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Abstract- Modern embedded systems must execute a vari-
ety of high performance real-time tasks, such as audio and
image compression and decompression, channel coding and
encoding, etc. High hardware design and mask production
costs dictate the need to re-use an architectural platform for
as many applications as possible. Reconfigurable platforms
can be very effective in these cases, because they allow one
to re-use the architecture across a variety of applications.

The efficient use of a reconfigurable platform requires a
methodology and tools supporting it in order to extensively
explore the hardware/software design space, without requir-
ing developers to have a deep knowledge of the underlying
architecture, since they often have a software background
and only limited hardware design skills.

This paper describes a tool that fits into a complete de-
sign flow for a reconfigurable processor and that allows
one to efficiently transform a high level specification into
a lower level one, more suitable for synthesis on the re-
configurable array. The effectiveness of the methodology
is proved by a complete implementation of a turbo-decoder.

I. I NTRODUCTION

Reconfigurable computing is emerging as a promising
means to tackle the ever-rising cost of design and masks for
Application-Specific Integrated Circuits (ASIC). Adding a
reconfigurable portion to a Commercial Off The Shelf IC
enables it to potentially support a much broader range of ap-
plications than a more traditional ASIC or microcontroller
or DSP would. Moreover,run-time reconfigurabilityeven
allows one to adapt the hardware to changing needs and
evolving standards, thus sharing the advantages of embed-
ded software, with higher performance and lower power
than a traditional processor, thus partially sharing the ad-
vantages of custom hardware.

A key problem with dynamically reconfigurable hard-
ware is the inherent difficulty of programming it, since nei-
ther the traditional synthesis, placement and routing-based
hardware design flow, nor the traditional compile, execute,
debug software design flow directly support it. In a way, dy-
namic reconfiguration is a hybrid between software, where
the CPU is “reconfigured” at every instruction execution
and memory is abundant, and hardware, where reconfigu-
ration occurs seldom and very partially, and memory is a
scarce resource.

In developing a reconfigurable architecture, a key as-
pect that deeply impacts its usability and success is who

will be using it. The designer must clearly identify the ar-
chitecture’s target users to envision a design methodology
that optimally fits their needs. We consider two main user
categories:

1. Hardware-orientedusers have the hardware knowl-
edge necessary to program a reconfigurable unit and
extract maximum performance from it. They use soft-
ware on a microprocessor for flexibility, but signifi-
cant portions of the functionality are implemented as
hardware co-processors. They seek complete control
over the implementation, also having higher design
and fabrication costs.

2. Software-orientedusers seek a high level abstract
programming model that hides architectural details
through an optimizing compilation tool chain. They
are typically not able to perform detailed hardware
design and are mostly interested in speeding up their
software in some computation-intensive kernels, by
mapping part of them to the reconfigurable hardware
unit. However, they would prefer an automated tool
with limited user intervention, at the cost of lower
performance gains.

The architectures that derive from the two use cases
above are profoundly different in the way the processor and
the reconfigurable unit are coupled. In the first one, they are
separated and communicate using some standard or dedi-
cated bus, much like co-processors (e.g. [10] and several
commercial examples from Altera, Triscend and Xilinx).
The overhead due to the communication is balanced by im-
plementing long computations, corresponding to complete
functional blocks, on the reconfigurable hardware, and by
limiting their interaction. In the second case, the reconfig-
urable unit can be tightly coupled with the processor, be-
coming a new function unit in the datapath (e.g. [11–13]).
Communication is performed through multi-port register
files that are concurrently accessed by both the reconfig-
urable and the traditional functional units of the proces-
sor. Kernels that are implemented in hardware are typically
smaller that in the hardware oriented case, and can be con-
sidered as dynamic extensions of the processor instruction
set.

