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A Variation on a Random Coordinate Minimization Method
for Constrained Polynomial Optimization

Giuseppe C. Calafiore, Corrado Possieri

Abstract— In this paper, an algorithm is proposed for solv-
ing constrained and unconstrained polynomial minimization
problems. The algorithm is a variation on random coordinate
descent, in which transverse steps are seldom taken. Differently
from other methods available in the literature, the proposed
technique is guaranteed to converge in probability to the
global solution of the minimization problem, even when the
objective polynomial is nonconvex. The theoretical results are
corroborated by a complexity analysis and by numerical tests
that validate its efficiency.

I. PROBLEM STATEMENT AND INTRODUCTION

A. Notation

Let Z, N, R, R>0, and R>0 denote the sets of integer,
natural, real, nonnegative real, and positive real numbers,
respectively. B, Bo and S denote the closed and open unit
balls and the unit sphere in the Euclidean norm, respectively.

Given a compact set A ⊂ Rn, ‖x‖A
.
= infy∈A ‖x − y‖2

denotes the `2 distance between x ∈ Rn and A.
A function % : Rn → R>0 is positive semidefinite with

respect to A, denoted % ∈ PD(A), if %(x) = 0 ⇐⇒ x ∈ A.
Given a set T ⊂ Rn, let IT (·) be the indicator function of
T , i.e., IT (x) = 1, if x ∈ T , or IT (x) = 0, if x /∈ T . A
continuous function α : R>0 → R>0 is of class K∞, if it is
strictly increasing, α(0) = 0, and limr→+∞ α(r) = +∞.

Let x = [ x1 · · · xn ]>, with n ∈ N, be a vector
of variables. A monomial in x is a product of the form
xα = xα1

1 · · ·xαn
n , where αi ∈ N, i = 1, . . . , n. Given

α, let |α| .=
∑n
i=1 αi. A polynomial p in x is a finite, R-

linear combination of monomials, p =
∑

α∈E cαx
α, where

E ⊂ Nn is a finite set and cα ∈ R, ∀α ∈ E ; the total degree
of p is max{|α|, α ∈ E}. The ring of all the polynomials
in x with coefficients in R is R[x].

A function f : Rn → R is radially unbounded on Ω ⊂ Rn,
denoted f ∈ ru(Ω), if for every sequence {xk}k∈N such that
xk ∈ Ω for all k ∈ N and limk→+∞ ‖xk‖2 = +∞, it holds
that limk→∞ f(xk) = +∞.

B. Problem statement

Given f(x) ∈ R[x], we consider the following minimiza-
tion problem: ∣∣∣∣ min f(x),

with x ∈ Ω,
(1)

where Ω ⊆ Rn is a convex, closed, full-dimensional set,
i.e.,

∫
Ω

1 dx 6= 0. The objective of this paper is to design
a procedure for computing a solution to the minimization
problem (1), i.e., find f? ∈ R and x? ∈ Ω such that

f? = f(x?) = min
x∈Ω

f(x).

Since the polynomial f is not convex on Ω in general,
the minimization problem (1) is generally NP-hard, even
for very special instances (see [1] for a survey on the
computational complexity of the minimization problem (1)
over some simple constraint sets). A lot of research effort
has been indeed carried out for designing algorithms able
to determine a (sub)optimal solution to the minimization
problem (1).

One of the most direct methods to determine a solution
to the minimization problem (1) is to consider it as a
nonlinear programming problem, which can be addressed
by using the Karush-Kuhn-Tucker necessary conditions for
optimality [2], [3], [4], [5]. However, such techniques are
usually not tailored for polynomial problems, thus leading
to performances that may vary largely case-by-case [6].

If Ω = Rn and the polynomial f(x) is bounded below,
several techniques specifically tailored for polynomial prob-
lems can be employed to determine the solution to the mini-
mization problem (1), see, e.g., [7]. Since, for unconstrained
minimization problems, the minimum of f is attained at a
critical point x∗ satisfying

∂
∂x1

f(x∗) = 0, . . . , ∂
∂xn

f(x∗) = 0, (2)

methods have been developed for determining the set of all
the solutions to the system of equalities (2). Remarkable
examples are the tools given in [8], [9], [10], based on
the computation of Gröbner bases and eigenvalues, the
techniques given in [11], [12], which exploit the concept of
A-discriminant, the rational univariate representation given
in [13], and the numerical homotopy continuation methods
given in [14], [15]. Similar techniques have been used in
[16], where it is shown that a solution to the minimization
problem (1) can be determined by solving an auxiliary para-
metric minimization problem that always admits a solution
and taking limits.

An entirely different method to determine a solution to the
minimization problem (1) when Ω = Rn is to determine the
largest λ ∈ R such that the polynomial f(x)−λ is a sum of
squares (SOS) in R[x], see [17], [18], [19]. Such a problem
constitutes a relaxation of the minimization problem (1)
and can be solved in polynomial time through semidefinite
programming (SDP) [20], [21], providing a lower bound λ on
f?. It is worth noticing that a similar reasoning can be used
for determining a solution to the minimization problem (1)
if the set Ω is compact and not necessarily convex, by using
the results given in [22], [23]. SDP has also be proven
successful to solve the minimization problem (1) when f(x)



is quadratic, i.e., f(x) = x>Fx, for some F ∈ Rn×n, see
[24], [25], [26], [27], [28].

On the other hand, if Ω is a bounded, convex subset of Rn,
the tools given in [29], [30], [31] can be used to determine an
approximate solution to the minimization problem (1) within
polynomial time, with an assured worst-case performance
ratio. In particular, under the assumption that Ω is a convex,
compact set with non-empty interior, it is shown in [29] that
the minimization problem (1) can be solved by a polynomial-
time approximation algorithm with relative approximation
ratio (d+ 1)!(2d)−2d(n+ 1)−

d−2
2 (t+ 1)−

d
2 , where d is the

total degree of the polynomial f ∈ R[x1, . . . , xn] and t ∈
R>0 is such that Ω ⊂ tB.

