
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Securing bitstream integrity, confidentiality and authenticity in reconfigurable mobile heterogeneous systems / Carelli,
Alberto; Cristofanini, Carlo Alberto; Vallero, Alessandro; Basile, Cataldo; Prinetto, Paolo; Di Carlo, Stefano. - STAMPA. -
(2018), pp. 1-6. (Intervento presentato al convegno IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR 2018) tenutosi a Cluj-Napoca (Romania) nel 24-26 May 2018) [10.1109/AQTR.2018.8402795].

Original

Securing bitstream integrity, confidentiality and authenticity in reconfigurable mobile heterogeneous
systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/AQTR.2018.8402795

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2711796 since: 2018-09-06T16:18:24Z

Institute of Electrical and Electronics Engineers Inc.

Securing bitstream integrity, confidentiality and
authenticity in reconfigurable mobile heterogeneous

systems

Alberto Carelli, Carlo Alberto Cristofanini, Alessandro Vallero, Cataldo Basile, Paolo Prinetto and Stefano Di Carlo
Politecnico di Torino, Control and Computing Engineering Department, Contact: stefano.dicarlo@polito.it

Abstract—The mobile application market is rapidly growing
and changing, offering always brand new software to install
in increasingly powerful devices. Mobile devices become per-
vasive and more heterogeneous, embedding latest technologies
such as multicore architectures, special-purpose circuits and
reconfigurable logic. In a future mobile market scenario where
reconfigurable systems are employed, new security concerns are
introduced. In particular, protecting the Intellectual Property of
the exchanged soft cores is a serious concern and their integrity,
confidentiality and authenticity must be preserved. In this paper
we propose an architecture suitable for the secure deployment of
soft cores in FPGA based mobile heterogeneous systems where
multiple independent actors are involved. Finally, we provide a
prototype implementation of the proposed architecture.

I. INTRODUCTION

IN the rapidly evolving mobile application market, new
technologies, players, devices, and platforms emerge just

about every month [1]. This constant shift in the business
landscape and competitive environment creates a demand
but also an opportunity for the rapid introduction of new
technological solutions. Few can ignore this opportunity, since
mobility will eventually have a role in most digital products
and services.

Examples of this exciting world are well known. Apple
with the iPhone and its Apple App Store has been the first
shaking this market. Over time, its market has been joined by
several competitors with their own devices, operating systems
and applications stores such as Google Android Market, Nokia
Ovi Store, BlackBerry App World, etc. As a consequence, also
the sales of mobile apps are continuously increasing.

Among the motivations of this pervasiveness there is the
availability of increasing computational power of the mobile
platforms. Advancements from generation to generation in-
clude many-cores architectures or specialized electronic cir-
cuits such as Graphics Processing Units (GPUs). However,
system designers are continuously looking for alternative so-
lutions in order to optimize the overall power consumption.
In this context, reconfigurable computing may represent a
potential answer.

Reconfigurable systems embedding field programmable gate
arrays (FPGAs) are emerging as an interesting and useful class
of systems in several embedded application domains requiring
frequent and remote hardware upgrade [2], [3]. Moreover, the
introduction of FPGA dynamic partial reconfiguration, i.e.,

the possibility to reconfigure at run-time only specific blocks
of logic without affecting the remaining parts, unfolds new
applicative scenarios [4]–[6].

The mobile application market is looking interestingly at
this technology too [7]–[9]. Dynamic partial reconfiguration
enables to conceive scenarios in which existing logic can be
reconfigured at run-time with application-specific soft cores to
assist the software execution. This introduces a new mobile
application paradigm that exploits hardware on-demand to
minimize computational resources with positive effects on
the overall system complexity. Several mobile applications
can benefit from hardware acceleration cores deployed on
reconfigurable hardware.

