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Abstract

The applied particle physics has a strong R&D tradition aimed at rising the instru-

mentation performances to achieve relevant results for the scientific community. The

know-how achieved in developing particle detectors can be applied to apparently

divergent fields like hadrontherapy and cosmic ray detection. A proof of this fact

is presented in this doctoral thesis, where the results coming from three different

projects are discussed in likewise macro-chapters.

A brief introduction (Chapter 1) reports the basic features characterizing a typical

particle detector system. This section is developed following the data transmission

path: from the sensor, the data moves through the front-end electronics for being

readout and collected, ready for the data manipulation. After this general section, the

thesis describes the results achieved in two projects developed by the collaboration

between the medical physics group of the University of Turin and the Turin section

of the Italian Nuclear Institute for Nuclear Physics.

Chapter 2 focuses on the TERA09 project. TERA09 is a 64 channels customized

chip that has been realized to equip the front-end readout electronics for the new

generation of beam monitor chambers for particle therapy applications. In this

field, the trend in the accelerators development is moving toward compact solutions

providing high-intensity pulsed-beams. However, such a high intensity will saturate

the present readout electronics. In order to overcome this critical issue, the TERA09

chip is able to cope with the expected maximum intensity while keeping high

resolution by working on a wide conversion-linearity zone which extends from

hundreds of pA to hundreds of µA. The chip gain spread is in the order of 1-3%

(r.m.s.), with a 200 fC charge resolution. The thesis author took part in the chip

design and fully characterized the device.

The same group is currently working on behalf of the MoVeIT collaboration

for the development of a new silicon strip detector prototype for particle therapy



vii

applications. Chapter 3 presents the technical aspects of this project, focusing on

the author’s contribution: the front-end electronics design. The sensor adopted for

the MoVeIT project is based on 50 µm thin sensors with internal gain, aiming to

detect the single beam particle thus counting their number up to 109 cm2/s fluxes,

with a pileup probability < 1%. A similar approach would lead to a drastic step

forward if compared to the classical and widely used monitoring system based on

gas ionization chambers. For what concerns the front-end electronics, the group

strategy has been to design two prototypes of custom front-end: one based on a

transimpedance preamplifier with a resistive feedback and the other one based on a

charge sensitive amplifier. The challenging tasks for the electronics are represented

by the charge and dynamic range which are respectively the 3 - 150 fC and the

hundreds of MHz instantaneous rate (100 MHz as the milestone, up to 250 MHz

ideally).

Chapter 4 is a report on the trigger logic development for the Mini-EUSO detector.

Mini-EUSO is a telescope designed by the JEM-EUSO Collaboration to map the

Earth in the UV range from the vantage point of the International Space Station

(ISS), in low Earth orbit. This approach will lay the groundwork for the detection of

Extreme Energy Cosmic Rays (EECRs) from space. Due to its 2.5 µs time resolution,

Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earth’s

atmosphere. In order to maximize the scientific return of the mission, it is necessary

to implement a multi-level trigger logic for data selection over different timescales.

This logic is key to the success of the mission and thus must be thoroughly tested

and carefully integrated into the data processing system prior to the launch. The

author took part in the trigger integration in hardware, laboratory trigger tests and

also developed the firmware of the trigger ancillary blocks.

Chapter 5 closes this doctoral thesis, with a dedicated summary part for each of

the three macro-chapters.

Keywords: Front-end; Readout electronics; ASIC; Trigger logic; Data manage-

ment; Particle therapy; Cosmic ray detections.
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Chapter 1

Introduction

Particle detector systems: basic concepts

Particle detectors are the most accurate artificial senses which humans can take

advantage of to study the deepest Nature details. The physical interaction between

a particle and the interacting material reveals information appreciable only after

a certain amount of manipulation steps depending on the researched data and the

event phenomenology. Particle detectors are employed in many applications from

astrophysics to microbiology, medical imaging, and quality assurance, to the fash-

ionable high-energy physics and dark matter experiments. Cutting-edge research

centers, as well as common life automotive or kitchen devices adopt these devices,

that even though are target-customized, they are united by a common work-flow and

basic functional blocks. Therefore, a typical particle detector is characterized by

the fact that a sensor or one section of it detects a signal generated by interaction

with the crossed sensitive volume due to the energy deposited, typically by ioniz-

ing the medium. This signal, generally represented by mobile charge carriers (e.g.

electrons-positive ions in gas detectors or electrons-holes in solid-state detectors),

is converted into an electrical pulse induced by the charge drifting to the detector

collecting electrodes. At this point, an amplification stage is mandatory prior to

further processing, storage, and analysis phases.

Figure 1.1 depicts the functional block representation of a typical detector system.
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Fig. 1.1 Basic detector functions: radiation is absorbed in the sensor and converted into an

electrical signal. This low-level signal is integrated in a preamplifier, fed to a pulse shaper,

and then digitized for subsequent storage and analysis.

The very front-end electronics mainly amplify the detector signal following the

pulse profile or shaping it (e.g. integrating a current signal), with a certain care in

keeping the noise at a low value. Once the electrical pulse crosses a comparator

threshold the information is digitized. Further processing steps elaborate the infor-

mation in such a way it can be transmitted with high throughput and a reliability

level which is intrinsic to the adopted standard format. The digital readout circuitry

interacts with data links in order to transmit the information for the on-line data

selection (i.e. trigger logic) or the direct on-disk archiving. The saved data are then

deeply analyzed off-line through algorithms developed in a simulation where the

detector geometry, behavior and the way the data is processed by the electronics have

been modeled by means of powerful software. The detector mechanics (positioning,

holding, the FoV), the cooling system and eventually the radiation hardening are

important aspects that involve professional profiles from various fields.

In applications like the particle beam monitoring system or the quality assurance

for radiation therapy, the detector is used to probe a certain physical quantity (e.g.

the dose that is the energy per mass unit) which is a cumulative effect and is not

related to the single particle. The electrical signal is integrated and through a certain

technique, the detecting system reveals the needed information at the accuracy level

required. As an example of this approach, the TERA chip (see Chapter 1) integrates

the input signal and adopts the subtraction of a fixed charge quantum to the amplifier

output. The modern detector system complexity allows detecting the single photon or

the single charged particle managing the discrimination of such events at high-rates

up to billions per square centimeter. The Ultra Fast Silicon Detectors (described in

Chapter 2), for instance, are devices able to detect ions with tens of micrometers

spatial resolution and tens of picoseconds timing detail. For the MoVeIT project,



3

such kind of detector has been chosen with the aim to discriminate the single ion

crossing the silicon detector layer in a particle beam to ∼ 109 protons cm−2s−1 flux.

The sensor sensitive area segmentation is the standard approach adopted whenever

high rates and/or high spatial resolution, are required. The single sensor segment is

thus independent and it is associated to a dedicated front-end channel. The signal

processing is typically parallelized and very often particle physics experiments take

advantage of Field Programmable Gate Arrays (FPGA), dealing with high chan-

nel densities that mean high data throughput transmitted at high rates. FPGA are

commercial chips with software programmable logic gates processing in parallel a

large amount of rather easy tasks. Modern FPGAs are really System on Chip (SoC),

embedding programmable logic (PL) and CPUs on the same silicon die. Although

these high-performance commercial devices are getting better and better, the level of

optimization of high-tech detector systems requires fully custom front-end electron-

ics integrating a large number of channels and functional blocks. This integrating

capability is guaranteed thanks to the deep sub-micron design technology nodes. It

was in the field of high energy physics that in the 80s, for the first time a custom

integrated electronics have been coupled with a silicon micro strip detector to mea-

sure short living particle decay tracks. Nowadays most of the integrated front-end

electronics for particle detectors are developed as Application Specific Integrated

Circuits (ASICs) fabricated in CMOS technologies. These ASICs generally embed a

mixed-signal logic where from the analog very front-end, the signal is collected from

the sensor and then digitized to be ready for an on-chip or off-chip manipulation.

A complex detector system e.g. a telescope is a device organized in multi functional

sub-blocks including the sensor (typically photomultiplier tubes), the front-end

(ASIC) and the readout (FPGA) electronics. Looking for rare events and detect-

ing them over a wide spatial scanning campaigns (astronomical dimension, in the

telescope case), it is mandatory to have a certain data selection, thus to manage the

computing power and the storage volumes. A filtering algorithm, called trigger, is a

fundamental piece in a detector work-flow dealing with a large amount of data. The

trigger logic is based on physics models that have been coded and simulated with the

goal to maximize the possibility to detect significant events, extracting them from the

background signal. The trigger logic should recognize the event evolution features

and distinguish among tricky or ambiguous cases induced by hardware complications

of fake trigger sources (e.g. flying over a city in the nighttime, could be a source

of fake triggers for a radiation sensitive telescope). The Mini-EUSO UV-telescope
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trigger and its hardware integration is described in this thesis at Chapter 4.

Finally, it is possible to remark the here presented main points, highlighting the

figures of merit for a general detection system functional blocks:

• Detectors: efficiency, speed, granularity, resolution;

• Trigger/DAQ: efficiency, data compression, data throughput, physics models;

• Off-line analysis: signal and background discrimination, physics models.

Further details and technicality concerning front-end and readout electronics

systems will be given in the following chapters.



Chapter 2

Design and characterization of the

TERA09 ASIC

2.1 Introduction

Particle therapy, also called hadron therapy, is an oncological technique based on

accelerated ions hitting a target. The main goal of particle therapy is the tumor

treatment while sparing the healthy tissues in the surrounding diffusion path. The

idea is to deliver in a specific and confined volume a sufficiently high dose required

for destroying the sick tissue, keeping safe the rest thus avoiding serious or even

irreversible damage or complications [1] [2]. This approach takes advantage of

the way ions interact with the medium. When ions cross the human body they are

mostly not deflected, so that the tissue damage is reduced until these ions, stopping,

release the main part of their energy as a peak. Taking advantage of this peak, called

ªBragg peakº, hadron therapy maximizes the dose delivered to the tumor sparing the

surrounding healthy tissue. The result is an increase of complication-free tumor cure

in comparison to conventional radiotherapy. Although the number of hadron therapy

centers for proton and carbon ions treatment is constantly increasing, this clinical

approach is not so widespread, principally because of the high costs for building and

operating the facilities. For this reason, the trend in the new developments is towards

the realization of smaller and compact particle accelerators. An accelerator with

these characteristics provides pulsed beam with a much higher intensity in each pulse

than conventional uniform beams to maintain the same released dose-per-treatment
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to the patient. Particle therapy accelerators are equipped with monitor detectors as

required by automated control systems and they are going to cope with this high

intensity pulsed beam structure. As example of these new detectors, a multiple

gap monitor chamber takes the advantage of using gaps of different width in the

possibility to study and estimate the effects of the ion recombination generated into

the gaseous detecting medium when a high ionization density occurs.

The Italian National Institute for Nuclear Physics (INFN), in collaboration with the

University of Turin, developed a new front-end and readout electronics suitable for

detectors that have to deal with the new technique features, keeping the compatibility

with the last decades standard procedure which is still largely diffused. The core

of this front-end electronics is a 64-channel Application Specific Integrated Circuit

(ASIC) named TERA, consisting of a current-to-frequency converter followed by

a counter. The TERA chips, tailored for clinical applications, have been used in

several clinical devices both for quality control in radiotherapy [3] and for beam

monitoring in particle therapy facilities [4] [5]. These chips are all based on the

recycling integrator principle [6] to convert the input charge into pulse counts, or

equivalently the input current into a pulse count frequency, each count corresponding

to a fixed quantum of charge. This conversion method offers several advantages

as the intrinsic lack of dead time and the very good linearity up to the maximum

conversion frequency. Moreover, the charge collected at any input channel can

be sampled asynchronously with the conversion operations by simply reading the

corresponding counter.

The new version of the TERA chip, named TERA09, is an upgrade of its predecessor

(TERA08) and has been specifically designed with the possibility to work with high-

flux pulsed particle beams. Using a charge quantum of 200 fC, a linearity within

±2% for an input current range between 3 nA and 12 µA is obtained for individual

channels, with a gain spread among the channels of about 3%. Moreover, the chip

automatically calculates the partial and total sum of the counter values, which can be

directly accessed in dedicated registers. In the design process, special effort has been

devoted in maintaining as much as possible the backward compatibility such that

the new chip can replace the older versions in any of the current devices with small

impact on the acquisition system and on the power supply. The results of the tests,

presented in [7], indicate the possibility to achieve an increase of about two orders

of magnitude in dynamic range compared to the TERA08 without a significant loss

in sensitivity and linearity, thus adding to this version the additional flexibility to
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extend its use to high-flux particle beams applications. By connecting all the 64

ASIC channels to a common input, the current range can be increased 64 times

preserving a linearity within ±3% in the range between and 20 µA and 750 µA.

Furthermore, additional informations has been added at the ASIC characterization

by means of radiation damage tests. As its predecessors, TERA09 is not going to

be directly exposed to the particle beam flux; nevertheless, it has been important to

estimate the expected Single Event Upset (SEU) rate in a clinical treatment room,

mainly due to the interaction of backscattered neutrons in the extended digital logic

area.

2.1.1 The author’s contribution

The author’s contribution on the work presented in Chapter 2 can be separated into

the following three main parts:

ASIC design contribution: preliminary and feasibility study of the digital

architecture; preamplifier optimization and design of the LVDS clock receiver.

Characterization of the TERA09 chip: development of the data acquisition

software for the chip readout, laboratory characterization and radiation damage

test through the single event upset detection.

PCB development: schematic design of the TERA09 test board (the one

used during the characterization); technical advice on the design and test of

the Front-End (the board embedded into the detector employed in clinical

treatments).