Among the popular methods that have recently gained
increasing interest in large-scale optimization, due to its
intrinsic simplicity, is the coordinate minimization method
in its various variants [32], [33], [34]. For instance, the
Gauss-Seidel method is based on updating an estimate x̂ =
[ x̂1 · · · x̂n ]> of the solution x? to the minimization
problem (1) according to the following iterations

x̂k+1
−i = x̂k−i, (3a)

x̂k+1
i ∈ arg min

xi∈Ωk
i

f(xi,x−i), (3b)

where x̂−i = [ x̂1 · · · x̂i−1 x̂i+1 · · · x̂n ]> and

Ωki
.
= {xi ∈ R : [ x̂k1 · · · xi · · · x̂kn ]> ∈ Ω}.

In its classical implementation, the Gauss-Seidel method
updates the entries of x̂ cyclically (i.e., i = mod(k, n) + 1),
starting from an initial point x̂0 ∈ Ω, and produces a
sequence {x̂k}k∈N, where x̂k = [ x̂k1 · · · x̂kn ]>.

Convergence results of such a method have been given
for both the constrained and the unconstrained case under
suitable (pseudo)convexity assumptions [35], [36], [37], [38],
[39], [40], [41], [42], even in certain non-differentiable cases
[43]. However, for non-convex problems, the classical Gauss-
Seidel method need not converge to a critical point. A well-
known example is given in [44], where it is shown that the
limit points of the sequence {x̂k}k∈N need not be critical
points of the corresponding minimization problem.

Stochastic versions of the method also exist, in which the
coordinate to be updated is chosen each time at random, see
[45], [46], [47]. Such methods have been proven succesfull to
obtain an η-accurate solution to the minimization problem (1)
with probability at least 1− σ, with η and σ being arbitrary
number in R>0, provided that the function f to be minimized
can be rewritten as the sum of a smooth convex and a
nonsmooth convex block-separable function.

In the next section we introduce a variation on the plain
random coordinate minimization scheme, which allows the
algorithm to seldom take minimization directions that are
different from the coordinate axes. Lower and upper bounds
on the convergence probability of such an algorithm are given
in Section III. Details about the implementation and the com-
putational complexity of this method are given in Section IV.
The practical efficiency of the technique is demonstrated in

Section V via numerical tests and comparisons with SOS-
based methods.

II. A VARIATION ON THE RANDOM COORDINATE
MINIMIZATION METHOD

The algorithm we propose is described in words as fol-
lows: given p ∈ [0, 1], for any current solution estimate
x̂k ∈ Ω at iteration k, with probability p we pick a coordinate
direction i ∈ {1, . . . , n} uniformly at random, and with
probability 1−p we pick a random direction v uniformly on
the surface S of the unit Euclidean ball B in Rn; we then set
sk equal to the i-th standard unit vector ei ∈ S in the first
case, or set sk = v in the second case. We then update the
solution estimate according to the following rule

x̂k+1 ∈ x̂k + λksk, (4a)

where
λk = arg min

λ∈Ik
f(x̂k + λsk), (4b)

and Ik is the (possibly unbounded) interval {λ ∈ R : x̂k +
λsk ∈ Ω}. Clearly, for p = 1, the above method is a standard
random coordinate minimization method, while for p = 0 it
becomes a random search method with exact line search.

The following theorem guarantees, under some mild as-
sumptions, that the solutions of the inclusion (4) asymptoti-
cally converge in probability to the solution of the minimiza-
tion problem (1).

Theorem 1. Let A ⊆ Rn be the set of all optimal solutions
of problem (1), i.e., A .

= {x? ∈ Ω : such that f(x) ≥
f(x?)∀x ∈ Ω}. Assume that A is nonempty, and that either
the set Ω is compact or f ∈ ru(Ω).

If p < 1 and there exists ν? ∈ R>0 such that the set
(A+ νB)∩Ω has nonzero measure for all ν ∈ (0, ν?), then
the set A is asymptotically stable in probability from Ω, i.e.,
for each ε ∈ R>0, σ ∈ R>0, and x̂0 ∈ Ω, letting {x̂k}k∈N

be any solution to the stochastic inclusion (4), there exists
K ∈ N such that P(x̂i ∈ A+ εBo, ∀i ∈ N, i > K) > 1−σ.

Proof. Note that the dynamics of the stochastic difference
inclusion (4) can be rewritten as

x̂k+1 ∈ G(x̂k, sk), (5)

where G : Ω × S ⇒ Ω, G(x, s)
.
= {y ∈ Ω : ∃λ? ∈

I such that y = x+λ?s and f(x+λ?s) 6 f(x+λ s), ∀λ ∈
I}, I .

= {λ ∈ R : x̂+λs ∈ Ω}, and {sk}k∈N is a sequence of
independent, identically distributed random variables defined
from the probability space (Ψ,F ,P). Namely, for each
k ∈ N, the random variable sk : Ψ → S is such that the
probability measure µ(F ) = P(ψ ∈ Ψ : sk(ψ) ∈ F ) is well
defined for each F in the Borel σ-field on S. In particular,
for each k ∈ N, sk ∼ (1− p)Uni(S) + p

n

∑n
i=1 δ(ei), where

δ(·) denotes the Kronecker delta.
Thus, let f? = f(x?) where x? is any point in A. In order

to establish the statement, it is firstly proved that the set

Lc
.
= {x ∈ Rn : f(x)− f? 6 c} ∩ Ω (6)



is compact for each c ∈ R>0. If Ω is compact, then Lc is
compact since it is the intersection of a closed and a compact
set. On the other hand, if Ω is not compact, but f ∈ ru(Ω),
then, given c ∈ R>0, there exists d ∈ R>0 such that f(x)−
f? > c for each x ∈ Ω \ dB. Thus, Lc is compact for all
c ∈ R>0. In particular, the set A = L0 is compact.