We will concentrate on the software-oriented use, where
the reconfigurable unit is part of the processor data-path.
In collaboration with a design group at the University of
Bologna, we developed a complete design flow, including



methodology and compilation tool chain, addressing the in-
struction set HW/SW codesign problem for the XiRisc ar-
chitecture, that was designed by that group and is described
in [3]. The processor is based on a 32-bit RISC (DLX) ref-
erence architecture. However, both the instructions set and
the architecture have been extended to support:

• Dedicated hardware logic to perform multiply-accu-
mulate calculation and end-of-loop condition verifi-
cation, by using special DSP-like instructions added
to the standard DLX ISA.

• A double data-path, with concurrent VLIW execution
of two instructions. The added data-path is limited
to only arithmetic and logic instructions, and cannot
directly access the external memory subsystem.

• An FPGA, called PiCoGA, to implement in hard-
ware special kernels and instructions. Each cell may
store up to 4 configurations (called layers) that can be
switched in one clock cycle when needed. The FPGA
can be dynamically reconfigured at run-time without
stopping its operation, as long as the layer which is
being reprogrammed is not used.

The flow, presented in [14], starts from a system level
specification (usually as a software program) of the ap-
plication, and partitions it into software and hardware do-
mains to achieve the best performance in terms of speed and
power, while satisfying constraints imposed by the limited
resources available on the target platform architecture.

For simulation and profiling purposes, the entire system
specification is considered as a software program that goes
through a standard compilation flow, leveraging available
and well established tool chains used in software develop-
ment. However, the tool chain has been modified so that
the hardware domains that have been identified during par-
titioning can be especially treated to take into account their
performance. Different solutions can be quickly evaluated
to explore the design space.

For synthesis purposes, while the software domain can
be compiled with the very same tool chain used during de-
sign space exploration, the specification of those portions
that are to be downloaded onto the PiCoGA must be trans-
formed into a specification that is more suited for logic syn-
thesis, placing and routing. The XiRisc processor already
has a hardware synthesizer that, starting from a description
given in a simplified subset of C, called Griffy C [1], gener-
ates a bit stream to program the PiCoGA. However, it lacks
an automated and efficient tool to map a high level specifi-
cation into a Griffy C program, taking into account the re-
strictions and the semantic rules of the language. The goal
of this paper is to present one such tool.

The paper is organized as follows: in section II the
Griffy C back-end compiler is briefly introduced. Sec-
tion III presents the front-end tool. Experimental resultsare
shown in section IV and finally section V concludes the pa-
per.

II. GRIFFY BACK-END COMPILER

The Griffy back-end compiler [1] extracts and maps a pipe-
lined DFG from the input program on the FPGA unit of

the XiRisc, called PiCoGA [2–4]. The Data Flow synchro-
nization is handled directly by the PiCoGA control unit,
using explicit stage enable signals. It reduces the amount
of hardware resources required to implement a fragment of
high-level code, and reduces the complexity of the mapping
phase.

Griffy C is the input language of the Griffy back-end
compiler. It is a subset of ANSI C, which supports only
the PiCoGA-synthesizable subset of the C operators. At the
same time, it enhances C with new semantic rules aimed to
simplify the mapping onto the PiCoGA.

Griffy C is based on three basic assumptions:

• DFG-based description. No control flow (branch or
function calls) are supported, only conditional assign-
ments (?:) implemented using standard multiplexers;

• single assignment. Each variable is assigned exactly
once to easily resolve hardware connection;

• operation dismantling. Only single operator expres-
sions are supported.

Variables (static and dynamic) can use any standard C
integer type, while their bit size can be directly specified us-
ing specific#pragmadirectives. Operator width is derived
automatically from operand sizes.

Griffy C can be manually written at different levels
of abstraction or automatically generated by an optimizing
compiler from a high level description of the program. The
latter flow is detailed in section III.

III. T HE OPTIMIZING C FRONT-END

The quality of the Griffy-C synthesis to the PiCoGA de-
pends much on the quality of the Griffy C source. However,
the conversion of the C source to good Griffy C is often
tedious and error prone. Moreover, the conversion should
be repeated whenever the C source changes, for example to
investigate different HW/SW partitions.

