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Problem with Total Quantity Discount and Activation Costs
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Abstract

We study a multi-product multi-supplier procurement problem in the Automotive sector

involving both supplier selection and ordering quantity decisions, and further complicated by

the presence of total quantity discounts, business activation costs, and demand uncertainty.

Recent works have shown the importance of explicitly incorporate demand uncertainty in

this economic setting, along with the evidence about the computational burden of solving

the relative Stochastic Programming models for a sufficiently large number of scenarios.

In this work, we propose different solution strategies to efficiently cope with these models

by taking advantage of the particular structure of the stochastic problem. More precisely,

we propose and test several variants of a Progressive Hedging based heuristic approach as

well as a Benders algorithm. The results obtained on benchmark instances show how the

proposed methods outperform the existing ones and the state-of-the-art solvers in terms of

efficiency and solution quality. In particular, thanks to the developed Progressive Hedging,

we have been able to solve for the first time problem instances with up to 20 suppliers and

30 products.

Keywords: Supplier Selection, Total Quantity Discount, Stochastic Demand, Progressive

Hedging

1. Introduction

In this work, we focus on the applicability of a general procurement problem named

Capacitated Supplier Selection with Total Quantity Discount policy and Activation Costs

1Corresponding author: daniele.manerba@polito.it.
Corso Duca degli Abruzzi, 24 - 4th floor (zone c). 10129, Torino (TO), Italy. Phone: +39 011 090 7012.
Other e-mail address: guido.perboli@polito.it (G. Perboli).
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under Demand Uncertainty (CTQD-ACud) in the field of Automotive production, and on its

efficient resolution against realistic-size instances.

The study is motivated by the real-case of a manufacturer company in the Automotive

sector that faces the complex process of procuring parts (powertrains, chassis, electrical

components, interiors, sensors, and so on) from a set of suppliers. Procurement is one of

the most critical process for Automotive companies since they typically outsource the most

part (if not the totality) of the components they need to create the final vehicle. Note that,

nowadays, the number of big suppliers for any single part is less than 100 in the global market

with half of them with revenues over 5 billion dollars (Jetli, 2014, Berret et al., 2016). Even

if there exist few suppliers hyper-specialized in a particular production, typically the same

supplier is able to produce several different parts. For example, big suppliers like Bosch

can supply electrical parts (batteries, spark plugs, headlights), mechanical parts (brakes,

transmission belts) and others (windscreen wiper, filters, and so on).

Periodically, the company gathers preventive purchasing contracts in which each supplier

includes several quantitative information concerning basic unitary prices for the products it

sells and their availability, possible discount schedules to be applied, and the fixed fees needed

to activate a business activity for a certain procurement horizon. To foster larger purchases,

suppliers commonly propose the so-called total quantity discount (TQD) policy, in which the

cumulative quantity purchased (i.e., the number of units bought regardless of the type of

products involved) determines the discount rate to be applied to the total purchase cost. The

company then evaluate the contracts in order to choose the pool of suppliers they will rely

on for the next period and the minimum and maximum quantity of products it supposes to

purchase from each supplier (and, consequently, the discount rate to be applied)2. Because

of the restricted availabilities and company strategies linked to the need of having a more

robust solution, the company may also decide to split the purchasing of each product over

different suppliers. From the supplier side, agreeing on a contract guarantees the application

of the declared prices and discounts as well as the product availabilities. The buyer, instead,

will be committed to purchase from that supplier a certain quantity of products belonging

to the declared quantity interval.

To remain competitive in the today’s globalized market, the procurement contracts in

this sector have become longer and longer, and nowadays settle around 2-3 years. This com-

plicates the supplier selection phase since, at the time of the decision, only an estimation of

the future products demand is available while the actual values might have high fluctuation

in such a long-term. This means that the contracts activated at the beginning of the procure-

2We remark that this selection is, for our analysis, only based on quantitative aspects such as convenience
and availability, since the potential suppliers have been already pre-validated under more qualitative aspects
(reliability, QoS, flexibility, etc.).
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ment horizon may result in a sub-optimal or even infeasible purchasing plan when the actual

products demand reveals. Unfortunately, no new contracts can be activated after the initial

supplier selection (mainly because start-up production cost and time are too high in this

sector with respect to the urgency of procuring the parts) and no activated contracts can be

terminated during the procurement period (penalties in this case are so high that basically

it never happens). However, the company has always the possibility to buy, if needed, in

the so-called spot-market to fulfill the products demand. Note that, given the very limited

number of suppliers in the Automotive sector, buying in the spot-market means to buy from

an already selected supplier, but at higher prices because out of the contract.

The CTQD-ACud problem, introduced in Manerba et al. (2018), perfectly models the

just presented multi-product multi-supplier procurement process in the long-term. The goal

of the problem is to select the suppliers in which to purchase and the relative ordering

quantities for each product, while minimizing the overall procurement costs. Apart from the

application at hand, the CTQD-ACud problem naturally fits with to the most of the industrial

and manufacturing sectors, since possible savings in the procurement costs directly impact

on the final revenues (Weber and Current, 1993). In particular, it results to be more relevant

in all those markets for which is crucial to sign long-term purchasing contracts and where the

margins are relatively small, such as in the hi-tech hardware components (Manerba et al.,

2018), or in the public sector procurements (Manerba and Mansini, 2012). Many other real-

cases can be found in the literature concerning different contexts such as dairy, chemical

industry, project’s resource investment, and telecommunication systems (see McConnel and

Galligan, 2004, Crama et al., 2004, van de Klundert et al., 2005, and Shahsavar et al., 2016).

The CTQD-ACud has been shown to lead to massive savings in costs when approached

through Stochastic Programming (SP) techniques, giving a substantial competitive advan-

tage to the buyer company. Unfortunately, it has also been shown to be very hard to solve

even for small and medium-size instances and a small number of scenarios considered. The

only existing branch-and-cut solution framework showed poor efficiency, in particular when

the number of suppliers and scenarios considered increases. This means that it is still not

possible to solve the CTQD-ACud for real-case instances, which in the Automotive manufac-

turing might include up to 20 suppliers and 30 products, and to use the resulting solutions to

realistically support procurement decisions. Through this work, we aim at overcoming the

lack of efficient algorithms able to solve the CTQD-ACud for large realistic instances and a

consistent number of scenarios. Apart from the efficiency, the proposed methods should also

preserve as much as possible the competitive advantage ensured by the SP model, i.e., they

are required to find solutions very close to the optimal ones. To this aim, we develop and

test a Benders algorithm and some variants of a Progressive Hedging (PH) based heuristic

approach.

3



The contribution of the present work is manifold. First, we enlarge the still limited

specialized literature on Supplier Selection problems under both quantity discount policies

and uncertainty. Note that, especially in the recent years, these two aspects have emerged as

critical in the procurement assessment of a company that wants to remain competitive in the

globalized market. Second, we propose the first effective and efficient solution methods to

cope with the CTQD-ACud problem. Eventually, computational experiments on benchmark

instances will show that our algorithms outperform state-of-the-art solvers and the existing

branch-and-cut method both in terms of computational time and quality of the solutions.

Third, our new algorithms will give us the possibility to achieve optimal or very near-optimal

solutions for all the non-closed benchmark instances. Finally, we believe that some of the

acceleration strategies used to enrich the basic PH framework might be embedded, given

their generality, in other similar solution algorithms for completely different problems.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature

about Supplier Selection under quantity discount policies and demand uncertainty. Section

3 presents the problem notation and its SP formulation with recourse. Section 4 discusses

our heuristic solution approach based on PH whereas Section 5 details all the acceleration

strategies implemented to improve the PH’s efficiency and effectiveness (including a strategy

based on binary consensus, a primal heuristic to enhance the finding of feasible solutions,

and a multi-thread version). Section 6 presents and discusses all the results coming from

our computational experience, along with the set of benchmark instances used for the tests.

Finally, conclusions are drawn in Section 7.

2. Literature review

Very recently, Manerba et al. (2018) have introduced the CTQD-AC problem under

uncertainty. The authors evaluate different sources of uncertainty (products demand, avail-

ability, and price) for such a long-term procurement settings and propose general and specific

two-stage SP approaches to cope with them. Eventually, they focus on the particular cases

in which only the prices (CTQD-ACup) or only the demands (CTQD-ACud) are stochastic.

For both the problems, different scenario tree generations are developed, evaluated in terms

of stability, and used to approximate the stochastic programs. The deterministic equivalent

problems obtained are solved through an ad-hoc branch-and-cut algorithm exploiting valid

inequalities, preprocessing routines, and a heuristic upper-bound. The findings show very

clearly that using TQD contracts to select suppliers naturally mitigate the effects of products

price fluctuations. Moreover, in the case of demand uncertainty, results show how an SP

approach might lead to highly conservative and competitive solutions in terms of quality and

percentage of quantities purchased at external suppliers. Unfortunately, the CTQD-ACud

special case is also the hardest in terms of CPU time needed for its exact solution. In the
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present work, we propose new efficient and effective solution approaches for this particular

Supplier Selection problem.