However, this new design scenario introduces serious se-
curity threats. The use of reconfigurable computing requires
moving and storing the hardware Intellectual Property (IP) of
the soft cores (i.e., an FPGA biststream file) over possibly
insecure channels and repositories. An adversary able to
intercept the bitstream may violate the confidentiality of a
soft core, revealing it to the public domain or selling it in
order to gain improper profit. Moreover, the attacker could
also tamper with the hardware description trying to inject
malicious functionalities in the hardware core to prevent its
proper behavior or to introduce security threats in the system.
FPGA vendors already provide bitstream encryption features
to help embedded system designers to protect the confidential-
ity of their know-how and their soft cores [10]–[13]. Several
publications propose improved mechanisms to provide bit-
stream authentication and confidentiality [14], [15]. However,
available solutions fit a scenario in which the embedded
system designer is the only entity able to produce and deliver
reconfigurable hardware descriptions to a remote system. In
this paper we address a much more complex scenario in which
several independent parties are involved. The parties involved
here are mainly the End User, the Software Providers and the
Hardware Vendor. In this case several security concerns arise:
the confidentiality of soft cores must be maintained across the
various actors involved during the exchange of the bitstream.
Moreover, the integrity of the bitstream must be guaranteed to
avoid malicious alterations, while maintaining the possibility
to produce software and reconfigurable hardware descriptions
from multiple Software Providers, not directly related with the
Hardware Vendor. To addres this problem we propose a secure

bitstream exchange protocol and its implementation using a
commercial secure reconfigurable System-On-Chip.

The paper is organized as follows: Section II details the
model of the considered scenario. Section III presents the
related works. Section IV describes the proposed solution,
while Section VI analyzes its security. Finally, Section VII
concludes this paper.

II. ASSUMPTIONS, MODELS AND REQUIREMENTS

We model our scenario considering three major actors:
The Software Provider (SP) develops a software application

to be sold on one or more Application Stores. The store is
able to reach the customers, i.e., the end users, through a
publicly accessible service (e.g., a web server). The application
contains both the software executable code and the soft core(s)
to load onto the reconfigurable logic.

The Hardware Vendor (HWV) is the entity who designs
and sells the Hardware Accelerator Platform (HAP), i.e., the
physical device on which the application sold by the SP is
executed. The HAPs here considered are Systems-on-Chips
(SoCs) embedding state-of-the-art FPGAs.

The End User (EU) is the owner of the device (e.g.,
smartphone, PDA, etc.) which is equipped with the HAP. After
a legitimate purchase from the SP, he is entitled to download
and use the application on its hardware.

A. Security requirements

The target for the SP is to preserve the authenticity, the
integrity and the intellectual property of all soft cores deployed
together with the respective software executable code of an ap-
plication. The goal of our paper is to consider the authenticity
and integrity solely of the hardware cores.

Preserving the authenticity and the intellectual property
of all hardware cores deployed with a software application
requires fulfilling the following security requirements:

• Bitstream confidentiality: among the actors, only the SP
is able to read the bitstream in plaintext. However, the
SP might trust the HWVs because of legal contracts or
Non Disclosure Agreements (NDAs).

• Bitstream authentication: only users who bought a legiti-
mate copy of the software must be able to use the related
FPGA bitstream files to configure the HAP.

• Bitstream integrity: the bitstream must preserve its in-
tegrity, in order to avoid that bitstream files delivered to
the end users are corrupted, intentionally or not.

If any of these requirements is not met, the authenticity and
the integrity of the bistream can be compromised.

B. Attack and adversary models

The attacks here considered try to subvert the security
requirements expressed in Section II-A.

First, attacks may aim at accessing a version of the bitstream
in plaintext. Proper defense mechanisms must be employed
to avoid the disclosure of the bitstream, guaranteeing the
confidentiality. These attacks might take place during the
exchange over the network links used to deploy the application

or by tampering directly with the end user device or directly
with the HAP. Additionally, attacks might target to subvert the
content of a bitstream. In this case its integrity is compromised.
Legitimate users might notice an incorrect execution or the
execution of malicious functions not foreseen with the original
application due to the violation of the bitstream integrity.

