situation could be helpful to compare the SNR
for quantum and classical GI, in function of the detected photons instead of
the photon per mode emitted by the source. For this purpose we consider
for example the detected photons per pixel of the spatially resolved detector
〈N̂1〉 = T1Mµ. This can be the quantity of interest if there is a some strong
limitation on the total photon that can be used per acquisition time, for
example in case of detector with a low level of saturation or to not-exceeded
some damage-level of a photosensitive sample. In terms of 〈N̂1〉 Eq. (92)
becomes:

G =
SNRSPDC

SNRTH
= 1 +

T1M

〈N̂1〉
(93)

A clear advantage of the quantum GI appears when less than one photon
per pixel is detected (for ideal efficiency, T1 = 1). However, higher is the
number of spatio-temporal modes M collected by each pixel, higher is the
quantum enhancement effect.

Here, have presented the derivation of the SNR for the specific case in
which the covariance of the bucket and the spatial resolving detector is used
for image reconstruction. Different correlation functions can be used and
can be more advantageous in particular case, for example in case of slightly
absorbing object [172]. Anyway, the case treated here is sufficient for the
purpose of this review which is to identify the situations in which quantum
light can be an advantage and, in those situations, quantifying this effect.

This consideration paves the way for a lot of interesting applications of
quantum GI in situations where a low light level is needed, like in the case
of imaging of certain biological samples.

Finally, we note that similarities between ghost imaging and quantum
illumination performed using intensity measurement (described in Sec. 6.1)
arise. Also comparing Fig. 10 and Fig. 14 the analogy is evident. In par-
ticular GI can be seen as a specific case of QI intensity protocol, where
the background in the bucket-detector comes from the spatial modes of the
source, which are not correlated with the single pixel of the spatial resolving
detector. Of course in GI the spatial resolution on the reference arm allows a
full reconstruction of the object transmission profile, while QI goal is just dis-
criminating its presence. Despite this difference the quantum enhancement
in terms of signal-to-noise ratio assumes the same form.
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8 Detector Absolute Calibration

Quantum correlations find a special application in the field of quantum ra-
diometry [173]. Specifically, they allow to estimate the quantum efficiency
of a photon detector in an absolute way, i.e. without the comparison with
pre-calibrated devices or standards.

The quantum efficiency η represents one of the most important figures of
merit for photon detectors and it is defined in the most general case as the
overall probability of detecting a single photon impinging on the detector, in
other words is the loss component which can be exclusively ascribed to the
detector (see chapter 2).

Absolute techniques for quantum efficiency become fundamental at low il-
lumination regimes (i.e. single or few photons), where it is difficult to provide
a metrological traceability to standards and units which are usually devel-
oped for macroscopic quantities. Indeed, currently at single/few photons
level there are no absolute detectors (detector with predictable quantum ef-
ficiency) or standard sources (deterministic single photon sources) that have
a stability and an accuracy suitable for metrological purposes. However,
calibrated detectors at the level of single or few photons are fundamental
for the rising of quantum technologies exploiting quantum states of light,
like quantum computation [174], quantum key distribution [175] quantum
imaging [15], and in fundamental tests of quantum mechanics, for instance
to ensure Bell’s inequalities violation free from the fair-sampling assumption
[116, 117].

Quantum photon number correlations offer the possibility of absolute cal-
ibration methods of single photon detectors and in this chapter we review
the most significant aspects of this field. Moreover, some alternative tech-
niques aiming to absolute characterization have been recently demonstrated,
based on different input states such as squeezed light [176] or coherent states
[177]. For completeness, we mention the quantum efficiency does not repre-
sent the whole behavior of a detector, which can be described completely by
a set of measurement operators known as positive operator-valued measure
(POVM). The POVM reconstruction has been realized in many experiments
[178, 179, 180, 181, 182, 183, 184] even if they can not be considered ab-
solute techniques since exploiting intense calibrated sources and calibrated
attenuators to provide well-known and controlled input states.