Supplier Selection problems have been studied since long through the use of both qualita-

tive and quantitative methodologies and, therefore, the pertinent literature is so vast that a

complete dissertation goes out of the scope of this paper. The interested reader is referred to

Dickson (1966), Aissaoui et al. (2007), and Wetzstein et al. (2016) for surveys on the subject

written in very different periods. In the following, we will focus only on those contributions

studying quantity discounts and data uncertainty, main features of our CTQD-ACud.

Benton (1991), Munson and Rosenblatt (1998), and Munson and Jackson (2015) have

analyzed the most relevant quantity discount scenarios from both the buyer’s and seller’s

perspectives. Quantity discounts are price reductions provided by suppliers based on the

purchased quantities. In the recent decades, this practice has been studied from a quantita-

tive perspective also considering many other complicating factors such as multiple periods,

multiple sites, inventory costs, buyers coalitions, budgetary limitations and so on (see, e.g.,

Mirmohammadi et al., 2009, Munson and Hu, 2010, Krichen et al., 2011, Jolai et al., 2013).

Among the different existing policies (incremental discount, fixed fees, truckload discount),

the total quantity discount (TQD) represents the most popular form considered in the litera-

ture. Goossens et al. (2007) first studied the TQD as a combinatorial optimization problem,

showed its NP-hardness, and proposed a branch-and-bound algorithm based on a min-cost

flow reformulation. Later, Manerba and Mansini (2012, 2014) studied the same problem

in which quantities of product available at suppliers are limited, proposing efficient branch-

and-cut and matheuristic solution approaches. A problem extension including transportation

costs based on truckload shipping rates in also presented Mansini et al. (2012). Interesting

enough, the TQD policy can be found also in some routing problems for inbound and out-

bound logistics (Nguyen et al., 2014, Manerba et al., 2017).

An explicit consideration of stochasticity in Supplier Selection problems has become more

and more critical in the recent years since the companies are supposed to sign longer-term

purchasing contracts than in the past to sustain their offer in the today’s highly competitive

and globalized market. Demand fluctuation seems the most studied type of uncertainty

in the specialized literature (Yang et al., 2007, Awasthi et al., 2009, Zhang and Zhang,

2011). In fact, it is widely accepted that a precise forecast of the future product demand

is hard to obtain for a company since it depends on several unknown a-priori internal and

external factors. However, other parameters may be subjected to volatility due to market and

environmental conditions such as product prices and availabilities, or the suppliers’ reliability

(Anupindi and Akella, 1993, Parlar and Wang, 1993, Dada et al., 2007, Beraldi et al., 2017).

Some contributions have considered both stochasticity and quantity discounts. For exam-

ple, Sen et al. (2013) provided a multi-stage SP formulation for a multi-supplier, multi-item,
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and multi-period problem of a large manufacturing company. The authors used heuristics to

cope with three random events, i.e., a drop in price, a price change in the external market,

and a new discount offer. Again, Hammami et al. (2014) proposed a two-stage SP model for

a problem in the context of automotive manufacturing that integrates exchange rate uncer-

tainty, quantity discounts, transportation and inventory costs. However, discount policies

have been also analyzed in relation with demand uncertainty (Jucker and Rosenblatt, 1985)

and some works have studied problems that share similarities with the one addressed in

this paper. In particular, Li and Zabinsky (2011) proposed an SP and a chance-constrained

model for a multi-supplier multi-item supplier selection problem including business volume

discounts, transportation and inventory costs. The main differences are that we also consider

fixed activation costs for the suppliers, that we study discounts based on purchased quan-

tities and not on the total price paid for the purchase, and that we propose a completely

different separation of the decisions in the SP stages. Finally, Zhang and Chen (2013)

propose a mixed integer non-linear programming model and an efficient algorithm based

on generalized Benders decomposition to deal with a procurement problem including fixed

costs, all-unit discounts, and demand uncertainty. However, our problem results to be more

complex considering multiple products, limited availabilities of products at the suppliers,

and the possibility to buy in the spot market as a recourse action.

3. Problem definition and formulation

This section presents a formal definition of the CTQD-ACud problem and an SP formu-

lation with recourse for it. Let us consider the following notation and assumptions:

• K: set of products to be procured;

• M : set of suppliers;

• Mk ⊆M : set of suppliers offering product k ∈ K;

• fik: positive basic price of product k ∈ K in supplier i ∈Mk;

• qik: availability of product k ∈ K in supplier i ∈Mk;

• dk, d̂k(ξ): estimated deterministic demand and stochastic demand oscillation, respec-

tively, for product k ∈ K (where ξ is a stochastic variable);

• Ri = {1, . . . , ri}: consecutive and non-overlapping discount intervals defined by sup-

plier i ∈M
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• lir, uir: minimum and maximum quantity, respectively, of products to purchase from

supplier i ∈M to achieve discount interval r ∈ Ri. It is assumed that, for each supplier

i ∈M , li,1 = 0 and
∑

k∈K qik ≤ ui,ri ;

• δir ∈ [0, 1): discount rate applied by supplier i ∈ M to the entire purchase when

discount interval r ∈ Ri is achieved. It is reasonably assumed that, in any supplier

i ∈M , δi,r+1 ≥ δir for each r = 1, ..., ri − 1;

• ai: fixed cost required to activate a business activity (guaranteeing the discount appli-

cation and the products availabilities) with supplier i ∈M .

A two-stage SP formulation for the CTQD-ACud is proposed in Manerba et al. (2018).

It exploits the tactical and the operational decisions involved in a long-term procurement

process. The first stage is about which suppliers are involved in the purchasing, how much

we expect to purchase from each supplier, and, consequently, in which discount interval

we expect the total quantity of products purchased lies. The second-stage recourse actions

consist in modifying the purchased quantities within the preselected interval for each supplier

(locked by the first-stage decisions). Moreover, if necessary to satisfy its demand, a further

recourse action is to purchase a certain quantity of product k outside from the selected

suppliers (i.e., buy in the spot-market) by paying a “penalty” price gk. Note that this last

action makes the recourse complete, preventing from infeasible purchasing plans. On the

contrary, it is not allowed to activate new contracts or to exclude any contract among those

already decided in the first stage.

In our work, we keep the same above two-stage decomposition even if, for the sake

of brevity, we do not report the two-stage model but just the Deterministic Equivalent

Problem (DEP). In the DEP, we consider a set S of scenarios to approximate the probability

distribution of the stochastic variables d̂k. More precisely, each scenario s ∈ S is associated

with a realization of the demand oscillation d̂sk that occurs with probability ps. We also

define, for each scenario s ∈ S, the following variables:

• xsi := binary variable taking value 1 if a purchasing contract is activated with supplier

i ∈M (and the corresponding activation cost is paid), and 0 otherwise;

• zsikr := quantity of product k ∈ K that we expect to purchase from supplier i ∈Mk in

interval r ∈ Ri;

• ysir := binary variable taking value 1 if the total products quantity we expect to purchase

from supplier i ∈M lies in the discount interval [lir, uir] with r ∈ Ri, and 0 otherwise;

• Zs
ikr := free variable representing the variation in purchased quantity, with respect to

the expectation zsikr, of product k ∈ K from supplier i ∈Mk in interval r ∈ Ri;
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• W s
k := quantity of product k ∈ K that has to be purchased in the spot-market.

Note that only Z and W variables represent scenario-dependent decisions. Actually, variables

x, y, and z refer to first-stage decisions, even if they are indexed by scenario. The uniqueness

of the values of the first-stage variables x, y, and z must be therefore ensured explicitly in

the model by classical non-anticipativity constraints. Then, the CTQD-ACud problem can

be stated as follows:

min
∑
s∈S

ps

[∑
i∈M

aix
s
i +

∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fik(zsikr + Zs
ikr) +

∑
k∈K

gkW
s
k

]
(1)

subject to
∑
i∈Mk

∑
r∈Ri

zsikr ≥ dk k ∈ K, s ∈ S (2)∑
r∈Ri

zsikr ≤ qik k ∈ K, i ∈Mk, s ∈ S (3)

liry
s
ir ≤

∑
k∈K

zsikr ≤ uiry
s
ir i ∈M, r ∈ Ri, s ∈ S (4)∑

r∈Ri

ysir ≤ xsi i ∈M, s ∈ S (5)∑
i∈Mk

∑
r∈Ri

(zsikr + Zs
ikr) +W s

k ≥ dk + d̂sk k ∈ K, s ∈ S (6)∑
r∈Ri

(zsikr + Zs
ikr) ≤ qik k ∈ K, i ∈Mk, s ∈ S (7)

liry
s
ir ≤

∑
k∈K

(zsikr + Zs
ikr) ≤ uiry

s
ir i ∈M, r ∈ Ri, s ∈ S (8)

zsikr + Zs
ikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (9)

xs1i = xs2i i ∈M, s1, s2 ∈ S (10)

ys1ir = ys2ir i ∈M, r ∈ Ri, s1, s2 ∈ S (11)

zs1ikr = zs2ikr k ∈ K, i ∈Mk, r ∈ Ri, s1, s2 ∈ S (12)

xsi ∈ {0, 1} i ∈M, s ∈ S (13)

ysir ∈ {0, 1} i ∈M, r ∈ Ri, s ∈ S (14)

zsikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (15)

W s
k ≥ 0 k ∈ K, s ∈ S. (16)

The objective function in (1) pursues the minimization of activation and purchasing

costs, weighted over all the scenarios by the scenario probability. Note that, the purchasing

costs include the expected purchased quantities, the actual variations, and the spot-market

supplies. Then, all the following constraints must be valid for each scenario. Constraints
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(2) and (3) ensure to satisfy the products demand and not to exceed their availability in

each supplier, respectively. Constraints (4) and (5) model the TQD policy. More precisely,

constraints (4) ensure that if a specific discount interval is selected for a supplier, then

the total amount purchased there has to lie between the interval’s lower and upper bound.

