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Abstract

The paper investigates wave propagation characteristics for a class of structures using higher-order one-

dimensional (1D) models. 1D models are based on the Carrera Unified Formulation (CUF), a hierarchical

formulation which provides a framework to obtain refined structural theories via a variable kinematics

description. Theories are formulated by employing arbitrary expansions of the primary unknowns over

the beam cross-section. Two classes of beam models are employed in the current work, namely Taylor

Expansion (TE) and Lagrange Expansion (LE) models. Using the principle of virtual work and finite ele-

ment method, the governing equations are formulated. The direct time integration of equation of motion is

carried through an implicit scheme based on the Newmark method and a dissipative explicit method based

on the Tchamwa-Wielgosz scheme. The framework is validated by comparing the response for the stress

wave propagation in an isotropic beam to an analytical solution available in the literature. The capabilities

of the proposed model are demonstrated by presenting results for wave propagation analysis of a sandwich

beam and a layered annular cylinder structure. The ability of CUF models to detect 3D-like behavior with

a reduced computational overhead is highlighted.

Keywords: Wave Propagation, Travelling Loads, Composites, Carrera Unified Formulation, 1D Models,

FEM.



1 Introduction

Advanced structural systems made of composite and sandwich materials are gaining popularity for

aerospace and automobile applications under dynamic loading conditions. These structures are often

slender in nature such as aircraft wings and fuselage, rockets and launchers, therefore can be modeled as

1D structures. Such structures are often subjected to high-frequency loads, which leads to importance

for understanding the wave characteristics of such systems.

Euler and Bernoulli developed the classical beam theory, which simplified the linear theory of elasticity

for calculating the beam deflection and load-carrying characteristics for 1D structures [1]. Timoshenko

introduced the shear and rotary inertia into Euler-Bernoulli beam theory (EBBT) with an assumption of

constant shear strain across the cross-section [2]. Timoshenko Beam Theory (TBT) significantly increased

the range of applicability of the classical 1D models. However, practical engineering problems are often

accompanied by geometric variations and material heterogeneity where classical beam theories can lead

to incorrect responses. Hereafter, some of the most important contributions are discussed with particular

attention paid to dynamics responses and wave propagation problems. A more comprehensive review of

beam models can be found in [3].

Over the last couple of decades, much effort has been devoted towards improving the classical and refined

beam models [4–7]. Bank et al. reported a beam theory based on TBT for the dynamic response of

thin-walled composite beams [4, 8]. The model accounted for material heterogeneity of composites by

providing appropriate constants for the TBT equations. Murakami et al. proposed a 1D model for elastic

wave propagation for heterogeneous beams by making a dynamic extension to Reissner’s mixed variational

equation [5]. The model was able to capture stress concentrations with great accuracy under dynamic

loading conditions. Even though the model accounted for heterogeneous material, the application was still

restricted to uniform cross-section. A comprehensive overview of models adopted for analysis of laminated

beams and plates with particular attention towards vibration and wave propagation is summarized by

Kapania and Raciti [8]. Kant et al. reported an analytical solution to the natural frequency analysis of

composite and sandwich beam structure based on a higher-order refined theory [7] and dealt with dynamic

response analyses [9]. Librescu developed refined beam modes accounting for non-classical effects with

particular attention paid to aircraft structures [10].

The development of advanced models for structural dynamics based on beam theories is currently being



carried out by many researchers. Latest contributions focused on damage detection [11], spectral finite

elements [12–14], layer-wise models [15, 16], and viscoelastic materials [17].

The inherent limitation in most of the aforementioned papers is the problem dependency of the theories.