2.2 Interaction of photons and ions with matter

Ions and photons interact differently with matter and this phenomenon shapes in a

different way the depth-dose profiles in the two cases. Interacting with the medium,

a high energy photon (X or γ)undergoes to strong energy release due to the atomic

scattering and the ionization process. The stochastic interaction of photon with

matter and the different amount of energy released within it may lead to different

kind of events like inelastic scattering, Compton scattering, photoelectric effect and
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pair production. Figure 2.1 depicts the depth-dose (dose is the energy per unit

of mass) profile of photons and ions in water, which density is similar to human

body tissues. It is possible to appreciate the contrast between the narrow energy

release of ions and the broad effect of photons. The built-up at the photon entrance

is then followed by an exponential dose decrease suggesting an undefined range.

Charged particle radiation is directly ionizing and the released energy per unit length

(stopping power), is higher for slower particles that suffer more for scattering:

dE

dx
∼

1

v2
(2.1)

Where v is the projectile velocity, dE/dx is the energy released per unit length.

Fig. 2.1 Depth±dose distributions of protons, carbon ions and photons in water.

At energies > 1 MeV electrons have a relativistic energy; in this condition the

dE/dx is no more dependent on the energy

dE

dx
∼

1

c2
(2.2)

with c the speed of light.
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An electron with v ≈ c is responsible fo a few MeV/cm dose which is constant.

The low mass of electrons implies a strong lateral scattering and makes the ions

preferable for a confined energy deposition. As shown in Figure 2.1, protons and

ions have a low dose profile at the entrance, which remains almost flat until the range

end where at the Bragg peak, the particle extinguish their motion through a high

energy release. Figures 2.2 qualitatively shows the different effect of photons and

proton, in terms of target approach and boundary sparing.

Fig. 2.2 Explicative computed tomography picture showing the selectivity differences be-

tween photons (left) and protons (right).

In particle therapy, the atomic nuclei are accelerated at the kinetic energy range

≈ 50 - 400 MeV/u and they mainly interact with the atomic electrons of the medium

by Coulomb’s force. The Bethe-Bloch equation describes the stopping power model

for heavy charged particles:

−
dE

dx
=

4πmeNA

mec2

z2

β 2

Z

A
ρln

(

2mec2β 2γ2

I

)

− relativistic_terms (2.3)

where β = v/c , v the particle speed, c the speed of light, ze is the particle charge,

NA is the Avogadro’s number, me is the electron mass at rest. Z, A, ρ and I are the

atomic number, the mass number, the density and the mean excitation energy of the

medium.

When v << c, β << 1) therefore the formula can be reduced to

−
dE

dx
∼

Kn0z2

v2
[ln(2mev2/I)] (2.4)

where K is a constant, n0 the electron density of the target material.

In this situation the terms z2

v2 explain that the stopping power increases if the projectile
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velocity decreases with a logarithmic trend. The minimal dE
dx

occurs for E = 3Mc2,

with M the projectile mass. In a mono-energetic particle beam the particles undergo

to different scattering trajectories thus resulting in different ranges. This phenomenon,

called straggling, is quantifiable as 1% for the protons mean energy range ( [6]) and

it goes almost like the square-root of the particle mass, as depicted in Figure 2.3.

Fig. 2.3 Straggling effect highlighted comparing proton helium an neon beams in water.

The ion beam presents a lateral spreading due to multiple interaction with the

lighter electrons. For a large diameter beam this effect involves only the beam

external particles since the central part has a scattering-out rate which is compensated

with an almost equivalent scattering-in; this fact is no longer true for narrow beams,

as reported in Figure 2.4.
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Fig. 2.4 The deflection of a beam with the increasing path length.

An infinite narrow proton beam deflects ∼ 5% of its initial range whereas heavy

charged particles suffer less for angular spread.

2.2.1 The Bragg peak profile

The ion energy loss measured with ionization chambers reveals a Gaussian shaped

Bragg peak due to multiple scattering phenomena. With a minor interaction with the

medium, particle with higher energy penetrate more until the resting point where the

Bragg peak will be larger and this width is responsible for the gradient of the dose

distribution distal fall-of. Treating a tumor 10 cm deep the FWHM will be 4-5 mm.

A gradient at half of this value would be optimal but not easy to control, since the

penetrated tissues have no homogeneous density.

Treating low depth targets it is usual to artificially enlarge the Bragg peak artificially

using millimeters thick passive absorbers (as explained in the following section); with

larger peaks the treatment time is reduced, especially in active scanning techniques

where the treatment is divided in slices spaced by a peak maximum width.
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2.3 Particle therapy: basic concepts

2.3.1 Technique overview

The main goal of a therapy in general is to treat the patient controlling as much as

possible the interaction with the target and sparing the healthy tissues. In radiotherapy

the reliability and the confined energy release of accelerated ions make them the

most suitable choice, dealing with tumors while sparing the rest. In 2018 67 medical

centers treat patients with protons and 11 uses carbon ions (numbers updated on

April 2018 [8]). Nowadays the number of particle therapy centers is increasing and

tens of centers are already under construction. The Particle Therapy Cooperative

Group (PTCOG) publishes the number of patient treated worldwide with accelerated

ions: the total number of hadron therapy patients was 108.238, in 2012 and rose up

to 174.512 at the end of 2016. More details can be found in the hereafter reported

table [3].

Table 2.1 comparison between current-mode amplifier and CSA

Type Number of treated patient Period

He 2054 1957-1992

Pions 1100 1974-1994

C-ions 21580 1994-2016

Other ions 433 1975-1992

Protons 149345 1954-2016

Grand Total 174512 1954-2016

Already in 1946 Robert R. Wilson, an Harvard physicist published a paper ex-

plaining some ion properties and possible application in medicine [4].

As already mentioned ions offer a better dose confinement than electrons and pho-

tons, having a narrow peak energy release and the peak position in the volume

depends on the particle beam energy. Furthermore it is possible to optimize the dose

conformation modulating the peak with a Spread-out Breagg Peak (SOBP). The

SOBP technique (Figure 2.5) is the result of many Bragg curves grouped (partially

overlapped) using passive absorbers or active systems. The active system techniques

imply the particle deflection provided by magnets and the range variation tuning the

energy [9].
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Fig. 2.5 Comparison between the photon dose distribution and a SOBP (left). SOBP principle:

the distal peak has the highest amplitude (right). Picture taken from [10].

The fact that the penetration depth can be precisely selected, the path is finite and

the maximum energy release is just before the ion rest are the great qualities of ions

in particle therapy. Moreover, the shallow entrance with low dE
dx

is fundamental for

the healthy tissue sparing, allowing the deep sited tumors.

A further improvement in the overall technique is given by heavier ions like the

carbon ion. Carbon ions have ∼ 1/3 of the lateral scattering effect of protons,

providing a higher Relative Biological Effectiveness (RBE) that means a better

damaging power for the sick tissues.

As already mentioned with SOBP the dose can be kept uniform using filters like

rotating wedges, propellers or ridge filters; passive scatterers are used to spread the

transverse dose whereas collimators regulate the contours of the field (Figure 2.6).

Even though carbon ions offer advantages over protons in particle therapy, the former

suffer for nuclear fragmentation that could be critical using passive systems for

beam modulation. The nuclear fragments are responsible for a tail in the depth-dose

profile that extends over the Bragg peak and the effect is emphasized increasing the

penetration depth. This fact is due to their lower Z that leads to higher ranges (having

almost the same velocity of the particle in the beam). Synchrotron accelerators allow

to overcame these phenomena, varying the extraction energy in a dynamic beam

delivery system.
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Fig. 2.6 Drawing of a passive modulating system. The transverse distribution is modeled

with spreading scatterers. A Ridge filter followed by a range shifter provides the correct

energy and depth for the SOBP components. The distal profile is then shaped with a properly

modeled compensator. Picture taken from [10].

2.3.2 Ion accelerators in particle therapy

The new technological trend in charged particle radiotherapy is to realize compact,

reliable accelerators with advanced beam performance. These characteristics imply

for instance a significant money effort reduction, facilitating the access to hadron

therapy to more patients. A more compact accelerators means a reduced radius of

the accelerating structure therefore, the magnetic field ÅB has to increase in order to

keep particles in the correct orbit. The increase of ÅB makes the focalization worse;

to overcome this problem, radio frequency accelerating systems are used.

In a particle accelerator the Radio Frequency (RF) cavities are placed along the

beam pipe. The RF cavity geometry is designed such as the electromagnetic waves

created by a RF power generator resonate, pushing forward the incoming charged

particles moving in the vacuum. The electromagnetic field drives the particles and it

oscillates with a given frequency, needed to arrange particles arriving with a slightly

inhomogeneous energy set: in-time particle are not accelerated whereas particle

arriving earlier are decelerated as well as particle in late are accelerated. In this way

the particle moves in bunches picking up energy from an increasing field provided
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by the accelerator magnets.

In order to deliver a standard therapeutic dose of 2 Gy/(min · l), the typical beam

intensities ranges between 1.8 ·1011 and 3.6 ·1011 particles per minute. However,

the new projects of more compacted accelerators need higher magnetic fields to

keep particles in the correct orbits and therefore higher intensities provided by radio

frequency accelerating systems, to overcome the focalization problems. Thus, the

intensity for a new generation accelerator for hadron therapy, is in the order of 1014

particles for minute. Such a high intensity is going to lead inefficiency problems in

standard detector currently employed in the particle therapy facilities.

2.4 Gas filled detectors

A widely diffused type of charged particle detector is the one based on the ionization

of a gas crossed by a charged projectile that releases enough energy to create ion-

electron pairs along its path. Applying a certain voltage difference between two

points at the gas volume boundary, those ion-electron pairs move as the electric

field guide them at the electrodes collection, separating charges by their polarity.

During the collection, the charge motion induces a certain signal that is the event

evidence seen by the front-end electronics. The information about the intensity and

the energy of a particle beam is therefore extrapolated from the resulting charge,

current pulse or voltage difference at the detector electrodes. Considered that, in a

gas detector the charge associated with an electron or a singe ion is by far too low to

result in a detectable electric signal, this device needs a large number of charged pairs

and has to collect them sharply, before recombination effects attenuate the signal.

Engineering the detector, important features like the gas type, the geometry and the

high-voltage range play a fundamental role in the device efficiency optimization,

mitigating issues like the recombination phenomena.

The random thermal motion characterizes the dynamic of a resting gas, where

10−6 − 10−8m is the the mean free motion range of the medium molecule. The

same kind of motion affects also the free electrons or ions and this leads to a certain

spreading of the charge that in a certain sense reject an ideal point-like collection

resulting in a normal distribution with a standard deviation increasing with time.
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2.4.1 Gas filled detector operation modes

A gas detector is a versatile device that generally can be adapted to different applica-

tions changing the voltage difference applied at its electrodes. Figure 2.7 depicts the

behavior of a gas filled detector as a function of the biasing voltage. Since the main

issue for high intensity pulsed-beam, is the recombination region we will focus on

this part, toghether with the proper ion chamber region.

Fig. 2.7 Operation regions for a gas filled detectors. The pulse height depends on the bias

voltage which define the detector mode of operation. E1 and E2 represents radiation with

different energies. Picture taken from [11].

The Coulomb force drive the attraction of two opposite polarity particles and

it is the basis of recombination. The electron-ion pairs recombine to form neutral

molecules with a rate that is inversely proportional to the applied voltage. In order to

precisely measure the particle beam energy it is crucial to reduce as much as possible

the signal losses. Therefore an ionization chamber ideally works in a region where

all the charges are detected and increasing the voltage does not increase the efficiency

any longer. This working range is also called saturation region. In this situation

the front-end electronics is fed with a signal which amplitude is proportional to

the incident radiation. Increasing the bias voltage enhance the capability to collect

charges nevertheless it has to be limited in order to avoid the detector discharge, that

would transform a detector from inefficient to quantitatively blind.
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2.5 Parallel plate ionization chambers

As depicted in Figure 2.8, the easiest way to develop a gas ionization chamber is

adopting a parallel plates geometry: a gas volume is enclosed between two planar

electrodes.

Fig. 2.8 Schematic representation of a parallel plate gas-filled ionization chamber. Consider-

ing a higher electron mobility they spread in a larger volume than positive ions; this is the

reason why a larger negative zone is depicted.

The movement of the collected charges changes the electric potential. The

result of this perturbation can be appreciated with an analytical modeling of the

phenomenon:

Ve f f (t) =V0 −Vnp(t) (2.5)

where V0 is the static bias and Vnp(t) is the potential difference at a certain time

t, associated to positive and negative charges in the detector.

With N0 ion pairs at t, the electrons with an average velocity v has a kinetic energy:

Kn(t) = N0eEvnt =
v0

d
N0evnt (2.6)
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The intensity of the electric field has been assumed uniform within the gas

volume; E = V0
d

with d the electrodes distance. The same results can be applied to

the ions and replacing n (negative) with p (positive):

Kp(t) = N0eEvpt = v0Nevt (2.7)

The dualism with a parallel plates capacitor continues considering the detector

capacitance C, and explaining the potential energy as

Uch =
1

2
CV 2

np (2.8)

and the total energy delivered by the bias voltage V0 is

Utotal =
1

2
CV0

2 (2.9)

with a short circuit the just named Utotal equals the sum of the potential and

kinetic terms:

Utot =Uch +Kp +Kn (2.10)

1

2
CV 2

0 =
1

2
CVnp

2 +N0eEvnt +N0eEvpt (2.11)

Describing the effective potential as Ve f f =V0 −Vnp it is possible to rearrange

the formalism:

(V0 −Vnp)(V0 +Vnp) =
2N0V0e

Cd
· (vp + vn)t →Ve f f ≈

N0e

Cd
· (vp + vn)t (2.12)

with

V0 +Vnp ≈ 2V0 (2.13)

With a mass ≈ 1/1000 the one of the proton, the electron motion shapes the

initial signal, as reported in Figure 2.9.
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Fig. 2.9 Ideal representation of a pulse profile in a parallel plate ionization chamber. Electrons

and ions shapes with different gradient, due to the mass difference and thus the different

collection speeds. Vn and Vp are the signal amplitudes related to negative and positive charges

respectively. Picture taken from [11].