Constraints (5), instead, guarantee that at most one interval can be chosen for each selected

supplier. Constraints (6), (7), and (8) have the same meaning of the constraints (2), (3),

and (4), respectively, but also consider the recourse decisions on the quantities purchased

(Z-variables). Moreover, constraints (6) allow satisfying part of the product demand by

using the spot market (W -variables). Constraints (9) simply deny purchasing a negative

quantity of product (being Zikr a free variable) and, consequently, to change the discount

interval chosen at the first-stage. Equations (10)–(12) are non-anticipativity and force every

scenario-based solution to share the same first-stage decisions (i.e., to be implementable).

Note that, due to these constraints, the model is not separable by scenario. Finally, (13)–(16)

are binary and non-negativity conditions on variables.

The above DEP is slightly different to the one presented in Manerba et al. (2018). In this

new formulation, more suitable for the solution methods adopted, we explicitly model non-

anticipativity constraints by introducing a copy of the first-stage variables for each possible

scenario, and we use free variables to represent the variation on the purchased quantities.

4. A heuristic framework based on Progressive Hedging

Progressive Hedging (PH) is a decomposition-based algorithm proposed by Rockafellar

and Wets (1991) for SP models. As is known, once explicitly defined a set of potential

scenarios, these models result in a block-diagonal structure where each block corresponds

to a single scenario second-stage problem and the linking (complicating) constraints and

variables are those related to the first stage. Briefly, the PH first decomposes the problem

over the scenarios by relaxing the complicating constraints in a Lagrangean fashion, then,

at each iteration, calculates the optimal solutions of all the mono-scenario problems and

evaluates if they involve the same first-stage decisions. Moreover, a non-necessarily feasible

temporarily global solution (TGS) for the complete problem is also calculated by using some

aggregation operators. The algorithm stops when a complete consensus on the first-stage

decisions over all the scenarios is met (i.e., when the TGS becomes implementable), otherwise

it adjusts the Lagrangean multipliers of the mono-scenario problems and iterates again.

Unfortunately, the PH has been proved to converge to the optimal solution only in the case

of continuous linear programs, hence using the same conceptual framework to tackle MILP

problems (as first proposed in Løkketangen and Woodruff, 1996) may result in a heuristic

approach. Over the years, several authors have applied PH-based heuristic algorithms to a

wide variety of problems with very good results (see, e.g., Crainic et al., 2011, Watson and
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Woodruff, 2011, Veliz et al., 2015, Crainic et al., 2016, Perboli et al., 2017). In the same

spirit, we propose a PH-based heuristic solution approach for the CTQD-ACud enhancing

the standard implementation with several acceleration strategies.

Algorithm 1 presents the overall structure of our approach. The method starts by solv-

Algorithm 1 Progressive Hedging-based heuristic.

1: Solve the EV problem of CTQD-ACud to find (x̄(0), ȳ(0), z̄(0))
2: Decompose the CTQD-ACud by scenario using Augmented Lagrangean relaxation
3: Initialize the Lagrangean multipliers and penalties

4: t← 0
5: while any termination criterion is not satisfied do
6: t← t+ 1
7: for each scenario s ∈ S do
8: Solve the corresponding mCTQD-ACud subproblem
9: end for

10: Calculate (x̄(t), ȳ(t), z̄(t)) by using the aggregation operators
11: if consensus is met then
12: break
13: else
14: Update the Lagrangean multipliers and penalties
15: end if
16: end while

17: Optimally solve the model (2)–(16) by fixing variables for which the consensus is met

ing the Expected Value (EV) problem, i.e., the CTQD-ACud where each stochastic variable

is substituted by its deterministic expected value (Step 1). Since the EV problem is de-

terministic, we can find a temporary global solution (x̄(0), ȳ(0), z̄(0)) easily and use it as a

first reference solution for the Augmented Lagrangean relaxation applied to decompose the

CTQD-ACud (Step 2). The details of this decomposition are presented in Section 4.1. Then,

Step 3 initializes all the multipliers and penalties.

Steps 4-16 are those related to the PH core procedure. Basically, at each iteration t, all

the mono-scenario subproblems mCTQD-ACud coming from the decomposition are solved

independently (Steps 7-9), then the TGS is calculated in Step 10 (see Section 4.2). In

Steps 11-15, if the consensus is met for all the variables, then the convergence procedure

stops, otherwise the Lagrangean multipliers and penalties are updated (Section 4.3). The

method iterates (while loop in Steps 5-16) until one of the implemented termination criteria

is satisfied (Section 4.4).

At the end of the algorithm (Step 17), a final optimal procedure is run on the original

model (2)–(16) reduced in complexity through a variable fixing, i.e., variables for which the
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consensus is met are fixed according to the TGS found in the last iteration of the PH. This

final model can be either a pure LP problem (when the complete consensus has met) or still

a MILP problem (when any termination criterion prematurely stops the convergence). In

the latter case, however, the purpose is to have a small percentage of non-fixed first-stage

variables and, in turn, a program much easier to solve than the original one.

4.1. Scenario decomposition

First, we obtain a model equivalent to (1)–(16) by substituting constraints (10)–(12) with

xsi = x̄i i ∈M, s ∈ S (17)

ysir = ȳir i ∈M, r ∈ Ri, s ∈ S (18)

zsikr = z̄ikr k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (19)

where x̄i ∈ {0, 1} are the first-stage decisions on contract activation for each supplier i ∈M ,

ȳir ∈ {0, 1} are the first-stage decisions on interval selection for each i ∈ M, r ∈ Ri, and

z̄ikr ≥ 0 are the first-stage decisions on purchased quantities for each product k ∈ K, i ∈
Mk, r ∈ Ri. Then, following Rockafellar and Wets (1991), we apply a classical Lagrangean

relaxation for the non-anticipatity constraints (19) and an Augmented Lagrangean technique

to relax (17) and (18). This yields the objective function

min
∑
s∈S

ps
(∑
i∈M

aix
s
i +

∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fik(zsikr + Zs
ikr) +

∑
k∈K

gkW
s
k+

+
∑
i∈M

λsi (x
s
i − x̄i) +

∑
i∈M

∑
r∈Ri

µsir(y
s
ir − ȳir) +

∑
k∈K

∑
i∈Mk

∑
r∈Ri

πsikr(z
s
ikr − z̄ikr)+

+
1

2

∑
i∈M

ρ1(xsi − x̄i)2 +
1

2

∑
i∈M

∑
r∈Ri

ρ2(ysir − ȳir)2

)
, (20)

with Lagrangean multipliers λsi , i ∈ M, s ∈ S, µsir, i ∈ M, r ∈ Ri, s ∈ S, and πsikr, k ∈ K, i ∈
Mk, r ∈ Ri, s ∈ S for the relaxed constraints (17), (18), and (19), respectively, and penalty

factors ρ1 and ρ2 for (17) and (18), respectively. Note that a quadratic expression is not

considered to penalize the deviation of z-variables from the TGS to maintain the linearity

of the objective function with respect to the original variables. In fact, given the binary

condition on x and y variables, (20) can be rewritten as

11



min
∑
s∈S

ps
{∑
i∈M

[
xsi

(
ai + λsi +

ρ1

2
− ρ1x̄i

)
+ x̄i

(
ρ1

2
− λsi

)]
+

+
∑
i∈M

∑
r∈Ri

[
ysir

(
µsir +

ρ2

2
− ρ2ȳir

)
+ ȳir

(
ρ2

2
− µsir

)]
+

+
∑
k∈K

∑
i∈Mk

∑
r∈Ri

[
zsikr

(
(1− δir)fik + πsikr

)
− z̄ikrπsikr

]
+

+
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fikZs
ikr +

∑
k∈K

gkW
s
k

}
. (21)

The above relaxation makes the model scenario-separable and, for any given scenario

s ∈ S, we obtain the following CTQD-ACud problem with modified costs (mCTQD-ACud):

min
∑
i∈M

[
xsi

(
ai + λsi +

ρ1

2
− ρ1x̄i

)
+ x̄i

(
ρ1

2
− λsi

)]
+

+
∑
i∈M

∑
r∈Ri

[
ysir

(
µsir +

ρ2

2
− ρ2ȳir

)
+ ȳir

(
ρ2

2
− µsir

)]
+

+
∑
k∈K

∑
i∈Mk

∑
r∈Ri

[
zsikr

(
(1− δir)fik + πsikr

)
− z̄ikrπsikr

]
+

+
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fikZs
ikr +

∑
k∈K

gkW
s
k (22)