The current paper adopts a generalized 1D refined beam model, which maintains the generality regarding

the geometric and material description of the problem. The refined beam models are developed within

the framework of the CUF, a hierarchical formulation which offers a methodology to procure refined

structural theories that account for variable kinematics description [18]. Originally developed for plates

and shells [19], CUF enables one to select arbitrary choice of expansion function over the cross-section of

the beam[20]. Therefore, any structural theory can be modeled without any changes to the fundamental

formulation. CUF models, when used in conjunction with 1D finite element framework, enables to solve

structural problems of any arbitrary geometries, material configuration and boundary conditions without

any ad hoc assumptions. CUF models can detect shell-like and solid-like response for various types of

analyses. Over the last decade, two main classes of 1D CUF models have been developed [3]. Taylor

Expansion (TE) models are based on Taylor-like polynomial, where the order of the polynomial deter-

mines the beam theory order [20]. Classical beam models such as Euler-Bernoulli beam theory (EBBT)

and Timoshenko Beam Theory (TBT) are obtained as special cases of TE models. Lagrange polynomials

are utilized to expand displacement field over the cross-section in Lagrange Expansion (LE) models [21].

LE models allow representing every part of a multi-component structure via 1D finite element, leading

to Component-Wise (CW) approach [22]. Various structural dynamics applications have been proposed

in the last years, such as: free vibration [23], dynamic response [24], rotordynamics [25], exact dynamic

stiffness elements [26], viscoelastic materials [27], and damaged structures [28]. The CW makes use of the

1D CUF models to deal with complex, multi-component structures via only 1D elements and has been

used for various structural dynamics applications [29, 30].

The present paper exploits the 1D CUF models for wave propagation problems. In particular, this paper

can be considered as a companion work of [31] in which TE models were used with implicit integration

schemes. On the other hand, LE models and explicit integration schemes, and the CUF capabilities for

wave propagation problems are assessed the first time here.

CUF models are employed to study the local deflection and stress histories of the structure. High-frequency

finite element solutions for wave propagation problems are often associated with spurious oscillations, es-

pecially at the wavefront. The error in such simulation is cumulated due to numerical dispersions and



oscillations [32–35]. Much research has been dedicated towards eliminating spatial and temporal disper-

sion errors in wave propagation problems adopting higher-order finite elements [36], use of lumped mass

matrices [37], employing modified spatial integration rules for mass and stiffness matrices [38], filtering

spurious modes [39], and introducing numerical dissipations in the time integration scheme [34, 35, 40]. In

the current framework, the spatial dispersion error is straightforwardly addressed by using higher-order

formulations. The temporal dispersion is mitigated using a dissipative explicit scheme. The explicit

scheme based on the bulk viscosity method (BVM) [40], in which a viscous pressure term is added to

the dynamic equilibrium equation, is used in commercial software such as ABAQUS [41]. The Tchamwa-

Wielgosz (TW) scheme eliminates oscillations introducing a damping parameter to the time integration

equation [34]. In the current work, the stress wave propagation problem is solved using the TW scheme in

conjunction with a lumped mass matrix. Due to the diagonal mass matrix, the time marching operations

is limited to simple mathematical operation.

The paper is organized as follows: Section 2 presents a brief overview of the 1D CUF theory; then, the

finite element formulation and time integration scheme adopted in the paper is discussed; the numerical

results are presented in Section 3; finally, the concluding remarks are outlined in Section 4.

2 Variable Kinematics Beam Theories via CUF

The coordinate system adopted is illustrated in Fig. 1. The longitudinal axis of the beam coincides with

the y-axis of the coordinate system (0 ≤ y ≤ L) and the cross-section Ω is overlayed on the x-z plane.

The displacement vector is

Ω x

z

y

L

Figure 1: Coordinate system for the 1D beam model

u(x, y, z) = {ux uy uz}T (1)



The CUF expresses the displacement field as an expansion of generic cross-section functions, Fτ (x, z),

u(x, y, z, t) = Fτ (x, z)uτ (y, t) τ = 1, 2, ....,M (2)

Where uτ (y) contains the unknown, generalized, displacement variables. M stands for the number of

terms in the cross-section expansion function Fτ . The class of 1D CUF model adopted is based on the

choice of Fτ . Two classes of cross-section expansion functions are introduced within the context of this

paper: (1) Taylor Expansions (TE) and (2) Lagrange Expansions (LE). TE 1D models are based on the

polynomial expansions of the kind xizj , as cross-section expansion function Fτ , where i and j are positive

integers. For instance, a second-order TE 1D model (N = 2, M = 6) can be expressed as follows:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(3)

The order of the expansion (N) is arbitrary and defines the beam theory. A noteworthy feature of TE

1D model is that classical beam theories such as EBBT and TBT can be obtained as particular cases of

first-order TE 1D model (N = 1).

