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Dirk Deschrijver, Senior Member, IEEE, Daniël De Zutter, Fellow, IEEE, Tom Dhaene, Senior Member, IEEE,

Dries Vande Ginste, Senior Member, IEEE.

Abstract—This paper proposes a novel strategy for creating
generative models of stochastic link responses starting from
limited available data. Whereas state-of-the-art techniques, e.g.
based on generalized polynomial chaos expansions, require a
considerable amount of (expensive) input data, here we start
from a small set of “training” responses. These responses are
obtained either from simulations or measurements, to construct a
comprehensive stochastic model. Using this model, new response
samples can be generated with a distribution as similar as
possible to the real data distribution, for use in Monte Carlo-like
analyses. The methodology first uses the standard Vector Fitting
algorithm to fit the S-parameter data with rational functions
having common poles. Then, a generative model for the residues
is created by means of Principal Component Analysis and Kernel
Density Estimation. An a-posteriori selection of passive samples
is performed on the generated data to ensure the new samples are
physically consistent. The proposed modeling approach is applied
to a commercial connector and to a set of differential striplines.
Both are concatenated to produce the stochastic analysis of a
complete link. Comparisons on the prediction of time-domain
responses are also provided.

Index Terms—Statistical link analysis, stochastic modeling,
Principal Component Analysis (PCA), Kernel Density Estimate
(KDE), high-speed connectors and links

I. INTRODUCTION

The large manufacturing tolerances in modern electronics
have recently prompted a wide interest in stochastic modeling
techniques that can accurately predict the effects of component
variability during the early design phase. To this end, a large
number of statistical samples needs to be generated within a
reasonable amount of time. While the Monte Carlo method
is recognized to be in most cases prohibitive due to the high
computational cost involved, alternative techniques were pro-
posed based on the theoretical framework of the generalized
polynomial chaos (gPC). These techniques allow collecting
statistical information and/or generating a large number of
samples at a smaller cost [1–7].
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Although gPC was demonstrated to be effective in a number
of practical applications, a limitation is that it requires sam-
pling the stochastic problem at specific points of the design
space. This is at times hard to achieve, for example in the
presence of a very large number of varying parameters or when
these parameters or their distributions are unknown. In case
only measured data can be obtained, efficient and sufficient
sampling may even become completely intractable.

In this paper, an alternative, novel and conceptually different
black-box approach is put forward to address the problem of
generating a large number of samples of the response of a
stochastic linear and passive multiport device, starting from
a limited set of actual responses. The latter can be obtained
either by simulating the original device at a subset of points in
the random space (possibly unknown to the model developer)
or by measuring several manufactured devices. In this way, a
model is constructed that does not depend on, or require the
knowledge of, various input parameters or their distributions.

The proposed approach starts by collecting a small amount
of S-parameter data (or any other frequency-domain rep-
resentation), which is then transformed into a pole-residue
form by means of the Vector Fitting (VF) algorithm [8–10].
Then, the distribution of the residue matrices is modeled by
means of Principal Component Analysis (PCA) [11–13] and
Kernel Density Estimation (KDE) [14–16]. This model enables
generating new sample values for the residue matrices, yield-
ing corresponding S-parameter responses via the VF model
representation. It is essential that the new, generated samples
are in good agreement with the ‘real data’, representing the
underlying distribution of an arbitrarily large set of simulated
or measured data of which the training samples are a subset.
Moreover, particular care is taken in making sure that the
generated samples still preserve all physical constraints of
stability, causality, passivity, reciprocity, etc., as well as the
existing relationships among the different S-parameters in
a multiport device. The generated S-parameter samples are
readily imported in any SPICE-type simulator to perform,
e.g., statistical time-domain link simulations. The proposed
technique can be applied to model a complete interconnect
link, or possibly to different sub-blocks that are later combined
together to form a complex link, thus allowing a Monte-Carlo-
like analysis with the desired level of modularity.

It is worth mentioning that this work is based on the idea
proposed in [17], where a generative model for the simple
case of a pair of coupled microstrips was constructed. In this
paper, however, the modeling framework is more carefully
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explained and generalized to arbitrary multiports. Moreover,
the advocated technique is applied to a commercial connector
footprint, an interconnect structure composed of four pairs
of differential striplines, and a complete link consisting of
two connector footprints and the striplines. Additionally, time-
domain results are presented, validating the entire modeling
framework and illustrating the appositeness of the technique
for signal integrity aware design.