12



subject to
∑
i∈Mk

∑
r∈Ri

zsikr ≥ dk k ∈ K (23)∑
r∈Ri

zsikr ≤ qik k ∈ K, i ∈Mk (24)

liry
s
ir ≤

∑
k∈K

zsikr ≤ uiry
s
ir i ∈M, r ∈ Ri (25)∑

r∈Ri

ysir ≤ xsi i ∈M (26)∑
i∈Mk

∑
r∈Ri

(zsikr + Zs
ikr) +W s

k ≥ dk + d̂sk k ∈ K (27)∑
r∈Ri

(zsikr + Zs
ikr) ≤ qik k ∈ K, i ∈Mk (28)

liry
s
ir ≤

∑
k∈K

(zsikr + Zs
ikr) ≤ uiry

s
ir i ∈M, r ∈ Ri (29)

zsikr + Zs
ikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (30)

xsi ∈ {0, 1} i ∈M (31)

ysir ∈ {0, 1} i ∈M, r ∈ Ri (32)

zsikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (33)

W s
k ≥ 0 k ∈ K. (34)

The mCTQD-ACud is a single-scenario CTQD-ACud problem with a more complex (but still

linear) objective function. This makes the mCTQD-ACud as easy-to-solve (even if still NP-

hard) as the deterministic version of the CTQD-ACud, i.e. where the stochastic demand of

each product is substituted by a deterministic value. Moreover, any solution method valid

for the deterministic version of the problem can be applied with minimal changes to solve

the mCTQD-ACud. Hence, we have decided to use as a black-box solver for the mCTQD-

ACud the exact framework proposed in Manerba and Mansini (2012) that exploits some

preprocessing routines, valid inequalities, and heuristic components.

4.2. Computation of the temporary global solution

The solutions of all the subproblems are used to build up a temporary global solution

(TGS), i.e., the value of (x̄, ȳ, z̄) in a given iteration t of the algorithm. In particular, the

classical expectation function is used as aggregation operator as follows:

x̄
(t)
i =

∑
s∈S

psx
s(t)
i i ∈M, (35)

ȳ
(t)
ir =

∑
s∈S

psy
s(t)
ir i ∈M, r ∈ Ri, (36)

z̄
(t)
ikr =

∑
s∈S

psz
s(t)
ikr k ∈ K, i ∈Mk, r ∈ Ri. (37)

13



4.3. Penalties adjustment

Let λ
s(t)
i , µ

s(t)
ir , π

s(t)
ikr be the Lagrangean multipliers and let ρ

(t)
1 , ρ

(t)
2 , and ρ

(t)
3 be the

penalties at a given iteration t of the algorithm. At the beginning of the procedure, ρ
(0)
1 , ρ

(0)
2

and ρ
(0)
3 are initialized to a small positive value, whereas all λ

s(0)
i , µ

s(0)
ir , π

s(0)
ikr are initialized to

0. Then, at each PH iteration t > 1, the values of the multipliers and penalties are updated

as follows:

λ
s(t)
i ← λ

s(t−1)
i + ρ

(t−1)
1 (x

s(t)
i − x̄(t)

i ),

µ
s(t)
ir ← µ

s(t−1)
ir + ρ

(t−1)
2 (y

s(t)
ir − ȳ

(t)
ir ),

π
s(t)
ikr ← π

s(t−1)
ikr + ρ

(t−1)
3 (z

s(t)
ikr − z̄

(t)
ikr),

with

ρ
(t)
1 ← αρ

(t−1)
1 ,

ρ
(t)
2 ← βρ

(t−1)
2 ,

ρ
(t)
3 ← γρ

(t−1)
3 ,

where α, β, and γ are constant factors strictly greater than 1. These updating factors and

the initialization values of the penalties can be used to tune the algorithm for a better

convergence (see Section 6.3).

4.4. Termination criteria

The PH naturally stops when the complete consensus is met, i.e., when constraints (17),

(18), and (19) are completely satisfied. However, other classical criteria can be used to stop

the PH convergence and start the finalization phase instead. In particular, we have decided

to terminate the algorithm also when the maximum computational time (maxTime), the

maximum number of iterations (maxIter), or the maximum number of iterations without

any improvements in the percentage of variables that have reached consensus (maxIterWith-

outImpr) are exceeded. In particular, the last criterion seems necessary to detect and react to

the possible cycling behavior of the PH when dealing with a non-continuous linear program.

5. Acceleration strategies

The basic PH framework has several drawbacks. First, it is not able to produce any

feasible solutions until the complete consensus is met, i.e., until the very end of the procedure.

Second, the convergence of the method may be very slow, deteriorating its effectiveness while

the number of iterations increases. To partially overcome these issues, we have developed

several acceleration strategies based on the model properties, discussed in the following.
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5.1. Binary consensus

Let us denote as CTQD-ACud(x̃, ỹ, z, Z,W ) the model (2)–(16) in which all the binary

variables (i.e., xi, ∀i ∈ M and yir,∀i ∈ M,∀r ∈ Ri) have been fixed to a vector of known

binary values (x̃, ỹ). Despite the fact that the z variables logically belong to the first-stage

decisions (together with x and y), in order to speed up the convergence we have decided

to just look for the consensus of a restricted set of variables (i.e., the binary ones) and to

complete the solution by solving a CTQD-ACud(x̃, ỹ, z, Z,W ) at the end. The enormous

gain in efficiency of such method has three main reasons:

1. the CTQD-ACud(x̃, ỹ, z, Z,W ) is a pure LP problem (since all the non-fixed variables

are either continuous or free) and thus easy-to-solve;

2. z variables have a high cardinality and, in general, the more the variables, the more

the iterations required to reach consensus among them;

3. evaluating the achievement of consensus for continuous variables is much more difficult

than for binary ones since an integrality check is not sufficient.

5.2. Premature stop of the exact solution for each subproblem

The solution time of each mono-scenario problem represents a clear bottleneck for the

entire procedure, in particular, because we are using an exact method. Even if some authors

have developed PH algorithms where each subproblem is solved by using specialized and very

fast heuristics (see, e.g., Crainic et al., 2011), in our case we prefer to maintain the potentials

of an exact framework, but stopping it when a particular optimality gap is achieved or a

given CPU time is exceeded and returning the best solution found so far (as suggested, e.g.,

in Gendreau et al., 2016). Some preliminary computational tests have shown that setting as

stopping rule an optimality gap threshold of 1% allows saving a significant amount of time

while maintaining a high quality of the solutions.

5.3. Primal LP-based heuristic

To generate feasible solutions during (and not only at the end of) the PH procedure, we

implement a primal heuristic based on the optimal solution of a linear program (Algorithm

2). The basic idea of this method, invoked at each iteration t after the calculation of the

TGS, is to create a feasible and easy-to-solve LP problem by fixing, in model (2)–(16), all

the binary variables (x, y) to some binary values (x̃, ỹ). These values are chosen according to

the current TGS (x̄(t), ȳ(t), z̄(t)) through a simple rounding. More precisely, for each supplier

i ∈ M , we round the current value of x
(t)
i to the nearest integer (either 0 or 1). Then, if

x̃i = 0 (i.e., the supplier is not selected), we also set to 0 all the variables corresponding

to the selection of its discount intervals (ỹir = 0, ∀r ∈ Ri). Otherwise, for each selected

supplier (x̃i = 1), we set to 1 only the ỹi,r′ variable corresponding to the interval r′ for which
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Algorithm 2 LP-based primal heuristic at iteration t.

1: for each supplier i ∈M do
2: x̃i ← bx̄(t)

i + 0.5c
3: if x̃i = 0 then
4: for each discount interval r ∈ Ri do
5: ỹir ← 0
6: end for
7: else if x̃i = 1 then
8: Find r′ such that ȳ

(t)
i,r′ ≥ ȳ

(t)
ir ,∀r ∈ Ri

9: ỹi,r′ ← 1
10: ỹir ← 0,∀r ∈ Ri \ {r′}
11: end if
12: end for
13: Optimally solve the CTQD-ACud(x̃, ỹ, z, Z,W )

the TGS value is the maximum among the intervals. Note that these rounding rules always

guarantees a feasible problem. Hence, the optimal solution of the resulting LP model can be

stored if better than the incumbent one, without affecting the PH convergence.

5.4. Parallel implementation

The computational complexity of a PH algorithm clearly depends on the number of sce-

narios considered, since |S| mono-scenario subproblems must be solved at each iteration (see

lines 6-8 of Algorithm 1). However, all these problems are completely independent and, thus,

their solution procedures can be parallelized without affecting the correctness of the algo-

rithm. Hence, we have implemented a parallel version of our PH (pPH) that allocates each

subproblem to each logical CPU available on the machine. Note that this parallel implemen-

tation is a trade-off choice with respect to the basic procedure and does not ensure overall

best performance. In fact, in the basic sequential PH (sPH), each mono-scenario subproblem

is solved through a branch-and-cut procedure allowed to exploit the multi-threading features

of the machine. Hence, pPH solves more subproblems simultaneously but using a potentially

less powerful method. Since a threshold time is set for each subproblem resolution (see Sec-

tion 5.2), then the solutions provided by the two methods may be different. For this reason,

both versions of the PH will be tested and compared in the following section.