The optimizing C front-end,gcfe, that is described in
this paper aims to provide a path for an automatic, good
quality conversion process from C to Griffy C. The front-
end is based onImpact, an optimizing C compiler [5],
whose scalar software optimizations are used virtually un-
changed. The transformations and optimizations specific
for the generation of Griffy C follow, because they trans-
form the Intermediate Representation (IR) of the program
up to the point that it is no longer compatible with most
Impact software optimizations.

The following sections will present briefly the main pro-
cessing steps for IR conversion to Griffy C, in the order they
are applied: calling convention bypass, conversion to static
single assignment (SSA), source- and destination-propaga-
tion, IF-to-MUX conversion, Look-Up Table (LUT) gener-
ation, and size calculation for variables.

A. Calling convention bypass

This step attempts to remove from the IR all artifacts related
to target calling convention, such as the code related to func-
tion arguments passed through stack, etc. New local vari-
ables may be created and their usage propagated throughout
the function code in place of stack references, etc.



B. Conversion to static single assignment format

Static Single Assignment (SSA) is a representation of the
program, in which every variable is assigned exactly once
[6–9]. This constraint is requested by the Griffy back-end.

SSA conversion is performed by scanning in topologi-
cal order all instructions looking for duplicate assignments
to the same variable. Whenever a duplicate assignment is
found, the assignment target is given a new name, which
is then used in place of the old name for all subsequent in-
structions.

v = 0;
if (a > 0)

v = 5;
else

if (b > 0)
v = 7;

=⇒

v = 0;
if (a > 0)

v1 = 5;
else

if (b > 0)
v1 = 7;

else
v1 = v;

Figure 1. SSA conversion example:v is renamed tov1

Since the renaming on thethen and elsebranches of
conditional statements is performed independently, partic-
ular care should be taken to enforce the same exit name for
both branches. This is done by setting the target of the last
assignment to a given variable on each branch to the same
name, which becomes the new name of that variable after
the branch (figure 1). This mechanism emulates the func-
tionality of the classicalφ node used for such a merging by
other SSA implementations. Theφ node must be avoided
here in order to preserve the IR compatibility of the modi-
fied IR with other Impact algorithms.

C. Source and destination propagation

Source propagationattempts to find out what is the real
value of a variable, by traversing backward the data flow
looking for an instruction that changes the value of the vari-
able of interest. The value found replaces all subsequent
uses of the variable and the variable itself gets removed later
on. Source propagation will go across memory references.

Typically, Impact’s optimized IR will not have such in-
termediate variables, unless they are required by the target.
For example, this mechanism is used to remove part of the
calling convention code (see figure 2).

r1 = 5;
...
f(r7, r1);

=⇒ f(r7, 5);

Figure 2. Source propagation:r1 replaced with its value

Note thatf() above denotes a Griffy C intrinsic function
(Griffy C does not support user function calls).

Destination propagationattempts to do a similar task by
removing intermediate variables in the data flow between
the place where a variable is defined and where it is used.

D. IF-to-MUX conversion

Somewhat similar to SSA, this is a complex IR transfor-
mation. It operates on SSA-compliant code and attempts to
convert all branch instructions that set the same variable into

a series of speculative executions followed by a MUX to se-
lect the proper value based on the truth value of the branch
boolean condition (figure 3).

v = 0;
if (a > 0)

v1 = 5;
else

if (b > 0)
v1 = 7;

else
v1 = v;

=⇒

r1 = a > 0;
r3 = 5;
r2 = b > 0;
r4 = 7;
r5 = v;
r6 = r2 ? r4 : r5;
v1 = r1 ? r3 : r6;

Figure 3. IF-to-MUX conversion example

Griffy C requires MUX inputs be variables. The inner-
most branches are converted first and their result(s) are used
in the higher level branches, based on the scope of the vari-
ables. For clarity, the C-level names were preserved in the
example code.

This transformation converts the whole program to one
single basic block (BB), with speculative executions for all
paths and result selection using MUXes.

E. Look-up table generation

Using Griffy C extensions many hardware-specific elements
can be expressed in an efficient way. Look-up tables (LUTs)
represent an effective way to store constants in the hard-
ware.

