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Abstract

Smart healthcare systems require recording, transmitting and processing large
volumes of multimodal medical data generated from di↵erent types of sensors and
medical devices, which is challenging and may turn some of the remote health
monitoring applications impractical. Moving computational intelligence to the net-
work edge is a promising approach for providing e�cient and convenient ways for
continuous-remote monitoring. Implementing e�cient edge-based classification and
data reduction techniques are of paramount importance to enable smart health-
care systems with e�cient real-time and cost-e↵ective remote monitoring. Thus, we
present our vision of leveraging edge computing to monitor, process, and make au-
tonomous decisions for smart health applications. In particular, we present and im-
plement an accurate and lightweight classification mechanism that, leveraging some
time-domain features extracted from the vital signs, allows for a reliable seizures
detection at the network edge with precise classification accuracy and low com-
putational requirement. We then propose and implement a selective data transfer
scheme, which opts for the most convenient way for data transmission depending
on the detected patient’s conditions. In addition to that, we propose a reliable
energy-e�cient emergency notification system for epileptic seizure detection, based
on conceptual learning and fuzzy classification. Our experimental results assess
the performance of the proposed system in terms of data reduction, classification
accuracy, battery lifetime, and transmission delay. We show the e↵ectiveness of our
system and its ability to outperform conventional remote monitoring systems that
ignore data processing at the edge by: (i) achieving 98.3% classification accuracy
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for seizures detection, (ii) extending battery lifetime by 60%, and (iii) decreasing
average transmission delay by 90%.

Key words: Edge computing, conceptual learning, feature extraction, fuzzy
classification, wavelet compression.

1 Introduction

The rising evolution of computational intelligence systems, mobile communications, and Internet
of Medical Things (IoMT) has boosted the evolution of traditional healthcare processes into
smart health services. It is a fact that many elder patients need continuous-remote healthcare
monitoring. Thus, such advances in Body Area Sensor Network (BASN), and smart healthcare
systems will allow remote real-time monitoring of patients without constraining their activities
(Patel & Wang, 2010).

In this paper, we focus on mobile-health monitoring system for brain disorders and, in particular,
we propose an energy-e�cient remote monitoring system for epileptic seizure detection 1 . Elec-
troencephalography (EEG) signal plays an important role in the diagnosis of epileptic disease,
brain death, tumors, stroke and several brain disorders (Adeli, Ghosh-Dastidar, & Dadmehr,
2007). Such applications typically require the recording, transmission, and processing of very
large volumes of data. Consider, for instance, high-quality EEG devices consisting of up to 100
electrodes, each one working at sampling rate as high as 1000 samples/s. By representing each
sample by 2 bytes, it results in a data rate of 1.6 Mbps per single patient. Also, in normal con-
ditions, information about medical patients should be reported to the MHC every 5 minutes,
while, in the case of emergency where high-intensive monitoring is needed, all data collected
by the BASN should be reported every 10 seconds (Yuce, Ng, Myo, Khan, & Liu, 2007). The
wireless transmission of such amount of data is highly energy consuming (it amounts to about
70% of the total power consumption of a wireless EEG monitoring system (Yazicioglu et al.,
2009)); also, it requires significant processing capabilities, high reliability and, in the case of
emergency, very short latency.

Such requirements cannot be supported by resource-constrained Personal/Patient Data Aggre-
gator (PDA), unless we adopt a smart solution. The conventional mobile-health system using
simple sensor-to-cloud architecture (Kraemer, Braten, Tamkittikhun, & Palma, 2017), where the
raw date is collected from di↵erent sensor nodes and send to the cloud for processing, becomes
unsuitable for smart-health (s-health). Such centralized approach cannot provide su�cient scal-
ability and responsiveness while causing heavy network loads. On the contrary, leveraging edge
computing capabilities, s-health systems can significantly improve medical data delivery while
decreasing the latency and energy consumption.

Email addresses: aawad@qu.edu.qa (Alaa Awad Abdellatif), aemam@cs.cmu.edu (Ahmed Emam),
chiasserini@polito.it (Carla-Fabiana Chiasserini), amrm@qu.edu.qa (Amr Mohamed),
jaoua@qu.edu.qa (Ali Jaoua), rababw@ece.ubc.ca (Rabab Ward).
1 Epilepsy is the most common neurological disorder in the world after stroke and Alzheimer’s disease.
It is estimated to a↵ect more than 65 million people worldwide, with more than 80% of people with
epilepsy living in developing countries (Thurman et al., 2011).
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Thus, given the requirements and constraints of remote monitoring systems, our goal is to enable
energy-e�cient delivery of real-time medical data through implementing: (i) a mechanism for
abnormal pattern detection at the network edge that allows us to identify the patient’s state,
and (ii) a selective transfer scheme that, exploiting the above detection mechanism, transmits
toward the Mobile-Health Cloud (MHC) only the data that is necessary based on the current
situation. Motivated by the edge computing paradigm, where we push the computational
intelligence closer to the patient, we propose and implement s-health system, shown in Fig.
1, for detecting patient’s state that exploits feature extraction and fuzzy classification at the
network edge. Then, depending on the patient’s state, our s-health system can exploit di↵erent
data reduction techniques, in order to reduce the amount of transmitted data, hence, improve
the cost of delivering vital signs to the MHC, in terms of, detection and transmission latency,
as well as transmission energy consumption and monetary cost.

Healthcare provider

HospitalAmbulance

Doctor
Caregiver

Edge Layer

1. Feature Extraction
2. Classification
3. Data Reduction

IoT devices Layer

Patient

Mobile-Health
Cloud

Sensor 1

Sensor 2

Cloud Layer

Raw/Processed Data

Emergency Notification

Fig. 1. The proposed s-health system architecture.

The rest of the paper is organized as follows. Section 2 discusses the related work while high-
lighting the novelty of our study. Section 3 presents the system model. Section 4 introduces the
techniques for feature extraction and selection. Section 5 describes the proposed swift in-network
classification scheme. Data transfer, along with our solution for adaptive data compression, is
introduced in Section 6, while Section 7 presents the implementation of the proposed s-health
system. Section 8 introduces our performance evaluation. Finally, Section 9 concludes the paper.