6. Computational experiments

This section is devoted to present the benchmark instances used to assess the performance

of our computational approaches, along with the results and the analysis of the performed

experiments. All these tests have been done on an Intel(R) Core(TM) i7-5930K CPU@3.50
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GHz machine with 64 GB RAM and running Windows 7 64-bit operating system. Algorithms

have been implemented in C/C++.

6.1. Benchmark instances

The benchmark instances presented in Manerba et al. (2018) for the CTQD-ACud are

used to empirically assess the efficiency and the accuracy of our solution approaches. These

instances were proven to be representative of the original Automotive application by the

managers of one the main leaders in the sector without the need of resorting to the actual

data (which cannot be provided for obvious privacy reasons). We summarize all the instances

details in Table 1. The complete dataset is composed of 72 deterministic instances, one for

each combination of {5, 10, 20} suppliers, {10, 20, 30} products, two types of discount policy

structure (DP1 or DP2 ), two types of activation cost (AC1 or AC2 ), and two extreme values

for parameter λ (i.e., 0.1 or 0.8)3. Finally, for any given deterministic instance, the stochastic

demand values are generated according to a Uniform or a Gumbel probability distribution

in [0.5dk, 2dk] (i.e., the demand dk may be halved or doubled at most). Through an in-

sample stability analysis, it has also been shown how considering 100 scenarios is sufficient

to maintain under the 1% threshold (which seems a reasonable precision) the percentage

ratio between the standard deviation and the mean of the optimal objective values of any

instance over ten random and independent stochastic data generations.

6.2. A Benders algorithm

Manerba et al. (2018) have highlighted the unsuitability of using the state-of-the-art

Cplex’s branch-and-cut based MILP solver (called hereafter Cplex-B&C) to cope with the

CTQD-ACud when considering a sufficiently large number of scenarios. Therefore, they

developed (by exploiting valid inequalities, preprocessing routines, and a heuristic upper-

bound) an improved solution framework, called hereafter MMP, that outperformed Cplex-B&C.

However, Cplex has been recently improved4 by the introduction of a procedure based

on the classical Benders decomposition. The algorithm actually mixes the effectiveness of

a standard branch-and-cut approach with the generation of both optimality and feasibility

cuts deriving from the specific decomposition (Benders, 1962). Despite the aging of such

a method, the cutting generation has been implemented by using hints and improvements

proposed in many successive works on the subject (McDaniel and Devine, 1977, Fischetti

et al., 2010, Fischetti et al., 2016). Since this algorithm (called hereafter Cplex-Benders)

3The parameter λ, varying in [0, 1], allows to better control the number of suppliers needed for a feasible
solution by imposing a particular ratio between products demand and global availability (see. e.g., Laporte
et al., 2003, Manerba and Mansini, 2015). More precisely, the lower the value of λ, the higher the number of
suppliers required to satisfy the entire demand.

4See release notes of version 12.7.0 (IBM Knowledge Center, 2017).
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Parameter and values DP1 DP2 Meaning

fk ∼ U(10, 200) - - basic price of product k ∈ K

fik ∼ U(0.9fk, 1.1fk) - - price of product k ∈ K, i ∈Mk

qik ∼ U(1, 15) - - availability of product k ∈ K, i ∈Mk

dk =
⌈
dk −

(
(dk − 1) fk

maxk∈K{fk}

)⌉
, - - expected demand of product k ∈ K

dk =
⌈
λ maxi∈Mk

{qik}+ (1− λ)
∑

i∈Mk
qik

⌉
,

λ ∈ [0, 1]

ai = γAC
∑

k∈K
qik
10

, - - activation cost for supplier i ∈M
with γAC1 = f and γAC2 =

(
f + f

fi

)
,

f =
∑

i∈M f i/|S|,
f i =

∑
k∈K fik/|K|

gk = 1.2 maxi∈Mk
fik - - spot-market price of product k ∈ K

Ri = {1, . . . , ri} ri = {3, 4, 5} ri = 3 set of intervals for supplier i ∈M

lir = bαir
∑

k∈K qikc αir ∼ U(0.6, 1) αi1 = 0, LB of interval r ∈ Ri, i ∈M
αi2 = 0.7,
αi3 = 0.9

uir = li,r+1 − 1 - - UB of interval r ∈ Ri \ {ri}, i ∈M

ui,ri =
∑

k∈K qik - - UB of interval ri,i ∈M

δir ∼ U(0.01, 0.05) δi1 = 0.01, discount rate of interval r ∈ Ri, i ∈M
δi2 = 0.02,
δi3 = 0.03

Table 1: Instances’ general parameters

is particularly aimed at solving SP problems, we have decided to test this new available

approach and compare its performances with the Cplex-B&C’s and MMP’s ones. Table 2 shows

this comparison on a subset of small and medium size instances from the benchmark set when

considering the Uniform distribution for the stochastic demand. For each considered instance

(identified by a combination of |M |, |K|, and λ values), and for each exact method, we report

the CPU time in seconds needed to prove the optimality (t), the time-to-best (ttb), i.e., the

CPU time in seconds needed to find the optimal solution, and the dimension in nodes of the

branch-and-bound tree (BBn).

Cplex-B&C MMP Cplex-Benders
|M | |K| λ t ttb BBn t ttb BBn t ttb BBn

5 10 0.1 1193 1029 934 63 23 15 10 6 71
5 10 0.8 5092 4756 1210 81 81 25 15 12 42
5 20 0.1 72348 64168 7380 738 542 62 57 52 393
5 20 0.8 4546 4012 1171 202 182 27 24 21 65
5 30 0.1 32455 24530 3750 1049 945 33 72 71 192
5 30 0.8 19113 18081 3250 844 819 27 55 54 83

10 10 0.1 154458 54805 15076 4183 4140 678 3801 1286 48029
10 10 0.8 154295 149507 8595 4160 3761 800 448 351 19490

avg: 55437.5 40111.0 5170.8 1415.1 1311.7 208.4 560.3 231.6 8545.6

Table 2: Cplex-Bender vs Cplex-B&C and MMP
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Concerning both the CPU times, Cplex-Benders outperforms MMP for all the instances.

More precisely, on average, the total CPU time is more than halved and the best solution is

found almost six times faster. Since similar trends have also emerged on the same instances

when considering the Gumbel distribution, we will use Cplex-Benders as a benchmark

method to evaluate the performance of our PH algorithms in the following. Note, however,

that Cplex-Benders also explores much greater branch-and-bound trees, thus requiring more

memory. Finally, we remark that the solver (if not forced to use the Benders algorithm) seems

not able to detect the particular structure of the given stochastic problem and to choose the

best solving procedure. Hence, additional knowledge on the specific two-stage decomposition

must also be given to allow the solver to create the Benders cuts.

6.3. Main results and analysis

In the following, we compare the sequential and the parallel version of our PH-based

heuristic (sPH and pPH, respectively) with the Benders algorithm described in Section 6.2

(Cplex-Benders) in terms of efficiency and quality of the solution obtained on the complete

set of benchmark instances. After some preliminary tuning tests over a subset of 10% of the

instances, we have set the values for the main parameters of the PH algorithms (i.e., the

penalties at iteration 0, their updating coefficients, and the termination criteria described in

Section 4.3 and 4.4) as in Table 3. The parameters settings show how the best policy seems

to maintain a higher penalization step for the implementability of the discount intervals

selection (the β coefficient associated to the y variables) with respect to the other decisions,

i.e., contract activation and purchased quantities.

Penalties Updating coefficients Termination criteria

ρ
(0)
1 = 0.5 α = 1.5 maxTime=7200

ρ
(0)
2 = 0.3 β = 4.0 maxIter=15

ρ
(0)
3 = 0.1 γ = 1.1 maxIterWithoutImpr=3

Table 3: Tuning of the PH algorithms.

Tables 4–6 present the comparison of the three algorithms for the instances in which the

stochastic demand follows a Uniform distribution, whereas Tables 7–9 show the same results

considering the Gumbel distribution. Each table concerns instances with the same number of

suppliers and shows, for each instance and for each solution method, the computational time

(t) and the time-to-best (ttb), both in seconds. Moreover, for Cplex-Benders, the percentage

gap between the value of the best solution and the best lower bound found in the branch-and-

cut tree (gap%) is reported, whereas, for the two PH versions, the percentage error (∆%)

with respect to the best solution found by Cplex-Benders is calculated (a negative value

means that the relative PH algorithm has found a better solution with respect to Cplex).