ThegcfeLUT generation algorithm extends the IR with
specific constructs to represent the numeric constants as re-
quired by the Griffy back-end. Figure 4 depicts a simple
example, showing how a vector of constants is converted to
its Griffy C model, using the LUT definition (@) and con-
catenation (#) extensions.

char
f(unsigned char i)
{

static char
v1[5] = {

1,2,3,4,5
};

return v1[i];
}

=⇒

char
f(unsigned char i)
{

int r1;
int r2;
int P15;
r1 = i @ 0x1b1;
r2 = i @ 0x5;
P15 = r2 # r1;
return P15;

}

Figure 4. LUT generation example

The input variablei is used to select the output bits from
the two LUTs, which get stored in the variablesr1 andr2.
Next, the bits are concatenated to generate the proper output
result. This example uses LUTs with two bits output, but
gcfeis able to optimally select the type of the LUT to best
map the constants in hardware.

F. Automatic size calculation for variables

gcfeprovides support for freely interleaving automatic dat-
apath size calculation with manual definition of operand
sizes. To this purpose the designer can specify the size of
the input and intermediate operands declared in the C source
using a special#pragma construct. The Griffy C model



char f(unsigned char ia)
{

static char v1[5] = { 1, 2, 3, 4, 5 };
return v1[ia] + 5;

}

char f(unsigned char p0)
{

int r4;
#pragma attrib r4 SIZE=2

int r5;
#pragma attrib r5 SIZE=2

int r3;
#pragma attrib r3 SIZE=4

int P15;
#pragma attrib P15 SIZE=5

r4 = p0 @ 0x1b1;
r5 = p0 @ 0x5;
r3 = r5 # r4;
P15 = r3 + 0x5;
return P15;

}

Figure 5. Datapath size definition

produced defines the size for every variable using the same
notation (figure 5).

The algorithm used bygcfesets the size of output vari-
able of operations wide enough to accommodate any possi-
ble output value. This conservative approach may be occa-
sionally too large an estimate. The size can be easily con-
strained to tighter packing by annotations in the C source
whenever the value range is known and fits into a smaller
size.

IV. EXPERIMENTAL RESULTS

We considered the specification of a turbo-decoder that fol-
lows the 3GPP recommendations for UMTS cellular phone
systems [16]. We assume to receive a bit stream from a Re-
cursive Systematic Convolutional encoder, with an 8 state
trellis and rate equal to1/3 (i.e. three bits are transmitted
for each bit in the message, two of them being parity bits).

Turbo-decoder high computational demands restricted
its application until recently, when enough computational
power has become widely available. For this same reason
several source code optimizations with respect to its text-
book representation are necessary to obtain an efficient and
cost-effective implementation.

The flow described in this paper aims to enable a soft-
ware developer to obtain an optimized implementation by
profiling, optimizing the code, and finally selecting which
code fragments benefit most by being implemented as Pi-
CoGA operations.

The decoder implements an iterative algorithm, repeated
until convergence is achieved. The most computationally
intensive components of an iteration are: 1) trellis metrics
computation (γ); 2) forward probabilities computation (α);
3) backward probabilities computation (β); 4) maximum
likelihood ratio computation (LLR).

Each of the above computation kernels was manually
mapped on PiCoGA. The manual mapping is described

in [15] and extensively exploits the word-level parallelism,
the logic optimization of combinational operators, carefully
optimizes data memory allocation to minimize data fetches,
and packs multiple operand in a single register. Operand
and operator size was also minimized, by analyzing the re-
quired precision on output values and the available precision
of input values.

The goal of this experiment was to evaluate howgcfe
and the Griffy compiler compare to manual optimizations
when implementing the turbo decoding algorithm on the Pi-
CoGA.

For the sake of simplicity, we chose to analyze only the
butterfly kernel, which is the main computational bottleneck
of the turbo decoding algorithm and is mainly used in for-
ward and backward probability computation.

The manually extracted best implementation of the but-
terfly kernel is able to process six 16-bit inputs packed in
three 32-bit registers, producing four 16-bit outputs packed
in two 32-bit registers. Operand packing uses 16 bits even
when single operand precision could be smaller (e.g. 12 or
10 bits).