LE 1D models are formulated using Lagrange polynomials as cross-section function Fτ . These expan-

sion functions consist of purely displacement variables, whereas 1D TE models are characterized with

displacements and N -order derivatives of the displacement. The cross-section is discretized into some LE

elements. In this paper, L9 cross-section elements were used. The expansion functions for an L9 element

are

Fτ =
1

4

(
r2 + rrτ

) (
s2 + ssτ

)
, τ = 1, 2, 5, 7

Fτ =
1

2
s2
τ

(
s2 − ssτ )(1− r2)

)
+

1

2
r2
τ

(
r2 − rrτ

) (
1− s2

)
, τ = 2, 4, 6, 8

Fτ =
(
1− r2

) (
1− s2

)
, τ = 9

(4)



where r and s range from −1 to +1 and rτ and sτ are the coordinates of the nine nodes. Therefore, a

beam theory based on L9 has the following displacement field:

ux = F1ux1 + F2ux2 + ...+ F9ux9

uy = F1uy1 + F2uy2 + ...+ F9uy9

uz = F1uz1 + F2uz2 + ...+ F9uz9

(5)

where ux1 , ..., ux9 represent the translational displacement component of each of the nine nodes in the L9

element.

2.1 Geometrical and constitutive laws

The stress, σ, and strain, ε, are grouped as follows:

σ = {σxx σyy σzz σxy σxz σyz}T , ε = {εxx εyy εzz εxy εxz εyz}T (6)

With small strain assumptions, the linear strain-displacement relation is

ε = Du (7)

where D is the linear differential operator on u and is

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


(8)

For linear elastic material, stress can be related to strain as follows:

σ = Cε (9)



where C is the 6 × 6 elastic material matrix. For the sake of brevity, the explicit expressions of Cij are

not given here, but can be found in [42].

2.2 Finite element formulation

Adopting the conventional FE approach to discretize the beam along its y-axis, the displacement vector

u can be expressed as

u(x, y, z) = Fτ (x, z)Ni(y)uτi; τ = 1, ....,M ; i = 1, ..., p+ 1 (10)

Where Ni is the beam shape function of order p and uτi is the nodal displacement vector,

uτi = {uxτi uyτi uzτi}T (11)

Three types of beam elements are adopted within the CUF framework, B2 (two nodes), B3 (three nodes)

and B4 (four nodes), which represents linear, quadratic and cubic approximation respectively. Standard

FE shape functions are used and not reported here for the sake of brevity, but can be found in [32].

It should be noted that the choice of expansion function of the cross-section and choice of the beam

finite element remains independent. In this work, B4 elements are adopted. The principle of virtual

displacement holds

δLint = δLext − δLine (12)

Where Lint stands for internal strain energy, Lext stands for work done by the external loads, Line is the

work due to inertial loading and δ stands for the virtual variation. The stiffness and mass matrices and

loading vector are obtained via manipulation of Eqn. 12. The virtual variation of strain energy δLint can

be written as

δLint =

∫
V
δεTσdV

= δuTsjK
ijτsuτi

(13)



Where Kijτs is the stiffness matrix in the form of the fundamental nucleus (FN). The virtual variation of

the work done by internal loading can be expressed as

δLine =

∫
V
ρδuT üdV

= δuTsjM
ijτsüτi

(14)

Where Mijτs is the FN of the mass matrix. The derivation and components of the FE fundamental nucleus

is not reported here for the sake of conciseness but can be found in [32]. It is important to emphasis the

fact that no inherent assumptions about the approximation order has been made in formulating Kijτs and