In order to review the calibration techniques exploiting quantum corre-
lation, it is useful to divide the light detectors in two main categories: ana-
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logical detectors and single photon detectors. Analogical detectors provide
a signal proportional to the radiant flux impinging on the sensor; usually
they are not able to detect single photons due to the high noise level and are
designed to work at medium/high light intensity. Otherwise, single photon
detectors have a resolution that allows discriminating single photons, but
usually they are limited to working at low light intensity due to saturation
effects. We can further divide the single photon detectors in click/no-click
detectors and Photon Number Resolving (PNR) detectors. The firsts can
only discriminate between zero photons detected (no-click) and one or more
photons detected (click) in a time window depending by the detector charac-
teristics. PNR detectors are able to provide the number of impinging photons
also if they arrive simultaneously [185].

8.1 Klyshko’s method for absolute calibration of single

photon detectors

The first calibration method exploiting quantum correlations was proposed
in the seventies of twentieth century by Klyshko [186, 97], but only in the
nineties the technological development allowed performing experimental demon-
strations of accurate calibrations [187]. Nowadays, Klyshko’s calibration
technique is recognised as a fundamental metrological tool by the interna-
tional radiometric community [188, 189, 190, 60, 191, 192, 193, 194].

The Klyshko’s method is based on the SPDC process described in Sec.4.
Photons emitted by SPDC are always produced in pairs almost simultane-
ously, the presence of n photons, in a particular set of optical modes, guaran-
tees the presence of exactly n photons in the set of conjugated optical modes.
We label the two sets of conjugated optical modes, and the correspond paths,
as 1 and 2.

In the basilar Klyshko’s technique two click/no-click single photon detec-
tors are used, as shown in Fig. 15. The detector in the paths 1 is the Device
Under Test (DUT) while the second, on the path 2, is the reference. In a
real measurement, the clicks on the reference channel is used to trigger a
coincidence circuit. If we assume that the losses in the system are only due
to the non ideal quantum efficiency of the detectors and that dark counts
and background photon level are negligible, then the calibration technique
is quite simple: by definition the number of photons detected by the DUT
and by the trigger detector are respectively: n1 = η1n and n2 = η2n, and the
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number of times both detectors click (coincidences) is simply C = η1η2n. It is
possible to determine the efficiency η1 simply by taking the ratio η1 = C/n2.

Figure 15: Scheme of a typical apparatus for Klyshko’s calibration technique

When real devices are considered, this simple formula has to be modified
to account for the presence of noise and losses. The number of measured
counts should be corrected by the sum nB of the electronic dark counts and
spurious photo-counts which are not correlated among the paths. The true
coincidences have to be obtained from the measured ones Cm by subtracting
the accidental coincidences CA, occurring between two dark counts, a dark
count and a photon, or between two uncorrelated photons. For what concern
the losses, it is important to note that the methods can not distinguish be-
tween losses due to optical elements along the path, parametrized here by τ
(0 ≤ τ ≤ 1), and the ones occurring at the DUT, which represent the quan-
tum efficiency η1. Anyway, an independent calibration of the transmissivity
of all the optical elements allows to perform an independent estimation of
the path transmissivity τ .

Combining losses and noise effects, the DUT detector efficiency can be
estimated as:

η1 =
Cm − CA

τ(n2 − nB)
, (94)

in which all the appearing quantities are directly measurable. In particular,
we can note that the efficiency of the trigger detector and the number of
photon pairs generated do not appear in the final equation, confirming that
Klyshko’s calibration is an absolute technique in which no pre-calibrated
references are needed. Finally, up to now we did not point out issues arising
from the saturation of click/no-click detectors and from the typical inactivity
time (dead time) of the such detectors after a counting event. For an accurate
calibration of these devices is necessary to take into account and correct
for the dead time and operate the source at very low intensity so that the
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probability to emit more than one couple of photons in the detection window
is negligible.

Recently, many variants and extensions of the Klyshko’s technique to-
wards different intensity regimes and other type of detectors have been stud-
ied. The possibility of exploiting the quantum correlations at higher photon
fluxes for calibrating analog and linear devices [195, 196, 197, 198] have been
investigated and the application to spatial resolving detectors, such as multi-
pixel cameras, have been demonstrated with good accuracy. We will discuss
these advancements in the next sections.