The rest of the paper is organized as follows. In Section II
the problem is stated. The new modeling approach is outlined
in Section III. A number of application examples and vali-
dations are provided in Section IV. Finally, conclusions are
drawn in Section V.

II. GOAL STATEMENT

The goal of this paper is as follows. A limited number of
responses of a stochastic device, typically S-parameters and
hereafter called the “training set”, is available from simulated
or measured data. These responses differ from each other
as the result of some (often unknown or ill-defined) source
of variability. The samples are therefore understood to be
different realizations of the same stochastic process.

From the training set, a generative statistical model is
derived that can generate new S-parameter samples whose
statistical properties resemble as closely as possible those
of the original data. Moreover, the generated samples must
preserve physical constraints (e.g., passivity) which constitute
the relationships that exist among the different S-parameters
of a multiport structure. For example, in a passive 2-port
structure, |S11|2 + |S21|2 ≤ 1, where the equality holds for a
lossless device. Therefore, the independent statistical modeling
of S11 and S21 would yield unrealistic datasets. This crucial
step was not addressed by previous approaches [18, 19], as
each parameter was modeled independently and no discussion
about physical consistency was provided.

To validate the proposed modeling, a large number of
samples is obtained via numerical simulations. Only a small
subset is then used to build the generative model. Finally, the
new samples generated by the model are statistically compared
against the full dataset.

III. GENERATIVE MODELING FRAMEWORK

A flowchart of the new modeling approach is shown in
Fig. 1 and involves three main steps: VF, PCA and KDE.
Each step is discussed in the following sections.

A. Training Set

The training set consists of a limited set of distinct random
samples of the device response. It can be generated via sim-
ulation, by varying the random parameters, or by measuring
different fabricated samples of a given device. It is even possi-
ble to consider several measurements of the same sample, e.g.
to model measurement uncertainty and/or poor reproducibility.
The size of the training set plays of course an important role.
However, as demonstrated in Section IV, accurate statistical
models can be obtained with a few tens of training samples.
In what follows, we use the term ‘sample’ to refer to a

Training samples

Vector Fitting
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KDE

Generative Statistical Model

Generate new samples

Inverse PCA

Vector Fitting reconstruction

Passivity selection

Enough
passive

samples?
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M
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Figure 1. Flowchart of the proposed modeling and analysis framework.

single realization of the complete matrix characterization of
the variable device in the frequency domain.

B. Vector Fitting

First of all, the training samples are converted into a
pole-residue representation by means of the well-known VF
algorithm [8–10]. This allows working with a compact number
of frequency-independent model parameters.

By means of measurements or simulations, a limited set
of K training samples is available in the form of a generic
frequency-domain response (S- or RLGC-parameters, in this
paper). Each such response is characterized by a matrix
Sk(s), k = 1, . . . ,K, where s denotes the complex frequency.
Through use of the VF algorithm, each Sk(s) is fitted by a
rational model as follows:

Sk(s) ≈
N∑
i=1

Rk,i
s− ai

+Dk + Eks, k = 1, . . . ,K, (1)

where ai and Rk,i are the poles and the corresponding residue
matrices, respectively. The poles and residues are real values
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or constitute complex conjugate pairs. For an n-port structure,
the S-parameters, and consequently the residues, form a n×n
matrix. Moreover, for stable systems, all poles lie in the left
half complex plane (i.e., Re{ai} < 0). The quantities Dk

and Ek are real valued and describe the behavior of Sk(s) for
s→ 0 and s→∞, respectively. They may be omitted in favor
of a more homogeneous set of quantities to model. This might
require to slightly increase the number of residues N in (1) in
order to compensate for the reduced modeling power and still
achieve a similar level of accuracy. Without loss of generality,
matrices Dk and Ek are excluded from the formulation in the
following discussion. Note that a generative model could also
be constructed from time-domain data, by using Time Domain
Vector Fitting (TD-VF) [20].