2 Related Work

The rapid growth of IoMT has motivated the development of innovative applications for in-
formation intensive fields such as healthcare services (Xu et al., 2014). The conventional cloud
computing architecture facilitates for the smart devices (e.g., sensors, smartphones) to exchange
information with the cloud through 3G/4G technologies, or IoT gateway (Sheng, Mahapatra,
Zhu, & Leung, 2015). Thus, on one hand provides uniform, concise, and scalable processing
as well as storage services for supporting application requirements. On the other hand, the
deployments of remote health monitoring, emergency response, and in general delay-sensitive
IoT applications on the cloud are facing challenges. For instance, the delay caused by trans-
ferring data to and from the cloud to the application is unpredictable, in addition to the eco-
nomic considerations, technical limitations, and administrative issues (Sarkar & Misra, 2016).
In (Menshawy, Benharref, & Serhani, 2015), the authors implement an automatic mobile-based
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health system exploiting the information contained in EEG signals for seizures detection. This
system consists of back-end part (i.e., server part) and front-end part (i.e., mobile part). Server
part comprises the pre-processing task, which includes feature extraction, normalization, and
selection, as well as classification task. While mobile part includes data acquisition, visual-
ization, and transmission. The authors in this study also present di↵erent algorithms in the
pre-processing and classification stages to implement a reliable system in terms of execution
time and classification accuracy. However, they consider the mobile part as a communication
hub, while moving the pre-processing and classification tasks to the server. Considering such
centralized approach cannot provide a su�ciently high level of scalability and responsiveness
given the limited bandwidth availability, energy consumption, and data privacy concerns. On
the contrary, processing and compressing the gathered data at the mobile edge greatly reduces
the amount of information to be transferred toward the cloud, hence the bandwidth and energy
consumption, while ensuring privacy protection.

To address the aforementioned challenges, Edge computing and Fog computing were proposed
to use computing resources near IoMT devices for local storage and preliminary data process-
ing (Dastjerdi & Buyya, 2016). In this context, the authors in (Pace et al., 2018) proposed
a software framework for healthcare applications based on Edge paradigm. This framework is
used for acquiring and analyzing Heart Rate Variability (HRV) signals, while presenting the
advantages of leveraging Edge paradigm rather than the classical Cloud paradigm. The au-
thors in (Cerina, Notargiacomo, Paccanit, & Santambrogio, 2017) discuss the benefits of fog
architectures in preventive healthcare applications, and the feasibility of Field-Programmable
Gate Array (FPGA) technology in implementing e�cient Fog nodes. This aforementioned work
motivate that performing e�cient in-network processing with feature extraction and adaptive
compression at the edge would significantly assist in network congestion, o✏oad core network
tra�c, accelerating analysis, and meeting application requirements for swift and secure data
transfer.

Most of the related work in the context of Wireless Sensor Network (WSN) was motivated by
the reduction of latency to perform classification at the sensor network. Machine learning meth-
ods have been investigated to exploit historical data and improve the performance of sensor
networks through discovering important correlations in the sensor data and propose improved
sensor deployment for maximum data coverage. For instance, the authors in (Rossi, Krishna-
machari, & Kuo, 2016) present a classification technique for e�cient data collection in WSN.
However, it is assumed that the end users are interested only in rounds of measurements charac-
terized by certain patterns. Hence, the WSN exploits the classification with the goal of selecting
most relevant rounds of gathered data in order to reduce the amount of transmitted data. A
comprehensive overview of recent machine learning methods applied in WSN can be found in
(Alsheikh, Lin, Niyato, & Tan, 2014). However, many of the aforementioned works performing
classification at the sensor network focused on the reduction of latency rather than energy e�-
ciency. It is not clear whether that is more energy e�cient than transmitting and classifying the
data at the end users or not, since such classification techniques require distributed feature ex-
traction and transmission, which may be less or more energy consuming than the transmission of
measurements without classification. Furthermore, learning by examples needs to process large
datasets to ensure high accuracy, whereas it is not straightforward to mathematically formulate
the learned model, or to have the full control over the knowledge discovery process

Fuzzy logic techniques have been also investigated in the area of patients’ care to predict and
categorize patients status (Cosenza, 2012)(Tatari, Akbarzadeh, & Sabahi, 2012). For instance,
the author in (Cosenza, 2012) leverages fuzzy techniques in the development of a decision
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support system that optimizes the postprandial glycemia in type 1 diabetes patients, while
the authors in (Tatari et al., 2012) exploit fuzzy and probabilistic computing to assess breast
cancer risk. In (Al-Dmour, Sagahyroon, Al-Ali, & Abusnana, 2017), the authors discuss the
design and implementation of a fuzzy logic-based warning system that exploits fuzzy logic to
categorize patients status and send timely warning messages to healthcare service providers. In
(Castanho, Hernandes, R, Rautenberg, & Billis, 2013), a fuzzy expert system is developed to
classify the patients with confined or non-confined prostate cancer showing the e�ciency of the
presented fuzzy system compared with other probabilistic systems.

The enormous advances in smartphone capabilities has also motivated the development of smart-
phone applications (apps) for healthcare monitoring. Leveraging built-in sensors of the mobile
phone, smartwatch, gyroscopic sensors, and GPS module has enabled developing di↵erent apps
for seizures detection at the smartphone. For instance, “Epdetect” application employs sig-
nal processing techniques to di↵erentiate between normal movements and those associated with
seizures (“Epilepsy Detector Application”, 2017). When any abnormal movements are detected,
this app triggers seizures detected alarm. Seizario (Helmy & Helmy, 2015) is another mobile
app that uses only smartphone to detect seizures convulsions and falls exploiting accelerometer-
based learning algorithms with elaborate finite-state-machines. However, such apps that relay
on movements detections instead of the analysis of EEG signals are not reliable for detecting
absence seizures that does not result in convulsions.

Accordingly, leveraging higher levels of autonomy and intelligence at the edge through moving
processing and classification tasks to the mobile edge will significantly enhance energy consump-
tion, privacy protection, as well as latency and response time, while satisfying the requirements
of smart healthcare services. In this context, our main contributions can be summarized as
follows.

(1) We design an energy-e�cient s-health system for epileptic seizure detection and notifica-
tion, which adapts the type of information to transmit over the wireless channel based
on the patient’s state. In the proposed s-health system, local in-network processing at the
edge is executed on the raw EEG data before their transmission. Thus, we can accurately
estimate the patient’s state. Then, if no active seizures is detected, data can be either
compressed or further processed to extract and transmit only those features of the signal
that are pertinent to the patient’s state assessment.

(2) We apply feature extraction to EEG data and exploit such features to develop a fuzzy
classification technique. Our classifier, named Swift In-network Classification (SIC), allows
for a very accurate detection of the patient’s state, which ensures a quick notification about
the patient’s state at the PDA, as well as at the remote server (doctor’s machine). Also,
the mechanism we propose provides a quick response while keeping the complexity low,
thus it is amenable for implementation at the mobile edge (PDA).