In order to implement the attacks just described, two main
adversaries shall be considered.

A remote adversary attacking one or more network links
existing among the actors during the deployment of the appli-
cation. He can perform a Man-In-The-Middle (MITM) attack.
A local adversary, i.e., malicious user who can physically
access the end user device (e.g., a competing firm might want
to break the protections of an IP bitstream). In this case, a
Man-At-The-End (MATE) attack can be carried out.

III. RELATED WORKS

Previous related works mainly addressed the problem of
secure remote update of FPGAs employed in embedded sys-
tems. Wallinger et al. proposes an interesting definition of
this problem, together with a review of the state-of-the-art of
feasible attacks against FPGAs during the configuration and
upgrade phases [16].

Bitstream confidentiality is nowadays offered by most
FPGA vendors through bitstream encryption facilities [10]–
[13], [17], [18]. The bitstream is encrypted with a symmetric
key shared between the FPGA and the system designer. The
key setup is demanded to the system designer that usually
stores the key in a dedicated volatile memory before shipping
the system. The memory storing the key is designed to prevent
physical attacks and is backed-up by a battery to maintain its
content. Bitstream encryption is an effective solution to protect
designer’s IP against cloning or reverse engineering and IP
disclosure [19].

Bitstream integrity is usually accomplished by vendors by
means of Cyclic Redundancy Checks (CRC) [20], [21]. How-
ever, CRCs are not designed to detect malicious modifications
of a bitstream in a cryptographic sense [22]. They are not
collision resistant and therefore, even when coupled with
encryption, they do not guarantee adequate security levels. In
[23] the bitstream checksum for code integrity is performed
remotely on FPGAs. Solutions based on cryptographic hashing
primitives have been therefore proposed [24]–[26].

In [25] different authenticated encryption algorithms have
been evaluated and the dual-pass Counter with CBC-MAC
(CCM) has been identified as the best choice for implementing
a bitstream authentication mechanism. Nevertheless dual-pass
authenticated encryption algorithms do not befit bitstream pro-
cessing since they lead to configuration process time increas-
ing. Dual-pass authenticated encryption algorithms separate
authentication and encryption procedures and therefore require
significant overhead.

In [26] the author presents an approach based on generic
composition, which involves two symmetric-key encryption
cores running in parallel to provide both authentication and

confidentiality. An interesting solution combining both bit-
stream confidentiality and authentication is proposed in [14].
One of the main contributions of this paper is to address
downgrading attacks.

The main drawback of available solutions is that they
rely on a single secret shared between the system designer
and the target device. The system designer is therefore the
only entity in charge of providing updated bitstreams. This
mechanism, if not properly modified is unable to satisfy the
security requirements introduced in this paper (see Section
II). In the proposed scenario, several software providers must
be able to generate dedicated bitstreams for a single device.
The confidentiality and integrity of these bitstreams must be
preserved. To the best of our knowledge, this problem has
not been properly addressed yet, thus motivating the study
proposed in this paper.

IV. PROTOCOLS AND SECURE INFORMATION EXCHANGE

Fig. 1 shows the architecture of the system for the de-
ployment and execution of a mobile application supported by
reconfigurable logic.

Four entities are involved in this architecture:
1) the software provider (SP) producing the software ap-

plication (SW) and the related bitstream (BS);
2) the hardware vendor (HWV) producing the HAP used

to instantiate the soft cores described by the BS and
required to accelerate the SW. It is integrated in the end
user platform;

3) the store providing the infrastructure to sell and deploy
applications developed by software providers;

4) the end user device representing the system owned by
the end user and executing the SW. It communicates
with the HAP. The HAP is considered a trusted area,
where the bitstream is safe also when in plaintext.