Mijτs. Therefore, the formal expression of the FN remains the same, which in turn allows formulating

any class of beam theories with the same numerical implementation. The damping matrix C is defined as

a linear combination of stiffness matrix K and mass matrix M using Rayleigh damping constants. Due

to the computational advantage, lumped mass matrix is employed for an explicit scheme. Diagonal mass

matrix is obtained by using Gauss-Lobatto integration rule [38]. For all other cases, consistent matrices

are obtained through Gauss integration rule.

The virtual variation of external work due to a generic concentrated load P acting on a point (xp, yp, zp)

can be expressed as

δLext = δuTP

= FsNjδu
T
sjP

(15)

where Fs and Nj are evaluated at (xp, zp) and yp, respectively.

2.3 Direct time integration scheme

The equations of motion can be written as

MÜ + CU̇ + KU = R (16)

Where M, C and K are the assembled global mass, damping and stiffness matrices respectively, which

are obtained by expanding the CUF FNs and assembling them into global arrays. U, U̇. and Ü are

the vector of nodal displacements, velocities and accelerations, respectively. R is the vector of nodal



external load. In this paper, two classes of time integration schemes are adopted to solve the dynamic

wave propagation problem: (1) Newmark-β scheme and (2) Tchamwa-Wielgosz scheme.

A. Newmark-β scheme

The implicit scheme based on Newmark β can described as [43]:

MÜn+1 + CU̇n+1 + KUn+1 = Rn+1 (17)

Implicit methods are unconditionally stable but require factorization of the assembled global matrices to

obtain the solution at every step.

B. Tchamwa-Wielgosz scheme

Explicit methods are quite popular in wave propagation analysis. When used in conjunction with diagonal

lumped mass matrix, the computational operation at each time step reduces to basic mathematical op-

erations. Being conditionally stable, the time step size has a considerable effect on stability and spurious

oscillations in an explicit scheme. The explicit method based on the Tchamwa-Wielgosz (TW) scheme is

implemented in the current framework [34]. The scheme can damp spurious oscillation more quickly. The

TW scheme is controlled by a single parameter φ, which gives

Ut+∆t = Ut + ∆tU̇t + φ∆t2Üt

U̇t+∆t = U̇t +
1

2
∆Üt

Üt+∆t = M−1
[
Rt+∆t −CU̇t+∆t −KUt+∆t

] (18)

Where ∆t is the time increment. The parameter φ controls the damping efficiency of the scheme. The

critical time step size is defined as

∆tcr =
2

ωn
(19)

Where ωn is the largest eigen frequency of the assembled system. A power iteration method is used to

compute the ωn [44].



3 Results

The numerical results deal with typical wave propagation and traveling load problems in isotropic, com-

posite and thin-walled structures. Comparisons with analytical models or 3D FE are provided.

3.1 1D stress wave propagation

A classic, 1D wave propagation problem was first considered to validate the numerical framework imple-

mented and assess the accuracy and stability of the present 1D formulation against analytical and 3D

FE. Idealizing the problem to A 1D case is a commonly adopted technique in literature to validate new

numerical frameworks [34, 35]. Due to the availability of analytical solutions, it also serves as a good

benchmark for evaluating the capabilities of the proposed beam finite element model.

The beam is isotropic material with the Young modulus (E) of 207 GPa and density (ρ) of 7800 kgm−3.