(3) We present a comparative study of frequency-domain and time-domain feature extraction
techniques, discussing the tradeo↵ that they exhibit in terms of transmitted data length
and classification accuracy.

(4) We implement a remote real-time EEG monitoring system, which is composed of a wear-
able EEG device that connects to smartphone (PDA) via WiFi. The PDA handles the
EEG readings via a specific cellphone application we have developed, and applies proposed
SIC technique for detecting the patient’s state. Based on the detected status, the PDA
transmits the appropriate data type to a remote server, while in case of emergency, an
emergency notification is declared at the PDA and forwarded to the server. At the server,
the transmitted data from PDA is received, and a real-time data reconstruction and dis-
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tortion evaluation for the compressed-received data is applied. We have tested this system
using online and o✏ine data, where the online data representing the normal EEG signal
that is collected from the wearable device and forwarded to the PDA for processing. The
o✏ine data is leveraged through implementing a data emulator application to simulate
patients with active epileptic seizure.

3 System Model

We focus on epileptic seizure detection as an application of EEG-based diagnosis. Recent studies
have indeed shown that the dynamic properties of EEG signals can be e↵ectively used to di↵er-
entiate between healthy subjects and diagnosed patients with epileptic disease. In particular,
we consider the wireless EEG telemonitoring system, shown in Fig. 1, which is organized in a
three-tier (i.e. cloud/edge/IoT devices) architecture that provides the gathered data/emergency
notification to the healthcare provider. In this architecture, the EEG data is collected from a
patient using an EEG headset in the IoT devices layer. Then, it is periodically transferred to
a PDA, i.e., a smartphone, that represents the Edge Layer, which processes the gathered data
and forwards the processed data to the far cloud, hereinafter referred to as Mobile-health Cloud
(MHC).

We remark that our study does not only focus on monitoring people who su↵er from active
epilepsy, but also consider normal people who are more susceptible to seizures (i.e., high risk
people). For instance, people who have surgery and became seizures free are able to stop seizures
medicine. However, they may need to stay on monitoring to prevent seizures from coming back,
even after becoming normal (Berg AT et al., 2001). Also, seizures do happen frequently in
people who have had a traumatic injury to the brain. Most seizures occur in the first several
days or weeks after the brain injury, however some cases may appear months or years after the
injury (Englander & Je↵rey et al, 2014). Thus, it is of prominent importance to monitor such
high risk people for seizures.

In this context, in order to conduct our study, we leverage the EEG database in (Andrzejak et
al., 2001) considering three classes of patients: seizure-free (SF), non-active (NAC), and active
(AC). The first one includes seizure-free subjects (i.e., do not have seizures), the second refers
to non-active patients diagnosed with epileptic disorder, however they are in non-active state,
while the third class comprises patients with active epileptic seizure, as shown in Fig. 2. Each
class includes 100 single-channel EEG segments (i.e., 100 rows), and, given a sensing time frame
of 23.6 s and a sampling rate of 173.6 sample/s, for each channel there are 4096 samples (i.e.,
columns).

With the aim to develop an energy-e�cient monitoring system, we design a mechanism that
enables a PDA to always select the most appropriate configuration for transmitting the patient’s
information, based on the patient’s state. The proposed scheme is depicted in Fig. 3.

Starting from the collected EEG data, the PDA first derives specific values (features) that
are informative, non-redundant, and pertinent to seizures detection. These features allow the
classification process at the PDA (i.e., the mobile edge), as well as at the MHC when necessary,
leading to an accurate interpretation of the patient’s state. Based on the detected patient’s
state, the PDA will act as follows:
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Fig. 2. Representation of the three classes of EEG signals in the time domain.

• in case of AC (i.e., of an emergency), it will send toward the healthcare service provider an
Emergency Notification (EN) signal, along with raw EEG data to the MHC for high-intensive
monitoring;

• in case of NAC, it will compress and, then, forward EEG data;
• in case of SF, it will send only EEG features (i.e., frequency-domain or time-domain features).

At the MHC, according to the received data, signal reconstruction, feature extraction, classifi-
cation, or distortion evaluation can be performed, in order to accurately evaluate the state of
the patient.

Feature
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EN + Raw 
EEG Data
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ata

Classification Compressed 
EEG Data
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ata

EEG 
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ata
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Compression

EEG 
Acquisition
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Fig. 3. Proposed in-network processing tasks at the edge.

It is worth mentioning that for SF it is important to monitor patient’s state through sending
EEG features to confirm the status stability, whereas sending raw or compressed signal will
not add much information to the physicians as long as the state is stable (no further analysis
is needed in this case). While for NAC, it is important for the physicians to analyze the EEG
signal not only the features, so they can expect when seizures could happen. Thus, it is worth
to send the compressed data with acceptable level of distortion to the MHC. We also highlight
that the main modules required at the PDA to successfully implement the above scheme, are:
amplifier and sampling, Discrete Wavelet Transform (DWT) compression, Feature Extraction
(FE) components, quantization, encoding, and RF transmission modules.

4 Feature Extraction

Our first step toward the design of a reliable, yet energy-e�cient, system for epileptic seizure
detection and notification, consists in identifying a set of epileptic-related features, and apply
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feature extraction on the raw data collected at the PDA level. To this end, here we present two
possible approaches: time-domain and the frequency-domain feature extraction.

4.1 Time-Domain Feature Extraction (TD-FE)

Our goal is to select the most representative time features that can be used to distinguish be-
tween di↵erent EEG classes. As shown by the signal behavior in Fig. 2, the three classes under
study exhibit di↵erent mean and variance values, as well as di↵erent amplitude variations over
time. To account for the latter, it is crucial to consider as relevant feature the waveform length,
as a representation of the signal variation over time, i.e., the cumulative length of the waveform
over a given time window. In addition, Auto-regression (AR) coe�cients should be recorded as
they provide a smooth and compact representation of the signal spectrum. We therefore select
the following four statistical features:

Mean absolute value

µj =

PN
k=1 |xj(k)|

N
(1)

Variance

�
2
j =

PN
k=1 x

2
j(k)

N � 1
(2)

Waveform length

WLj =
N�1X

k=1

|xj(k + 1)� xj(k)| (3)

Auto-regression coe�cients

xj(k) =
pX

i=1

aixj(k � i) + ek (4)

where:

• N is the considered time window expressed in number of samples, namely N = 4096 samples,
• xj(k) is the k-th sample, k 2 {1, .., N}, referring to the generic patient j,
• ai represents the auto-regression coe�cient, p is the order of the auto-regression model, and
ek is the residual white noise (Phinyomark, Limsakul, & Phukpattaranont, 2009).