Furthermore, all S-parameter samples are fitted using a
common pole set {ai}Ni=1. An optimal set of common poles is
obtained by fitting all the training samples at once, and this set
of poles is later on also used to generate new samples with the
statistical model. This avoids any issue with possible outliers
appearing in the right half plane and giving rise to unstable
samples.

With the above approach, the problem is reduced to building
a generative model for the residue matrices only. Capturing
the relationship between the different S-parameters requires
simultaneous modeling of all residues (i.e. all residues of every
S-parameter matrix element).

C. Principal Component Analysis

For each training sample k, a set of N residue matrices
Rk,i having dimensions n × n are obtained. Fortunately, due
to reciprocity, it suffices to model only the upper triangular
part of Rk,i, as the matrices are symmetrical. However, as
this still means Nn(n+1)/2 possibly complex variables to be
modeled, the dimensionality quickly becomes computationally
prohibitive. Since the residues are real or pairwise complex
conjugate, the total number of elements remains unchanged
when they are reshaped into a vector of real quantities.
Stacking these vectors for all K training samples yields a
matrix X of size K ×Nn(n+ 1)/2.

To alleviate this high dimensionality strain, a principal
component analysis (PCA) [11–13] is performed. This dimen-
sionality reduction technique projects the high-dimensional
space spanned by the training set onto a lower-dimensional
space with maximal conservation of variance. Before the actual
PCA step, each variable is centered and rescaled to unit
standard deviation. PCA then projects X onto the sequen-

tially orthogonalized eigenvectors of X
T
X having the largest

eigenvalues (i.e. with the largest variance along its direction,

as X
T
X is proportional to the covariance matrix of X).

As the number of degrees of freedom is constrained by
the size of the training set, K, and one degree of free-
dom is lost in the centering, the projected space is at most
(K−1)-dimensional, which is in practice much smaller than
Nn(n+1)/2. Another effect of this projection is that the new
variables are also linearly uncorrelated. After the PCA, the
projected training samples are again scaled to unit variance

Figure 2. One-dimensional kernel density estimate starting from eleven
training points (in black). The (Gaussian) kernels are shown in red. The
blue curve is the sum of these kernels and is proportional to the distribution
estimate.

to make the subsequent KDE numerically feasible, as the
variances along different axes in the projected space can differ
by many orders of magnitude, and KDE is ill-equipped to
handle these differences.

D. Kernel Density Estimation

Now that the dimensionality of the variables has been
reduced to a more manageable size, the distribution of the
elements in the projected space can be more efficiently esti-
mated. Note that due to the nonlinear correlation between the
residues, this distribution is in general not spherical. Therefore,
it is estimated by means of a multivariate KDE [14–16]. The
KDE is a non-parametric method that estimates a probability
distribution by placing a ‘kernel’ or elementary spherical
distribution centered on each training point. The sum of these
kernels at a particular point is then (up to a normalization fac-
tor) the total distribution estimate. One popular choice of such
kernels is the Gaussian kernel. Fig. 2 shows a one-dimensional
example of a kernel density estimate with Gaussian kernels.
Other common kernels are Epanechnikov kernels, which are
parabolic and have a finite support.

The difficulty of KDE lies in the estimation of its band-
width. In the case of a (multivariate) Gaussian kernel, this
is equivalent to finding the proper covariance matrix of the
kernels. Most methods rely on the (estimated) minimization of
the Mean Integrated Squared Error (MISE) or its asymptotic
approximation (AMISE). For the results presented in Section
IV, we use the AMISE-based approach detailed in [16].

E. Generative Statistical Model

Generating new samples is now straightforward. To sample
from the kernel density estimate, it suffices to pick one training
sample (with equal probability for each training sample), and
then draw a sample from the kernel distribution centered on
that training point. The newly generated samples are then
rescaled, projected back into the full residue space, followed
by a rescaling and a final offset. This reverses the trans-
formations discussed in Section III-C, yielding N possibly
complex n × n-matrices for each new sample. Finally, using
the same common poles that were used to fit the training data,
new S-parameters are created using the rational Vector Fitting
model (1).
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Figure 3. Cross-section of the differential stripline. The lines have a length of 5 cm. Above each conductor pair, the corresponding differential port numbers
are shown (near-end / far-end).