Poisson’s ratio was taken as zero. The geometry and boundary conditions of the problem are illustrated in

Fig. 2. The length of the beam (L) is 5.0 m with a square cross-section of side (w = h) 0.2 m. The beam

is clamped at one end, and an impact pressure load was applied at the free end with a time-histogram

as illustrated in Fig. 3. Since it is a 1D wave propagation problem, the lateral edges of the beam were

L w

hp

Figure 2: Geometry for the 1D stress wave propagation problem

p0

t0 t1 t2

p

t

Figure 3: Load time history for the 1D stress wave propagation problem

constrained such as ux = uz = 0. The pulse load p0 = 0.1 MPa was applied for a duration from 0 (t0) -

0.19 (t1) ms. The governing wave equation for the 1D wave propagation problem is given by

∂2u

∂y2
=

1

c2
0

∂2u

∂t2
(20)



where c0 is the wave speed of the material with c0 =
√
E/ρ. The method of d’Alembert provides the

solution to the 1D wave equation,

u(y, t) = f(y − c0 t) + g(y + c0 t) (21)

where f and g are arbitrary functions representing right-traveling and left-traveling waves, respectively

[45].

The beam was discretized using B4 elements and the cross-section was modeled using 1 L9 element. The

problem was analyzed for a duration of 1.2 ms. A lumped mass matrix with the explicit Tchamma-

Wielgosz scheme was utilized for time integration. The damping parameter φ was set to 1.013. Artificial

damping was introduced into the system through proportional stiffness damping. A similar model was

developed in ABAQUS using 3D brick elements and BVM based explicit scheme for time integration [41].

Total degrees of freedom for CUF-LE and ABAQUS models were 1890 (70 B4 elements) and 3012 (250

brick elements), respectively.

The stress and velocity distribution along the beam at various instants are reported in Fig. 4. The solution

is compared against analytical and ABAQUS results. Stress wave propagation contours at various instants

are illustrated in Fig. 5. A convergence study was undertaken to study the effect of mesh discretization

with a various number of elements along the axis (see Fig. 6). The results suggest that

1. The present formulation can model the wave propagation with good accuracy.

2. The spurious oscillations were successfully mitigated, even at the reflected wave front.

3. The dispersion error was almost nullified with 70 elements along the beam axis.

4. CUF-LE model required only 70 elements as compared to ABAQUS with 250 brick elements, for

producing dispersion error free results.

3.2 Traveling load

In the following section, beam structures under traveling loading conditions are investigated. The traveling

wave is described as a step profile of pressure which travels along the axis of the beam with constant

velocity (vy) as illustrated in Fig. 7. Two structures were investigated with different loading conditions.

An implicit time integration scheme was used to obtain the solution.
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(b) At boundary - superposition of waves
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(c) Reflecting wave
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(a) Stress distribution
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(b) Velocity distribution

Figure 4: Stress and velocity distributions along the beam at (a) t = 0.58 ms (b) t = 1.01 ms and (c) t = 1.2 ms
using 70 B4-elements for the 1D stress wave problem
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Figure 5: Stress (σyy) wave propagation in beam at (a) 0.58 ms (b) 1.03 ms and (c) 1.2 ms for the 1D stress wave
problem
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Figure 6: Convergence study for the 1D stress wave propagation problem
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Figure 7: Pressure step profile traveling along the beam axis with velocity vy

A. Sandwich structure

A clamped-clamped composite sandwich beam structure is investigated. The sandwich consists of an

isotropic foam with composite plates at the bottom and top, see Fig. 8. The material properties of the

individual composite sandwich components are listed in Table 1. The wave is described as a step profile

260 59.9

34.8

1.9

1.9

Foam

Composite

Figure 8: Geometry of the composite sandwich beam (all dimensions in mm)

Table 1: Material properties of the composite sandwich beam

E11 E22/E33 ν12/ν13 ν23 G12/G13 G23 ρ

(GPa) (GPa) - - (GPa) (GPa) (Kgm−3)

Composite 276 15 0.279 0.3 12 5.02 1500

Foam 2.487 0.35 1.91 60



Table 2: Displacement [uz] at the mid-span of the beam at point A at 6.5 ms for the composite sandwich beam
problem

DOFs umaxz umaxx

- (10−4 m) (10−6 m)