Accordingly, for a given patient, the above four time features will be representative of the
patient’s state over a time window of N samples.

4.2 Frequency-Domain Feature Extraction (FD-FE)

In this case, we first transform the gathered EEG signal into the frequency domain using the Fast
Fourier Transform (FFT) (Proakis & Manolakis, 2007), which has a complexity of O(N logN).
In the frequency domain, we observe that the di↵erent EEG classes have di↵erent amplitude
range (see Fig. 4) – an important characteristic that significantly facilitates discrimination
between the di↵erent classes.

The frequency spectrum of the EEG signal is therefore segmented into multi-subbands, each of
which includes a certain number of frequency components. Di↵erent subsets of these sub-bands
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can then be selected as feature vector (Ahirwal & londhe, 2012). Specifically, we use the following
five frequency sub-bands, named ↵, �, �, �, and ✓, corresponding to the frequency ranges 8�12,
12� 32, 0.2� 3, > 32, and 3� 8 Hz, respectively (Hussein, Mohamed, & Alghoniemy, 2015a).
Clearly, the more the frequency subsets that we consider, the larger the amount of data to
be processed (and then transmitted), which in turn increases the energy consumption while
providing higher classification accuracy.

5 Swift In-network Classification

We now present the second step toward a reliable, energy-e�cient detection and notification
of epileptic seizure: classification of the patient’s state. Specifically, we leverage the feature
extraction techniques described above, and then use fuzzy classification to detect EEG patterns
at the mobile edge. As mentioned before, such classification, named SIC (Swift In-network
Classification), allows the PDA to select the most suitable transmission option given the detected
state of the patient, i.e., to transfer to the MHC only features, compressed data, or all raw data.

In what follows, we first review some basic definitions from relational algebra as well as Formal
Concept Analysis (FCA), for analyzing data and formally representing conceptual knowledge.
Then we introduce an automated method to transform EEG signal into a fuzzy binary relation.
The resultant relation is decomposed into a set of optimal concepts to build association rules
for a fast, yet accurate, classification.

5.1 Using Knowledge Discovery in EEG Datasets

We start by introducing the basic notions used to induce a crisp relation from a fuzzy one
(Maddouri, Elloumi, & Jaoua, 1998), and to create a set of association rules from the obtained
crisp relation (Alja’am et al., 2006). Let O be the set of patients (i.e., objects) and P the
set of features (i.e., properties). The fuzzy relation on the universe U = O ⇥ P measures the
strength of the correlation between patients and features. In order to proceed further, we recall
the following formal definitions (Dubois & Prade, 2000)(Novak, 1989):

Definition 1. A fuzzy binary relation, R, on the universe U = O ⇥ P , is a fuzzy set defined
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on U , such that for any given pair (o, p), where o 2 O, p 2 P , µR(o, p) is the value of the
membership function within R, representing the strength of relation between o and p.

Definition 2. Let ↵ 2 [0, 1]. The ↵-cut of R, denoted by R↵, is a crisp binary relation such
that, for all (o, p) 2 U , µR↵(o, p) = 1, if µR(o, p) � ↵. Else, µR↵(o, p) = 0.

Definition 3. A rectangle of R↵, denoted by (A,B), is a Cartesian product of two subsets
A ✓ O, B ✓ P , such that A⇥ B ✓ R↵.

Definition 4. A rectangle (A,B) is said to be maximal under relation R↵ if A⇥B ✓ Â⇥ B̂ ✓

R↵ ) A = Â and B = B̂.

Definition 5. Amaximal rectangle (A,B) is said to be optimal if it maximizes the gain function.
The gain function of a rectangle (A,B) is given by: G(A,B) = |A| · |B|� (|A|+ |B|) where | · |

denotes the set cardinality.

Definition 6. The coverage of R↵ is defined as a set of optimal rectangles V under R↵ such
that any element (a, b) 2 R↵ is included in at least one rectangle of V .

Examples illustrating the above definitions can be found in (Maddouri et al., 1998)(Sarfraz,
2005).

As mentioned, in our case R represents the correlation between patients and features, which
can be transformed into a crisp binary relation, R↵, by setting a proper value for the threshold
↵. Thus, an optimal rectangle corresponds to the maximum number of patients that share the
maximum number of features can be obtained. Our aim is to obtain the minimal set of optimal
rectangles covering our binary relation.

To this end, given R↵, we adopt the decomposition of a binary relation presented in (Khcherif,
Gammoudi, & Jaoua, 2000), which is based on difunctional decomposition. Accordingly, first
the Fringe Relation of a binary relation is calculated. This fringe relation is, by definition, a
difunctional relation, and all its elements are isolated points. If (a, b) is an isolated point, by
definition it is included in one maximal rectangle only (Khcherif et al., 2000). It follows that
the maximal rectangles can be easily obtained by finding such isolated points.

We then select the optimal rectangles and consider that each of them is an equivalent represen-
tation of an association rule whose head is a class label (e.g., SF, NAC, or AC). Such rules are
used to build our classifier.

The steps we follow in order to extract the association rules from the EEG data and to classify
a patient’s state are exemplified in the next section.

5.2 Rule Extraction and Classification

For the sake of clarity, we describe the adopted procedure by referring to a toy example where
the data used as training set refers to nine patients (three for each class).

Step 1: Feature extraction. Consider the patients’ raw EEG samples that are available as
training set. We first extract features from the collected EEG samples, using the TD-FE or
FD-FE schemes presented in Section 4. As an example, Fig. 5 illustrates the features obtained
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Fig. 5. Step 1: EEG time-domain features computed over the data of nine patients belonging to the
three classes, namely, SF, NAC and AC.

Fig. 6. Step 2: Transformation of EEG time-domain features into fuzzy binary relation.

Fig. 7. Steps 3 and 4: Transformation of fuzzy binary relation into a crisp relation with ↵ = 0.3, and
identification of optimal rectangles (highlighted in colors).

when the TD-FE technique is applied. These features are computed using equations (1)-(4) over
the data of nine patients belonging to three classes of EEG data, namely, SF, NAC and AC.

The features are then assessed and selected. We do so by calculating the correlation of these
features with the di↵erent patient classes: the features that are highly correlated with a class
value (label), and low correlated with each other, are the most informative ones, and are thus
selected.

Step 2: From feature values to fuzzy relation. In order to transform the selected features
into a fuzzy binary relation, negative feature values are multiplied by �1 and all values are
normalized with respect to their maximum. The goal of the normalization is to map all selected
features from Fig. 5 onto non-dimensional values within the [0, 1] range. The result is reported
in Fig. 6.