In our scenario, we assume that:
• the end user has an account on the STORE, linked with a

payment system recognized and accepted by the STORE
itself. Thus, he is able to purchase applications available
in the STORE.

• The HAP is identified by a unique code (e.g., serial
number - defined here as idHAP) and store a secret
cryptographic key (KHAP), both known by the HWV.
The key is not accessible from the outside.

• All the involved entities are able to establish secure
communication channels among themselves.

The steps to realize the workflow presented in Fig. 1 are
described below:

1) the end user contacts the STORE to buy the application
(which comprises both SW and BS) developed by
the SP, to be executed on the end user device. The
STORE redirects the user to the payment system, which
performs the monetary transaction. When the transaction
is successfull, the STORE can initiate the procedure
to obtain the BS requested by its client. To serve this
request, the client must send the information needed to

identify its HAP, i.e., idHAP . Since the communication
involves sensitive data (the credit card number, the
idHAP), the client and the store communicate using a
secure channel that ensures confidentiality, data integrity
and authentication.

2) After the transaction, the STORE notifies the purchase
to the SP sending the information about the HAP
(idHAP) of the client that will receive the application.
Also in this case, the communication is secured.

3) The SP fetches the BS related to the application bought
and send it together with the idHAP to HWV within a
secure channel.

4) After receiving the BS, the HWV encrypts it using the
cryptographic key KHAP related to the idHAP . To ensure
data integrity and authentication a keyed-hash message
authentication code (HMAC) is used to exchange the
BS. The signed and encrypted BS is sent back to the
SP.

5) The SP sends back to the STORE the ciphered bit-
stream using the available communication channel;

6) The STORE routes the ciphered bitstream and the
software executable code to the end user device, where
the application will be installed. At every execution, the
HAP will load the BS on the reconfigurable logic relying
on the embedded controller for the decryption using the
key KHAP and for the security checks (e.g., autheticity).

A similar workflow can be employed for an update of
an already-installed application. In that case, when the SP
releases a new version of the BS, the proposed infrastructure
can be used as well:

1) the existing SW contacts the SP looking for updated
versions;

2) if a new update is available, the client sends its idHAP

to SP through a secure channel able to provide confi-
dentiality, data integrity and authentication;

3) the SP connects to the HWV via a a secure channel
(that ensures confidentiality and data integrity and au-
thentication) and sends the updated version of BS with
the idHAP ;

4) HWV ciphers BS using the know cryptographic key
available and signs it to guarantee data integrity and
authentication. The BS is sent back to the previous
nodes;

5) the client downloads and stores the ciphered bitstream
BS. At every execution, its HAP Controller decrypts it
and updates the soft core on the reconfigurable logic.

V. HARDWARE ARCHITECTURE AND IMPLEMENTATION
RESULTS

The End User Device is a normal laptop/desktop PC which
is connected to the Storage Medium (microSD card) accessible
also from the HAP. For the prototype of the HAP equipped
with a reconfigurable architecture, we employed a particular
chip, SEcube

TM
. SEcube

TM
is a system-on-chip, embedding

three different devices interconnected within a single package:
a microprocessor, an FPGA and a SmartCard. Although not

Fig. 1. The workflow for bitsream exchange

very large, the reconfigurable logic device available is a Lattice
MachXO2-7000 low-power FPGA. It is directly connected
through a 16-bit wide bus with a 32-bit ARM Cortex M4
low-power processor [27]. The microprocessor has a SD/SDIO
interface able to communicate with a microSD card, which is
used as a storage medium to temporarily store the encrypted
bitstream. According to Fig. 1, for the HAP we employed
SEcube

TM
chip, in particular the Controller is the ARM Cor-

tex M4 microprocessor and the reconfigurable logic is the
MachXO2-7000 FPGA.