TE

EBBT 93 0.311 0.473

TBT 155 0.313 0.484

N=1 279 0.313 0.484

N=2 558 0.320 0.695

N=3 930 3.173 1.257

N=4 1,395 3.246 1.781

N=5 1,953 3.317 8.699

N=6 2,604 3.342 9.357

N=7 3,348 3.742 9.525

N=8 4,185 3.759 10.080

N=9 5,115 3.854 10.260

N=10 6,138 3.831 9.740

N=11 7,254 3.856 9.664

N=12 8,463 3.861 9.590

N=13 9,765 3.946 9.594

LE

3L9 1,953 4.085 7.280

6L9 3,255 4.087 9.435

of pressure which travels along the beam axis with constant velocity (vy) of 19 ms−1 and pressure of

−0.48MPa. The extension of the step profile is described by the length a = L/20 (see Fig. 7). The

structure was discretized as a beam with 10 B4 elements since such mesh provided good convergence for

this loading case. The cross-section of the beam was modeled using TE and LE as depicted in Fig. 9.

The solution was obtained for a duration of 13 ms. The displacements were evaluated at point A (see

Figure 9: Cross-section configurations for the sandwich beam

Fig. 7) at t = 6.5 ms for various beam configurations is tabulated, see Table 2. Figure 10 illustrates the

displacement [uz] profile along the beam axis at point A for various beam configurations at t = 6.5 ms.

The time history of the displacement [uz] at point A is plotted in Fig. 11. The 3D configuration of the

sandwich beam at various instants is illustrated in Fig. 12. The normal stress distribution along the edge



AB of the cross-section (see Fig. 7) at the mid-span of the beam at t = 6.5 ms is depicted in Fig. 13.

The results suggest the following:

1. The travelling pressure causes severe local effects due to the presence of the soft core.

2. Classical models, such as EBBT and TBT, and low order TE models clearly fail to capture the

displacement field (see Table 2). In fact, such models cannot predict cross-sectional distortions.

3. TE model of order N = 13 and LE-6L9 provide similar displacement and stress fields, even though

they differ greatly regarding the degrees of freedom required to model the problem.

4. No considerable difference in stress and displacement fields was observed for LE-3L9 and LE-6L9.

5. LE models are more efficient than TE model because of their capability to capture local displacement

field via local refinements.
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Figure 10: Displacement profile [uz] along the beam axis at point A (see Fig. 7) for various beam configurations
at t = 6.5 ms, composite sandwich beam problem

B. Three-layered annular cylinder

A three-layered, thin-walled cylinder is investigated. The problem statement is based on the works of

Varello et al. [46]. The geometry and layer configuration for the cross-section of the structure are
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Figure 11: Time history of displacement [uz] at point A (see Fig. 7) for various beam configurations, composite
sandwich beam problem

illustrated in Fig. 16a. The external diameter (de) and internal diameter (di) of the cylinder are 100 mm

and 94 mm, respectively. The thickness of each layer amounts to 1 mm. The material properties of the

layers are summarized in Table 3. The length of the cylinder (L) is 500 mm. The structure is subjected

to clamped boundary conditions at the ends, y = 0 and y = L. The structure was subjected to two

Table 3: Material properties of different layers in three-layered annular cylinder problem

Property Unit Layer 1 Layer 2 Layer 3

Young’s Modulus (E) GPa 69 30 15

Poisson’s ratio (ν) - 0.33 0.33 0.33

Density (ρ) kgm−3 2700 2000 1800

loads,

1. A uniform pressure p1 = 0.148 MPa was applied on the internal surface of the cylinder (upper

surface of layer 1, r = di/2; 90o ≤ θ ≤ 2700; 0 ≤ y ≤ L, see Fig. 16b).