The interval tn =
x
vn

is the time needed by an electron to travel toward the anode

form a distance x. With a lower rate, ions are collected to the cathode after a time

tp =
(d−x)

vp
. The maximum voltage amplitude is reached after the last particle has

been collected. The signal shape has three different slope:

N0e

Cd
· (vp + vn)t : 0 ≥ t ≤ tn (2.14)

N0e

Cd
· (vp + x)t : tn ≥ t ≤ tp (2.15)

N0e

Cd
: t ≥ tp (2.16)

In a real circuit, R-C effects smooth the signal profile as shown in Figure 2.10.

Although sharp responses (i.e. small time constants) allows a high-rate discrimina-

tion, a too small R-C might lead to information losses and lack of linearity.
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Fig. 2.10 Pulse profile representation. The smoother shapes (respect to Figure 2.9) are due

to the difference between the detector time constant and the charge collection period. Picture

taken from [11].

2.5.1 Advantages and drawbacks of ion chambers

Due to its versatility a ionization chambers can be used in different way therefore

the positive and negative features of this device are somewhat related to the specific

application. Nevertheless it is still possible to outline some general aspects to better

understand where an ionization chamber could be placed among the applied physics

detectors.

Using an ion chamber advantages in the saturation mode, the ionization current is

directly proportional to the incident radiation energy and it is almost independent of

the bias voltage; this increases its reliability under inevitable power supply fluctuation

and drift. Avoiding the charge multiplication, a gas detector working as ionization

chamber does not suffer for gas quality changes. Simple, widely diffused, ionization

chambers have anyway technical limitations like the low current flowing through

the ionization chamber that makes it a not suitable detector choice, for low radiation

applications. Another drawback in using a radiation chamber is the dependence from

temperature and pressure variation. The user should consider this aspect which is

indeed relevant only for high resolution detection.
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2.5.2 Collection efficiency in ionization chambers

In clinical application with charged ions, the dose released to the target is generally

determined by measuring the amount of charge Q collected by ionization chambers

placed just before the patient. As already mentioned, there is a certain difference

between the measured charge and the one that would be collected with a saturated

detector. The charge collection efficiency is defined as:

f (V ) =
Q

Qsat
(2.17)

Rising the bias voltage there is a sharp increase in the charge collection efficiency

until it reaches a plateau, once approached the saturation charge Qsat (Figure 2.11).

The bias voltage is limited by the fact that this applications requires to work in

the saturation region, avoiding charge multiplication or the even worse breakdown

situation.

Fig. 2.11 Typical plot of measured charge Q as a function of the chamber polarizing po-

tential V . The measured charge increases almost linearly for low voltages and approaches

asymptotically the saturation charge Qsat at higher voltages.

Knowing the collection efficiency for a certain bias voltage and electrodes sep-

aration, the Q(V ) measure allows to extrapolate Qsat . Two main recombination

processes are considered: the initial recombination and the general recombination.

Initial recombination concerns the events occurring inside the ionization track and
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it is not dose-dependent and 1/Q varies linearly with 1/V . General recombination

happens with ions created in different track therefore, it is dose-dependent. For

general recombination, close to the saturation region ( f ≥ 0.7) l/Q varies linearly

with l/V 2 with continuous beams and linearly with 1/V in pulsed beams. For ion-

ization detector filled with electronegative gases, only the general recombination is

significant if the device is working in the saturation region [12].

2.5.3 Slow rate issues in ionization chambers

In active scanning techniques for particle therapy, where the beam energy has to

be selected and changed on-line from the accelerator control system, synchrotron

accelerators are generally used. One of the main characteristics of a synchrotron

is that the radio-frequency accelerates the particles in bunches. The accelerating

machine has to be designed with thigh constraints in order to satisfy the beam

quality features required in medical applications. An important parameter is the spill

homogeneity during the beam extraction period. In order to perform on-line beam

monitoring during an active scanning procedure, it must be possible to switch the

beam on and off according to the required dose. Moreover, a slow beam extraction

(through slow synchrotron extraction, RF-KO extraction or betatron core driven

extraction techniques) is needed for meeting quality assurance standards [13].

Slowing down the beam extraction carries technical issues mainly due to the fact that

the final dose during a patient treatment has to be kept constant (and the treatment

time can not increase). Therefore, smaller pulses (108 p/cm2 s−1 instead of 109-

1010 p/cm2 s−1) with higher repetition rate are provided. smaller pulses means

less statistics, especially for the segmented detectors adopted for the beam centroid

position detection (that has to be measured typically with a space resolution within

0.1 mm). The most accurate beam monitoring systems (e.g. the CNAO one) have a

charge resolution in the order of 200 fC, value that does not allow to measure the

charge fluctuation between two different pulses [9]. A possibility to overcome the

small signal intrinsic statistics would be introducing an additional gain layer to the

IC, e.g. in Gas Electron Multiplier detectors (GEM).

During the data acquisition with ICs, it is important to integrate and measure the

entire collected signal, in order to avoid the introduction of underestimation effects.

In a typical 3 mm gas thickness, the total drift time for electrons is ∼0.3 µs and

the one for ions is ∼100 µs. The classic accelerators adopted nowadays in clinical
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centers have a spot duration typically larger than 200 µs, therefore, the monitor

chambers large collection time is not influencing the quality of the measure. Another

situation shows up with the new accelerator versions where the monitoring system

has to deal with a 1-10 µs pulsed beam structure and the related charge recombination

issues. More details are hereafter reported.

2.5.4 Recombination rate

The signal loss due to ion pair recombination depends on the concentration of differ-

ent polarity charges in a given point and on the interaction time. The recombination

rate volume-normalized can be expressed as:

d

dV

(

dN

dt

)

= αC+C− (2.18)

where α is the recombination coefficient, and C+ and C− are the positive and

negative ion concentrations. The same equation can be written highlighting the

charge loss q = eN as a function of the charge densities ρ+ = eC+ and ρ− = eC− (e

is the electron charge).

d

dV

(

dq

dt

)

=
dρ

dt
=

α

e
ρ+ρ− (2.19)

The bias voltage V , the electrodes distance d and the positive and negative ions

mobility in the detector gas, k+ and k−, are directly responsible to ion concentration

and interaction time. Once the electrodes are polarized, negative ions drift toward the

anode whereas positive ions are collected at the cathode, both having a drift velocity

proportional to the electric field E as:

v+ = k+ ·Ev− = k− ·E. (2.20)

In an electronegative gas (e.g. air), free electrons easily approach gas molecule

creating negative ions; in this situation the two ion polarities have an almost equiv-

alent mobility. Higher mobility ions tend to escape more to recombination. If the

gas is not electron affine, the free electrons recombination is not observed and k− is

∼ 3 · k+.
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2.5.5 Collection efficiency in pulsed radiation beams

For high-intensity pulsed beams, the particle pulse duration is shorter than the mean

transit time for an ion in the cavity, the ionization has to be studied for the time

interval concerning the single pulse. Therefore the charge density per pulse ρ p is

just instantaneous [14].

The drift of the ions creates in the inter-pulse period a positive ion region near the

cathode N,a negative ion region near the anode P and a central recombination region.

The recombination region width can be modeled as:

w(t) = d − t(k++ k−)
V

d
(2.21)

mettere la figura 4.4

Fig. 2.12 Schematic diagram of a parallel-plate chamber in which a pulsed radiation beam

has produced a uniform distribution of positive and negative charges. Positive charges drift

toward the negative electrode N with velocity V+ , while negative charges drift toward the

positive electrode P with velocity V−. Charge recombination is possible only in the overlap

region having a width w chat decreases with time.

A the beginning w = d (t = 0, w(0)) and then this space reduces to zero after a

recombination period T. For w(T ) = 0

T =
d2

(k+k−)V
(2.22)

If it is assumed that the number of free ions is due to a pure ionization result,

positive and negative ions will be present in equal number and this balance is kept also
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during the recombination too because this phenomena interest the two ion polarities

(since positive ions recombine with negative ones). Therefore ρ = ρ+ = ρ− and

dρ

dt
=

α

e
ρ2 (2.23)

integrating:

ρ(t) =
ρp

1+(α
e
)ρpt

(2.24)

with ρp, the instantaneous charge density produced during each pulse.

The recombination fraction fr exists until free ions are present and can be

expressed in the following way:

fr =
A

ρpAd

∫

0T (
α

e
)ρ2(t)w(t)dt (2.25)

where A is the electrode area .

fr = [1−1/uln(1+u)] (2.26)

where

u = (
α

e
)

ρcd2

k+k−V
(2.27)

The collection efficiency f = 1− fr is thus

f =
1

u
ln(1+u) (2.28)

by approximation for V → ∞, i.e., for u → 0, expanding ln(1+u) for, u → 0

f =
u− u2

2 + u3

3

u
≈ 1−

u

2
≈

1

1+ u
2

(2.29)
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For a pulsed radiation beam crossing a gas ionization chamber which is working

close to the saturation, the charge collection efficiency is:

f pg(V ) =
Q(V )

Qsat
=

1

1+ λ pg
V

(2.30)

where Λ
p
g = αρpd2/2(k++ k−)eV . Equation (1.35) may also be written as

1

Q
=

1

Qsat
+

λ pg

V
(2.31)

with λ
p
g defined as λ

p
g = Λ

p
g/Qsat . If QH and QL are charges measured at VH and

VL , respectively, then f
p
g (VH) can be written as:

f p
g (VH) =

QH

Qsat
=

QH/QL −
(

VH

VL

)

1−
(

VH

VL

) (2.32)

2.5.6 The multiple gap ionization chamber

The pulsed beams in particle therapy require an optimized version of the detectors

allowing a high precision even in the operation region where current detectors

undergo to high recombination rates.

This thesis chapter is focused on the development of a new ASIC designed to be able

to extend its dynamic range from a classical configuration to a high intensity pulsed

beam. In the latter case mitigation approaches must be considered already from

the detector that has to deal with particle recombination. One quite straightforward

solution involves a ionization chamber multiple gaps. An example of double gap

chamber is represented in Figure 2.13 where the picture shows a detector realized

from a collaboration between INFN and the Turin University.
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Fig. 2.13 Double gap chamber realized by INFN and University of Turin. a) cathode, made of

aluminum deposited over a thin layer of mylar; b) anode, made in aluminum deposited over

a layer of kapton; c) empty chamber box; d) the assembled double gap ionization chamber.

The two gaps have been designed with different electrodes distance in order

to have different charge recombination effects. Since the chambers have different

collection efficiencies, a procedure based on the data collected in a pair of chambers

was developed which allows to correct for the recombination and to determine the

total ionization charge.

When pulsed beams with intensities of 1012 ions/s are considered, and the gaps

of the chamber are in the order of few millimeters, the detector will work in the

recombination region (Figure 2.7); since in order to prevent the discharges, the bias

voltage is limited and the released charges cannot be totally collected. Therefore,

working in this unsaturated zone, the recombination of the charges becomes non-

negligible and it is necessary to correct for it.

In order to simplify the notation, from this point on, Q stands for the charge released

into the chamber gas (previously named Qsat ) and Q′ is used for the charge collected

by the electrodes. The collection efficiency is expressed as:

f =
Q′

Q
(2.33)

Considering now two gaps with different thickness and different applied voltages,

both filled with nitrogen. Assuming that the electrodes are thin and the two gaps are



28 Design and characterization of the TERA09 ASIC

close enough such that the beam crossing the perturbation of the beam is negligible.

Therefore:

f1 =
Q′

1

Q1
; f2 =

Q′
2

Q2
(2.34)

where Q1 and Q2 are the charge created by ionization respectively in the first and

second gap. The collected charges Q’ are measured with the electronic read-out of

each chamber.

The ratio between the collected charges is equal to:

Q′
1

Q′
2

=
f1Q1

f2Q2
(2.35)

Since the released charges Q1 and Q2 are proportional to the distance d between

the electrodes,

f1Q1

f2Q2
=

f1d1

f2d2
=

d1
1
u1

ln(1+u2)

d2
1
u2

ln(1+u2)
(2.36)

u1 =
α/e

k−+ k+
·

ρ1d1
2

V1
= ρ1u1

d1
2

V1
(2.37)

u2 =
α/e

k−+ k+
·

ρ1d2
2

V2
= ρ2u2

d2
2

V2
(2.38)

Where µ1 and µ2 are constant values.
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Fig. 2.14 Double gap chamber: conceptual representation.

If the same beam passes through both chambers, u1ρ1 = u2ρ2 and u2 can be

expressed in terms of u1 as:

u2 = u1
V1

V2

d2
2

d1
2

(2.39)

Q1
′

Q2
′ =

f1Q1

f2Q2
=

f1d1

f2d2
=

d1

d2
·

ln(1+u1)u1

ln
(

1+u1
V1d2

2

V2d1
2

)

u1

·
V 2d2

2

V 1d1
2

(2.40)

V1

V2
= a;

d1

d2
= b (2.41)

therefore
Q′

1

Q′
2

=
a

b

ln(1+u1

ln
(

1+u1
a
b2

) (2.42)

(

1+u1
a

b2

)

Q′
1

Q′
2 = (1+u1)

a/b (2.43)

u1 =
(

1+u1
a

b2

)

Q′
1b

Q′
2a −1 (2.44)

This is equation in the form u = f (u) can be solved for u using an iterative

method based on linear approximations.
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Let u0 be an estimate of u1 and let u1 = u0 + h. The number h is the true root of

the equation u1 , and h = u1 −u0 quantifies the discrepancy from the truth. A linear

approximation can be adopted (h small):

0 = f (u1) = f (u0 +h)≈ f (u0)+h f ′(u0) (2.45)

thus, unless f ′(u0) is close to 0

h ≈−
f (u0)

f ′(u0)
(2.46)

where un is the current estimate and un+1 the following one with f’ the first

derivative of f. Once obtained u, it is possible to calculate the collection efficiency

for the first gap:

f0 =
1

u1
ln(1u1) (2.47)

and the same procedure can be adopted to calculate f2.

u1 = u2
V2d1

2

V1d2
2

(2.48)

u2 =

(

1+u2
b2

a

)

Q2
′a

Q1
′b
−1 (2.49)

f2 =
1

u2
ln(1+u2) (2.50)

Once the collection efficiency f is determined for both the chambers it is possible

to determine the charge Q released into the chamber.