The End User Device executes the market application,
which is the client application. The server application of the
STORE, SP and HWV reside in the same PC, as separate
asynchronous processes. More in detail, the implementation of
these software has been carried out using Python v3.5.2. The
module asyncio has been employed to offer the client/server
and asynchronous communication functionalities. The commu-
nication among these processes passes through different port
of the same IP address. The messages exchanged are encrypted
and signed using the functions of the library PyCryptodome.

VI. SECURITY ANALYSIS

From Section II-B, we see two types of attackers to counter-
act: man-in-the-middle (MITM) and man-at-the-end (MATE)
attackers.

MITM is a technique where an active attacker is able to in-
tercept and understand the content of the messages exchanged
between two arbitrary networking nodes. Once the attacker
modifies the flow of messages, he can also make changes,
delete and create completely new fake messages impersonating
one of the communicating parties.

This is a standard security problem in computer networks
and there are provably secure solutions to protect against these
attacks: the channel protection techniques. In fact, MITM
attacks can be neutralized using strong peer authentication
mechanisms to avoid impersonation, symmetric data authen-

tication and integrity to avoid the message forging and alter-
ation, and symmetric data encryption to ensure confidentiality
of exchanged data.

These techniques use the agreed key with symmetric en-
cryption algorithms (e.g., AES, RC2) to ensure the data
confidentiality, and symmetric data integrity and authentication
algorithms (i.e., a keyed digest or HMAC using a crypto-
graphic hash function such as SHA-1). It is worth remarking
that the proofs of the security of these solutions hold under
the infeasibility hypothesis. The infeasibility is associated to
the derived computational cost, impossible to sustain for an
attacker, in order to dechiper the secret information needed by
cryptographic algorithms or to invert digest algorithms. That
is, we assume that state-of-the-art cryptographic algorithms
are used with opportune key lengths. For instance, currently a
128-bit security is required from encryption algorithms (e.g.,
AES128), that is, the best attack should be a brute force attack
on 2128 key space, and at least 80-bit security for the digest
algorithms (e.g., SHA-256).

When we state that two peers communicate using a k-
secure channel, we indicate that the peers perform strong
authentication and agree on a symmetric key k that is then used
to use symmetric data integrity and authentication algorithms
and symmetric encryption algorithms to secure the exchanged
data.

The implicit assumption in a MITM scenario is that both
the endpoints are trusted entities. However, this assumption
is no longer valid in the case where also MATE attackers
are interested in obtaining the bitsream. Therefore, MATE
attacks are more difficult to address. The MATE attacker has
no restriction on the tools and techniques to use to reverse-
engineer and then to tamper with the software (e.g., debuggers,
emulators) that cannot be trusted to store/embed secret data
or routines. System libraries and general purpose libraries
could be potentially controlled by the MATE attacker, along
with the operating system. In this case, the attacker can use

system calls, the input/output subsystem, the network stack,
the memory management subsystem and possibly others for
its purposes. Therefore, the communication with the HAP
mediated by software and drivers can be compromised by
the attacker, thus the data exchanged can be altered. The
attacker controls also the hardware of the platform. Every
memory location can be read and written, including the
processor registers. The attacker also controls the program
storage medium, as a consequence he can read and change any
of the stored bits. This means that nothing can be considered
secure in the user’s environment. The only part of the user’s
platform that can be considered secure is the HAP, the stored
information and the routines executed within the HAP are
considered confidential. Finally, we assume that the MATE
has no interest to perform DoS on its platform and especially
on the HAP (e.g., by repeatedly sending invalid bitstreams).

A. Secure BS exchange protocol

The first step of the protocol for bitstream IP protection
specified in Section IV represents a typical e-commerce sce-
nario very widespread nowadays where a user is assumed to
have a credit card, a SSL/TLS-enabled browser installed in
his environment, and an account on the application store of
the platform. The store relies on payment services that adhere
to the Payment Card Industry Data Security Standard (PCI
DSS) [28] to connect to the financial world. The PCI DSS
imposes high security requirements for merchants and pay-
ment servers that store, process or transmit payment cardholder
data when implementing a robust payment card data security
process.