Secondly, it is shown that f(x̂k+1) 6 f(x̂k) for all
k ∈ N. In fact, assume, by contradiction, that f(x̂k+1) >
f(x̂k). This implies that there exists s ∈ S such that
f(x̂k + s arg minλ∈Ik f(x̂k + λ s)) > f(x̂k) leading to a
contradiction by the definition of the arg min(·) function.
Furthermore, if x̂0 ∈ Ω, then, by construction, one has that
x̂k ∈ Ω for all k ∈ N. Therefore, letting f0 = f(x̂0), one
has that x̂k ∈ Lf0 for all k ∈ N, i.e., the set-valued mapping
G : Rn×S⇒ Rn given in (5) is locally bounded. Moreover,
since the set Ω is either compact or f ∈ ru(Ω), by the same
reasoning given above about the compactness of the sets Lc,
the mapping s 7→ graph(G(·, s)) .

= {(x,y) ∈ Rn×Rn : y ∈
G(x, s)} has closed values. Hence, measurability of such a
mapping follows by Example 5.22 and Exercise 14.9 of [48].
Therefore, the set-valued mapping G : Rn×S⇒ Rn satisfies
Standing Assumption 1 of [49], [50], [51], which guarantees
existence of random solutions of (4).

Thus, let V : Rn → R>0 be any smooth function such that
V (x) = f(x) − f? for all x ∈ Ω and lim‖x‖→+∞ V (x) =
+∞. Such a function exists since either Ω is compact or
f ∈ ru(Ω). Since V (x) = 0 if and only if x ∈ A, the set
A is compact, and V is radially unbounded, by Lemma 4.3
of [52], there exist class K∞ functions α and α such that
α(‖x‖A) 6 V (x) 6 α(‖x‖A). By the reasoning given
above about the monotonic behavior of f(x̂k), it results
that supg∈G(x,s) V (g) 6 V (x) for all (x, s) ∈ Ω × S.
Furthermore, for each x 6∈ A, letting υ = f(x)−f?

2 , υ ∈ R>0,
the set Lυ has nonzero measure since, by assumption, the set
(A+νB)∩Ω has nonzero measure for all ν ∈ (0, ν?), and f is
continuous. Thus, for each x /∈ A, there exists a measurable
selection S of S such that supg∈G(x,s) V (g) < V (x) for
all s ∈ S (see Fig. 1 for a graphical representation of such
a selection).

S

x? Lυ

Ωx

Fig. 1: Measurable selection S of S.

Therefore, there exists % ∈ PD(A) such that∫
S

sup
g∈G(x,s)

V (g)µ(ds)

=
(1− p)Γ(n2 )

2πn/2

∫
S

sup
g∈G(x,s)

V (g) ds +
p

n

n∑
i=1

sup
g∈G(x,ei)

V (g)

6 V (x)− %(x),

where Γ(z) =
∫∞

0
xz−1e−xdx, for all x ∈ Ω. Thus, by a

trivial extension of Theorem 1 of [53], since if x̂0 ∈ Ω then
x̂k ∈ Ω for all k ∈ N, the set A if asymptotically stable in
probability from Ω.

It is worth noticing that, in order to establish Theorem 1,
no assumption is needed on the convexity of the polynomial
f . The following two remarks and two examples discuss the
assumptions made in Theorem 1.

Remark 1. If Ω is not compact and f /∈ ru(Ω), then the
set-valued mapping G(x, s) given in (5) need not be locally
bounded for all (x, s) ∈ Ω × S, thus leading to undesirable
behaviors, as, e.g., unbounded random solutions (see the
following example).

Example 1. Define the polynomial f(x) = x2
2x

2
1 + x2

1 −
2x2x1 + 1, let Ω = R2, and consider the minimization
problem (1). By [54], the polynomial f can be rewritten as
f(x) = x2

1+(1−x1x2)2. Thus, letting yk = [ 1
k k ]>, one

has that limk→+∞ ‖yk‖ = +∞, but limk→+∞ f(yk) = 0,
i.e., f /∈ ru(Ω). Note that, since n = 2, the random variable s
can be parametrized as s(ϑ) = [ cos(ϑ) sin(ϑ) ]>, where
ϑ is another random variable, ϑ ∼ (1 − p)Uni([0, 2π]) +
p
2δ(0)+ p

2δ(
π
2 ), where δ(·) denotes the Kronecker delta. The

following Fig. 2 depicts the map ϑ 7→ arg minλ f(λ s(ϑ)).

Fig. 2: Graph of ϑ 7→ arg minλ f(λ s(θ)).

As shown by such a figure, the map G given in (5) is un-
bounded, thus possibly leading to large computational errors
when using the proposed method to solve the minimization
problem (1) (which, in this case, does not have a solution).

Remark 2. The assumption about measurability of the set
(A+νB)∩Ω essentially requires that there exist sufficiently
many points in Ω that are close to the optimal set A. Such an
assumption is not satisfied if the set Ω is not full dimensional.
The following example shows that, in such a case, the
solutions of the stochastic difference inclusion (4) need not
converge to a solution to the minimization problem (1).



Example 2. Consider the following minimization problem∣∣∣∣ min f(x),
with x1 + x2 + x3 = 0,

(7)

where f = x2
1 + 6x2x1 − 2x3x1 + 2x1 + 10x2

2 + 6x2
3 +

12x2−10x2x3−14x3+10. By letting x1 = −x2−x3 and by
using the “complete the squares” procedure given in [55], one
obtains that f constrained to Ω = {x ∈ R3 : x1 +x2 +x3 =
0} can be rewritten as f(x)|Ω = 10(1+ 1

2x2− 4
5x3)2+ 5

2 (x2−
4
5x3)2 +x2

3. Therefore, the minimization problem (7) admits
a solution, f? = 25

9 and x? = [ − 13
9

1
3

10
9 ]>, and, for

each sequence {yk}k∈N such that yk ∈ Ω for all k ∈ N and
limk→+∞ ‖yk‖ = +∞, one has that limk→+∞ f(yk) =
+∞, i.e., f ∈ ru(Ω). However, since (A + νB) ∩ Ω has
null measure, the stochastic difference inclusion (4) does not
converge to the solution to the minimization problem (4).
Namely, given x0 ∈ Ω, P(xk+1 6= xk) = 0 for all k ∈ N,
since xk+1 6= xk only if sk ∈ Ω and P(sk ∈ Ω) = 0.