8.2 Extension of Klyshko method for PNR detectors

Photon number resolving detectors play an important role in many fields of
science and technology [199, 200]. Photon number resolution can be achieved
by multiplexing click/no-click detectors [201, 202, 203, 204, 205] or using
intrinsically PNR detectors like photo-multipliers [206, 207, 208, 209], visible
light photon counters [210, 211], transition edge sensors (TESs) [212] and
Inductive Superconducting Transition Edge Detectors (ISTEDs) [213].

The basic version of the Klyshko’s technique can be used also to cali-
brate PNR detectors. However, a direct application of such method does not
exploit the full potential of a PNR detector because it does not take into
account the possibility to have more photons simultaneously. An extension
of the Klyshko’s method that involves contribution of more then one photon
couples for time has been developed recently [214]. The apparatus, shown
in Fig. 16, is similar to the apparatus of the basic Klyshko’s techniques.
The main differences are two: the DUT is a transition Edge sensor (TES),
i.e. a superconducting PNR detector, and the intensity of SPDC emission is
enough to produce more then one couple of photons in the detection window.
The detector used as trigger is still a click/no-click detector with unknown
quantum efficiency. The typical histogram representing the output of a PNR
detector in terms of relative frequency of detection events in function of the
electric pulse amplitude (corresponding to the number o photons) is shown
in Fig. 17.

To perform an absolute calibration it is necessary to acquire two separate
sets of measures, one in the presence and one in the absence of heralding
photons (i.e. photons detected by the trigger detector). Whence it is possible
to estimate the probabilities of observing i counts in the presence and in the
absence of the heralded photon, indicated respectively by P (i) and P(i).
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Figure 16: Experimental scheme for PNR Klyshko’s technique: a pulsed
laser beam is used to pump a non-linear crystal in which take place SPDC.
The heralding signal from the trigger detector announces the presence of the
conjugated photon that is coupled in the single mode optical fibre and sent
towards the PNR detector (identified by the dotted line) starting from the
fibre end. Both the detectors are gated by the laser trigger.

Now it is useful define the following quantities: the probability of having
a true heralding count ξ (i.e. not due to noise), the overall quantum efficiency
γ (including detector efficiency and channel losses), the transmissivity of the
optical channel τ from the crystal to the PNR detector, and the quantum
efficiency of the detector itself η. From these definitions we can write the
relation: γ = τη.

The PNR detector have a probability to observe no photons and i photons
given respectively by:

P (0) = ξ[(1 − γ)P(0)] + (1 − ξ)P(0) (95)

P (i) = ξ[(1 − γ)P(i) + γP(i− 1)] + (1 − ξ)P(i) (96)

Inverting this two equations it is possible derive the overall quantum effi-
ciency of the PNR detector, that include the losses on the path. Note that,
differently to the original Klyshko’s technique, there are several ways to cal-
culate the quantum efficiency: one for each peak that it is possible observe
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Figure 17: Figure report a typical histogram of TES counts. In abscissa we
have the amplitude of the output signal and in the ordinate axis the number
of events.

in the histogram:

γ0 =
P(0) − P (0)

ξP(0)
, γi =

P (i) −P(i)

ξ[P(i− 1) − P(i)]
, (97)

Each of these derivations of the quantum efficiency exploits a different num-
ber of simultaneously detected photons and can be calculated independently.
However, all the γi represent the same physical quantity and should have the
same value for a linear detector. Therefore, this extension of the Klyshko’s
technique allows checking the consistency of the detection model with data
comparing different γi. Also in this case, to obtain the quantum efficiency of
the detector: η = γ/τ , it is necessary to estimate independently the losses
on the optical path.

8.3 Absolute calibration for analog spatial resolving

detectors

The techniques described in Sec.s 8.1 and 8.2 are based on true single photon
and PNR detectors, which allow to perform temporal coincidences between
the time tagged photo-counting events. However, these devices can not be
used for detecting beams with relatively high photon flux, are expensive and
require complex coincidence electronics. On the other hand, the majority of
the optical detectors operate in the analog regime, providing an output signal
which is proportional to the intensity of the light, namely to the number of
photons, and have a large dynamic range. In contrast, the high electronic
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background noise does not allow to discriminate the individual photon and
to perform coincidence measurements. Anyway this limitation does not pre-
vent the possibility to observe true quantum effects such as sub-shot-noise
intensity correlations, when the shot noise fluctuations proportional to

√
N

emerge from the background noise. On one side this enable the use of ana-
log detectors for quantum enhanced imaging and sensing applications (See
for example the Sec. 5,6,7) and on the other side it allows the absolute
calibration of the devices [195, 196, 197, 198, 215, 119].