When two communicating peers A and B share a symmetric
key k:

• only A and B are able decrypt messages encrypted with
k (ensuring confidentiality);

• if A receives a message and it can decrypt it using k, A
deducts that the message was encrypted by B (symmetric
authentication), analogously for B.

In this scenario, the HAP serial number is readable only
by the end user, the STORE, the SP, and the HWV. In
fact, the HAP identifier is encrypted with the key shared
between the client browser and the STORE, then the STORE
encrypts it with the key shared with the SP. Finally, idHAP

is again encrypted with the key shared with HWV and sent
to the Hardware Vendor. All the MITM attackers cannot read
the HAP serial number if strong encryption algorithms are
used. Additionally, impersonation attacks are impossible as the
peers perform symmetric authentication during the connection
establishment.

Moreover, to avoid modifications to exchanged messages
that can lead to DoS attacks, data authentication and integrity
mechanisms are used like keyed digests or HMAC [29].

The actual implementation of these secure communication
channels does not require the development of ad hoc tech-
niques. There are valid implementations of general purpose
channel protection mechanisms, the most widespread being
the SSL/TLS protocol [30] working at the transport layer

of the ISO/OSI stack, the IPsec protocol [31] working at
network layer, and other application layer methods, usually
message protection techniques (e.g., WS-Security). In our case
the SSL/TLS approach is the best one, because it does not
require additional software or any previous knowledge of the
other communicating party, it is integrated with the browsers,
etc. Practically, it is “the solution” for web-based scenarios or
scenarios where the peers do not have previous agreements.

More important, the BS is read in clear only by the SP and
the HWV. In fact, in the step 4, the bitstream is encrypted with
a key that is shared between the SP and the HWV. Then, the
HWV encrypts the BS using the secret key KFPGA shared
with the HAP of the End User Device, thus no one but the
HAP, whose ID was provided in the step 4, is able to load
and use it. Therefore, MITM and MATE attacks that aim at
reading the plain bitstream are avoided.

For the last step, the bitstream received is encrypted until
it is moved to the HAP and loaded on the FPGA, while the
software application is usually downloaded in cleartext, since
other software protection techniques are displaced to protect
the intellectual property.

These considerations prove that only the end users that
bought the software are able to use the corresponding BS.
Moreover, also the users are not able to see the plaintext of
the bitstream.

B. How hard is to recover the KHAP ?

Attacks can be focused among the transmission nodes.
However, the secure encrypted channel guarantees that the
bistream exchanged preserve its confidentiality.

Physical attacks represent another type of possible attacks
targeting directly the end user device. In this case the attacker
aiming to find the symmetric encryption key must be neces-
sarily a MATE owning the device of interest.

In the case of non-invasive physical attacks, both active or
passive, the destruction of the device is not necessary, however
they generally require a longer time to be accomplished. Brute-
force attacks have already been considered under the infeasi-
bility hypothesis. Side-channel attacks can still be employed,
however they are not always possible and require specialized
equipment. The SEcube

TM
chip adopted for the prototype is

secure against the differential power analysis attack as shown
in [32]. Timing attacks can be neutralized simply resorting to
a constant-time implementation of the bitstream decryption.
Invasive physical attacks destroy the device and require so-
phisticated and expensive equipment, knowledgeable attackers
and long time to be carried out.

In our scenario, a physical attack might target the End
User Device, the HAP or the storage medium. The MATE
attacker should first bypass any external protection to reach
the internal circuitry. Any attack to the End User Device or the
storage medium is neutralized with the encryption algorithm,
since these parts of the end user platform are considered not
trusted. Accessing these peripheral will give to the attacker the
possibility to find the ciphertext of bitstream. But the data must
still be deciphered, by reversing the key. Possible criticalities

are on the HAP, since the bitstream is deciphered within this
device and the key is stored here.