As shown in Remarks 1, 2 and in Examples 1, 2, the
assumptions of Theorem 1 are the minimal set of conditions
that have to be satisfied in order to guarantee well–behaved
convergence of the stochastic variation of the Gauss-Seidel
method given in (4). In particular, as shown in Example 1, if
the function f(x) is not radially unbounded on Ω, then the
solutions to the stochastic difference inclusion (4) need not
be bounded. On the other hand, if the set Ω has null measure,
then, by Remark 2, the proposed method fails to converge in
the form given in (4). Furthermore, the proof of Theorem 1
establishes also numerical stability of the proposed method,
at least in the unconstrained case. In fact, by [56], the
existence of a smooth Lyapunov function for the stochastic
difference inclusion (4) establishes (semiglobal, practical)
robustness with respect to small constant perturbations.

III. BOUNDS ON THE CONVERGENCE PROBABILITY OF
THE PROPOSED METHOD

The tools given in [53], [51] can be used to determine
bounds on the convergence time of the proposed method.

Let the assumptions of Theorem 1 hold and let G : Rn ×
S⇒ Rn be the set-valued mapping given in (5). Thus, given
p ∈ R>0, p < 1, and an open set O ⊂ Rn for each x ∈ Ω,
define `⊂O(0,x)

.
= 1, `∩O(0,x)

.
= 0, and, for each (x, k) ∈

Ω× N, define `⊂O(k + 1,x) and `∩O(k + 1,x) as

`⊂O(k + 1,x)
.
=

(1−p)Γ( n
2 )

2πn/2

∫
S

min
g∈G(x,s)

IO(g)`⊂O(k,x) ds

+ p
n

n∑
i=1

min
g∈G(x,ei)

IO(g)`⊂O(k,x), (8a)

`∩O(k + 1,x)
.
=

(1−p)Γ( n
2 )

2πn/2

∫
S

min
g∈G(x,s)

JO(k,g) ds

+ p
n

n∑
i=1

min
g∈G(x,ei)

JO(k,g), (8b)

where JO(k,g)
.
= {IO(g), IRn\O(g)`∩O(k,g)}. The fol-

lowing theorem shows how `⊂O and `∩O can be used to
bound the convergence probability of the proposed method

Theorem 2. Let the assumptions of Theorem 1 hold. Given
η ∈ R>0, let O1 = Rn \ {x ∈ Ω : f(x) − f? 6 η}
and let O2 = A + εBo, where ε ∈ R>0 is such that
supx∈(A+εBo) f(x) 6 f? + η. Thus, letting S(x0) be the set
of all the solutions to the stochastic difference inclusion (4)
starting at x0, one has that, for each K ∈ N,

`∩O2
(K,x0) 6 P(f(xi)− f? 6 η, ∀i > K)

6 1− `⊂O1
(K,x0), (9)

for all random solutions {xk}k∈N ∈ S(x0).

Proof. If the assumptions of Theorem 1 are met, then the
stochastic difference inclusion (5) satisfies Standing Assump-
tion 1 of [51] and the set Lη defined in (6) is compact. Thus,
the set O1 is open, whence implying, by [51, Lem. 1], that
the function `⊂O1

: N× Ω→ [0, 1] is well-defied and

`⊂O1(k,x0) = inf{zk}k∈N∈S(x0) E
[∏k

i=1 IO1(zk)
]
,

i.e., `⊂O1
(k,x0) constitute a lower bound over all the

random solutions from x0 ∈ Ω for the probability of staying
in the set O1 for k time steps. Therefore, since x0 ∈ Ω
implies that xk ∈ Ω, k ∈ N, for each {xk}k∈N ∈ S(x0),
1 − `⊂O1

(K,x0) constitutes an upper bound over all the
solutions from x0 for the probability of reaching the set Lη .
Thus, since the set Lη is positively invariant with respect to
the stochastic inclusion (4) (see Theorem 1), we have that

P(f(xi)− f? 6 η, ∀i > K)

=P(f(xi)− f? 6 η, ∀i > K + 1 ∧ xK ∈ Lη)

=P(f(xi)− f? 6 η, ∀i > K + 1 | xK ∈ Lη)P(xK ∈ Lη)

=P(xK ∈ Lη),

and that

P(∃i 6 K s.t. f(xi)− f? 6 η)

=P(∃i 6 K s.t. f(xi)− f? 6 η | xK ∈ Lη)P(xK ∈ Lη)

+ P(∃i 6 K s.t. f(xi)− f? 6 η | xK /∈ Lη)P(xK /∈ Lη)

=P(∃i 6 K s.t. f(xi)− f? 6 η | xK ∈ Lη)P(xK ∈ Lη)

=P(xK ∈ Lη).