Step 3: From fuzzy to crisp. We then transform the resultant fuzzy binary relation into a
crisp relation (see Definition 2), by properly setting the ↵ parameter (see Fig. 7).
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Step 4: Finding optimal rectangles. The crisp binary relation values are then decomposed
into a set of optimal rectangles (see Definition 6), using the algorithm presented in (Khcherif
et al., 2000) and discussed in the previous section. The result of this operation in our example
is shown in Fig. 7, where we note that there is an optimal rectangle for each patient class.

Step 5: From rectangles to rules. Based on the identified rectangles, we derive a set of
association rules that can be used to e↵ectively detect the class to which patients belong (see
Table 1). As mentioned above, in our example there are three optimal rectangles, one for each
class. Given a rectangle, we create a rule whose head is given by the corresponding class label
and the body is determined by the values taken by the selected features within the rectangle.
For instance, looking at Fig. 7, if all the patient’s features take the value 1 under the crisp
relation, then the patient belongs to the AC class.

However, this turned out into low classification accuracy while di↵erentiating between the two
classes SF and NAC. To enhance our approach, we therefore leverage what we called shadow
concept : we consider not only the feature values for which the relation R↵ is equal to 1, but
also the negation of the features, i.e., the feature values for which the relation is equal to 0. In
this case, both the features and the negation of the features of an optimal rectangle yield the
condition part (body) of the rule, while the class of the patient represents its consequent part
(head of the rule). Accordingly, we obtain three association rules (one for each class), as shown
in Table 1. For completeness, in Table 2 we also report the association rules that we obtain
applying the same procedure but using FD-FE instead of TD-FE.

Step 6: Classification. The obtained association rules are used to build a classifier at the
mobile edge (the PDA). They are therefore applied to the patient’s data in order to detect
his/her state. Recall that, based on the detected patient’s state, the PDA can select the most
appropriate transmission option.

With regards to classification, while applying the above procedure to our training and valida-
tion data set, we observed that the parameter ↵ has a strong impact on the accuracy of the
classification procedure. In order to ensure high performance, we therefore perform classification
in two stages, each using a di↵erent value of ↵ (namely, ↵1 and ↵2). At the first stage, we only
di↵erentiate between normal cases (class SF or NAC ) and abnormal cases (class AC ), using
the value ↵1. Then, if a normal case is detected, we move to the next stage, and, use ↵2 to
further di↵erentiate between SF and NAC patients. We remark here that the values of ↵1 and
↵2 are obtained during an o✏ine training phase using exhaustive search.

Table 1
Steps 5: Association rules extracted from the relation R↵ of Fig. 7 (i.e., when TD features are used).

Rule Class

If B1 = 0 AND B3 = 0 AND (B6 = 1 OR B8 = 1) Class Healthy

Then Class Healthy

else If B3 = 0 Class Non-active

Then Class Non-active

else If B1 = 1 AND B3 = 1 AND B6 = 1 AND B8 = 1 Class Active

Then Class Active
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Table 2
Association rules created using FD features.

Rule Class

If (all selected features = 0) Class Healthy

Then Class Healthy

If (at least one feature = 1 AND one feature = 0) Class Non-active

Then Class Non-active

If (all selected features = 1) Class Active

Then Class Active

6 Data Transfer

We now address the third and last component of our epileptic seizure detection system: the
transfer of the data related to the patient’s state toward the MHC.

Once classification is performed at the PDA through SIC, the PDA sends both a disorder noti-
fication and high-intensive monitoring data to the MHC if an emergency (i.e., AC) is detected.
Instead, it transfers a much smaller amount of data if a normal pattern is observed. In particu-
lar, the PDA saves energy, time, and memory space, by sending to the MHC compressed data
for the NAC and by transmitting only the relevant features for the SF. In the following, we
detail the adaptive mechanism we exploit for EEG data compression at the PDA.

Let us consider that, in the case of NAC, the PDA processes the EEG signal using the so-
called threshold-based Discrete Wavelet Transform (DWT) (Awad, Mohamed, El-Sherif, & Nasr,
2014), and that a Daubechies wavelet family is selected for this purpose (Hussein, Mohamed, &
Alghoniemy, 2015b). Given signal x, we can write: x =  ↵w where  is the Daubechies wavelet
family basis and ↵w is the vector of wavelet domain coe�cients 2 . Such coe�cients are then
filtered using a filter with length F = 2, where  is the order of the selected wavelet family.
The longer the filter length, the higher the number of output coe�cients. Next, according to the
threshold-based DWT, the filtered coe�cients that are below a predefined threshold are zeroed
(Mallat, 2008). It follows that the number of output samples generated from the threshold-based
DWT, hence the compression ratio, can be controlled by properly setting F as well as the value
of such threshold. Indeed, the compression ratio (expressed as percentage) is given by:

C =
✓
1�

M

N

◆
⇥ 100 (5)

where M is the number of output samples generated after the threshold-based DWT, and N is
the length of the original signal. The encoding distortion caused by the compression can then be
measured by the percentage Root-mean-square Di↵erence (PRD) between the recovered EEG
data and the original one, as

D =
kx� x̂k

kxk
· 100, (6)

where x and x̂ are the original and the reconstructed signal, respectively.

2 Note that, in the case of multistage DWT, these coe�cients are calculated recursively on multilevel
wavelet decomposition.
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Our experimental results, depicted in Fig. 8, confirm that the main parameters a↵ecting the
encoding distortion are the wavelet filter length (F ) and the threshold value. The plot shows
both the compression ratio and the distortion that are obtained by varying the two parameters.
As mentioned, given F , the higher the threshold, the larger the number of samples that are
zeroed, hence the higher the compression ratio. The reduced amount of data to be transmitted
clearly translates into a lower energy consumption but at the expense of an increased distortion.
When we fix the threshold value, an increasing F (i.e., a higher order of the Daubechies wavelet
family) leads to a larger number of output samples and a more detailed representation of the
signal, which reduces distortion. Interestingly, when the threshold value is small, the compression
ratio grows quite noticeably with increasing F since the generated coe�cients exhibit a smaller
value and are therefore zeroed when thresholding is applied (see the green curves in Fig. 8).
The price to pay for such better performance is an increased computational complexity. These
trends are in agreement with the well-known fact observed in practical system design: there
is always a tradeo↵ among energy consumption, system complexity and encoding distortion.
Importantly, our adaptive compression technique enables the PDA to establish the preferred
tradeo↵ by properly adjusting the encoder parameters, namely, F and the threshold value.
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Fig. 8. Distortion versus compression ratio. Di↵erent values of filter length (i.e., Daubechies wavelet
families) are considered.