All the methods have an overall time limit of 14400 seconds (i.e., 4 hours).
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Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

5 10 0.1 1 1 0.00 10 6 0.00 54 12 0.00 7 2
5 10 0.1 1 2 0.00 9 9 0.00 51 11 0.00 8 8
5 10 0.1 2 1 0.00 5 3 0.00 30 30 0.00 5 5
5 10 0.1 2 2 0.00 8 6 0.00 64 64 0.00 9 9
5 10 0.8 1 1 0.00 15 12 0.00 76 76 0.00 11 3
5 10 0.8 1 2 0.00 7 5 0.00 46 10 0.00 6 6
5 10 0.8 2 1 0.00 5 3 0.00 7 7 0.00 3 1
5 10 0.8 2 2 0.00 7 6 0.00 39 11 0.00 5 5
5 20 0.1 1 1 0.00 57 52 0.00 103 18 0.21 36 36
5 20 0.1 1 2 0.00 42 40 0.00 122 122 0.00 44 44
5 20 0.1 2 1 0.00 25 24 0.00 84 16 0.00 16 4
5 20 0.1 2 2 0.00 29 28 0.00 71 15 0.00 16 4
5 20 0.8 1 1 0.00 24 21 0.00 86 16 0.00 15 4
5 20 0.8 1 2 0.00 38 38 0.00 81 17 0.16 34 7
5 20 0.8 2 1 0.00 22 22 0.00 36 13 0.00 8 2
5 20 0.8 2 2 0.00 14 9 0.00 44 10 0.00 6 1
5 30 0.1 1 1 0.00 72 71 0.00 125 20 0.14 33 7
5 30 0.1 1 2 0.00 69 69 0.00 113 113 0.00 41 41
5 30 0.1 2 1 0.00 41 39 0.00 118 17 0.00 33 33
5 30 0.1 2 2 0.00 50 48 0.00 103 17 0.00 32 14
5 30 0.8 1 1 0.00 55 54 0.00 115 20 0.33 40 9
5 30 0.8 1 2 0.00 75 74 0.00 43 22 0.28 63 12
5 30 0.8 2 1 0.00 32 32 0.00 66 66 0.00 18 18
5 30 0.8 2 2 0.00 28 13 0.00 23 12 0.00 7 2

avg: 0.00 31 28 0.00 71 31 0.05 21 12

Table 4: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 5 (Uniform distribution).

Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

10 10 0.1 1 1 0.00 3801 1286 0.48 206 206 0.95 45 45
10 10 0.1 1 2 0.00 163 158 0.02 170 146 0.04 39 31
10 10 0.1 2 1 0.00 58 46 0.08 83 75 0.11 10 7
10 10 0.1 2 2 0.00 85 48 0.03 97 67 0.03 15 13
10 10 0.8 1 1 0.00 448 351 0.00 293 293 0.00 81 81
10 10 0.8 1 2 0.00 54 52 0.00 106 39 0.29 36 36
10 10 0.8 2 1 0.00 22 22 0.00 72 72 0.16 11 7
10 10 0.8 2 2 0.00 25 22 0.00 92 51 0.00 21 13
10 20 0.1 1 1 0.00 3576 1841 0.44 375 139 0.05 153 147
10 20 0.1 1 2 0.00 1434 460 0.02 473 473 0.15 142 29
10 20 0.1 2 1 0.00 863 581 0.00 200 186 0.00 50 43
10 20 0.1 2 2 0.00 293 97 0.00 163 163 0.00 45 45
10 20 0.8 1 1 0.00 427 242 0.18 325 117 0.00 144 144
10 20 0.8 1 2 0.00 91 88 0.00 186 34 0.00 69 63
10 20 0.8 2 1 0.00 101 101 0.00 132 132 0.00 34 34
10 20 0.8 2 2 0.00 63 61 0.00 119 26 0.00 24 6
10 30 0.1 1 1 0.00 5800 2789 0.01 438 438 0.06 196 70
10 30 0.1 1 2 0.00 5438 3408 0.00 454 98 0.00 175 36
10 30 0.1 2 1 0.00 639 385 0.00 283 283 0.00 94 94
10 30 0.1 2 2 0.00 850 570 0.00 224 43 0.00 84 84
10 30 0.8 1 1 0.00 569 286 0.00 646 113 0.00 314 66
10 30 0.8 1 2 0.00 412 326 0.00 434 89 0.00 132 34
10 30 0.8 2 1 0.00 191 173 0.00 194 36 0.00 56 14
10 30 0.8 2 2 0.00 219 150 0.01 266 266 0.01 99 99

avg: 0.00 1067 564 0.05 251 149 0.08 86 52

Table 5: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 10 (Uniform distribution).

We first look at instances with uniformly distributed demands (Tables 4–6). Benders

algorithm shows quite good results for small and medium-size instances (|M | = 5 and |M | =
10), finding the optimal solution in all the cases. Computational times are on average about

30 seconds for |M | = 5 instances, and about 18 minutes for the |M | = 10 ones. However,

performances drastically break down on |M | = 20 instances. Only 6 out of 24 instances are

solved to optimality while, in the remaining cases, the best solution found have more than
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Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

20 10 0.1 1 1 3.83 14400 13733 0.04 680 400 0.04 168 103
20 10 0.1 1 2 3.70 14400 8917 0.18 641 615 0.10 160 152
20 10 0.1 2 1 0.00 140 130 0.00 217 160 0.04 42 25
20 10 0.1 2 2 2.39 14400 1313 -0.25 267 267 -0.19 51 51
20 10 0.8 1 1 0.00 785 770 0.91 613 595 0.91 148 145
20 10 0.8 1 2 0.00 11183 2847 0.85 1117 1105 1.27 372 370
20 10 0.8 2 1 0.00 1715 726 0.14 443 240 1.46 112 44
20 10 0.8 2 2 0.00 880 876 0.00 536 536 0.92 115 115
20 20 0.1 1 1 2.36 14400 2876 -0.01 444 410 0.01 139 114
20 20 0.1 1 2 5.00 14400 13421 0.01 1399 1399 -0.10 488 325
20 20 0.1 2 1 3.90 14400 13096 0.04 649 615 0.18 193 193
20 20 0.1 2 2 3.43 14400 8380 0.19 648 525 0.21 151 151
20 20 0.8 1 1 6.62 14400 13331 -0.53 6021 3617 -0.53 4899 4204
20 20 0.8 1 2 2.86 14400 2733 0.11 3449 3419 0.11 1977 1971
20 20 0.8 2 1 4.64 14400 13676 0.01 1642 1594 -0.19 762 753
20 20 0.8 2 2 0.00 1297 1064 0.00 571 237 0.00 112 24
20 30 0.1 1 1 4.18 14400 10781 -0.04 2938 2849 -0.08 1220 440
20 30 0.1 1 2 4.93 14400 13604 -0.05 3645 3432 -0.11 1666 1666
20 30 0.1 2 1 4.44 14400 13378 0.02 2085 2085 0.05 633 633
20 30 0.1 2 2 3.90 14400 4774 -0.11 1288 1215 -0.12 399 81
20 30 0.8 1 1 5.63 14400 14223 -0.12 13387 13387 -0.12 11794 3742
20 30 0.8 1 2 6.30 14400 12095 -0.06 11715 11715 -0.06 13115 13115
20 30 0.8 2 1 3.64 14400 13198 0.00 2261 2261 0.00 1035 1035
20 30 0.8 2 2 3.36 14400 13786 -0.08 2022 2001 -0.08 744 744

avg: 3.13 11467 8072 0.05 2445 2278 0.15 1687 1258

Table 6: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 20 (Uniform distribution).

Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

5 10 0.1 1 1 0.00 10 6 0.00 44 11 0.00 7 2
5 10 0.1 1 2 0.00 10 9 0.00 45 10 0.00 6 2
5 10 0.1 2 1 0.00 4 3 0.00 23 8 0.00 4 4
5 10 0.1 2 2 0.00 6 6 0.00 62 62 0.00 9 9
5 10 0.8 1 1 0.00 15 13 0.00 35 12 0.00 9 3
5 10 0.8 1 2 0.00 6 4 0.00 38 38 0.00 6 6
5 10 0.8 2 1 0.00 4 3 0.00 7 7 0.00 1 1
5 10 0.8 2 2 0.00 8 4 0.00 38 38 0.17 6 2
5 20 0.1 1 1 0.00 47 44 0.00 99 17 0.18 33 12
5 20 0.1 1 2 0.00 40 38 0.00 114 114 0.00 40 7
5 20 0.1 2 1 0.00 23 21 0.00 85 85 0.00 16 5
5 20 0.1 2 2 0.00 23 23 0.00 59 16 0.00 20 20
5 20 0.8 1 1 0.00 21 13 0.00 75 16 0.00 13 3
5 20 0.8 1 2 0.00 29 25 0.00 79 16 0.11 30 7
5 20 0.8 2 1 0.00 18 12 0.00 12 12 0.00 3 2
5 20 0.8 2 2 0.00 11 6 0.00 8 8 0.00 2 1
5 30 0.1 1 1 0.00 71 69 0.00 36 19 0.16 27 6
5 30 0.1 1 2 0.00 61 56 0.00 87 51 0.00 40 7
5 30 0.1 2 1 0.00 41 35 0.00 70 17 0.00 24 24
5 30 0.1 2 2 0.00 53 52 0.00 79 17 0.13 28 28
5 30 0.8 1 1 0.00 58 58 0.00 124 57 0.19 39 10
5 30 0.8 1 2 0.00 61 61 0.00 58 21 0.00 58 58
5 30 0.8 2 1 0.00 26 26 0.00 77 17 0.00 18 18
5 30 0.8 2 2 0.00 21 13 0.00 10 0 0.00 3 0

0.00 28 25 0.00 57 28 0.04 18 10

Table 7: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 5 (Gumbel distribution).

the 3% of optimality gap on average (with some peaks of around 6%). The time limit is

reached in the most cases and the best solutions are found on average after more than 2

hours.