Therefore, it results that P(f(xi) − f? 6 η, ∀i > K) =
P(xk ∈ Lη) = P(∃i ∈ {1, . . . ,K} such that f(xi) − f? 6
η) 6 1− `⊂O1

(K,x0), for all {xk}k∈N ∈ S(x0).
On the other hand, we have that f(x) − f? 6 η for all

x ∈ O2. By [51, Lem. 2], since the stochastic difference
inclusion (5) satisfies Standing Assumption 1 of [51], the
function `⊂O1

: N× Ω→ [0, 1] is well-defined and

`∩O2(k,x0) = inf{zk}k∈N∈S(x0) E
[
maxi∈{1...,k} IO2(zk)

]
,

i.e., `∩O2
(k,x0) constitute a lower bound over all the

random solutions from x0 ∈ Ω for the probability of
reaching the set O2 in (at most) k time steps. Thus, since
f(xk+1) 6 f(xk) and hence P(f(xi) − f? 6 η, ∀i >
K | ∃j ∈ {1, . . . ,K} such that xj ∈ O2) = 1, it results
that P(f(xi) − f? 6 η, ∀i > K) > P(f(xi) − f? 6
η, ∀i > K ∧ ∃j ∈ {1, . . . ,K} such that xj ∈ O2) =



P(∃j ∈ {1, . . . ,K} such that xj ∈ O2) > `∩O2
(K,x0), for

all random solutions {xk}k∈N ∈ S(x0).

By Theorem 2, the functions `∩O and `⊂O defined in
(8) can be used to determine upper and lower bounds on
the probability of obtaining an η-accurate solution to the
minimization problem (1) within k time steps, starting from
the initial condition x0. Note that, for each ε, η ∈ R>0 and all
x0 ∈ Ω, by Theorem 1, it results that limk→∞ `∩O2

(k,x0) =
1 and limk→∞ `⊂O1

(k,x0) = 0 (see also [50], [53]).

Example 3. Consider the minimization problem (1) with
Ω = R2 and f = x2

1 + x2
2 − x2 + 1. Since f ∈ ru(R2)

and Ω = R2, the assumptions of Theorem 1 are met,
whence the function `∩O given in (8) is well-defined. By
the same reasoning used in Example 1, for the considered
minimization problem, the stochastic system (5) reads as

xk+1
1 = 1

4 (sin(2θk)− 2xk2 sin(2θk)− 2xk1 cos(2θk) + 2xk1),

xk+1
2 = 1

2 (sin2(θk)− xk1 sin(2θk) + 2xk2 cos2(θk)),

where {θk}k∈N is a sequence of i.i.d. random variables,
θk ∼ (1− p)Uni([0, 2π]) + p

2δ(0) + p
2δ(

π
2 ), for each k ∈ N.

Assume that the objective is to characterize the convergence
probabilities of obtaining a 0.1-accurate solution to the
minimization problem (1), within 1 step, from the initial
conditions x̂0 ∈ B. It can be easily derived that ε = 0.1
is such that supx∈(A+εBo) f(x) 6 f? + 0.1. Thus, let
O2 = A + 0.1 Bo. Figure 3 depicts the values assumed by
the function `∩O2 for two different values of p.

(a) p = 0.

(b) p = 0.9.

Fig. 3: Value of the function `∩O2
(1, x̂0) for x̂0 ∈ B.

As shown by such a figure, the value chosen for p affects
the convergence probabilities of the proposed method. As
a matter of fact, by Theorem 2, P(f(xi) − f? 6 η, ∀i >

K) > `∩O2
(K,x0), thus, the probability of obtaining a 0.1-

accurate solution to the minimization problem (1), within
1 step, starting from x̂0, is lower bounded by `∩O2(1,x0).
Thus, since `∩O2(K,x0) is highly affected by the chosen
value of p, the convergence probability of the proposed
algorithm strongly depends on the choice of p. In particular,
if p is close to 1, then the points x̂0 in O2 + Span(ei)
(for some i ∈ {1, . . . , n}) are more likely to converge to
O2 (see Figure 3a). On the other hand, if p is close to 0,
given x̂0, the convergence probability just depends on the
measure of the set S ⊂ S that is such that G(x̂0, s) ⊂ O2

for all s ∈ S. Therefore, when implementing the proposed
algorithm, the parameter p has to be chosen as a trade-
off between computational efficiency (see Section IV) and
convergence probability (see Theorem 2).

IV. IMPLEMENTATION NOTES AND COMPLEXITY

In this section, we provide some tools to implement the
proposed variation of the random coordinate minimization
scheme to solve the minimization problem (1). Firstly, note
that given a monomial xα ∈ R[x], it can be equivalently
rewritten as xα = x

α−i

−i x
αi
i , for each i ∈ {1, . . . , n}. Simi-

larly, given f ∈ R[x], the i-th coordinate-wise polynomial of
f at x−i is the univariate polynomial in xi with coefficients
in R[x−i] that is obtained by considering all values in x−i
being fixed, and only the i-th variate xi as variable, i.e.,

fi(xi) =
∑
α∈E

cαx
α =

∑
α∈E

cαx
α−i

−i x
αi
i =

∑
α∈E

c̃α(x−i)x
αi
i

where c̃α(x−i)
.
= cαx

α−i

−i ∈ R[x−i]. The i-th coordinate-
wise polynomial fi is extremely useful when we update the
estimate of the solution to the minimization problem (1) with
sk = ei (note that P(sk = ei) = p

n ). In fact, in such a case,
letting fki (xi) =

∑
α∈E c̃α(x̂k−i)x

αi
i , fki ∈ R[xi], and letting

X ki = {xi ∈ R : fki (xi) 6 fki (x̂k−1
i )},

xki = min{xi ∈ Ωki : xi > minX ki },
xki = max{xi ∈ Ωki : xi 6 maxX ki },

which can be computed by using the bisection method [57],
the value of x̂k+1

i can be determined by solving the following
(univariate) minimization problem∣∣∣∣ min fki (xi),

with xi ∈ [xki , x
k
i ],

(10)

and, letting x?i be the set of all the solutions to the min-
imization problem (10), setting x̂k+1

i ∈ x?i . Note that the
minimization problem (10) can be solved by computing the
roots rk1 , . . . , r

k
h ∈ [xki , x

k
i ] of d

dxi
fki (xi), and letting

x?i = arg min
r∈{rk1 ,...,rkh,x

k
i ,x

k
i }
fki (r). (11)

On the other hand, assume that at the k-th time step, sk is
picked in S \ {e1, . . . , en}. Let f̃k(λ)

.
= f(x̂k + λ sk) =∑

α∈E cα(xk + λ sk)α. To obtain an explicit polynomial
representation of f̃k(λ), we consider the j-th monomial

mα(λ)
.
= (xk + λsk)α =

n∏
i=1

(xki + λski )αi .