7 Real-Time System Implementation

In this section, we present our implementation framework of a reliable energy-e�cient EEG
telemonitoring system. The main components and functionality of the implemented framework
(see Fig. 9) can be summarized as follow:

Data Source (i.e., Emulator). This module is responsible for acquiring and sending the
EEG signals to the PDA. Specifically, we focus on epileptic seizure detection leveraging the
EEG dataset in (Andrzejak et al., 2001). Thus, every 200 msec, the Emulator sends a “Medical
Record” to the PDA, i.e., our application-based packet. Each record contains 4096 EEG samples.

PDA (i.e. smartphone). It is responsible for communicating with the Emulator, receiving
and processing the data and forwarding the processed/compressed data to a health monitoring
server. The communication between the PDA and the server is performed through WiFi fol-
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Server

Emulator
Edge Nodes

Fig. 9. The implemented system for EEG telemonitoring.

lowing the IEEE 802.11 (WiFi) standard (IEEE, 2007). In general, for a good interpretation of
EEG data, large amount of data have to be gathered, analyzed, and transmitted to the remote
server, which imposes a significant load on the PDA in terms of energy consumption, latency,
and cost. Thus, performing in-network feature extraction, classification, and adaptive compres-
sion on the acquired data from Emotiv headset before transmission is essential. In this context,
we have developed and implemented an Android application at the PDA (see Fig. 11-(b)) that
performs the following tasks:

• Swift classification using proposed SIC algorithm in order to classify the acquired EEG signals.
• Threshold-based DWT compression, where the appropriate threshold can be adjusted based
on the patient’s state, desired compression ratio, application distortion threshold, and avail-
able energy budget. For implementing the DWT compression, we used the JWave library (i.e.,
a Java implementation of wavelet transform algorithms (Scheiblich, 2018)).

• Energy-e�cient transmission, where the PDA decides to send to the remote server raw data,
the extracted features (i.e., time features or frequency features), or compressed data, ac-
cording to the detected state, while sending an emergency notification for the patients with
abnormality.

Once the PDA receives a new medical record from the Emulator, it extracts the medical data and
performs the aforementioned tasks. Then, it packages the processed data with the appropriate
meta-data to create a new medical record shown in Fig. 10. This medical record contains: i)
Patient ID, to support multiple patients, (ii) sequence number, i.e., unique data identifier, (iii)
Modality, in case of considering multiple modality data, (iv) TimeStamp, for delay calculation,
(v) isRaw?, to indicate if the transmitted data is raw or processed data, (vi) Medical Data (the
processed EEG data), i.e., raw data, time/frequency features, or compressed data. Finally, the
PDA send the created medical record to the health monitoring server through WiFi.

Patient ID Sequence Number

Modality isRaw ? TimeStamp

Medical Data

Meta-data

Payload

Fig. 10. Transmitted Medical Record from the Emulator.

Health monitoring server. A server application is developed to receive the transmitted data
from PDA, then it performs: (i) data analysis and classification if it receives raw data; (ii) clas-
sification if it receives time/frequency features; (iii) data reconstruction, distortion evaluation,
and classification if it receives compressed data. The developed applications at the Emulator,

15



PDA, and health monitoring server are shown in Fig. 11

We remark here that the proposed EEG telemonitoring system allows remote real-time moni-
toring of patients without constraining their activities. Thus, the proposed system can be used
in several healthcare scenarios, e.g., the users can be patients at home or in a hospital, workers
in a factory, or sports players. Indeed, the collected data coming from di↵erent scenarios can
be processed at the Edge according to the specific requirements of each scenario/application,
hence providing ultimate flexibility, robustness, and quality of service.

(a) (b) (b)

Fig. 11. Developed applications at: (a) Emulator, (b) PDA, and (c) health monitoring server.

8 Performance Evaluation

In this section, we investigate the performance of our s-health system using the implemented
framework shown in Fig. 9. In the following, after presenting the experimental setup, we start
by comparing the accuracy level of the classification outcome obtained at the server, when
the di↵erent data reduction techniques are applied. Then, we focus on the performance of the
proposed SIC scheme compared with di↵erent machine learning classifiers from the literature.
Finally, we compare the performance of the implemented s-health system with a mobile-health
monitoring system in terms of energy saving, battery lifetime, and delay reduction.

8.1 Experimental Setup

In the implemented monitoring system, a Samsung Galaxy S4 smartphone and a server desktop
are used as a PDA and medical server, respectively, while the data source (emulator) is a
Raspberry Pi. Since it is di�cult to find a patient with seizures, we replaced the EEG headset
with a raspberry Pi, which is used as a data emulator exploiting the EEG data set in (Andrzejak
et al., 2001). The PDA is connected to both emulator and server via WiFi, where the three
devices are connected to a dedicated private WiFi network using Cisco router. We limit the
bandwidth on the server at a maximum rate of 4 Mbps using wondershaper application.

Our experiments start when the communication channels are established between the emulator,
PDA, and server. Then, the medical records (Fig. 10) are generated from the emulator, and
sent towards the edge node. Each medical record contains 4096 EEG samples and is 32 KB in
size. The experiment ends when the server receives and acknowledges 18000 medical records.
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8.2 Feature Extraction and Data Reduction: A Comparative Study

We first consider the FD-FE technique and the classification accuracy (CA) that it can yield.
In FD-FE, the EEG signal represented in the frequency domain is segmented into multiple
sub-bands, each sub-band having a number of frequency components. Di↵erent subsets of these
sub-bands can be selected as feature vector. Doing so we can control the amount of data cor-
responding to the selected features and, hence, the amount of transmitted data (see Table 3).
Here we assume that each sample/frequency coe�cient is represented by one byte.

Fig. 12 shows the ratio of the level of CA obtained with increasing features vector length,
expressed in percentage. In general, the larger the amount of transmitted data, the higher
the CA, except for some cases where the added sub-bands yield a performance decrease. The
reason for this behavior is that, in some cases, the added data may “confuse” the classifier
rather than help (see Table 3). On the contrary, with increasing length of the transmitted
data, the consumed energy in the transmission process always increases. Thus, an optimal
tradeo↵ between classification accuracy and energy consumption can be established, based on
the application’s requirements, patient’s state, and energy availability at the PDA.
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Fig. 12. Frequency-domain feature extraction: classification accuracy as the length of transmitted data
varies.