2. A traveling load of step length a = L/10 = 50 mm and a pressure value p2 = −1.727 MPa with

a constant velocity vy = 90 ms−1 (see Fig. 7) was applied on the internal surface of the cylinder

(upper surface of layer 1, r = di/2; 90o ≤ θ ≤ 2700, see Fig. 16b).
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Figure 12: 3D deformation configuration and resultant displacement (m) at various time steps for wave propagation
in sandwich (LE-6L9 model) for the composite sandwich beam problem
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Figure 13: Normal stress distribution σyy (a) along the edge of the cross-section AB, (b) layer 1, and (c) layer 3
(see Fig. 7) at mid-span of the beam at t = 6.5 ms for the composite sandwich beam problem
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The beam was discretized using 10 B4 elements. As depicted in Fig. 17, TE models up to order N = 8

and two LE models (72L9 and 126 L9) were used to model the cross-section of the beam. The solution

was obtained for a duration of 5 ms with the implicit scheme.

Table 4 shows the maximum displacements at 2.5 ms and the related angle along the cross-section. The

3D deformation of the beam structure at various instants is depicted in Fig. 18. Deformed configurations

at the mid-span of the beam at various time instants are illustrated in Fig. 20. The displacement time

history of point C (see Fig.16b) in the mid-span of the beam is depicted in Fig. 19. Normal stress

distributions along the edge AB of the cross-section (see Fig. 16b) at the mid-span of the beam at t =

2.5 ms sre depicted in Fig. 21. The results suggest the following:

1. As for the previous case, loads cause severe cross-sectional distortions.

2. The 1D CUF models can capture local deformation state.

3. In this case, LE models are computationally more cumbersome than TE ones.

N=1

N=2

....

N=8

72L9 126L9

TETE LE

Figure 17: TE and LE cross-section models for the annular cylinder problem
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Figure 18: 3D deformed configurations and resultant displacement (m) at various time steps for for the annular
cylinder problem, 126 L9



Table 4: Displacements at the mid-span of the beam at 2.5 ms for the annular cylinder problem

DOF umaxx umaxy umaxz θmax

- (10−4 m) (10−4 m) (10−4 m) (◦)

TE

EBBT 93 0.038 0.017 0.916 90

TBT 155 0.038 0.017 0.916 90

N=1 279 0.038 0.017 0.916 90

N=2 558 0.056 0.020 1.097 90

N=3 930 0.215 0.020 1.693 113

N=4 1,395 0.502 0.020 1.730 120

N=5 1,953 0.850 0.020 1.915 117

N=6 2,604 1.064 0.020 2.016 117

N=7 3,348 1.145 0.020 2.049 117

N=8 4,185 1.403 0.021 2.228 117

LE

72L9 31,248 1.390 0.021 2.189 115

126L9 45,570 1.440 0.021 2.213 117
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Figure 19: Displacement uz at point C (see Fig. 16b) at the mid-span of the beam for the annular cylinder
problem
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Figure 20: Deformation configuration and resultant displacement (m) of the cross-section at the mid-span of the
beam at various time steps for the annular cylinder problem, 126 L9
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Figure 21: Normal stress distribution σyy along the length AB of the cross-section (see Fig. 16b) at the mid-span
of the beam at 2.5 ms for the annular cylinder problem



4 Conclusion

The paper investigates wave propagation characteristics of structures via 1D finite element models based

of the Carrera Unified Formulation (CUF). Two classes of beam theories have been employed within

the framework of CUF, namely Taylor Expansion (TE) models, and Lagrange Expansion (LE) models.

The versatility of the proposed framework is demonstrated by presenting results for compact isotropic,

sandwich structures, and thin-walled layered cylinder using the same formal implementation. Following

conclusions can be drawn:

1. As well known, classical beam models tends to provide inaccurate results as soon as local effects are

concerned.

2. CUF models can detect local, 3D-like, cross-sectional effects with high accuracy.

3. Spurious oscillations were successfully mitigated with 70 beam elements. Comparable results were

obtained in ABAQUS with 250 brick elements.

4. LE models are particularly efficient to deal with structures with diverse material distributions as

LE models can assign material characteristics locally via the cross-section Lagrange elements.

5. TE models perform better for thin-walled structures with reduced material heterogeneity.

Future work could deal with the extension to lamb waves problems for damage detection.
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