There is no inter-dependency among the two threads of
computations, since output values are computed using two
parallel data paths that share only input values.

alpha_in_0 = geth(in0); //S0
alpha_in_1 = getl(in0); //S1

a = sat_sum(alpha_in_0, gamma0); //S0 + S0/0
b = sat_sum(alpha_in_1, gamma1); //S1 + S1/1
if (abs(a - b) <= T)

corr = ((T - abs(a - b)) >> S);
else

corr = 0x0;
//S0 = max(S0+S0/0, S4+S4/1)
alpha_out_0 = max(a, b);
alpha_out_0 = sat_sum(alpha_out_0, corr);

a = sat_sum(alpha_in_0, gamma1); //S0 + S0/1
b = sat_sum(alpha_in_1, gamma0); //S1 + S1/0
if (abs(a - b) <= T)

corr = ((T - abs(a - b)) >> S);
else

corr = 0x0;
//S0 = max(S0+S0/0, S4+S4/1)
alpha_out_1 = max(a, b);
alpha_out_1 = sat_sum(alpha_out_1, corr);

Figure 6. Butterfly kernel of turbo-decoding.

Each thread of computation (figure 6) contains multi-
ple instances of the saturated sum operator described later,
and of theabs andmax computations, specified with the
ternary ?: C operator.

The exact bit size of each input value was annotated with
a#pragmadirective to allow thegcfeto accurately compute
the required sizes of intermediate operand and operators.

The functional model obtained fromgcfe processing
was successfully compiled and tested for correct functional-
ity. Then it was processed by the Griffy synthesizer, which
produced the size and cost estimation of the automated im-
plementation of the butterfly operator on the PiCoGA.

Table 1 presents the results of the automatic (gcfeand
Griffy) and the manual implementation of the butterfly op-



TABLE 1. Comparison between manual and automated im-
plementation

Implementation
automatic manual

issue delay: 2 2
input to output latency: 14 10
PiCoGA rows: 58 20

erator. Of particular importance are the close results for the
issue delay and the latency, given that the manual design is
very labour-intensive (several man-weeks were required for
optimizations.)

Moreover, analyzing the Griffy output we identified the
main issues that can improve the automatic results.

The ternary operator (?:) used inabs took 1 PiCoGA
row for manual and 3 for automatic, resulting for the latter
in an additional 6 PiCoGA rows and 3 latency clocks.

The saturated sums defined as:

#define sat_sum(a,b) \
((((int)(((a)<<16)>>16)+\
(int)(((b)<<16)>>16))>\
((int)0x00007FFF))?(0x7FFF)\

:\
((((int)(a)+(int)(b))<\

(int)0xFFFF8000)?(0x8000)\
:\

((a)+(b))))

required 1 row for manual and 3 rows for automatic (using
shift and adders). Such operators are better implemented
using library functions, since some C constructs are very
difficult to automatically implement efficiently as combina-
tional logic.

V. CONCLUSION

The results presented in this paper were obtained using
the gcfeand Griffy compilers almost without effort, start-
ing from a manually optimized C model. No extensive
hardware design experience was required, as it was needed
to obtain the manual implementation. Adding just a few
#pragmadirectives to the C model lead to a very good im-
plementation on the PiCoGA of the selected computational
kernel. We consider the proposed approach as very effec-
tive, well suitable for exploring the design space that is re-
quired in the early design phases, before investing more re-
source on manual optimization.

The level of optimization achieved by the synthesis flow
is comparable with that offered by software compilers for
digital signal processors (DSP). In both cases, manual opti-
mization can reduce cost and improve performance by fac-
tors ranging from 10 to 50%, depending on the application,
the compiler, and especially the processor architecture. We
find our results very comforting in this respect, firstly be-
cause the gap is not excessive and it can be further reduced.
Secondly, it is quite likely that the proposed flow will find
good acceptance for design space exploration and, subse-
quently, for complete synthesis of implementations of hard-
ware kernel acceleration on reconfigurable processors.
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