The just described method cannot be used on-line for reasons of computational

speed; therefore, with the aim to estimate the value of f1 and f2 , we plan to use the

following graphical method. Following the development of the above equation, the

ratio f2/ f1 can be expressed as:

f2Q2

f1Q1
=

f2d2

f1d1
→

Q2

Q1
=

d2

d1
(2.51)
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and

f2

f1
=

Q2
′Q1

Q1
′Q2

=
Q2

′d1

Q1
′d2

(2.52)

knowing the distances d between the two gaps, it is possible to measure the

collected charges Q1
′ and Q2

′. Then, with these values, changing the initial ion

density n0 (i.e. changing the beam intensity), it is possible to tabulate analytically

a series of values of f2/ f1 . The plot of f2/ f1 vs n0 is a monotonic function and

for each value of f2/ f1, f1 and f2 are uniquely determined, for a specific n0 , as

represented in Figure 2.15.

Fig. 2.15 Example of the graph used for the collection efficiency estimation.

2.6 The TERA09 ASIC

2.6.1 Motivations

The TERA09 ASIC is a current-to-frequency converter device, designed as an

improved version of its predecessor, TERA08. This previous version features 64
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channels operating in parallel, each accepting input currents of both polarities and

implementing a 32 bits counter with up/down counting capability [15]. TERA08

operates with a clock frequency of 100 MHz and a maximum conversion frequency

of 20 MHz. With a charge quantum of 200 fC the maximum current that a channel

can convert without saturation is about 4 µA. Even if in conventional particle therapy

facilities the adopted currents are in the order of hundreds of nano amperes, this

limit can be an issue for the pulsed beam structure provided by new systems and by

the whole planned next generation of accelerators where, with the aim of reducing

the complexity and increasing the performance of the machines, new accelerating

technologies are exploited [16] [17]. Short beam pulses of 1-10 µs duration with a

repetition rate of 1 kHz or less will replace the almost constant beam flux used in the

present clinical facilities, leading to an effective beam duty cycle two to three orders

of magnitude smaller. Therefore, to achieve a similar dose, the beam flux in each

pulse has to increase accordingly. The new design project started after a preliminary

test performed increasing the current range with TERA08. A discrete upper-board

adapter applied over the ASIC test board, allowed to evenly split the input current of

a detector element into several readout channels and then adding up the counts of

these channels to reconstruct the input current. It was shown [18] that this method is

suitable to increase the maximum input current up to 64 times, preserving the good

linearity achieved with the individual channels and with a limited increase in the

standard deviation of the measurement. Nevertheless, there are drawbacks with this

method; one is the lower number of detector elements which can be read out with

a chip, the second is the necessity of reading out the values of a large number of

counters, up to 64, and perform their sum. Both affect the versatility of the chip and

strongly limit the range of application of TERA08. In addition, a 64 increase in the

dynamic range could not be sufficient for the target application. This is the reason

why TERA09 has been designed.

2.6.2 TERA09 circuit architecture

Figure 2.16 shows the architecture of the TERA09 chip. The ASIC contains 64

identical channels equipped with a current-to-frequency converter, described in detail

later, followed by a 32-bit counter. Currents of both polarities can be converted,

leading to increments or decrements of the counters depending on the current polarity.

The readout of the counters can be done independently from the operations of the
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converters. By asserting a common external latch signal the content of all the

counters are loaded simultaneously in 32-bit registers. This operation does not stop

the activity of the counter, thus there is no dead time due to the readout. An integrated

system of adders triggered by the latch signal provides the sum of groups of 4, 16

and 64 channels.

Fig. 2.16 TERA09: functional blocks representation.

These values are stored in additional 34-, 36-, and 38-bit wide registers. Any of

these registers can be addressed via seven digital Channel Select lines and read out

on a 38-bit output bus through a multiplexer. It is possible to directly read the sum

of the counters of 4,16 or 64 channels if, in order to increase the dynamic range, the

input current is split among the channels, as explained in the previous section.

Particular care has been taken to prevent the overflows of the registers to corrupt the

corresponding sums. Indeed, the converter was designed to operate at the maximum

conversion frequency of 80 MHz; as an example, in this conversion frequency limit

condition the counter 32-bit capacity will be exceeded, and the counter will reset to

the starting value, approximately every 50 s. Such a condition is easily identified

and corrected for if each individual channel is acquired separately, but it can be more

difficult to identify and correct when only the sum of a large number of channels

is acquired. To identify in advance possible flips of individual counters, an output

warning signal was implemented which is set whenever any of the 64 counters
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exceeds half of its capacity (see Figure 2.16). When such condition occurs, the

asynchronous digital resetD can be used to zero all the counters soon after the latch

signal.

The converter of TERA09 is based on the charge recycling technique and is imple-

mented as shown in Figure 2.17.

Fig. 2.17 Block diagram of the TERA09 electrical current-to-pulse converter.

The input current is integrated over a 1.2 pF capacitor Cint via a folded-cascode

operational transconductance amplifier (OTA), described in the following subsection.

The output voltage VA increases when the current exits from the chip (negative

current) and vice versa. This voltage is compared with two fixed thresholds, Vth_+

and Vth_− , by two synchronous comparators. Whenever the comparator input

voltage crosses the threshold, the corresponding comparator sets a logic level 1 at

one of the input VB of the pulse generator (PG). When one of its inputs goes high,

the PG generates a pulse VC with a duration of 2 clock cycles that sends a current

pulse with polarity opposite to the input current to discharge of the capacitor Cint .

The pulse adds or subtracts a fixed amount of charge Qc, depending on the outputs

of the comparators; this results in a change of voltage across VA given by QC/Cint

. In parallel, the PG sends an increment or a decrement signal to the counter. The

waveforms of these signals are shown in Figure 2.18 for the case of a steady negative

current.
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Fig. 2.18 Voltage waveforms at the output of the charge integrator (VA ), the comparator (VB)

and the pulse generator (VC) for a constant negative input current.

The circuit for the discharge of the integrating capacitor is shown in Figure 2.19.

Fig. 2.19 Diagram of the circuit for the discharge of the integrating capacitor.

The circuit for the discharge of the integrating capacitor is shown in Figure 2.19.

The pulse Vc is split in two pulse signals, pulse and pulsesel , which are delayed by

one clock cycle. The first signal is used to send a voltage pulse to a 200 fF capacitor

Csub, whose amplitude is given by the difference ∆V = (Vpulse+−Vpulse−) which

can be selected in the range between 0.25 and 3.3 V. At the edges of the pulse, the



36 Design and characterization of the TERA09 ASIC

capacitor generates two δ -like current pulses of equal absolute value and opposite

polarity, each corresponding to a charge given by

Qc =Csub ·∆V (2.53)

Depending on the value set for ∆V , the charge quantum can therefore be selected

in the range between 50 fC and 660 fC. One of the two current pulses is used to add

either a positive or a negative charge quantum to Cint while the other is discharged to-

ward the reference voltage of the OTA (Vre fOTA ). The selection is achieved by acting

on the two CMOS switches via the pulsesel signal. As an example, the waveforms

shown in Figure 2.55 lead to a positive charge quantum being added to Cint . It should

be noted that the voltage across the switches is always equal to the OTA reference,

thus limiting the leak of charge through the switch. Another factor which could limit

the resolution of the circuit is the charge injected by the parasitic capacitors of the

switches. This charge is minimized by the use of CMOS switches and by choosing

the minimum size for the transistors.

Fig. 2.20 Example of voltage waveforms of the two pulses used by the circuit for the

discharge of the integrating capacitor.

Finally, the integration capacitors of all channels can also be fully discharged

via the ResetA common digital input. The total charge collected at the input of the

channel in a given time interval is given by the number of pulses generated by the

PG in the same time interval, measured as the increment or the decrement of the
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counter, multiplied by the value of the charge quantum Qc. For an average input

current Iin , the average output frequency f of the converter is given by

f =
Iin

Qc
(2.54)

All the operations described above are synchronized to an external master clock

and supervised via a Moore-style finite state machine. Since four clock cycles are

required to perform the Cint discharge sequence, the maximum conversion frequency

is 1/4 of the master clock frequency. The chip has been designed to operate at a

maximum clock frequency of 320 MHz; in this condition, the maximum output

frequency of the converter is thus 80 MHz, an increase of a factor of four compared

to the predecessor.

Forty chips TERA09 were produced in the CMOS 350 nm technology by AMS

taking advantage of a Multi Project Wafer organized by Europractice [19]. The

chips, whose size is 4.68 · 5.8 mm2 (layout shown in Figure 2.21), were encapsulated

in an MQFP 160 package prior to delivery. In the following, the results of the tests

performed on the chips are reported.

Fig. 2.21 Layout top view of the TERA09 ASIC.

2.6.3 TERA09 OTA: design informations

As mentioned TERA09 works with bipolar input currents. For this reason its am-

plifier has been designed to integrate the input signal, providing as output a voltage

ramp which has a positive angular coefficient if the input current is negative and vice
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versa. The adopted amplifier type is the OTA.

Considered stand-alone (i.e. without the capacitive feedback adopted to work as

an integrator), a conventional Operational Transconductance Amplifier (OTA) is

classified as a class A amplifier that produces an output current from an input voltage

difference, through a transconductance gain parameter:

Gm =
i0

Vi
(2.55)

the maximum output current is equal to the applied bias current. Ideally the input

and output resistances are infinite therefore no current is crossing the resistances

depicted in Figure 2.22. The open circuit gain is A = GmRo.

+

-

Vi+

Vi-
Vo

gnd

+

-

Vi Ri GmVi Ro Vo

+

-

io

Fig. 2.22 OTA conventional symbol (left) and equivalent circuit representatin (right).

A single stage OTA presents a cascoded differential input pair and also the load

is configured with a cascode. The DC gain results from the parallel of the input

and output cascode equivalent resistances, multiplied by the input transistor gm.

GBW = gmPM1/Cl is the gain-bandwidth product. Cl is the load capacitance.

The core amplifier is based on the folded cascode topology. As shown in 2.23, the

folded cascode architecture is obtained when the common gate transistor and the

common source one are complementary types. The advantage in using a folded

cascode configuration is the increased output swing and a Common Mode Rejection

Ratio, whenever a differential architecture is adopted.
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vdd

gnd

Vo + vo

Vi + vi

Vbias

Vi + vi

vdd

gnd

Vbias

Vo + vo

Fig. 2.23 Schematic representation of the conventional cascode scheme (left) and the folded

cascode one (right). In both the cases the current in the MOSFET drain of the transistor

closer to vdd is directly transferred to the second transistor.

In Figure 2.24 the schematic representation of the TERA09 folded cascode OTA

is depicted.

A B

vdd

gnd

out

IN -IN +
PM1 PM2

PM3
V_biasP1 V_biasP2

V_casP

V_casN

V_biasN

A B

NM1 NM2

NM3 NM4

PM7 PM8

PM4 PM5
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V_biasP1

V_biasN

PM9

PM10

Fig. 2.24 Schematic representation of the TERA09 Folded Cascode amplifier.

The current crossing NM1 and NM2 in an equilibrium state, is twice the one in

the differential input pair and the resulting excess moving in the diode connected

branch is downwards mirrored by PM5 sunk by NM2. Reducing the gate voltage of
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PM2 will reduce the current in PM1, decreasing the current through NM4 increases

the one in PM5−PM7; I(PM7) - I(NM4) is sourced to the output load. If the voltage

on PM1 gate is lower than the one in PM2, the situation is going to be specular. In

this architecture, the bandwidth has a second pole limitation depending on the ratio

between the PM4 transistor transconductance and the equivalent parasitic capacitance

experienced from the PM4 gate.

Is hereafter reported a table showing the TERA09 OTA simulation results, con-

sidering the temperature operation range and model corners. Gain, Gain · Bandwidth

product and margin phase values have been obtained for 0, 27 and 85 Celsius degrees

and changing among the typical models (tm), worst case for speed (ws) and worst

case for power (wp).

The folded cascode OTA is feedback in the TERA09 channel, with a 1.2 pF ca-

pacitance (C f ) which is twice the value implemented in its predecessor, the TERA08

chip. This increased capacitance improves the front-end stability at high rates, up to

250 MHz. The gain reduction descending from an higher C f is compensated with

a proper transistor sizing thus to increase the input transistor transconductance and

sustain an increased bias current overall.
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Table 2.2 Process corner analysis results. Settings: Vre f = 1.65 V; Ibias = 800 µA; Cl = 1 pF.

The data have been obtained simulating the schematic view.