F. Passivity Selection

Some of these generated samples may violate the physical
constraint of passivity, and must therefore be rejected. If
passivity were enforced, e.g. as in [21–23], the distribution of
the generated samples would be biased toward samples that
are near the passivity boundary. Therefore, we opt to simply
reject non-passive samples a posteriori, and keep generating
new samples until the desired amount is reached (see Fig. 1).
The passivity of the newly generated S-parameters also implies
their causality.

IV. APPLICATION EXAMPLES AND NUMERICAL RESULTS

In this section, the proposed methodology is demonstrated
on some meaningful examples. A set of differential striplines
is considered first. Secondly, a commercial connector footprint
is modeled. In a third example, the models from the previous
examples are cascaded to form a realistic interconnect link.
Finally, the time-domain behavior of the link is evaluated.

A. Stripline interconnect

A stripline interconnect consisting of four differential pairs,
with cross-section depicted in Fig. 3, is considered. A set of
1000 per-unit-length (p.u.l.) resistance (R), inductance (L),
conductance (G) and capacitance (C) (RLGC) parameters
(from 0 to 20 GHz) were generated with an accurate field
solver [24] where the relative permittivity εr of the substrate
was varied according to a Gaussian distribution with a standard
deviation of 5 % of the mean value of 3.5. K = 50 of these
samples are used to train the model, while the other 950 will
merely serve as a validation for the generated samples. In
this example, the method described in Section III is applied to
the p.u.l. RLGC parameters directly. This has the advantage of
eliminating the distributed effect due to the line length from
the VF model. As VF can also accommodate real variables, the
proposed method remains unaltered, apart from a conversion
from p.u.l. parameters to S-parameters, where a line length
of 50 mm was assumed, and a relaxation of the stability
enforcement. Fig. 4 shows the training set (red), the samples
generated by the model (blue) and the validation set (green)
for both the p.u.l. conductance G1,1 and the p.u.l. capacitance
C1,1 of the leftmost stripline. As only the relative permittivity
is varied, the R and L parameters are not affected by the
variability and are therefore the same for all samples.

The distribution of the generated set of G and C parameters
is visually very similar to that of the validation set. This
similarity is more objectively apparent in Fig. 5, where the
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Figure 4. Modeling of the p.u.l. conductance G1,1 and the p.u.l. capacitance
C1,1 of the utmost left stripline. 190 out of the 950 validation samples are
shown in the background in green. 200 out of the 1000 generated samples
are plotted in blue, and 10 out of the 50 training samples are shown in red
on top. The black lines highlight the extreme values of the validation set (but
not necessarily the boundaries of the underlying distribution).
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Figure 5. CDF of the training (red), generated (blue) and validation (green)
sets for the C1,1-parameter.

cumulative distribution functions (CDF) of the C1,1-parameter
are compared. Note that due to the structure’s homogeneity,
each Cij-parameter is proportional to εr and thus also Gaus-
sian distributed. Furthermore, C is constant over the frequency
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Figure 6. Magnitude and phase of the reflection (SD1D1) S-parameters for
the stripline example. Colors are as in Fig. 4.
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Figure 7. Magnitude and phase of the transmission (SD5D1) S-parameters
for the stripline example. Colors are as in Fig. 4.

range, making the CDF the same for every frequency point.
The obtained p.u.l. RLGC parameters are converted to mixed-
mode S-parameters to demonstrate their validity as a mul-
tivariate functional distribution estimate. Figs. 6-8 show the
simulated and generated samples of some of the differential
S-parameters.
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Figure 8. Magnitude and phase of the mode conversion (SC5D1) S-
parameters for the stripline example. Colors are as in Fig. 4.

Figure 9. 3D rendering of the commercial connector footprint in a multi-
layered printed circuit board. The first image is a side view, the second is a
top view detailing some of its dimensions. The nominal pad diameter of each
conductor is 900 µm, and their nominal drilled diameter is 600 µm.

B. Connector Footprint

As a second example, the S-parameters of a commercial
16-port connector footprint, depicted in Fig. 9, are considered.
For this example, 450 S-parameter matrices were simulated by
varying 40 geometrical parameters. Only 50 of these samples
were used to train the proposed model. The model was then
used to generate another set of 450 samples. Note that gPC
based approaches would have difficulty coping with the large
amount of independently varying parameters.