Supposing a successful attack, only a single device is
compromised. Every device stores a unique serial number and
cryptographic key. In this way, an attacker wanting to inject
vulnerabilities or malicious hardware must repeat the attack
on other HAPs. This means that also other devices shoud be
acquired, leading to higher cost to realize the attack. Also, the
effort to exploit the attack is linear.

However, if one bitstream is compromised its description
does not remain confidential, but could be disclosed to the
public. Moreover, this security breach gives the possibility to
the attacker to recover the cryptographic key and the unique se-
rial number for that specific device. Knowing this information
any other potential bitstream bought for that specific device
can be publicly disclosed.

VII. CONCLUSION

This work addresses the protection of hardware IP cores to
be exchanged in the context of mobile heterogeneous systems.

We provide an architecture for a secure transfer of a IP
core bitstream from the developer to the end user device
equipped with reconfigurable logic. In the common scenario of
an evolving mobile application market, only users purchasing
a legitimate copy of an application must be able to use it. In
this perspective, the confidentiality of the intellectual property
must be maintained. Finally, the integrity of the data exchange
is preserved to guarantee that no alteration has been performed
during the transfer. Compliance to these requirements protects
from MITM attackers. We considered the threat of MATE
attackers as well. Finally we also provided a prototype im-
plementation of the whole architecture, employing a system-
on-chip as heterogeneous system.

The architecture here provided, however, requires agree-
ments between the Software Provider and Hardware Vendor
that must be able to access the bitstream in plaintex. This
assumes a trust relationship between the two parties that has
to be regulated. On-going work is underway to enhance the
proposed protocol avoiding this requirement.

REFERENCES

[1] P. Albright. Become a Mobile Apps Innovator: Picking an
OS and learning to monetize are key. [Online]. Available:
http://www.computer.org/portal/web/buildyourcareer/HS26

[2] S. Ke-fei, “Application of FPGA in Aerospace Remote Sensing Sys-
tems,” OME Information, 2010.

[3] M. Surratt, H. Loomis, A. Ross, and R. Duren, “Challenges of remote
FPGA configuration for space applications,” in Aerospace Conference,
2005 IEEE. Ieee, 2005, pp. 1–9.

[4] A. Ahmad, B. Krill, A. Amira, and H. Rabah, “3d haar wavelet transform
with dynamic partial reconfiguration for 3d medical image compression,”
in Proc. IEEE Biomedical Circuits and Systems Conf. BioCAS 2009,
2009, pp. 137–140.

[5] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto,
“An internal partial dynamic reconfiguration implementation of the jpeg
encoder for low-cost fpgasb,” in Proc. IEEE Computer Society Annual
Symp. VLSI ISVLSI ’07, 2007, pp. 449–450.

[6] M. E. Dunham, Z. Baker, M. Stettler, M. Pigue, P. Graham, E. N.
Schmierer, and J. Power, “High efficiency space-based software radio
architectures: A minimum size, weight, and power teraops processor,” in
Proc. Int. Conf. Reconfigurable Computing and FPGAs ReConFig ’09,
2009, pp. 326–331.

[7] X. Li, Q. Yuan, W. Wu, X. Peng, and L. Hou, “Implementation of GSM
SMS remote control system based on FPGA,” in Information Science
and Engineering (ICISE), 2010 2nd International Conference on, dec.
2010, pp. 2132–2135.

[8] H. Nakajo, K. Koike, A. Ohta, K. Ohshima, K. i. o. F.-b. R. p.-
k. a. Fujinami, and i. a. i. m.-p. S. encryption system, “Reconfigurable
Android with an FPGA Accelerator for the Future Embedded Devices,”
in Networking and Computing (ICNC), 2011 Second International
Conference on, 30 2011-dec. 2 2011, pp. 173–178.