Model library T [◦ C] vdd [V] G [dB] GBW [MHz] Phase margin [◦]

tm 0 2.97 40.1 636.7 49.2

27 2.97 39.3 569.8 48.2

85 2.97 38.3 534.0 47.6

0 3.3 40.6 780.7 47

27 3.3 39.8 658.0 48.2

85 3.3 38.5 507.2 49.5

0 3.63 41.0 727.4 51.6

27 3.63 40.1 736.3 47.8

85 3.63 38.8 552.9 49.4

ws 0 2.97 41.7 488.2 47.7

27 2.97 40.9 428.4 47.9

85 2.97 39.6 323.5 48.4

0 3.3 42.2 571.4 44.7

27 3.3 41.4 508.2 45.6

85 3.3 40 365.3 49.7

0 3.63 42.5 655.5 46.5

27 3.63 41.6 593.8 49.2

85 3.63 40.3 428.4 48.3

wp 0 2.97 39.1 995.9 48.3

27 2.97 38.3 885.1 48.1

85 2.97 37.2 669..4 49.5

0 3.3 39.6 1127.6 47.6

27 3.3 38.7 996.4 47.3

85 3.3 37.4 773.1 48.3

0 3.63 40.1 1294.8 46

27 3.63 39.1 1061.1 47.8

85 3.63 37.7 842.9 48.1
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Fig. 2.25 Schematic simulation result showing the recycling integrator architecture in action.

The TERA09 channel is here fed with a 1µA input current and the system clock is set at 250

MHz. The red curve is the OTA output voltage ramp which is brought under threshold (in

green), subtracting a 200 fC charge quantum. The digitized output is reported in the lower

part of the picture, in violet.

Figures 2.25, 2.26 shows the result of schematic simulations for the TERA09

channel with a 1 µA and 10 µA input current respectively. The system clock was set

at 250 MHz therefore the recycling integrator with its pulse subtraction FSM works

up to 62.5 MHz ( clockperiod
4 ).
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Fig. 2.26 Schematic simulation result showing the recycling integrator architecture in action.

The TERA09 channel is here feeded with a 10µA input current and the system clock is set at

250 MHz. The red curve is the OTA output voltage ramp which is brought under threshold

(in green), subtracting a 200 fC quantum charge. The digitized output is reported in the lower

part of the picture, in violet.

2.7 The ASIC characterization

2.7.1 Experimental setup

The experimental setup used to characterize the ASICs was based on a National

Instrument PXI chassis with a 7813R FPGA board, interfaced to the host PC using

the LabVIEW FPGA software toolkit [20]. In order to manage a multi-ASICs test

routine, a dedicated PCB has been realized implementing a socket that allows to

plug-in the chip under study and plug-it-off after the procedure (more details are

reported in the following subsection).

For some of the tests, a voltage generator was used to inject a precise steady current,

either into a single channel or evenly distributed in parallel to all the 64 channels. In

the first case, the source was connected to the input via a 10 MΩ series resistor. The

configuration for the parallel connection is represented in Figure 2.27.
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Fig. 2.27 Schematic representation of the acquisition setup where 64 channels are connected

in parallel to the current source.

The connection of groups of channels to a common input of the TERA08 ASIC

has been investigated in [18]. From those test results has been observed that this

kind of signal splitting through a parallel connection of the channel is only possible

through resistors of 10 MΩ or more, high enough to limit to a negligible value the

offset currents which originate from the small voltage offsets of the input stages of

the channels. In this case, the input impedance seen by the generator amounts to

10/64 MΩ. A simple fan-in board with SMD resistors was prepared for this purpose

(see Figure 2.28).

Fig. 2.28 Fan-in boards with the surface mounted resistors for the TERA09 channel parallel

connection. The connector adapted to the PCB inputs is visible in green, on the left side of

the photo; on the right, it is possible to appreciate the SMD resistors and the jumpers with

black hats which are used to physically close (or not) the electric paths.
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The Keithley 2400 voltage generator was used, which provides a precise voltage

source in the range between 1 mV and 211 V but is current-limited at high voltages.

For higher currents, we used a Bertan 323 model HV power supply, which can

provide a voltage source up to 3 kV.

2.7.2 The TERA09 test board

As previously mentioned, a custom test board has been developed for testing the

TERA09 ASICs. The PCB is a six-layer system with the following organization:

two layers dedicated to grounding

one layer is the 3.3 V CMOS power plan

one layer is used for the OTA voltage reference

the two remaining layers are used for the signals routing with special care for

the clock lines.

The PCB mounts a 160 pins MQFP socket (Figure 2.29)that houses the chip in

a removable way. Just two PCB tes boards have been realized to test the 40 chips

production.

Fig. 2.29 The 160 pins MQFP socket open (left) and close (right). A mechanical pressure of

the top cover, guarantee the electrical contact between the ASIC pins and the socket ones.

A further crucial aspect for the PCB design has been the choice to implement the

possibility to provide the clock signal either on board through a voltage controlled

oscillator (VCO) or from external sources, via SMA connectors. The clock signal
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format is LVDS and the operating modality (external or internal clock source) can

be selected by soldering two zero-ohm resistors as bridge connection.

Fig. 2.30 3D model detail for the VCO-SMA clock source splitting. The SMAs are rep-

resented with the withe round components and the oscillator with LVDS output is placed

between them.

The PCB embeds the circuits for adapting the 3.3 V CMOS digital levels to the

5V TTL levels of the DAQ board and all the voltages needed to operate the chip.

Finally, two connectors allowed to inject a current separately in each input channel

of the chip (two connectors are needed because TERA09 has 32 channels on one

edge and the other 32 channels in the opposite edge).

Figure 2.31 shows two views of the test board design and Figure 2.32 is a rendering

of the test board.

Fig. 2.31 Test board design views. Floor plan view (left). Gerber file of the top layer (right).
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Fig. 2.32 3D model or rendering of the TERA09 test board. The chip inputs are routed

through flat cables on the lateral edges (represented in white). The upper part has the voltage

references and the voltage regulator for the 5 V to 3.3 V levels; in the left-high corner, the

connector for the external voltage supply is represented in green. In the left-lower corner of

the picture, there is the VCO-SMA clock source splitting path.

The TERA09 chip has a 32-bit register for each of the 64 channels, 16 registers

34-bits deep for the sum of four channels, 4 registers 36-bits deep for the sum of

sixteen channels and one 38-bits register. Therefore eighty-five register are readout

with a given frequency, by the DAQ software. The TERA09 output is the result

of a register selection through a control multiplexer, operated with the following

addressing logic:

8 bits covers 85 register possibilities (28 = 128); b0 is the LSB, b7 is the MSB.

b7 is the chip select: it is used to enable or disable the chip data exchange,

though for a multiple ASICs system (e.g. the TERA09 front-end board de-

scribed in the following sections).

b6 separates the selection from channel level to channel-sum level. When

b6 = 0, bits from b0 to b5 select the 64 channels in the ordinary way (00000 =

channel 0, 00001 = channel 1 and so on). With b6 = 1, the situation is slightly

more complex.

With b6 = 1, the bits b0 and b1 are responsible for the sum level selection: if

b0 = 0 then the bits form b2 to b5 are used to chose the first level sums i.e. the

sum of four channels (for example, excluding the b7, 10000x0 = first sum of

four registers from channel zero to channel three. The x character means that
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it does not care its value. 10001x0 = second sum of the first level thus the sum

of the channel from four to seven included).

If b0 = 1 then, if b1 = 0, the selection is confined to the second level sums, the

sixteen channels sum, selected through the b5 and b4 (100xx01 selects the first

sum of sixteen channels, from channel zero to channel fifteen included).

If b0 = 1 and b1 = 1 the selection target is unequivocally the register containing

the sum of all the sixty-four channels.

Resuming: b7 = chip select b6 = single channel or register sum selection;

the string 1b5b4b3b2x0 is used to select the sums of four registers; the string

1b5b4xx01 is used to select the sums of sixteen registers; the string 1b5b4xx01

is used to select the sums of sixty-four registers.

The bit configuration for the TERA09 register addressing is resumed in Figure

2.33

Fig. 2.33 TERA09 register addressing bits.
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Figure 2.34 highlights the test board connections while the data flow and the

interconnections between the ASIC and the FPGA is depicted in Figure 2.35. The

FPGA sends the controls through the high-density connector V HDCI1 (Figure 2.36):

Fig. 2.34 TERA09 test board with the connector detail: two flat connectors for the 64 channel

inputs (top and bottom), two VHDCI connectors for data and control management.

bias_mode0 and bias_mode1 controls the bias current of the OTA, in order to

decrease the power consumption when the chip is locked to a lower frequency.

the load signal stores at the same time the counters content to the registers,

and it occurs with a frequency selected in the DAQ (usually 1 - 10 kHz).

rst_synch is the synchronous reset of the digital and analog information.

rstD is the digital reset used to empty the digital registers.

rstA is the analog reset used to force the OTA feedback capacitance discharge.

This signal is generally used at the beginning of the data acquisition in order

to start without charge accumulated in the feedback capacitance.

b7 − b0 are used to select which register content is going to be reported as

output.
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Fig. 2.35 Schematic representation of the ASIC-FPGA data exchange. The connection

between the TERA09 test board (named Motherboard, in the picture) and the NI chassis are

realized using VHDCI connectors.

Fig. 2.36 High density, 68 poles VHDCI connector.

The V HDCI2 is used for the ASIC output data: D0−D37 are the data 38 bits.

The bit hal f _ f ull rises to 1 whenever the sum of the 64 channels register reaches

half of this counting width (the MSB flips from 0 to 1); in this way, the user has time

to deal with incoming register overflow avoiding data loss.

2.7.3 Characterization results

TERA09 has been designed to achieve a good linearity over a large input current

range, therefore the tests were mainly addressed to verify this feature. At first,

this section describes the performance of the individual channels in terms of gain
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uniformity, background current and the linearity range. Afterward, the linearity over

the extended input range is obtained with a parallel connection of the inputs.

The basic functionality of the chips was checked by injecting a steady current in

individual channels selected randomly and by measuring the corresponding number

of counts. This check was repeated several times increasing the clock frequency. It

was not possible to reach the maximum value of 320 MHz because the chip becomes

unstable at frequencies above 280 MHz. The problem was investigated in detail and

was found to be related to the cross-talk between digital signals of the chips and

the clock signal on the test board. The results reported in this paper were obtained

with a 250 MHz clock, corresponding to a maximum counter increment frequency of

62.5 MHz, and should be considered conservative in terms of the measured dynamic

range. All the chips were found to be working and providing a similar number of

counts. One of them was selected randomly for the additional tests reported in the

following.

As a preliminary step, for each value of the charge quantum QC used in the

tests, a calibration procedure was adopted. The external reference voltages, common

to all the channels, were set acting on trimmers provided on the test board. The

charge quantum of each channel was then derived, applying equation (2), by injecting

channel by channel a steady current of 1 µA and measuring the corresponding counter

frequency. The value, averaged over all the channels, was found to deviate by a

few percents from the expected value, well within the tolerance of the capacitance

values of Csub which, for the used technology, is specified to be ±10%. The small

deviation of the chip average charge quantum was corrected by adjusting the external

reference voltages.

Figure 2.37 shows the deviation of the charge quantum from the average as a

function of the input channel number for a QC average value of 200 fC. This figure

indicates that the gain uniformity across the channels of the chip is around 3%.

A structure with a certain symmetry can be noticed, where the trend observed in

channels 0 to 31 appears to be similar to that observed in channels 32 to 63. This

similarity may originate from the geometric arrangement of the channels in the chip,

where the two groups of channels are positioned symmetrically along two opposite

edges. Similar results are obtained at different values of QC, as expected considering
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that the relative deviation of the charge quantum is mainly proportional to the relative

deviation of the capacitance of Csub.

Fig. 2.37 Charge quantum relative deviations as a function of the input channel, obtained

from 1µA input current measurements. Channels are numbered from 0 to 63

The background current was measured by acquiring data with the inputs of

the chip unconnected. The measurement was repeated for charge quantum values

ranging from 50 fC to 600 fC in 50 fC steps. The results, shown in Figure 2.38, are

expressed in terms of counts per second, where the following rule was adopted: the

number of counts is assigned a positive sign when the counter is incrementing (i.e.

for negative input currents) and a negative sign when the counter is decrementing

(i.e. for positive input currents).

As expected, the result scales approximately with the charge quantum value. For

a value of 200 fC, a typical choice for beam monitoring in particle therapy [21], an

average background of about -10 counts per second is observed, corresponding to a

positive pedestal current of 2 pA, almost two orders of magnitude smaller than the

minimum currents measured in clinical applications. For the analysis presented in

the following, the charge quantum was fixed to 200 fC, and the corresponding values

of the pedestal of each input channel were measured and subtracted from the data in

all the measurements.
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Fig. 2.38 Average background frequency as a function of the charge quantum Qc. The

vertical bar indicates the standard deviation of the 64 channels of the chip.

Figure 2.39 shows the value of the counter frequency as a function of the value

of the input current for a typical channel of the chip, where positive and negative

currents are shown separately.

Fig. 2.39 Count frequency as a function of the absolute value of the input current for a single

channel for a 200 fC charge quantum. Positive and negative currents are shown separately.
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The measurement was performed for an input current ranging from ±80 pA to

±12 µA and the results were fitted to a line separately for positive and negative

currents. The relative deviations from linearity as a function of the input current are

reported in Figure 2.40.

Fig. 2.40 Relative deviation from linearity as a function of the input current for the measure-

ments reported in Figure 9.

A good linearity is observed with deviations well within ±1% for most of the

range except for low absolute values of the input current, where it is found that

the deviation exceeds 2% below 3 nA. For comparison, a maximum deviation from

linearity of 1.5% was reported in the range 500 pA to 3 µA for the chip TERA08 [22].

As anticipated, TERA09 extends considerably the input current range compared to its

predecessor. The worse linearity, compared to TERA08, at very small input currents

was unexpected and may originate from leakage currents in the test board used for the

measurements. The compact front-end printed circuit board for TERA09, currently

under development, will be designed to overcome this problem. As explained in

the previous sections, by reducing the number of detector elements that can be

served by a chip, the dynamic range can be further extended by splitting evenly

the current through several channels of the chip and by reading out the sum of the

corresponding counters. For example, reducing to 16 detector elements, the dynamic

range is fourfold increased. All the results which follow were aimed at probing

the performance with such arrangement and were obtained connecting all the 64

channels of the chip to the same current source.
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Fig. 2.41 Distribution of a 10 µA input current among the 64 channels of the chip. Channels

are numbered from 0 to 63.