Each term in the product above can be written as

(xki + λski )αi =

αi∑
j=0

(
αi
j

)
(xki )αi−j(ski )j · λj

=

αi∑
j=0

ζαi
i,j(x

k
i , s

k
i )λj ,

where
ζαi
i,j(x

k
i , s

k
i )

.
=

(
αi
j

)
(xki )αi−j(ski )j .

Therefore, by defining the row vector ζαi
i (xki , s

k
i )

.
=

[ ζαi
i,0(xki , s

k
i ) · · · ζαi

i,αi
(xki , s

k
i ) ], the product in

the expression for mα(λ) can be readily obtained
by taking the convolution of the ζαi

i ’s, i.e., letting
ωα(xki , s

k
i ) = [ ωα,0(xki , s

k
i ) · · · ωα,|α|(x

k
i , s

k
i ) ],

ωα(xki , s
k
i )

.
= ζα1

1 (xki , s
k
i ) ∗ ζα2

2 (xki , s
k
i ) ∗ · · · ∗ ζαn

n (xki , s
k
i ),

where ∗ denotes the convolution operator, we have that
mα(λ) =

∑|α|
i=0 ωα,i(x

k
i , s

k
i )λi, and hence

f̃k(λ) =
∑
α∈E

|α|∑
i=0

cαωα,i(x
k
i , s

k
i )λi.

Once that the polynomial f̃k(λ) has been determined, let
Λk = {λ ∈ R : f̃k(λ) 6 f(x̂k−1)}, and

λk = min{λ ∈ Ik : λ > min Λk},

λ
k

= max{λ ∈ Ik : λ 6 max Λk},

which can be computed by using the bisection method.
Thus, the next value of the estimate of the solution to the
minimization problem (1) can be obtained by solving the
(univariate) minimization problem∣∣∣∣ min f̃k(λ),

with λ ∈ [λk, λk],
(12)

and, letting λ? be the set of all the solutions to such a
minimization problem, setting x̂k+1 ∈ x̂k + λ?sk. Note that
the minimization problem (12) can be solved by computing
the roots λk1 , . . . , λ

k
h ∈ [λk, λk] of d

dλ f̃
k(λ), and letting

λ? = arg min
λ∈{λk

1 ,...,λ
k
h,λ

k,λk}
f̃k(λ). (13)

Letting d ∈ R>0 be the total degree of the polynomial
f to be minimized, in order to determine the value of the
monomials x̂α−i

−i , one has to carry out up to n2 d elementary
operations (i.e., additions or multiplications) [58]. Thus,
the i-th coordinate-wise polynomial of f at x̂k−i can be
determined by carrying out up to d (d + 1)n

(
d+n
d+1

)
since

there are
∑d
r=0

(
n+r−1

r

)
= d+1

n

(
n+d
d+1

)
vectors α ∈ Nn such

that |α| 6 d. On the other hand, in order to determine
each of the vectors ζαi

i (xki , s
k
i ) and ωα(xki , s

k
i ) one has to

carry out up to 2d3(d + 1) and 5
2n (d + 1)(dn + d + 2)

elementary operations, respectively. Thus, the polynomial
f̃k(λ) can be determined by carrying out up to 1

2 (d +

1)2(4d3 + 5dn + 5d + 10)
(
d+n
d+1

)
elementary operations.

The extremal points of the set X ki (respectively, Λk) can

be determined by computing the roots of the polynomial
fki (xi) − fki (x̂k−1

i ) (respectively, f̃k(λ) − f(x̂k−1)), thus
carrying out up to d6 elementary operations [59]. Hence, in
order to determine xki , x

k
i (respectively, λk, λk) by using the

bisection method, one has to carry out up to 2M log2( 2t
ε )

elementary operations, where M is the number of elementary
operations required to determine whether x ∈ Ω, t is such
that {x ∈ Ω : f(x) 6 f(x̂0)} ⊂ tB, and ε is the desired
precision. Finally, in oder to determine x?i (respectively,
λ?) one has to carry out (d − 1)6 elementary operations to
determine the roots of d

dxi
fki (xi) (respectively, d

dλ f̃
k(λ)) and

up to 2(d−1)(d+1) elementary operations to evaluate fki (xi)
(respectively, f̃k(λ)) over {rk1 , . . . , rkh, xki , xki } (respectively,
{λk1 , . . . , λkh, λ

k, λk}). Therefore, for each (d, n) ∈ N × N,
at each iteration of (4), is more computationally efficient to
update the estimate of the solution to problem (1) by using
sk ∈ {e1, . . . , en}. This improved efficiency motivates the
interest in letting p > 0 (but, p < 1) when implementing the
proposed variation of the random coordinate descent method.

V. NUMERICAL TESTS

In this section, we demonstrate the practical efficiency of
the proposed minimization algorithm through some numeri-
cal tests. Randomly generated experiments have been carried
out to compare the procedure given in (4), with the MATLAB
toolbox SOSTOOLS [60] interfaced with the external solver
SeDuMi [61]. All the experiments have been carried out on
a laptop with an Intel Core i5 CPU (2.4 GHz) and an 8 GB,
1600 MHz, DDR3 RAM.

In each experiment, it has been assumed that Ω = Rn,
and the polynomial f ∈ R[x1, . . . , xn] to be minimized
has been generated by firstly determining a polynomial
f̄ ∈ R[x1, . . . , xn] of total degree 2d − 1, with coefficients
being random integers uniformly distributed in the interval
[−100, 100] and, secondly, letting f = f̄ + x2d

1 + · · ·+ x2d
2 .