The calibration method discussed here is strongly based on the detection
of a set of pair-wise correlated spatio-temporal modes of twin beams imping-
ing the detectors areas, according to the model described in Sec. 4.4. There,
we have demonstrated the relation between the measured noise reduction fac-
tor σdet and the detection efficiencies in case they are perfectly balanced, see
Eq.(55). Here we just report the more general formula in which the detectors
have different efficiencies η1 and η2 [89, 119]:

σα ≃ 1 + α

2
− η1A (98)

where α = 〈n̂1〉/〈n̂2〉 is the measurable ratio between the beams intensities
and A is the collection efficiency introduced in Eq. (56,60), function of
geometrical parameters (essentially the size of the detector area and the
coherence area) that can be measured independently. Moreover, in Eq. (98)
we have introduced a slightly modified NRF parameter σα, to compensate
unbalancing [216]:

σα =
〈δ(n̂1 − αn̂2)

2〉
〈n̂1 + αn̂2〉

(99)

The absolute value of the efficiency η1 obtained by inverting Eq. (98) is a
mean value over the whole area of detection. Note that in the first approx-
imation this equation is valid whatever photon flux impinges the detectors
and even for high gain SPDC, were many photon pairs are generated in a
single spatio-temporal mode. A more accurate analysis discloses that there is
a certain dependence of the collection efficiency A from the mean occupation
number µ of the uncorrelated modes Mu, as reported in Eq. (56), but this
dependence can be minimize as long as a careful matching of the conjugated
mode between the detectors is performed.

The technique described above is particularly suitable for calibrating ana-
log (but not only as we will see in the next Section) spatial resolving detector,
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Figure 18: Schematic representation of an experimental apparatus for abso-
lute calibration of spatial resolving detectors, like CCDs.

such as charge-coupled-devices (CCD) cameras. One of the reason is exactly
the possibility to set arbitrarily the detection areas and to have a fine control
in the collection of the conjugated spatial modes. Nevertheless, calibration
techniques for spatial resolving detectors are essential for many applications
among which imaging represents the most significant. Due to their impor-
tance, in the following, we focus our attention on the CCD cameras, but, in
principle, the technique can be applied to any spatial resolving detector that
provides, point by point, an analogical signal proportional to the imping-
ing light flux. Standard CCD cameras, i.e. without any avalanche electro-
multiplication, are able to count the number of photo-electron generated in
each pixel for a given exposure time, providing an output proportional to
the intensity of the adsorbed light (analogical regime). There are two main
sources of noise in CCD cameras: thermal noise and read noise. Thermal
noise is due to charges generated by thermal excitations, it is proportional
to the exposure time and it is strongly dependent by the temperature. Read
noise is generated in the electronics reading process and it is independent by
the exposure time and other physical parameters. Read noise contribution is
not avoidable and its presence implies that CCD can not distinguish single
photons from the background. In 2010, the first absolute calibration of a
standard CCD camera was realized by exploiting bright squeezed vacuum
[89] and, after several improvements, such technique reached a level of accu-
racy suitable for metrological application [216] and aligned with the state of
the art of the absolute calibration of single photon detector with Klyshko’s
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method.

8.4 EMCCD as link between single photon level to

high intense level

Electro-Multiplied CCD (EMCCD) is a camera able to detect single photons
with high quantum efficiency. This capability is achieved exploiting an elec-
tron multiplication structure, built into the sensor, that can be activated or
not, giving the possibility to switch, from analog to single photon regime,
using the same device.