To convert the frequency of counts of each channel into a current, the equation

f = i[in]/QC was used correcting for the channel-by-channel variations of the gain

shown in Figure 2.37. The results indicate that the current is uniform across the

channels with a maximum deviation of ±1%, compatible with the tolerance of the 10

MΩ resistors connected to each input. The linearity obtained with this arrangement

was tested, using a charge quantum of 200 fC, in a range of currents between ±10µA

and ±750 µA, yielding to the results reported in Figure 2.42.
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Fig. 2.42 Absolute value of the count frequency as a function of the absolute value of the

input current for the sum of 64 channels, as described in the text. Positive and negative

currents are shown separately.

The corresponding deviation from linearity, obtained with the same method as

for the single input channel, is shown in Figure 2.43.

Fig. 2.43 Relative deviation from linearity as a function of the input current for the sum of

64 channels reported in Fig. 12.
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It is found that a linearity better than ±3% can be achieved in a range of currents

between 20 µA and 750 µA for both current polarities.

2.8 Radiation damage test

2.8.1 Introduction

The TERA09 chip is designed to be located aside of the monitoring chambers, far

from the therapeutic beam, and no protection from data corruption from single events

was implemented in its design. However, considering the relatively large area of

the chip covered by data registers and the secondary neutrons field produced during

the irradiation, the potential exposure to data corruption by Single Event Effect

phenomena need to be addressed. With this aim TERA09 has been directly exposed

to various ion fluxes with different LET, to study the upset rate as a function of the

energy deposited by single events. From the analysis of the data, it is possible to

predict the single event effect cross-section in a clinical environment and estimate

the readout failure probability in a real application scenario.

The effects of the total ionizing dose on the performance of the TERA chips were

studied and reported in previous publications [23]. In this thesis section the investi-

gation of radiation-induced Single Event Upsets (SEU) on TERA09 is reported. This

is particularly relevant considering that the chips were not designed for operating in

a harsh radiation environment and no protection from data upsets originating from

single events was implemented in the design.

The sensitivity of a device to single events is generally determined by measuring

the rate of occurrence of a given effect as a function of the energy deposited, by

irradiating the device with ions of different Linear Energy Transfer (LET). The

SIRAD (Silicon RAdiation Damage) facility [24], located at the 15 MV Tandem

of the Legnaro National Laboratory (LNL) of the INFN, offers the possibility to

work with different ion sources, select the beam fluence and the beam incident angle

on the Device Under Test (DUT), thus allowing to collect statistics of single event

occurrence as a function of the energy deposited by the ions. We focused on the

digital part of TERA09, described in the following section, where the incident ion

deposited energy may induce bit flip phenomena (i.e. SEU) in a large set of data
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registers, leading to data corruption. Analyzing the data from this SEU tests it is

possible to determine the TERA09 upset probability in a typical clinical environment.

2.8.2 Basis on Single Event Effects in CMOS

In CMOS technology the reliability of a system is an aspect getting worsening (or

at least getting more challenging), with the design detail downscaling. Intuitively,

the smaller is the device and more sensitive to parameters variation or system

perturbation it will be the device itself. In CMOS technology it is common to refer

to Single Event Effects distinguishing among heavy and soft damages. Examples of

heavy or permanent damages are the Single Event Burnout that is a destructive effect

or the Single Event Latch-up, a short-circuit that can lead to burnout if not mitigated

in time. In the soft event category, the Single Event Transient and the Single Event

Upset are the most common; the former results in a charge transient caused by a

single proton or heavy ion passing through a sensitive node in the circuit whereas

the latter results in a bit-flip, thus a logic state change due to energy deposition in a

digital cell. Several studies proved that SEU and SEL effects are physically separated

in terms of silicon region where they occur. Figure 2.44 shows the fact that SEUs

are confined in the first micrometers thickness under the device surface whereas

SELs occur deeper in the silicon bulk [26].

Fig. 2.44 Spatial distribution of different SEE: SEU are confined in the first micrometers

thickness, under the device surface whereas the SEL are deeper in the silicon bulk.

As mentioned before, a Single Event Latch-up occurs in the deep volume of

the silicon bulk where, in a CMOS process, the combination of n-well, p-well, and

substrate forms a parasitic n-p-n-p structure named thyristor. During a latch-up, both
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Fig. 2.46 Schematic representation of the thyristor-like path, responsible of SEL. From left

to right: the CMOS n-p-n-p structure, the electric circuit and the BJT connections.

MOSFETs are conducting resulting in a power-ground short circuit. The permanent

and destructive event is avoided turning off the power supply. Figure 2.45represent

this kind of path which details are shown in Figure 2.46.

Fig. 2.45 The Single Event Lachup occurs in the deep volume of the silicon bulk. In a CMOS

process, the combination of n-well, p-well and, substrate forms a parasitic n-p-n-p structure

named thyristor. During a latch-up, both the MOSFETs are conducting resulting in a vdd-gnd

short circuit. The permanent and destructive event can be avoided turning off the power

supply.
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Considering the TERA09 chip and its application, the study has been focused on

the SEU phenomena. High LET particles increase the SEU probability in a CMOS

circuit and this is related to the released energy in the crossed medium and the related

ionization density. Hitting the silicon bulk, these ions create ion-holes pairs and their

collection at the source/drain diffusion regions may result in a p-n junction current

pulse, driving a voltage change in the corresponding circuit node [27]. The event

occurs whenever in a sensitive node the charge injected by the current pulse exceeds

a certain critical value Qcrit . It is possible to model the SEE with the following

equation:

V ≥
Qcrit

C
=

1

C

∫ tsw

0
idsdt (2.56)

where C is the capacitance of the discharging path and tsw is the time delay

between the particle strike and the logic state change (voltage exceeding a certain

threshold value). ids is the drain-source current flowing into the transistor of the

SEU interested node. Figure 2.47 represents an example of a logic state switching

occurring in a CMOS inverter.

Fig. 2.47 Schematic representation of an inverter bit-flip due to a SEE.

2.8.3 SEU test setup

As just mentioned, the SEU is a not a permanent damage of the chip circuitry and it

results as a bit-flip originated by a high energy deposition by a single track in a small

sensitive volume located into the digital circuitry. For single event effect studies, the
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particle fluence rate must be carefully selected to be low enough to distinguish the

effects caused by the impacts of single ions and high enough to observe a significant

number of single effects in the measurement time. Typical ion fluxes are in a range

from 103 to 105 ions/cm2s [24]. The experimental setup used to test the TERA09

for SEU consisted in a PCB test board with a socket to carry and properly bias the

ASIC, interconnecting it to the data acquisition system (DAQ), based on a 7813R

FPGA board, interfaced to the host PC using the LabVIEW FPGA software toolkit.

Figure 2.48 shows the cable connections through the vacuum irradiation chamber.

An external clock source provided the 250 MHz LVDS clock whereas the PCB 5 V

bias was supplied by a voltage generator that was current-limited to prevent latch-up

triggered burnout. A program was prepared which, after issuing an initial latch

signal to load the values of the counters in the chip registers, reads out at the desired

frequency the chip registers detecting and displaying any bit flip. The contents of the

registers were also saved in a file for off-line analysis.

Fig. 2.48 a): The DUT thus the TERA09 ASIC carried by the PCB socket, fixed inside the

vacuum chamber on the metal plate holder.

b): Vacuum chamber external flange connections.

c): VHDCI connectors carrying the ASIC data and controls to the National Instrument

FPGA.

Figure 2.49 shows the GUI of the DAQ created for the TERA09 SEU test.
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Fig. 2.49 SEU DAQ graphical user interface. The left panel reports the number of counts for

the 64 channels: after a first starting phase of current injection, the load signal (counters to

registers latch) is turned off and the SEU test starts.

A Keithley 2400 voltage generator was used to provide a steady current to the 64

inputs of the chip in order to let the counters increment rapidly after the power-up

of the chip. This was necessary considering that upsets leading to a 0-1 bit and 1-0

transitions could occur with different probabilities and we wanted to measure the

upset rate in a condition where zeros and 1 are uniformly distributed in the register

cells. Figure 2.50 shows the test board with the current splitting among the ASIC

channels.

Fig. 2.50 SEU test setup: TERA09 test board with the current injection. The input current is

equally split among all the 64 channels, thanks to custom upper boards with SMD resistors.

An input current is needed to set the register values at random values before freezing them

and then starting with the SEU test.



2.8 Radiation damage test 63

The PCB board with TERA09 has mounted on a metal plate holder inside a

vacuum chamber placed on the beam line ( 2.51).

Fig. 2.51 Steel plate with 3-4 mm of diameter holes for the DUT holding (left). TERA09 test

board with the holes in the corners for the mechanical fixing over the metal holder (right).

The holder allows to retract the DUT during the setup of the accelerator and to

align it in front of the beam for the measurement (Figure 2.52).

Fig. 2.52 Schematic draw of the irradiation chamber with the dosimetry system and the

device under test holder (left). Diodes geometry and placement scheme (right).

A set of silicon diodes in a fixed position in front of the final beam collimator

is used to monitor the beam fluence during the irradiation. Before starting the

measurements, the DUT is kept in a retracted position and the beam is centered and

focused with the aid of a scintillator imaged by a CCD camera. Then, the diodes are
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cross-calibrated with a set of silicon diodes which are inserted in the same position

covered by the DUT during the tests and then retracted. Figure 2.53 shows the

quartz-diode calibration system.

Fig. 2.53 Vacuum chamber inner photo: A) quartz; B) fixed diodes; C) mobile diodes.

The TERA09 chip is packaged in an MQFP 160 pins ceramic structure and hold

to the board by means of the plastic socket. In order to expose the 4.68·5.8 mm2

silicon area of the chip, the ceramic cover of the packaging was removed and a hole

was drilled in the socket, as shown in Figure Figure 2.54.

Fig. 2.54 The TERA09 test board with the socket hosting the ASIC open (left). Microscope

picture of TERA09, after the ceramic lid removal (center). Hole in the cover lid of the ASIC

carrier (right)

The clock cables have SMA connectors that can be directly connected to the

external flange of the SIRAD vacuum chamber. All the data and controls lines are

twisted pairs (with ground lines) and packaged with custom connectors. A remote
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Table 2.3 List of used ions with the respective energy, angle, cross section and deposited

energy.

Ion Energy [MeV] Angle [◦] Edep [MeV] σSEU

F19 122 0 0.94 2.76E−12

F19 122 20 1.00 1.34E−11

Si28 157 0 2.08 2.554E−09

Si28 157 20 2.21 5.83E−09

Cl35 171 0 3.07 1.88E−09

Cl35 171 15 3.18 7.10E−09

Cl35 197 0 2.87 1.53E−08

Cl35 197 20 3.06 1.21E−08

Br79 241 0 10.12 3.6E−06

control desktop, placed outside of the accelerator room, allowed the operator to

control the data acquisition and monitor the data on-line during the measurement.

2.8.4 Results and data analysis

As the probability per unit fluence and per bit cell to have a bit-flip in the cell is

expressed as the SEU cross section, defined as σSEU = Nerrors/φNbit the probability .

The results of the DUT ion irradiation are represented in Figure 2.55 as the SEU

cross section (log10 of the cross section) as a function of the deposited ionization

energy (the LET-deposited energy conversion has been calculated, as explained

in [28]). The experimental data have been fitted with the Weibull function, as

suggested in [26]. This function suitably describes a phenomenon characterized by a

threshold activation that saturates its trend at a certain value. In the SEU case, the

threshold value is the minimum energy required to trigger the event E0, whereas σ0

is the saturation level representing the situation in which the upset probability in the

sensitive area is 1.



66 Design and characterization of the TERA09 ASIC

Fig. 2.55 a) SEU cross-section (y-axis) as a function of the deposited energy (x-axis). The fit

has been performed using the Least Square Method. b) Weibull function: EDEP is the energy

deposited in the CMOS silicon; E0 is the threshold energy to trigger a SEU event; σ0 is the

cross-section saturation that represent the situation when all the sensitive volumes are under

SEU; s and W are fit shape-parameters.

This representation underlines the typical threshold behavior of the SEU effect.

It has been important to choose the right ions sets, in order to achieve a reference in

the plateau region of the fit and for the minimum energy triggering SEUs.

For ions with a LET larger than Chlorine, the measurement was affected by latch-up

events in the silicon bulk. In these cases, the current limitation of the voltage supply

avoided destructive consequences due to short-circuiting.

Using a Bromine ions beam, the data acquisition was interrupted by latch-up

just after few seconds, thus acquiring very short runs. On the contrary, with ions

lighter than Fluorine, no SEU was observed. As previously mentioned, changing

the incident angle between beam and DTU allows to slightly increase the deposited

energy and adds a second energy-deposited point, for the same ion. Regarding the

DAQ, by not asserting the load signal from the acquisition procedure, the expected
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content of the registers should not change from one reading step to the following one

(the DAQ time was set to 100 ms). At this point, an iterative control over all the 2774

memory bits is performed and every time a bit-flip occurs, a SEU counter is updated.

2.8.5 Expected SEU rate in a clinical room

The predecessors of the TERA09 chip, named TERA06 and TERA08 [29] are

currently adopted in hadron therapy facilities worldwide, especially at the National

Center for Oncological Hadron therapy (CNAO [2]) in Pavia [9] (Italy), where

our group has a historical role of research and technological collaboration since the

foundation.