Figs. 10-12 portray the validation, generated, and training
samples for some of the S-parameter elements.
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Figure 10. Magnitude and phase of the reflection (SD1D1) S-parameters
for the commercial connector footprint. Colors are as in Fig. 4.
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Figure 11. Magnitude and phase of the transmission (SD5D1) S-parameters
for the commercial connector footprint. Colors are as in Fig. 4.

From these figures, a good correspondence between the
validation samples and the generated samples is apparent. To
provide a more quantitative assessment, Fig. 13 shows the
cumulative distribution function of SC5D1 at a frequency of
17.5 GHz for each of the S-parameter sets.

0 5 10 15 20
Frequency (GHz)

120

100

80

60

40

20

M
a
g
n
it

u
d
e
 (

d
B

)

SC5D1

0 5 10 15 20
Frequency (GHz)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

P
h
a
se

 (
ra

d
ia

n
s)

SC5D1

Figure 12. Magnitude and phase of the mode conversion (SC5D1) S-
parameters for the commercial connector footprint. Colors are as in Fig. 4.
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Figure 13. CDF of the validation (green), generated (blue) and training (red)
sets for the SC5D1-parameter of the commercial connector footprint example
at 17.5GHz.

C. Cascaded interconnect link

In the third example, the viability of the proposed modeling
approach is further ascertained by considering a cascade
connection (connector-stripline-connector) of the components
modeled in the two previous examples (see Fig. 14). Thereto,
for each simulated stripline S-parameter sample, two footprint
S-parameter samples are chosen at random and cascaded at
either end of the stripline. The same is done for the generated
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Figure 14. Schematic representation of the complete interconnect link. The
numbers on either side denote differential port numbers.
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Figure 15. Magnitude and phase of the reflection (SD1D1) S-parameters
for the cascade example. Colors are as in Fig. 4, but without the red training
samples.
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Figure 16. Magnitude and phase of the transmission (SD5D1) S-parameters
for the cascade example. Colors are as in Fig. 15.

S-parameter samples of the footprint and stripline examples.
In Fig. 15-17, the simulated (validation) and generated sets are
superposed and appear to be in excellent agreement, despite
the rather complex behavior of the S-parameters. The CDF
at a single frequency, given in Fig. 18, confirms the good
agreement between the two distributions.

As can be seen from Fig. 15-18, the variability has a non-
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Figure 17. Magnitude and phase of the mode conversion (SC5D1) S-
parameters for the cascade example. Colors are as in Fig. 15.
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Figure 18. CDF of the validation (green) and generated (blue) sets for the
SC5D1-parameter of the cascade example at 17.5GHz.

negligible impact on the performance of the link. Whereas
the return loss (Fig. 15) remains below −10 dB from DC up
to about 12 GHz, for higher frequencies, the reflection may
become quite high for certain link realizations. Consequently,
there will be a poor transmission. As observed from Fig. 16,
the insertion loss at 20 GHz ranges between 3 dB and 7 dB,
depending on the sample. The mode conversion (Fig. 17-
18) also exhibits a large variation of more than 10 dB, but
fortunately, it remains rather low in the entire frequency range.

D. Time Domain Analysis

In a final example, the behavior of the generated samples
in the time domain is explored. For this purpose, both the
validation and the generated samples from the cascade exam-
ple were used to predict the voltage response at each port
when the leftmost pair is excited with a differential voltage
step. The voltage step has an amplitude of 1 V and a rise
time of 250 ps, and it is produced by a generator with an
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Figure 19. Step voltage response at ports D1 (reflection) and D5 (transmis-
sion) for the cascade example. Colors are as in Fig. 15.
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Figure 20. CDF of the validation (green) and generated (blue) sets for the
voltage at port D5 at 11.0ns.

internal resistance of 50 Ω. The resulting voltage responses at
the input and through-connection differential ports are shown
in Fig. 19. Fig. 20 provides a comparison between the CDFs
of the generated and validation sets for the through-connection
voltage at port D5 at 11.0 ns. The shapes of the distributions
clearly match, albeit with a slight discrepancy in the lower
voltage tail.