By [16], with such a choice, the minimization problem (1)
always admits a solution (i.e., A 6= ∅), f ∈ ru(Rn), and
the set A + νB has nonzero measure for each ν ∈ R>0.
Thus, by Theorem 1, the solutions of the stochastic difference
inclusion (4) converge to the solution of the minimization
problem (1). Note that similar polynomials have been used
in [7] to validate SOS-based optimization methods.

Since, by Theorems 1 and 2, the proposed method con-
verges asymptotically in probability to the solution to the
minimization problem (1) (possibly, not in finite time),
the iteration given in (4) has been interrupted as soon as
‖x̂k+1− x̂k‖ = |λk| is smaller than a given tolerance (set to
10−3 in the tests, whose results are reported hereafter) for
at least an assigned number of time steps (set to 10 in the
tests, whose results are reported hereafter).

In each test, the same set of 100 polynomials, randomly
generated as detailed above, has been used as input to either
(a) the method given in (4) with p = 0.5, with the stopping

criterion detailed above and x̂0 = 0 (implemented in
Mathematica [62]);

(b) the MATLAB toolbox SOSTOOLS, interfaced with the
solver SeDuMi, using the function findbound to find



a global lower bound for the input polynomial. It is worth
noticing that the polynomials in the considered class
have a global minima that generally have large negative
values, of the order of −1002d [7]. This ill-conditioning
of the problem possibly leads to numerical problems
for the interior-point algorithm used by SOSTOOLS.
Therefore, in order to carry out a fair comparison, as
suggested in [7], the function findbound has been
applied to the polynomial 100−2df rather than to f , and
the corresponding lower bound λ (which is such that
100−2df − λ is an SOS) has been multiplied by 1002d.

A total of 25 tests (corresponding to 2500 polynomials)
have been considered. Each entry of the sub-tables of Table I
corresponds to the same pair (n, d) ∈ N×N (i.e., to the same
100 input polynomials generated randomly as detailed above)
and reports the average execution time either of the method
given in (4) with p = 0.5 (Sub-table Ia) or of the MATLAB
toolbox SOSTOOLS (Sub-table Ib).

TABLE I: Average execution times (in seconds).

2d

2 4 6 8 10

n

1 0.005955 0.008497 0.011883 0.024923 0.022796

2 0.014629 0.031447 0.053511 0.083747 0.123574

3 0.022149 0.071583 0.174957 0.425468 0.998607

4 0.042049 0.138056 0.469544 1.87048 5.47279

5 0.061493 0.234072 1.29932 6.78617 25.4617

(a) Method given in (4) with p = 0.5.

2d

2 4 6 8 10

n

1 0.52157 0.59757 0.66152 0.68767 0.7788

2 0.64789 0.80812 1.1724 1.7391 2.5219

3 0.68604 1.2432 2.5541 5.2407 9.7755

4 0.69486 1.873 5.5549 16.761 35.732

5 0.77382 2.6632 11.133 48.493 216.19

(b) MATLAB toolbox SOSTOOLS.

In order to further corroborate the effectiveness of the
proposed technique, Table II reports the average number
of iterations K performed by the method given in (4)
to determine a solution to the minimization problem (1),
whereas Table III reports the percentage of tests in which
f(x̂K) < λ, where λ is the largest integer such that f(x)−λ
is an SOS (which has been determined by using the MATLAB
toolbox SOSTOOLS through the function findbound).

As shown by Sub-Table Ia, the proposed variation of
the random coordinate descent method is able to determine
efficiently (i.e., within reasonable computational times), an
estimate of the solution to the minimization problem (1). As
shown by Table II, the number of iterations that such an
algorithm has to carry out to converge to a solution to the
minimization problem (1) is increasing with the number of
variables n and with the total degree d of the polynomial
to be minimized. This is essentially due to the fact that,

TABLE II: Average number of iterations to determine a
solution to the minimization problem (1).

2d

2 4 6 8 10

n

1 10 10 10 10 10

2 17.9 29.1 33.7 36.2 37

3 29.9 58.3 70.2 79.4 89.8

4 53.9 93.4 108 134 144

5 74.8 128 161 201 235

TABLE III: Percentage of tests in which f(x̂K) < λ.

2d

2 4 6 8 10

n

1 29 100 99 92 91

2 41 99 100 100 100

3 45 97 100 100 100

4 46 99 100 100 100

5 62 98 100 100 100

letting G : Rn × S ⇒ Rn be the set-valued mapping given
in (5), for each x ∈ Rn, the measure of the set S ⊂ S
such that G(x, s) ⊂ A + εBo for all s ∈ S decreases
as n and d increase. However, as shown by Table II, the
number of iterations K to be carried out in order to determine
a solution to the minimization problem (1) through the
proposed algorithm grows mildly with n and d (the data
reported in Table II are nicely fitted by the expression K =
6.094 e0.5192n+0.2197 d), thus highlighting the fact that the
proposed technique can be employed to solve minimization
problems involving a large number of variables and with the
objective function being a polynomial of large total degree
(note that, for n = 5 and 2d = 10, each polynomial f has
been obtained by the weighted sum of 2007 monomials).

In all the tests that have been carried out, we obtained
that either f(x̂K) < λ or |f(x̂K)− λ| 6 max{|f(x̂K), λ|},
showing that the proposed minimization algorithm is able
to determine a good approximate of the solution to the
minimization problem (1). By comparing Sub-tables Ia and
Ib, it can be noticed that the execution time of the proposed
algorithm is smaller than the one of SOS-based methods,
especially if both the number of variables n and the total
degree 2d of the polynomial to be minimized have large
values. Furthermore, as shown by Table III, if n and 2d have
large values (namely, n > 3 and 2d > 6), the proposed
minimization technique provides a better estimate of the
solution to the minimization problem (1).
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J. Global Optim., vol. 7, no. 2, pp. 115–125, 1995.