The goal of the ion test is to estimate the SEU rate for TERA09 in a typical applica-

tion; as a reference, the CNAO treatment room has been considered. In the CNAO

facility, a 25 m diameter synchrotron accelerates protons in the energy range 60

MeV-250 MeV and carbon ions at 120 MeV/u-400 MeV/u. In the monitor chamber

setup, the chips are not directly exposed to the particle beam thus it is possible to

assume that the damaging events are mainly due to the backward produced sec-

ondary neutrons. FLUKA Monte Carlo simulations, provided by [25], report that

the main contribution that could be relevant for the radiation damage on the readout

electronics is related to the secondary neutron backward emitted by the interaction

between the 400 MeV/u carbon ions and the target materials (see Table II); in the

same document the authors claim that by using carbon ions of 400 MeV/u, the

fluence rate of secondary neutrons at the nozzle, where two monitor chambers are

installed, is approximately 3.4 1010 n/cm2 per year. From the same publication, the

here reported Figure 2.57 shows that the average energy of the backward produced

neutrons spectrum is 20 MeV. Figure 2.56 from [26], shows the energy deposition

probabilities in a Sensitive Volume of 1x1x1 1µm3 (from the adopted method, is the

elementary volume that can occur into SEU) for four proton energies. Since neutrons

and protons of the same energy produce almost identical upset rates if the incident

energy exceeds 20 MeV" [26].
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Fig. 2.56 a): SEU cross section Σ in the proton environment,where A is the cross-sectional

area of the SV adopted.

b): The increased cross section in the energy interval between two energy bin values i.

c): Energy deposition probabilities for protons of different energies. The curve shows the

probability to have within the SV an ionizing deposition greater or equal to the indicated

EDEP. The curve selected for the data analysis is the one for 20 MeV protons (due to the

average value in Figure 2.57), selecting the plot area from the threshold energy E0 obtained

with experimental data fit (0.69 MeV).

.

Using the equations reported in Figure 2.56 a) and b) and the data from Fig-

ure 2.56 c) is it possible to adjust the results related to protons to our experimental

data with ions thus to calculate the SEU probability in a neutron environment. From

the data analysis, the expected rate of upset for TERA09 is about 70 SEU/year. Albeit

this value has to be taken as an order of magnitude due to the method inaccuracy,

such upset rate is easily manageable thanks to a redundant detector present on the

beam line, like in every monitoring system. The counts number is considered as the

true value only if the discrepancy in the measures provided by the main detector

and the redundant one is within a certain range, considering the standard detectors

variability. Moreover, the probability that both, the main monitor chamber and the

redundant one suffer for SEU simultaneously, in the same bit, is close to zero.
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Table 2.4 Number of secondary neutrons and protons produced by carbon ion and proton

beams on ICRU tissue.

Target Primary particles n/primary p/primary

ICRUtissue 400MeV/ucarbonions 2.66 1.50

ICRUtissue 120MeV protons 0.11 0.10

Fig. 2.57 Spectrum of secondary neutrons produced in the backward direction by 400 MeV/u

carbon ions, hitting a phantom made of ICRU tissue; a comparison with the total energy

spectrum of secondary neutrons is made.

2.9 TERA09 Front-End board

TERA09 ASIC results from a collaboration between the INFN and the Turin Univer-

sity and has been the goal of the technology transfer with an industrial partner named

DETECTOR. DETECTOR Devices and Technologies Torino [31] is a company

born ten years ago as a Turin University spin-off; in this last decade, DETECTOR

dealt mainly with the development of ionization chambers for quality assurance and

beam monitor tasks for the main hadron therapy centers in Europe. This company

sponsored the thesis author’s fellowship.

After the design and characterization phases, the TERA09s have to be embedded

in dedicated electronics for the integration with the detector. At this point factors

like encumbrance and heating become more important, requiring the design of a
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more compact PCB. One common application is the detection of the particle beam

profile using strip chambers where a large number of channels has to be readout. For

this reason, a new board has been developed, named Front-End board. This PCB,

depicted in Figure 2.58, hosts two ASICs grouping the digital signals on a 100 poles

connector.

Fig. 2.58 The TERA09 front-end board hosting two ASICs is going to be the new monitor

chamber readout electronics, adopted by DETECTOR Devices and Technology Torino.

The register addressing code of TERA09 provides for the chip selection through

the eighth bit. An SMD switch controlling the board selection can be used for the

readout of multiple Front-End boards working in parallel.

The new TERA09 Front-End board has been characterized at DETECTOR labo-

ratories in summer 2017 (Figure 2.59), paying particular attention to the design

modifications from the previous test board. The new PCB improves the protection of

the more sensitive paths with a better isolation of the clock signal which is currently

running on a dedicated layer and packaged between two ground layers. Furthermore,

the delicate signal management (e.g. the digital reset and latch) increased the routing

complexity, considering that the new PCB is more compact than the previous one

and it hosts two ASICs instead of one.
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Fig. 2.59 TERA09 Front-End board characterization setup at DETECTOR laboratories.

Both channel counting noise and the linearity with the new board are similar

to those previously presented. Concerning the power dissipation, a metal heat sink

cools the ASIC ceramic packaging from 80 to 50 Celsius degrees (Figure 2.60).

The TERA09 Front-End board are currently in a test phase at GSI in Darmstadt,

Germany [32]. From these tests it resulted that a dedicated ring biased at the

preamplifier reference voltage and shielding the input channels, would be needed to

improve the channel-by-channel counting homogeneity.

Fig. 2.60 TERA09 Front-End board characterization: power dissipation check. The

crocodiles probes detect the heat sink temperature.
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2.10 Summary

A new design of the 64 channels TERA front-end readout ASIC, named TERA09,

has been developed and characterized. Each channel features a current-to-frequency

converter followed by a 32-bit counter. Compared to the previous versions, the

chip was designed to extend the current range for applications of beam monitoring

with clinical pulsed particle beams. This was achieved by improving the maximum

frequency of the current-to-frequency converter and by providing the possibility to

access the sum of the counters of groups of channels directly on the chip.

Using a charge sensitivity of 200 fC, the gain uniformity across the channels of the

chip was found to be within 3%, with a background current of approximately 2 pA.

It was shown that the chip can be adapted to read out currents from few nA to several

hundreds of µA, with deviations from linearity at the percent level. This input range

corresponds to a dynamic range of almost 6 orders of magnitude, an increase of two

orders of magnitude compared to its predecessors.

Concerning the radiation damage, the TERA09 ASIC does not have embedded

protection techniques since is not meant to be placed directly on the beam during its

activity. However, an irradiation test has been carried out in order to estimate the

SEU probability. The test has been performed at the SIRAD Tandem accelerator at

LNL in Padova, using a set of heavy ions with different energies and target incidence

angles. Due to its field of application, there has been an interest in predicting the

expected upset rate in a typical treatment room of CNAO. From the literature data

regarding the secondary neutron fluence at the CNAO nozzle and and using the

model developed in [26], we extrapolated a number (about 70 SEU/year) which has

to be considered correct within an order of magnitude. However, this rate is then

easily controllable through redundancy, with a second independent monitor chamber

already present at CNAO as in every standard monitoring systems. The probability

to have a simultaneous bit-flip in the same bit of both the monitor chambers, in a

certain detector readout cycle, is therefore absolutely negligible. Terminated the

ASIC characterization phase, a new Front-end board carrying two TERA09s has

been developed and tested. Currently, this new PCB is at the GSI laboratories for

further investigations, before being embedded into a gas detector to be tested on the

field with a particle beam.
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Chapter 3

Design of a single ion discriminator

for hadrontherapy

3.1 Introduction

In the field of particle therapy the typical detectors used as beam monitors are

gas ionization chambers (as explained in Chapter2). With the aim to measure the

beam flux and the beam position, a ionization chamber collects the free charges

generated by ionization effects in a gas volume, confined between a pair of metal

electrodes. Recently in the Turin section of the National Institute of Nuclear Physics

(INFN), the medical physics group is working on a new kind of silicon detectors to

be used as beam monitor with the purpose to count the single beam particle. This

task is a MoVeIT (Modeling and Verification for Ion beam Treatment planning)

work package goal [1]. The MoVeIT project is developed by a interdisciplinary

collaboration involving various INFN groups and the three Italian hadron therapy

facilities (CNAO [2], LNS [4], TIFPA [3]), with the main purpose of rising the

technical level in innovative treatment planning systems (TPS) and new verification

devices. The novelty in these TPSs will be the implementation of biological models,

the involvement of target fragmentation, radio biological effectiveness (RBE) and

treatment of intra-tumor heterogeneity, such as hypoxia. As previously said, one goal

of the MoVeIT collaboration is the development of a detector able to discriminate

the single ion in a particle beam; although the milestone is primarily targeted to radio

biology beams from low fluxes down to 1 Hz, up to 108 Hz, the MoVeIT community
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is also interested in hadron therapy beams. The development is motivated by the

well-known gas ionization chambers lack of efficiency due to charge recombination

phenomena. The ambitious idea is to replace gas detectors with solid state ones,

starting with a small size prototype. In this sense, even the high rate limit could be

pushed further but at the particle therapy rate (up to 109cm−2 s−1), state of the art

silicon detectors are needed. Our group is collaborating with the Ultra Fast Silicon

Detectors group (both groups belong to INFN and the University of Turin), with the

aim to take the advantage of the know-how rose in the recent years R&D efforts in

the High Energy Physics community (the CERN RD50 collaboration) and devoted to

the development of detectors for extremely precise time measurements. The detector

for MoVeIT will be equipped with Low Gain Avalanche Diodes (LGAD) called

UFSD (the same acronym is used for the group), in a strip segmentation geometry.

UFSDs are n-on-p silicon sensors featuring an internal moderate gain due to a thin p+

and low resistivity diffusion layer. The layer is located close to the bottom side of the

n++ electrode of a heavily doped junction. Basically, the particle crossing the sensor

releases hole-electron pairs from primary ionization. When the charges, moving

thanks an electric field action, cross the gain layer, charge multiplication occurs

followed by its collection at the electrodes [5]. The gain is limited to a value 10-20

in order to reduce noise perturbations and electric field confinement complexity in

segmented detector configurations [5].

The main advantage of a UFSD is to provide an enhanced signal in thin detectors

with similar noise level of a thicker silicon sensor of the same geometry. This allows

producing detectors as thin as 50 µm providing signals of very short time duration

and excellent time resolution. Moreover, UFSDs allow increasing the signal-to-noise

(S/N) ratio by increasing the voltage bias thus better separating the noise from the

signal [7].

The MoVeIT concept is based on the fact that, combining the counting number with

the charge measured by a classic gas ionization chamber, it is possible to find the

deposited energy by a single ion. In order to satisfy the 1 mm spatial resolution

requirement for clinical practices, the number of particles should be measured within

the 1% accuracy. The UFSD thickness allows a nanosecond level charge collection

(1 ∼ ns in 50 µm) [5] and tens of picoseconds time resolution (35 ps time resolution

for MIP particles has been observed in beam tests).
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3.1.1 The author’s contribution

The author’s contribution on the work presented in Chapter 3 mainly consists in

the microelectronics design of ABACUS, a multi-channel single ion discriminator

for the MoVeIT silicon detector prototype. To fully understand the readout elec-

tronics requirements, a continuous interaction with the group colleagues it has been

necessary, in order to fully understand the detector performances and studying the

the detector response model, taking part of the sensor characterization during tests

with ion beam. The ASIC design has been submitted on January 22nd 2018 and the

foundry tape-out is foreseen for the beginning of May. The author continued the

technical collaboration required in defining the test board details.

3.2 The MoVeIT single ion counter: general aspects

The MoVeIT counting detector is a prototype idea, proof of concept for what could

be a revolution in the particle therapy field: replacing the parallel plane gas ionization

chambers with silicon detectors. Being such a challenging goal, it is mandatory to

start from an in-scale device with a covered surface that is two orders of magnitude

smaller than a standard monitor chamber. The single ion discriminator is going to

be a 3×3 cm2 silicon detector segmented in strips. These strips are UFSD sensors

custom developed for this project. At the moment the group tested hundreds of strips

mainly grouped in two different classes, due to their geometry: a set of 20 strips 15

mm long, 80 µm wide, with a 146 µm pitch and a second type of sensors grouped in

30 strips, 30 mm long, 150 µm wide and with a 216 µm pitch (further details related

to these sensors will be provided in the following sections). Although at the moment

it is not already clear which geometry is the best one, the short sensors showed a

higher gain uniformity along their length. Concerning the geometry setup, both the

sensor sets are ∼5 mm wide, therefore, for the 30 mm long strips a 6 sets row covers

the target area whereas for the 15 mm long strips, a double row setup is needed. Each

silicon strips will be coupled through wire bonding to a front-end channel, part of a

custom-designed ASIC. The detector prototype is going to have an FPGA as readout

system which will perform a first data manipulation for pile-up correction.

This thesis chapter is focused mainly in the description of the single ion discriminator

chip, designed by the author on behalf of the MoVeIT collaboration. This chip main

requirements are a wide input charge range (3-150 fC), and a discrimination rate of
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at least 100 MHz (the radio biology target), over the entire input signal range. In

order to deal with a particle therapy rate, the entire detector would manage a 109 Hz

rate, therefore, the design phase was looking for a higher counting rate. Nevertheless,

a proper readout system and an off-line analysis will improve the counting efficiency

of this prototype.

3.3 Silicon detector basis

The functionality of world wide diffused devices such silicon detectors originates

from the p-n junction physics. Considering an n-on-p silicon sensor, the sensitive

volume is the depleted region at the interface between the two differently doped

zones by means of external biasing. A charged particle crossing the sensitive volumes

ionizes the material along its track thus creating electron-hole pairs (e-h) which are

collected drifting respectively toward the n++ contact (electrons) and p++ contact

(holes). As reference number, a Minimum Ionizing Particle (MIP) passing through a

silicon sensor, creates 73 e-h pairs per micron thickness. The Figure 3.1 qualitatively

represents the operating principle of a silicon sensor. These free e-h pairs, moving

under the influence of the weighting field that represents the capacitive coupling

between the charge and the readout pad, induce a current signal at the electrodes that

ends when the last charge carrier reaches its electrode. The integral of this induced

current is roughly 1.3 fC every 100 micron.
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Fig. 3.1 Basic operational principles of a silicon detector: an external bias voltage polarizes

inversely the p-n junction, creating a large depleted volume. When an incident charged

particle crosses the sensor, it creates electron-hole pairs whose drift generates an induced

current in the electronics.