The statistical distribution of the output counts for this device is well
understood [217, 218]. For each pixel, given n photoelectrons at its input, the
multiplication stage provides a random number of electron counts x following
the distribution:

P(x|n) =
xn−1 exp(−x/g)

gn(n− 1)!
for n > 0; (100)

P(x|n) = δ(x) for n = 0; (101)

where g is the multiplication gain. The total number of counts per pixel is
due to the contribution of photoelectrons and noise. Therefore, the counts
distribution at the output is the convolution of P(x|n) with the noise distri-
bution:

Ptot(x|n) =

∫ ∞

0

P(y|n)Pnoise(x− y)dy. (102)

The statistical distribution of the output counts implies that, despite the
possibility to detect single photons, each pixel of a EMCCD is not a native
photon counting detector. It is possible to use an EMCCD in photon counting
regime by means of a proper data processing, after that, each pixel can be
considered as a click/no-click detector. This behaviour is achieved applying
a discriminating threshold T on the electron counts x at each pixel: a photon
is detected when x > T . In this regime, a detection area Adet on the sensor
can be used as a non-linear photon number resolving detector, counting the
number of pixels that have x > T (spatial multiplexing).

As demonstrated in a recent experimental work [61], exploiting the spa-
tially multimode quantum correlations in squeezed vacuum states, it is pos-
sible to calibrate an EMCCD both in the analog regime and in the pho-
ton counting regime obtaining two different quantum efficiencies, indicated
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respectively with η0 and η(T ). The quantum efficiency in single photon
counting regime is strongly dependent on the threshold T in a predictable
way. Moreover, it has been demonstrated a relation between the quantum
efficiencies η0 and η(T ), by providing a radiometric link between the low il-
lumination range to the mesoscopic and to the macroscopic range [61]. This
result represents an important step in the field of quantum radiometry, in
particular because it allows the metrological traceability of measurements at
the few-photons level, that is essential for most of the emerging quantum
technologies.

The calibration of the analog quantum efficiency η0 is identical for EM-
CCD and for standard CCD and it is already described in the section 8.3.
Also the calibration method for EMCCD in photon counting regime is based
on the same principle of the calibration in analog regime, therefore the exper-
imental apparatus is the same of Fig. 18. Indeed, also EMCCD calibration
is based on the measurement of the corrected noise reduction factor reported
in Eq.s (99). However, we have to take into account that, in this case, n1

and n2 are the numbers of pixels that have x > T in two correlated areas
and they depend on the threshold:

σα(T ) =
〈δ(n̂1(T ) − αn̂2(T ))2〉
〈n̂1(T ) + αn̂i(T )〉 (103)

Such quantity satisfies the relation with the quantum efficiency as reported
in Eq (98):

σα(T ) ≃ 1 + α

2
− η(T )A (104)

Therefore, it is possible to use the same absolute calibration technique, both
for the photon counting regime and the analogical regime.

In principle, for an EMCCD operating in photon counting regime, it is
also possible to exploit directly the Klyshko’s method (as in section 8.1) to
perform an absolute calibration of the quantum efficiency. However, there
are two main practical reasons that prevent its use. First of all, Klyshko’s
technique needs few coincidences per frame and unfortunately, in this con-
figuration, the noise in EMCCDs becomes dominant preventing any possible
coincidences counting. The second reason is that the read time of an EM-
CCD is much higher with respect to typical single-photon detectors, as a
consequence, the Klyshko’s technique would be too much slow for practical
applications.
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In this section we have focused our attention on the most diffuse spatial
resolving devices allowing single photon counting: the EMCCD cameras.
However, others kind of spatial resolving detectors are able to work in photon
counting regime. An important commercial device is the Intensified CCD, for
which similar absolute calibration techniques have been developed [62, 63].
Most recently, it has been developed a spatial resolving detector based on
arrays of true “click/no click” single photon detectors [219]. Also this kind
of devices, largely used in recent quantum optics experiments [220, 221],
can exploit directly the calibration techniques based on squeezed vacuum
correlations.

Conclusions

Quantum correlations emerged as a fundamental tool for developing quantum
technologies.

In particular, quantum correlations of optical fields are the most exploited
resource for these new technologies, whose applications ranges from quantum
imaging and sensing to quantum communication and quantum computation.

In this review paper we have summarized the main properties of photon
statistics and photon number correlations of technologically relevant optical
fields, describing in some details the use of twin beams in a few quantum
enhanced protocols. Our main message is that the relatively easy production
of the TWB states and their demonstrated advantages in various protocols
make them a fundamental tool for overpassing the death valley between proof
of principle experiments and commercial systems. They will therefore repre-
sent a source of the utmost importance for the approaching second quantum
revolution.
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