Our PH algorithms are more than competitive for the smallest instances and totally

outperforms Cplex-Benders for the largest ones. As expected, the parallel PH is faster on

average (both in terms of total computational time and in time-to-best) with respect to
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Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

10 10 0.1 1 1 0.00 998 973 0.22 191 37 0.28 42 17
10 10 0.1 1 2 0.00 93 91 0.00 158 150 0.36 36 8
10 10 0.1 2 1 0.00 28 26 0.00 69 15 0.00 10 2
10 10 0.1 2 2 0.00 40 39 0.00 83 17 0.09 13 3
10 10 0.8 1 1 0.00 122 112 0.00 228 196 0.00 83 75
10 10 0.8 1 2 0.00 32 32 0.00 95 19 0.00 36 34
10 10 0.8 2 1 0.00 28 23 0.00 55 13 0.00 7 2
10 10 0.8 2 2 0.00 19 17 0.08 89 50 0.00 18 14
10 20 0.1 1 1 0.00 2867 466 0.00 407 218 0.14 181 101
10 20 0.1 1 2 0.00 646 523 0.00 376 139 0.14 120 28
10 20 0.1 2 1 0.00 362 178 0.00 194 37 0.00 54 29
10 20 0.1 2 2 0.00 188 137 0.00 158 158 0.00 48 11
10 20 0.8 1 1 0.00 213 210 0.00 256 93 0.00 120 50
10 20 0.8 1 2 0.00 81 77 0.00 169 169 0.00 72 72
10 20 0.8 2 1 0.00 66 64 0.00 144 27 0.00 25 8
10 20 0.8 2 2 0.00 46 32 0.00 92 21 0.00 21 8
10 30 0.1 1 1 0.00 3840 1951 0.01 469 195 0.09 219 45
10 30 0.1 1 2 0.00 3275 840 0.01 439 111 0.01 168 39
10 30 0.1 2 1 0.00 432 240 0.00 256 256 0.00 87 87
10 30 0.1 2 2 0.00 629 431 0.00 232 45 0.00 88 88
10 30 0.8 1 1 0.00 418 386 0.00 133 72 0.00 196 41
10 30 0.8 1 2 0.00 241 234 0.00 70 70 0.00 28 28
10 30 0.8 2 1 0.00 170 168 0.00 142 34 0.00 46 12
10 30 0.8 2 2 0.00 177 103 0.00 230 1 0.00 74 1

0.00 625 306 0.01 197 89 0.05 75 33

Table 8: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 10 (Gumbel distribution).

Cplex-Benders sPH pPH
|M | |K| λ DP AC gap% t ttb ∆% t ttb ∆% t ttb

20 10 0.1 1 1 1.90 14400 9869 -0.05 725 725 -0.05 170 44
20 10 0.1 1 2 1.98 14400 1560 0.47 601 601 -0.14 146 140
20 10 0.1 2 1 0.00 55 48 0.10 148 30 0.10 38 9
20 10 0.1 2 2 0.58 14400 8697 0.09 275 248 0.41 50 44
20 10 0.8 1 1 0.00 250 182 0.04 562 121 0.04 121 28
20 10 0.8 1 2 0.00 1608 953 0.20 1296 1296 0.20 412 412
20 10 0.8 2 1 0.00 314 296 0.00 348 348 0.00 77 36
20 10 0.8 2 2 0.00 245 201 0.18 653 653 0.08 174 174
20 20 0.1 1 1 2.25 14400 8065 0.06 463 281 0.06 152 114
20 20 0.1 1 2 3.79 14400 13277 0.10 1432 1432 0.10 538 538
20 20 0.1 2 1 3.08 14400 13874 0.01 627 627 0.01 201 201
20 20 0.1 2 2 2.40 14400 13987 0.11 586 586 -0.04 151 151
20 20 0.8 1 1 4.33 14400 13238 0.00 7011 6714 0.00 5692 5689
20 20 0.8 1 2 0.00 7457 5258 0.00 4102 4084 0.00 2422 2422
20 20 0.8 2 1 0.83 14400 9498 0.00 2003 1969 0.00 993 661
20 20 0.8 2 2 0.00 615 474 0.00 524 236 0.00 119 119
20 30 0.1 1 1 3.92 14400 9104 -0.19 3792 3792 -0.35 1590 1554
20 30 0.1 1 2 3.94 14400 13150 -0.16 4171 4171 -0.24 1738 1738
20 30 0.1 2 1 3.93 14400 13378 0.03 2758 2758 0.05 1011 1011
20 30 0.1 2 2 3.11 14400 13277 0.25 1485 1485 -0.01 498 479
20 30 0.8 1 1 3.63 14400 13350 -0.10 6244 1456 -0.11 3606 3606
20 30 0.8 1 2 4.49 14400 13136 -0.10 6876 1566 -0.10 4875 1182
20 30 0.8 2 1 1.08 14400 1905 0.00 2471 2420 0.00 971 521
20 30 0.8 2 2 0.00 5775 4820 0.00 1693 772 0.00 451 233

1.89 10280 7567 0.04 2119 1599 0.00 1091 879

Table 9: Cplex-Benders vs sPH and pPH for CTQD-ACud instances with |M | = 20 (Gumbel distribution).

the sequential version, whereas, on the contrary, the latter method finds on average slightly

better solutions. However, since percentage errors are negligible, the quality of both the PH

algorithms solutions is excellent. On average, even only considering the largest instances

(|M | = 20), the percentage error is 0.05% and 0.15% for sPH and pPH, respectively. The 1%

error is exceeded only two times by pPH, and never by sPH. Moreover, sPH and pPH are able to

find the optimal solution 42 and 34 times out of 72, respectively, and a better solution (with
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respect to Cplex) on 9 and 10 instances out of the 18 non-closed ones, respectively. Given

that the solution quality of our heuristic PH algorithms is actually comparable to that of an

exact method, it is interesting to note that they are several times faster than Cplex in terms

of overall convergence CPU time and time-to-best. The only exception is represented by the

|M | = 5 instances, where sPH is 30 seconds slower on average, whereas for the remaining

instances sPH and pPH are about 4 times and 10 times faster than Cplex, respectively.

Concerning the Gumbel distribution for the demand (Tables 7–9), we find mainly the

same trends and proportions among the three methods’ performances in terms of quality

and CPU time. This just reinforces the strength of our algorithms in solving such types

of problems. In this case, the solutions found by the PH algorithms are much closer on

average to those found by Cplex within 4 hours (always under the 0.05%), even if this set

of instances seems a little bit easier to solve. In fact, for |M | = 20 instances, Cplex can

guarantee solutions within the 2% of optimality gap on average, with some peaks of around

4.5%.

For the sake of completeness, we summarize in Table 10 and 11 some interesting details

of the two PH versions developed and tested. Results are averaged over all the instances

with the same number of suppliers. The column headers have the following meaning: tI , tH ,

and tF are the CPU times in seconds dedicated by the algorithms to find an initial feasible

solution (the EEV solution), to apply the primal heuristic during the search (see Section

5.3), and to optimally solve the final model with all or part of the binary variables fixed (line

17 of Algorithm 1), respectively; cons% is the percentage number of binary variables, out of

the totality, that have reached the consensus when the PH procedure stops; it and ittb are

the total number of iterations done by the PH and the iterations-to-best (i.e. the number of

iterations needed to find the best solution), respectively.

sPH pPH
|M | tI tH tF cons% it ittb tI tH tF cons% it ittb

5 0.4 2.6 0.8 94 6 3 0.4 3.1 1.4 91 8 4
10 0.8 7.0 1.4 95 10 6 0.8 7.2 1.5 95 10 6
20 2.1 16.2 528.0 92 11 7 2.1 16.3 566.1 93 11 7

avg: 1.1 8.5 172.0 94 9 5 1.1 8.7 184.6 93 9 6

Table 10: sPH and pPH details (Uniform distribution).

sPH pPH
|M | tI tH tF cons% it ittb tI tH tF cons% it ittb

5 0.4 1.8 0.8 94 5 3 0.4 2.8 0.9 91 7 3
10 0.8 5.4 1.7 95 8 3 0.8 6.6 1.3 95 9 3
20 2.2 13.9 2.7 97 11 8 2.2 14.4 3.3 96 11 7

avg: 1.1 6.9 1.7 95 8 5 1.1 7.8 1.8 94 9 5

Table 11: sPH and pPH details (Gumbel distribution).
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6.4. Economic analysis of the stochastic solution