The comparison among di↵erent data reduction techniques including TD-FE, FD-FE, downsam-
pling (where the EEG sampling rate fs varies), and the proposed adaptive lossy compression is
presented in Table 4. In the case of data compression, we present the reduction in CA compared
to the case of no compression (i.e., when raw data is transmitted), which yields a CA equal to
86.67%. Note that classification based on raw data in general leads to worse performance than
in the case where TD or FD features are used. The reason is again that too much redundant
information may mislead the classifier rather than improve its accuracy.

We observe also that the higher the sampling rate (i.e, number of sensed EEG samples per
second), the larger the amount of transmitted data and the higher the accuracy. The only
remarkable exception is represented by TD-FE: in this case (i) the amount of transmitted data
does not depend on the sampling rate and (ii) we can achieve an accuracy of 95.56% while
transmitting only 13 bytes instead of 4096. When, instead, compressed data is sent by the PDA
to the MHC, increasing the compression ratio leads to a slight decrease in the CA with respect
to the case where raw data is transferred, while significantly reducing the amount of transmitted
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Table 3
Selected sub-bands and corresponding amount of transmitted data

Frequency sub-bands Transmitted data

� � ↵ ✓ � length [B]

0 0 0 0 1 133

0 0 0 1 0 236

0 0 0 1 1 369

0 0 1 1 1 557

0 1 1 1 1 1501

1 0 0 0 1 2719

1 0 1 0 0 2774

1 1 1 1 0 3954

1 1 1 1 1 4087

data. Seemingly to the e↵ect of increasing the compression ratio, lowering fs decreases the length
of transmitted data at the expense of a reduced CA. However, it is worth noticing that in some
cases a higher compression ratio, or smaller fs, still yields satisfactory values of CA. The reason
is that, in such cases, the missed data is actually redundant thus not beneficial in terms of CA.

At last, comparing FD-FE to TD-FE and data compression, we observe that FD-FE can provide
the best CA while o↵ering significant flexibility in terms of data length: by properly selecting
the subset of frequency sub-bands, the desired tradeo↵ between amount of transmitted data and
CA can be easily obtained. However, while data compression still allows signal reconstruction
at the MHC, FD-FE as well as TD-FE are irreversible: the original EEG signal cannot be
reconstructed from its features, which may not be acceptable for some applications.

Table 4
Classification accuracy using compressed data relative to transferring raw data (which yields
CA=86.67%), downsampling, frequency-domain features, and time-domain features

Compressed Loss in Data length [B] CA FD-FE CA TD-FE CA

data length [B] CA [%] /fs [sample/s] [%] length [B] [%] length [B] [%]

4096 0 4096/128 86.67 4087 98.89 13 95.56

2384 3.3 2048/64 86.67 3954 97.78 13 95.56

1601 1.17 1024/32 84.33 1501 97.78 13 95.56

1239 0.9 819/25.6 81.33 557 96.67 13 95.56

819 2.37 682/21.3 85.67 236 93.3 13 95.56

645 1.67 585/18.3 86.3 133 80.3 13 95.56

8.3 Classification Evaluation

We now focus on the performance of the proposed SIC algorithm, and illustrate the e↵ect of
the ↵-cut on the obtained CA at the PDA level. We evaluate the performance of our SIC
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algorithm when TD-FE and FD-FE are applied. Recall that for SIC-TD we use the TD-FE
scheme presented in Section 4.1 and the association rules described in Table 1, while for SIC-
FD, we use the feature extraction technique introduced in Section 4.2 and the association rules
presented in Table 2. Also, we remark that, when working in the frequency domain, we get a
much longer feature vector than in the case of TD-FE. Thus, for the sake of fairness, for FD-FE
we apply the association rules only to the first 10 features.

Fig. 13 depicts the obtained CA as the value of ↵ varies, for the three EEG classes (i.e.,
SF, NAC, and AC). Herein, we classify all 300 subjects by running the procedure only once
(one-stage procedure). Also, we evaluate the CA of the proposed SIC algorithm with di↵erent
machine learning classifiers, including random decision forests (RandomForest), Naive Bayes
(NaiveBayes), k-Nearest Neighbors (IBk), and classification/regression trees (REPTree). Each
of these classifiers is run using the default configuration in WEKA software with 5-fold cross-
validation (Aksenova, n.d.). In SIC, when ↵ is small, most of the obtained normalized features
are equal to 1, while at high values of ↵, most of the obtained features are equal to 0. In
both cases, our classifier cannot accurately di↵erentiate between the patients’ classes. In the
middle region, when ↵ ranges between 0.1 and 0.4, the value of the obtained features starts to
vary between 1 and 0, which helps the SIC classifier to discriminate between di↵erent classes
yielding a high accuracy. The best performance is obtained with SIC-TD and for ↵ around
0.3, which corresponds to a CA of 82%. With SIC-FD, the best ↵ is 0.27 leading to a CA of
64%. As mentioned, we found that Class SF and NAC exhibit many similarities, which result
in a relatively low CA while trying to discriminate between these two classes. Thus, in order to
enhance the performance of the SIC algorithm, we switch to a two-stage classification process
that allows us to select two di↵erent values of ↵ (namely, ↵1 and ↵2). The results for the SIC
algorithm are depicted in Fig. 14 and Fig. 15.
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Fig. 13. Impact of ↵ on the classification accuracy, for the three EEG classes.

In particular, Fig. 14 shows the results of the first classification stage as ↵1 varies. In this stage,
we classify the patient’s state as normal and abnormal based on the observed EEG pattern.
The former corresponds to class SF and NAC while the latter to class AC. The optimal value
of ↵1 for SIC-TD is now around 0.21 with CA equal to 98.3%, while it is 0.17 with a CA of 83%
for SIC-FD.
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For normal EEG patterns, we then proceed with the second stage using ↵2 so as to achieve high
CA between the SF and the NAC class. As shown in Fig. 15, in this case the optimal ↵2 is 0.36
(with CA 80%) and 0.27 (with CA 75%) for SIC-TD and SIC-FD, respectively.
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Fig. 14. E↵ect of varying ↵1 on classification accuracy of normal/abnormal EEG patterns.
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Fig. 15. Classification accuracy while discriminating between class SF and class NAC, as ↵2 varies.

In conclusion, the advantages of the proposed SIC scheme are three-fold. First, its high clas-
sification accuracy and low complexity, which makes it amenable to be implemented in any
smartphone or PDA. Second, in case of emergency, a quick emergency notification signal is
triggered at the local processing unit (i.e., the PDA) as well as at the MHC, thanks to our swift
classification technique. Third, in the case of normal EEG patterns, SIC can send only the EEG
features thus saving a significant amount of energy at the PDA.