[9] N. Qi, J. Pan, and Q. Ding, “The Implementation of FPGA-based
RSA Public-key Algorithm and its Application in Mobile-phone SMS
Encryption System,” in Instrumentation, Measurement, Computer, Com-
munication and Control, 2011 First International Conference on, oct.
2011, pp. 700–703.

[10] Actel. Actel proasic3 handbook. http://www.actel.com/
documents/PA3 HB.pdf.

[11] Altera. Design security in stratix iii devices.
www.altera.com/literature/wp/wp-01010.pdf.

[12] Lattice. Xp2 family handbook. http://www.latticesemi.com/documents/
HB1004.pdf.

[13] Xilinx. Lock your designs with the virtex-4 security solution.
Xilinx commercial brochure. www.xilinx.com/publications/xcellonline/
xcell 52/xc pdf/xc v4security52.pdf.

[14] B. Badrignans, D. Champagne, R. Elbaz, C. Gebotys, and L. Torres,
“SARFUM: Security Architecture for Remote FPGA Update and Mon-
itoring,” ACM Trans. Reconfigurable Technol. Syst., vol. 3, no. 2, pp.
8:1–8:29, May 2010.

[15] S. Drimer, “Authentication of FPGA bitstreams: Why and how,” Recon-
figurable Computing: Architectures, Tools and Applications, pp. 73–84,
2007.

[16] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs: State-of-
the-art implementations and attacks,” ACM Trans. Embed. Comput. Syst.,
vol. 3, no. 3, pp. 534–574, 2004.

[17] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically configurable
security for SRAM FPGA bitstreams,” in Proc. 18th Int. Parallel and
Distributed Processing Symp, 2004.

[18] A. Lesea, IP security in FPGAs, Xilinx Inc., February 2007.
[19] J.-B. Note and É. Rannaud, “From the bitstream to the netlist,” in

ACM/SIGDA Symposium on Field Programmable Gate Arrays. ACM
New York, NY, USA, February 2008, pp. 264–264.

[20] Altera Corp. AN357: Error detection using CRC in Altera FPGA
devices.

[21] Xilinx Inc. UG191: Virtex-5 configuration user guide.
[22] M. Stigge, H. Platz, W. Muller, and J.-P. Redlich, “Reversing CRC

theory and practice,” Humboldt University Berlin, Technical Report
SAR-PR-2006-05, 2006.

[23] C. Basile, S. Di Carlo, and A. Scionti, “FPGA based remote code
integrity verification of programs in distributed embedded systems,”
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS.
PART C, APPLICATIONS AND REVIEWS, vol. 42, no. 2, pp. 187–200,
2012.

[24] M. M. Parelkar and K. Gaj, “Implementation of EAX mode of operation
for FPGA bitstream encryption and authentication,” in Proc. IEEE Int
Field-Programmable Technology Conf, 2005, pp. 335–336.

[25] M. M. Parelkar, “Authenticated encryption in hardware,” Master’s thesis,
George Mason University, 2005.

[26] S. Drimer, “Authenticated of FPGA bitstreams: why and how,” In
Applied Reconfigurable Computing, vol. 4419, pp. 73–84, 2007.

[27] SEcube(tm) Data Sheet, Blu5 View, 8 2015, rev. 7.
[28] P. Council, “PCI DSS Requirements and Security Assessment Proce-

dures, version 3.2.(2016),” 2016.
[29] H. B. M. Krawczyk and R. Canetti, “HMAC: Keyed-Hashing for

Message Authentication,” Internet Requests for Comments, RFC 2104.
[30] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2,” Internet Requests for Comments, RFC 5246.
[31] R. Atkinson and S. Kent, “Security architecture for the internet protocol,”

1998.
[32] M. Bollo, A. Carelli, S. D. Carlo, and P. Prinetto, “Side-channel

analysis of SEcube(tm); platform,” in 2017 IEEE East-West Design Test
Symposium (EWDTS), Sept 2017, pp. 1–5.