An extensive analysis of the convenience of explicitly considering a SP formulation for

the CTQD-ACud, with respect to using approximated values for its uncertain data, has been

performed in Manerba et al. (2018). In particular, for each deterministic instance and the two

probability distributions, they compute two well-known SP measures (Birge and Louveaux,

1997), i.e. the Value of the Stochastic Solution (VSS) and the Expected Value of Perfect

Information (EVPI). More precisely, VSS=EEV-RP and EVPI=RP-WS, where RP is the

objective value of the DEP solution (recourse problem solution), EEV is the solution value of

the stochastic model with the first-stage decision fixed by solving the deterministic problem

using expected values for approximating the random parameters (expected value solution),

and WS is the solution value of a problem in which it is assumed to know at the first-stage

the realizations of all the stochastic variables (wait-and-see solution). Results have shown

quite high VSS values on average and also some very high peaks (the VSS exceeds the 30% of

the solution value 18 times out of all the instances), demonstrating the importance of having

in place SP models for the CTQD-ACud. As already explained in the Introduction, this is

one of the motivations supporting the present work. However, due to the computational

burden of solving the CTQD-ACud when considering 100 scenarios, a consistent part of the

largest instances (i.e., the ones with |M | = 20 and |K| = {20, 30}) have not been solved

to optimality, thus no VSS or EVPI values are available for them. Thanks to the PH

algorithms developed, we are now able to complete such analysis. Table 12 shows, for each

deterministic instance (uniquely identified by |M |, |K|, λ, DP , and AC parameters) and

for each considered probability distribution, the percentage values of VSS and EVPI with

respect to the objective value of the recourse problem solution, i.e., VSS%=100*VSS/RP

and EVPI%=100*EVPI/RP.

We can see that the VSS% values are quite consistent, independently from the number

of products considered and the discounts or activation costs characteristics. Concerning the

Uniform distribution, the VSS% is about 12% on average (with some peaks of around 25%).

Remarkably, one-third of the instances have a VSS% exceeding the 15%. Concerning the

Gumbel distribution, which is more suitable to the Automotive application, the VSS% has

some peaks of around 14-15% while its average value is 3 percentage points less than that

achieved for instances following a Uniform distribution. The EVPI% values for both the

distributions are similar and about 2.5% on average. All these new results are in line with

those obtained for the other benchmark instances, confirming the economic importance of

explicitly considering the stochasticity into a model for the CTQD-ACud and, in turn, the

importance of having in place algorithms to efficiently solve such model for realistic instances.

Even if, as stated in Subsection 6.1, we cannot provide real data, we want to point out that

the order of magnitude of the objective function in the smallest real instances is about one
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Instance Uniform distribution Gumbel distribution
|M | |K| λ DP AC VSS% EVPI% VSS% EVPI%

20 10 0.1 1 1 17.5 2.1 14.5 1.5
20 10 0.1 1 2 10.3 2.3 6.8 1.7
20 10 0.1 2 1 8.0 4.5 11.0 4.9
20 10 0.1 2 2 25.2 2.2 15.2 2.3
20 10 0.8 1 1 10.2 3.1 6.2 2.3
20 10 0.8 1 2 9.1 3.7 10.4 3.0
20 10 0.8 2 1 16.2 4.1 12.5 3.9
20 10 0.8 2 2 21.2 5.5 7.4 7.0
20 20 0.1 1 1 12.0 2.2 8.8 2.9
20 20 0.1 1 2 15.2 1.4 10.5 1.5
20 20 0.1 2 1 19.1 1.6 13.7 1.5
20 20 0.1 2 2 3.9 1.3 1.2 1.2
20 20 0.8 1 1 10.3 1.5 0.9 1.0
20 20 0.8 1 2 13.5 3.3 6.4 3.9
20 20 0.8 2 1 15.9 2.0 14.3 2.4
20 20 0.8 2 2 5.8 0.8 9.4 1.1
20 30 0.1 1 1 7.0 1.1 6.5 1.4
20 30 0.1 1 2 9.7 1.0 7.6 0.6
20 30 0.1 2 1 7.0 0.9 7.2 1.2
20 30 0.1 2 2 7.4 1.4 6.3 2.1
20 30 0.8 1 1 10.9 2.2 1.1 2.7
20 30 0.8 1 2 10.4 2.0 4.2 1.8
20 30 0.8 2 1 12.6 3.5 13.8 4.4
20 30 0.8 2 2 5.8 1.4 6.9 1.6

avg: 11.8 2.3 8.5 2.4
max: 25.2 5.5 15.2 7.0

Table 12: VSS% and EVPI% for CTQD-ACud instances with |M | = 20

billion of dollars, justifying the necessity to find more accurate solutions, while the largest

instances correspond to the purchase of an entire Automotive platform, further proving the

importance of the above calculated percentage gaps.

7. Conclusions

In this paper, we have studied the application of a multi-product multi-supplier procure-

ment problem called CTQD-ACud in the field of Automotive manufacturing. Peculiarities

of this problem are the restricted availability of products at the suppliers, discount policies

based on total quantities purchased, fixed contract activation costs, and the explicit consid-

eration of a stochastic product demand. The CTQD-ACud has been shown by the recent

literature to be very important to tackle long-term procurement settings mainly because of

the possible savings it allows with respect to considering expected values for the demands.

However, the problem has been shown to be also very difficult to solve for a sufficiently large

number of scenarios and no efficient methods have been proposed so far. We have bridged

this gap by presenting new solution methods based on the structural properties of the prob-

lem. In particular, we have tested a Benders algorithm and developed different variants of

a PH-based heuristic approach. Our PH has been improved with respect to its standard

implementation through the introduction of several acceleration strategies, enhancing its

efficiency and the effectiveness. The proposed algorithms have outperformed the already

existing methods in efficiency on a broad set of benchmark instances, thus allowing to have

optimal or near-optimal solutions also for the biggest ones (that was not solved yet). This,
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in turn, has allowed us to show how the analysis of the stochastic solution for the largest

instances (in terms of VSS and EVPI) is in line with the trends shown for the smallest ones.

As future developments, we are interested in proposing and studying a deterministic ap-

proximations for the problem (inspired to Tadei et al., 2018), and in considering additional

complicating features such as inventory costs, market share constraints, upper bounds on

the number of selected suppliers (Goossens et al., 2007, Sadrian and Yoon, 1994) or incom-

patibility constraints (Manerba and Mansini, 2016).

Acknowledgments

Partial funding for this work was provided by the Canadian Natural Sciences and Engineering

Research Council (NSERC) through its Discovery Grants Program. While working on this

paper, the second author was the head of the Urban Mobility and Logistics Systems (UMLS)

initiative of the interdepartmental Center for Automotive Research and Sustainable mobility

(CARS) at Politecnico di Torino, Italy. The authors are grateful to the Area Editor and

anonymous referees whose comments have contributed to improve the quality of this paper.

References

Aissaoui, N., Haouari, M., Hassini, E., 2007. Supplier selection and order lot sizing modeling: A review.
Computer & Operations Research 34 (12), 3516–3540.

Anupindi, R., Akella, R., 1993. Diversification under supply uncertainty. Management Science 39, 944–963.
Awasthi, A., Chauhan, S., Goyal, S., Proth, J.-M., 2009. Supplier selection problem for a single manufacturing

unit under stochastic demand. International Journal of Production Economics 117, 229–233.
Benders, J. F., 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische

Mathematik 4 (1), 238–252.
Benton, W. C., 1991. Quantity discount decisions under conditions of multiple items. International Journal

of Production Research 29, 1953–1961.
Beraldi, P., Bruni, M. E., Manerba, D., Mansini, R., 2017. A stochastic programming approach for the

traveling purchaser problem. IMA Journal of Management Mathematics 28 (1), 41–63.
Berret, M., Mogge, F., Schlick, T., Fellhauer, E., Söndermann, C., Schmidt, M., July 2016. Global Automo-

tive Supplier Study 2016. Study report, Lazard and Roland Berger.
Birge, J. R., Louveaux, F. V., 1997. Introduction to Stochastic Programming. Springer Verlag, New York.
Crainic, T. G., Fu, X., Gendreau, M., Rei, W., Wallace, S. W., 2011. Progressive hedging-based metaheuris-

tics for stochastic network design. Networks 58 (2), 114–124.
Crainic, T. G., Gobbato, L., Perboli, G., Rei, W., 2016. Logistics capacity planning: A stochastic bin packing

formulation and a progressive hedging meta-heuristic. European Journal of Operational Research 253 (2),
404–417.

Crama, Y., Pascual, J. R., Torres, A., 2004. Optimal procurement decisions in the presence of total quantity
discounts and alternative product recipes. European Journal of Operational Research 159 (2), 364–378.

Dada, M., Petruzzi, N., Schwarz, L. B., 2007. A newsvendors procurement problem when suppliers are
unreliable. Manufactoring & Service Operations Management 9, 9–32.

Dickson, G. W., 1966. An analysis of vendor selection systems and decisions. Journal of purchasing 2, 5–17.
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