8.4 Energy and Delay Reduction

Here, we investigate the benefits of the proposed s-health system in terms of energy saving and
delay reduction – indeed, reducing PDA’s energy consumption due to continuous monitoring is
one of the main objectives of this work. In particular, we compare the proposed s-health system
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with the mobile-health monitoring system (m-health) and remote monitoring system (RM). M-
health refers to a system that acquires and transmits EEG signals from wireless sensors to the
PDA, which compresses and forwards the acquired data to the server/cloud. On the contrary,
RM system conveys all processing and analysis tasks to the server, while a PDA is used as
a communication hub that acquires and forwards the data from wireless sensors to the server
(Menshawy et al., 2015). In these experiments, we analyze power usage and PDA’s battery
consumption using Battery Historian (“Analyzing Power Use with Battery Historian”, 2018).

In Table 5, we conducted set of experiments considering a practical scenario where a PDA (i.e.,
smartphone) with full battery is running our monitoring application in parallel with the other
default applications (e.g., Google services and Android system) until it runs out of battery.
Also, it is assumed that 99% of the acquired EEG signals belong to SF, while 1% belong to
AC. Table 5 show the percentile of battery consumption at the PDA due to the processing and
transmission of our monitoring application, running time that PDA takes until it runs out of
battery, and monitoring time which is the time of continuous monitoring (i.e., actual time of
the sensed data sent from the emulator to the PDA).

These experiments demonstrate the e�ciency of s-health and its scalability in increasing mon-
itoring time compared to RM, while decreasing battery consumption with respect to both RM
and m-health. Furthermore, leveraging the proposed s-health mitigates network overloading,
hence, the monitoring time is almost the same as running time, This means that the PDA is
able to continuously monitor patient’s state during the whole run time. On the contrary, using
RM and m-health (40%), there is a significant di↵erence between monitoring time and running
time due to the network congestion that results from continuously sending large volumes of
data (see Table 5). Thus, the proposed s-health system has the ability to deal with a growing
size of acquired data in an energy-e�cient manner.

Table 5
PDA battery consumption and running time, as well as monitoring time of s-health, m-health (with
C = 40% and C = 60%), and RM systems.

Monitoring Battery Running Monitoring

system consumption [%] time [hours] time [hours]

RM 14.71 13.5 4.5

m-health (40%) 17.62 10 8.6

m-health (60%) 16.76 11.25 10.5

s-health 11.2 10.62 10.36

To further demonstrate the benefits of the proposed s-health system in terms of energy saving,
Fig. 16 is presented. This figure assesses the performance of s-health, in terms of PDAs battery
lifetime, compared to m-health (with C = 40%) and RM. Note that, while obtaining these
results, we set the compression ratio for s-health in case of NAC class to 40%, while considering
that 10% of the acquired EEG signals belong to AC, 20% belong to NAC, and 70% belong
to SF. Also, we considered the battery consumption due to our monitoring application only
(neglecting battery consumption due to other running applications on the smartphone). Our
results clearly show that s-health greatly outperforms RM and m-health with 60% and 30%
extension in battery lifetime, respectively. We remark that the value of the compression ratio
that we selected, represents a good tradeo↵ between transmission energy consumption and signal
distortion (see Fig. 8). However, other values could be considered as well, depending on the
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application requirements, patient’s status, wireless channel conditions, and energy availability
at the PDA.
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Fig. 16. Battery lifetime of s-health, m-health (with C = 40%), and RM.

Finally, Fig. 17 demonstrates the benefit of s-health in reducing average transmission delay.
Herein, transmission delay refers to the latency experienced by data from its receiving time at
the PDA until its receiving time at the server. It is clear that reducing the amount of transmitted
data to the server using s-health has a significant impact on avoiding network congestion, hence,
decreasing average transmission delay by more than 90% with respect to RM.

We remark that the reduction in energy consumption and delay using s-health depends on the
states of the patient, since in case of emergency (i.e., active seizures) the raw data should be sent
to the MHC for intensive monitoring. However, the probability of AC is practically less than 1%,
while seizures usually last for less than 3 minutes, after that the patient can turn to normal state
for a long time before seizures coming back. Also, people who are more likely to have seizures
and epilepsy (e.g., babies with abnormal areas in the brain, people with traumatic injury or
serious brain injury, etc.) are usually put under monitoring after getting free of seizures for one
to two years. In such cases, the proposed s-health system turns to be an e↵ective solution for
continuous monitoring of the patients’ state in an energy-e�cient manner and without limiting
their daily activity.

9 Conclusion

In this paper, we investigated wireless EEG telemonitoring system and presented a full-fledged
framework for seizures detection and notification. We presented a smart health monitoring
system for detecting a patient’s state that exploits feature extraction and fuzzy classification
to provide high accuracy, while being suitable for implementation using mobile user devices.
Then, depending on the patient’s state, the proposed system can exploit di↵erent data reduction
techniques, in order to reduce the amount of transmitted data. In particular, under normal
patient’s conditions, a significant amount of energy can be saved by transmitting properly
compressed data, or by sending only the most representative EEG features that are pertinent
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Fig. 17. Transmission delay of the s-health, m-health (with C = 40% and C = 60%), and RM.

to seizures detection. Our results show that, in our system, time-domain feature extraction
provides very high classification accuracy while minimizing the amount of transmitted data and
energy consumption at the PDA. In particular, the amount of transferred data can be reduced
from 4096 to 13 samples per patient, while maintaining high seizures detection performance
with a classification accuracy above 98%. Frequency-domain feature extraction, instead, exhibits
high flexibility, yielding the best trade-o↵ between accuracy and energy consumption. Finally,
adaptive data compression is a very valuable option whenever more data is needed at the
mobile health center for further processing: compared to transmitting raw data, it reduces
energy consumption and, unlike feature extraction techniques, it enables signal reconstruction
at the mobile health center. In addition to that, the proposed s-health system has proven its
scalability and e�ciency in handling large volumes of acquired data, extending battery lifetime
by 60%, and decreasing average transmission delay by 90% with respect to conventional remote
monitoring systems that ignore data processing at the edge.

We remark that the proposed system is data-specific. Hence, the obtained reduction in trans-
mission delay and energy consumption depends on the characteristics of the acquired data.
However, we argue that designing a smart system to be specific to a certain type of data is fully
consistent with the nature of IoT devices, which mostly acquire one type of data.

In our future work, multi-radio and multi-technology Edge gateway can be considered to locally
process data coming from various data sources. Such Edge gateway can leverage the available
network resources across di↵erent radio access technologies in order to increase the e�ciency
and scalability of the developed smart system.
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