[12] I. M. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants,
resultants, and multidimensional determinants. New York: Springer
Sci. Bus. Media, 2008.

[13] F. Rouillier, “Solving zero-dimensional systems through the rational
univariate representation,” Appl. Algebra Eng. Commun. Comput.,
vol. 9, no. 5, pp. 433–461, 1999.

[14] T.-Y. Li, “Numerical solution of multivariate polynomial systems by
homotopy continuation methods,” Acta Numer., vol. 6, pp. 399–436,
1997.

[15] J. Verschelde, “Polynomial homotopies for dense, sparse and determi-
nantal systems.” arXiv:math/9907060, 1999.

[16] B. Hanzon and D. Jibetean, “Global minimization of a multivariate
polynomial using matrix methods,” J. Global Optim., vol. 27, no. 1,
pp. 1–23, 2003.

[17] N. Z. Shor, “Class of global minimum bounds of polynomial func-
tions,” Cybern. Syst. Anal., vol. 23, no. 6, pp. 731–734, 1987.

[18] N. Z. Shor and P. I. Stetsyuk, “The use of a modification of the r-
algorithm for finding the global minimum of polynomial functions,”
Cybern. Syst. Anal., vol. 33, p. 482497, 1997.

[19] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, 2000.

[20] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. SIAM, 1994.

[21] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of semidef-
inite programming: theory, algorithms, and applications, vol. 27. New
York: Springer Sci. Bus. Media, 2012.

[22] M. Putinar, “Positive polynomials on compact semi-algebraic sets,”
Indiana Univ. Math. J., vol. 42, no. 3, pp. 969–984, 1993.

[23] T. Jacobi and A. Prestel, “Distinguished representations of strictly
positive polynomials,” J. Reihe Angew. Math., vol. 532, p. 223, 2001.

[24] Y. Nesterov, “Semidefinite relaxation and nonconvex quadratic opti-
mization,” Optim. Meth. Softw., vol. 9, no. 1-3, pp. 141–160, 1998.

[25] Y. Ye, “Approximating quadratic programming with bound and
quadratic constraints,” Math. Grog., vol. 84, no. 2, pp. 219–226, 1999.

[26] A. Nemirovski, C. Roos, and T. Terlaky, “On maximization of
quadratic form over intersection of ellipsoids with common center,”
Math. Program., vol. 86, no. 3, pp. 463–473, 1999.

[27] M. Charikar and A. Wirth, “Maximizing quadratic programs: Extend-
ing Grothendieck’s inequality,” in Proc. 45th Ann. IEEE Symp. Found.
Comp. Sci., pp. 54–60, IEEE, 2004.

[28] N. Alon and A. Naor, “Approximating the cut-norm via Grothendieck’s
inequality,” SIAM J. Comp., vol. 35, no. 4, pp. 787–803, 2006.

[29] S. He, Z. Li, and S. Zhang, “General constrained polynomial op-
timization: an approximation approach,” Tech. Rep. SEEM2009-05,
Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Hong Kong, 2009.

[30] S. He, Z. Li, and S. Zhang, “Approximation algorithms for discrete
polynomial optimization,” J. Oper. Res. Soc. China, vol. 1, no. 1,
pp. 3–36, 2013.

[31] X. Zhang, C. Ling, and L. Qi, “Semidefinite relaxation bounds for bi-
quadratic optimization problems with quadratic constraints,” J. Global
Optim., vol. 49, no. 2, pp. 293–311, 2011.

[32] H. Rosenbrock, “An automatic method for finding the greatest or least
value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184,
1960.

[33] G. Zoutendijk, “Nonlinear programming, computational methods,” in
Integer and nonlinear programming (J. Abadie, ed.), pp. 37–86, North-
Holland, 1970.

[34] M. Sassano, D. Carnevale, and A. Astolfi, “Extremum seeking-like
observer for nonlinear systems,” IFAC Proc. Vol., vol. 44, no. 1,
pp. 1849–1854, 2011.

[35] N. Zadeh, “A note on the cyclic coordinate ascent method,” Manage-
ment Sci., vol. 16, no. 9, pp. 642–644, 1970.

[36] D. G. Luenberger and Y. Ye, Linear and nonlinear programming.
Springer, 1984.

[37] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computa-
tion: numerical methods, vol. 23. Englewood Cliffs, NJ: Prentice hall,
1989.

[38] L. Grippo and M. Sciandrone, “Globally convergent block-coordinate
techniques for unconstrained optimization,” Optim. Methods Software,
vol. 10, no. 4, pp. 587–637, 1999.

[39] A. Auslender, “Asymptotic properties of the Fenchel dual functional
and applications to decomposition problems,” J. Optim. Theory Appl.,
vol. 73, no. 3, pp. 427–449, 1992.

[40] Z.-Q. Luo and P. Tseng, “On the convergence of the coordinate descent
method for convex differentiable minimization,” J. Optim. Theory
Appl., vol. 72, no. 1, pp. 7–35, 1992.

[41] M. Patriksson, “Decomposition methods for differentiable optimiza-
tion problems over cartesian product sets,” Comput. Optim. Appl.,
vol. 9, no. 1, pp. 5–42, 1998.

[42] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear Gauss–Seidel method under convex constraints,” Oper. Res.
Lett., vol. 26, no. 3, pp. 127–136, 2000.

[43] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” J. Optim. Theory Appl., vol. 109,
no. 3, pp. 475–494, 2001.

[44] M. J. Powell, “On search directions for minimization algorithms,”
Math. Program., vol. 4, no. 1, pp. 193–201, 1973.

[45] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM J. Optim., vol. 22, no. 2, pp. 341–362,
2012.

[46] I. Necoara and D. Clipici, “Efficient parallel coordinate descent al-
gorithm for convex optimization problems with separable constraints:
Application to distributed mpc,” J. Process Control, vol. 23, no. 3,
pp. 243 – 253, 2013.
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