As a last verification of the generated samples’ validity,
the height and width of an eye diagram are calculated for
each sample. To this end, a single 1 Gbps pseudo-random
bit sequence with rise/fall times of 125 ps was applied to the
differential port D1 and used to construct the eye diagram at
port D5. An example of such eye diagram is given in Fig. 21.
The height and width of each eye diagram were calculated and
they are compared in Fig. 22, showing that the eye diagram
features obtained from the generated S-parameters match those
of a large set of simulated S-parameters.

The variability observed from the frequency domain results
of section IV-C are of course also noticable in the time domain.
For example, from Fig. 19, it becomes clear that the reflection
mismatch at port D1 leads to over- or undershoot. From
Fig. 22 it is evident that there is considerable variation of the
eye height and width. Together with the voltage waveform VD5
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Figure 21. Example of a constructed eye diagram for one of the validation
samples.
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Figure 22. Distribution of height and width of eye diagrams of the validation
(green) and generated (blue) sets.

(Figs. 19 and 20), it becomes apparent that the link’s variability
has a non-negligible impact on potential jitter issues.

E. Training set size

So far, a training set size of 50 samples has been used to
build the model. One may wonder what the optimal number of
training samples might be. On the one hand, there should be
as few as possible in order to minimize the amount of effort
that goes into simulating or measuring the training set. On
the other hand, the more training samples are available, the
better the model can approximate the real data distribution.
This trade-off depends on the complexity of the device being
modeled.

In order to quantify this trade-off, we introduce a measure
called energy distance. This measure quantifies the distance
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Figure 23. Averaged energy distance for the cascade example.
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between two empirical probability distributions and is defined
as:

En,m(X,Y ) =
2

nm

n∑
i=1

m∑
j=1

‖xi − yj‖ −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖

− 1

m2

m∑
i=1

m∑
j=1

‖yi − yj‖, (2)

where X and Y are vectors of lengths n and m, respectively,
collecting all samples in each respective empirical probability
distribution function. It can be shown that En,m(X,Y ) ≥ 0,
where the equality holds only if the two distributions perfectly
coincide.

Fig. 23 shows an averaged energy distance for the cascade
example in function of the training set size. This averaging
occurs over frequency points, S-parameter matrix elements,
and twelve random training set selections from the complete
validation sets of the stripline and footprint examples. The
error bars show the estimated mean error arising from the
twelve different training sets. In this figure we can see a rapid
decrease in both energy distance mean and error, followed
by a slight stagnation. As this stagnation sets in around a
training set size of 50, we can conclude that — even for such
a relatively complex cascade example — a training set size of
50 is sufficient to provide an accurate approximation.

V. CONCLUSIONS

In this paper, a novel method is proposed that allows a
designer to generate a large set of S-parameter realizations
from a small training set of simulated or measured stochastic
S-parameters. This method operates by fitting the S-parameters
with a rational model in partial-fraction form using the VF
technique using a common pole set. For each training sample,
the residue matrices corresponding to each pole are identified.
This training set of residues is then reduced by means of
PCA, and finally its distribution is modeled by a KDE. The
generation of new samples is achieved by drawing from the
KDE, projecting back to the full residue space using the
inverse PCA, and finally reconstructing the S-parameters using
the rational VF model with common poles. A post-processing
passivity selection ensures the physical consistency of the
generated samples.

The validity and aptness of the generated S-parameters are
verified in four application examples. The first application is
a 16-port differential stripline interconnect that is modeled
through its RLGC-parameters. The second example considers
a commercial connector footprint. As a third verification, the
S-parameters of an interconnect link (cascade of the striplines
and connector footprint) are compared to their simulated
counterparts. Finally, the generated samples are used to per-
form time-domain analyses by computing both step voltage
responses and eye diagrams. For each of these examples, a
very good agreement between the distributions of simulated
and generated S-parameters is observed.

One of the goals of our future research is to obtain a
validation based on measured instead of simulated data. The
measurement validation for the connector example requires a

costly time investment as S-parameter measurements for such
a multiport device are very painstaking. Nonetheless, as the
initial VF step of the model based on a measured training
set will produce similar residue distributions, we expect that
the proposed methodology will also prove useful for measured
data.
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