In a typical condition of a 300-micron thick sensor at 600 volts, the average

electron drift time is 3 ns and the average holes drift time is 5.5 ns. An important

features is that the maximum signal amplitude is independent from the sensor

thickness. This comes from the Ramo ± Shockley’s theorem; the concept can be

imagined considering the fact that the electric field is inversely proportional to the

sensor thickness (parallel plane geometry) whereas the number of generated charge

carriers is directly proportional to it, resulting in no dependence from this parameter.

The desired signal in order to have a precise and fast detection has a large amplitude

and sharp rising profile. A silicon sensor featuring an internal charge gain is a good

candidate to fulfill both requirements.

3.4 UFSD as LGAD evolution

As previously mentioned, UFSD are Low Gain Avalanche Detector that mainly

differentiates from the well-known Avalanche Photo Diode for the gain factor: 10-20

for UFSD, hundreds for APD. LGAD sensors maintain the principle of the avalanche

process activated by the movement of a charged particle in a ∼ 105V cm−1 electric

field but they have a modified doping profile with a micrometers thick p+ layer

doped with Boron or Gallium, placed on the bottom of the n++ electrode to limit
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the multiplication volume. A simplified drawing showing a traditional n-in-p silicon

detector and an LGAD are shown in Figure 3.2.

Fig. 3.2 Qualitative drawing representing the comparison between a classical 300 µm thick

silicon sensor an a 50µm thick UFSD.

Thanks to the heavily doped thin layer underneath the n++ electrode (for the

n-on-p type), the LGAD doping profile has a sharp transition responsible of two

different electric field zones. A charge collected to the electrode crosses a drift

volume with typically ∼30kV cm−1 before the thin multiplication zone with ∼300

kV cm−1. This features requires a specific effort in shaping the implants to allow

high bias-voltage operation without breakdown. The multiplication mechanism is

activated by the charge carriers that cross the additional gain layer therefore i.e.

electrons in n-in-p (p++ gain layer under the n++ electrode) and holes in p-in-n (n++

gain layer under the p++ electrode). Thanks to their higher mobility, the elections

require a lower electric field to activate the multiplication; for this reason the n-in-p

type is preferable, aiming to control the multiplication process at the point that it is

possible to limit the activation process to the electron, thus avoiding to operate the

device in avalanche mode. With this achievement, the gain is less sensitive to the

electric field variations and the excess noise factor (fluctuation in charge) is reduced

too. An important feature is the internal gain amplifies the noise more than the signal
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nevertheless, since the electric noise of the detector is larger, the sensor SNR is

eventually improved.

UFSDs are silicon sensors based on thinning the LGADs and keeping the gain at

its minimum value needed to detect the single particle and allowing accurate time

measurement. High SNR and fast charge collection are obtained with low gain and

thin sensitive volumes. In fact, the high gain not only implies an intrinsic increased

sensor noise but it complicates the electrode segmentation for the high electric field

that even increases after irradiation, leading to power consumption issues and limits.

As already mentioned, the signal amplitude depends only on the sensor gain and its

rising edge steepness is related to the drift time of the electron crossing the sensor

thickness [5]. The weighting field uniformity is a priority and leads to the choice

of the simplest geometry: the parallel plane one. The capacitance of such type of

sensor increases with an inverse proportionality respect to the two electrodes distance.

Therefore thin detectors are needed in order to maximize the data readout speed.

From simulation and experimental results it has been found that the balance between

the two effects is reached with a ∼50µm thin UFSD.

3.4.1 UFSD issues and mitigation solutions

UFSDs are devices developed aiming to achieve the best time resolution σt . Although

the MoVeIT single ion discriminator prototype does not perform time measurements,

the intrinsic fast charge collection (nanosecond level) plus the UFSDs achievable

granularity make them excellent candidate for high rate signal discrimination.

The phenomena responsible to the time accuracy degradation and the relative mitiga-

tion techniques are hereafter reported. The time resolution parameter depends on

various contributions:

σt
2 = σTimeWalk

2 +σLandauNoise
2 +σDistortion

2 +σJitter
2 +σT DC

2 (3.1)

where the equation terms are hereafter explained.

The Landau statistic regulates the physics of the energy deposition for a charged

particle crossing a silicon volume. These fluctuations characterize the signal ampli-

tude and even for a fixed amplitude, the charge deposition is non uniform (current

fluctuations). What happens is that a ionizing particle has a certain probability to

interact with a silicon electron that is not the valence one. If extracted, an inner
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electron causes secondary ionization since it is more energetic. As a result of these

rare events the deposited energy spectrum has a Most Probable Value (MPV) which

is approximately 0.7 times the mean value.

For a MIP the mean energy loss per unit length is 3.88 MeV cm−1 or 116 keV

for 300 µm of silicon with a MPV of 81 keV. Since the minimum energy required to

create an e-h pair in silicon is 3.6 eV, the mean number of charge carriers created is

108 per micrometer and 737µm as MPV. This results in a mean signal from a 300

µm thick detector of 32000 electrons, i.e. a most probable value of 22500 electrons;

which is equal to 3.6 fC. In a 50 µm UFSD with a gain factor ∼15, the charge

collected at the electrodes is 8 fC MPV, as shown in Fig 3.3, where typical UFSD

signal shapes are reproduced with the Weightfield2 and TCAD Synopsys softwares

[6], as explained in the following sections.

Fig. 3.3 Sensor signal for different charge values extracted from Landau distribution. The

reference sensor is 50/mum thick and has a nominal gain factor of 15. The black line

represents a MIP signal resulting in a peak current of ∼ 10 µA for a 8 fC charge
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As a result of Landau fluctuations, the Time Walk effect is responsible for

discriminator triggering delays due to the fact that large amplitude signals are

steeper thus they cross the threshold in advance with respect to low amplitude ones.

Intuitively, for a linear signal there is a proportion that ties the couples "time needed

to reach the threshold, rising time" and "threshold level, signal amplitude". This

concept is represented in Fig 3.4.

Fig. 3.4 Time Walk effect: geometrical explanation.

Let’s assume for simplicity a linear signal, with amplitude S and rise time tr. This

signal crosses the threshold Vth with a delay td . Using the geometrical relationship

td/trise = Vth/S, the moment when the particle crosses the threshold can be written

as:

σTimeWalk = [td]RMS = [
Vth

(S/trise)
]RMS ∝ [

N

(dV/dt)
]RMS (3.2)

where we used S/trise = dV/dt and N is the rms noise.

Time walk compensations could be based on higher slew rates and appropriate

discriminator techniques like the constant fraction discrimination (the latter is in

general associated to an increased complexity that reduces the bandwidth).

As explained before, once the charge is released inside the silicon volume, its

movement induces a current signal on the electrodes that is modeled with the Ramo-

Shockley’s equation:
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i(t) =−q Åv · ÅE (3.3)

where q is the charge of the particle, Åv is the drift velocity and ÅEw the weighting

field. Looking at the equation, a sensor designer sees two goals: keep the drift

velocity constant throughout the sensitive volume and keep the weighting field

homogeneous along the electrode pitch. The target is to saturate the drift velocity

(this is achievable with a ∼30kV cm−1 electric field, at room temperature) and

implants need to have a width very similar to the pitch but larger than the sensor

thickness. The Jitter term is used to describe the effect of the sensor or electronics

noise that overlaps the rising edge of the signal, resulting in early or late threshold

crossing (discriminator firing). As expressed by the following equation, a steeper

signal i.e. a high slew rate signal should in principle minimize the jitter effect,

since a theoretically vertical signal (delta-like) does not suffer by noise overlapping;

unfortunately high slew rate means wide bandwidth that carries a higher noise.

dV/dt = S/trise and therefore:

σJitter = N/(dV/dt)≈ trise/(S/N) (3.4)

3.5 UFSD design and simulation

The development of the MoVeIT detector prototype started simulating the charge

collection in silicon for different shapes and dimensions of terminals and silicon

layers. The Weightfield2 [6] and TCAD Synopsys Sentaurus [9] softwares are

used to get an estimation of the sensor output signal features, which are critical

for the front-end trade-off requests. Weightfield2 (WF2) is a tool developed by the

UFSD group in Turin to properly simulate the behavior of a silicon sensor with gain,

oriented to timing performance studies. Through a graphical user interface, as shown

in Figure 3.5, the user can select among different types of particle (MIP, α-particle,

laser, x-ray), changing the incident angle and hit position on the sensor; moreover it is

possible to vary the sensor geometry, doping concentrations, the value of an external

B-field, ambient temperature and thermal diffusion. This software allows to estimate

an approximated oscilloscope and front-end electronics response. WF2 embeds a

library with the energy release information, as result of GEANT4 simulation with
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default parameters [8]. With this pre-calculated data, WF2 simulates the e-h pairs

generated by ionization along the particle track. It is up to the user to decide the

adopted accuracy in time steps or in percentage of pairs simulated for a given event.

For each time step, the induced current is derived using Ramo-Shockley’s theorem by

summing over the single charge carrier contribution with the related charge, position

and weighting field.

WF2 implements different models for the impact ionization rate. The van Over-

straeten [10] and Massey [11] models, are based on the Chynoweth law whereas

other two, the Bologna [12] and the Okuto-Crowell [13] models propose their

own law for the ionization coefficients. Except for Massey, Synopsis Sentaurus [9]

implements these models too.

The high accuracy of the WF2 modelization has been confirmed through crosscheck

for MIP and alpha particles using TCAD Sentaurus results and measured signals.

Fig. 3.5 Snapshot from the Weightfield2 graphical user interface. Figure taken with permis-

sion from [7].

For a 50 µm thick UFSD with a gain factor of 15, a MIP particle generates a

1.2 ns signal with a charge of approximately 8 fC MPV [17]. Figure 3.3 shows
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the sensor signal modelization for different charge values, considering the Landau

distribution: the black line refers to the MIP effect.

The MIP signal can be approximated by a trapezoid with a rise time and a fall

time of 450 ps, a minor base b1 of 300 ps and the area that corresponds to the input

charge Qin. The trapezoid major base b2 is 1.2 ns and the height can be calculated

with the following equation:

h =
2Qin

b1+b2
≈ 1.33 ·109[s−1] ·Qin (3.5)

This simplification has been used during the front-end design since it allows

an easier parametrization of the signal charge and repetition rate, suitable for CAD

transient sweep analysis. The spread of the amplitude probability can be fitted with

a Landau distribution, as reported in Fig 3.6.

Fig. 3.6 Simulated input charge fitted with Landau distribution

Taking into account a typical proton beam for therapy applications, the 60 MeV

- 250 MeV energy range corresponds to 2-6 MIP particles and a range of charge

collected by the sensor electrodes from 3-4 fC to 150 fC. The same simulation pro-

cedure for the Landau distributions has been adopted in these cases, for both protons

and Carbon ions with therapeutic energies (the CNAO therapy center synchrotron
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accelerator works with these two ions). Figure 3.7 shows the Landau distribution

for different proton energies, considering a sensor gain of 10.

Fig. 3.7 Charge signal distributions, in a 50 µm UFSD with gain 10. The different profiles

represent 4 different proton projectiles energies: MIP equivalent, 100 MeV, 160 MeV and

250 MeV.

Figure3.8 refers to Carbon ions (C6+) and gain less sensors, due to the fact that

having an higher Z, the C6+ stopping power is higher thus the greater released energy

does not require to be amplified.

Fig. 3.8 Charge signal distributions, in a 50 µm UFSD with no gain. The different profiles

represent 4 different Carbon ion energies: 120 MeV/u, 200 MeV/u, 280 MeV/u and 400

MeV/u.
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A further investigation step has been performed with beam test campaigns at

the National Center for Oncological Hadron therapy (CNAO) at Pavia, Italy, using

UFSD sensors (as reported in the following section). In the meanwhile, the data

coming from Weightfield2 in text format as charge vs time or pulses vs time have

been used as input stimulus during the front-end electronics design.

3.6 Radiation damage and hardening

UFSD sensors are developed in a group mainly devoted to High Energy Physics

(HEP) and this means that these devices must be radiation tolerant up to high fluences.

One important application for UFSD is the equipment of the CERN CMS inner barrel

for timing, targeted at the High Luminosity upgrade of the Large Hadron Collider

(HL-LHC) [14]; for HL-LHC, UFSDs have to guarantee a proper functionality up to

5 ·1015 neutron-equivalent cm−2. The CERN RD50 collaboration [15] is in charge

to investigate on radiation damage effects for UFSDs. From several studies it came

out that, UFSDs suffer for classical silicon effects like decrease of charge collection

efficiency, increase in the leakage current and changing in the doping concentration.

Although this list of results is not surprising, the fact that UFSDs have a inner and

thin gain layer make them more sensitive to leakage current and to the modification

of doping concentrations.

In silicon the ionizing radiation is responsible of surface currents that are not mul-

tiplied by the gain and saturate at the level of Mrad. The non-ionizing loss is

responsible for heavier damage at the bulk level, introducing charge on neutral

defects in the silicon band gap. Dopant-lattice defects interaction change the junction

equilibrium.

For a certain volume V of silicon sensor exposed to a radiation fluence φ , the

leakage current increases as:

δ i = αV φ (3.6)

with α = 2.5 10−17 A cm−1 for protons and α = 4.0 10−17 A cm−1 for neutrons,

respectively.
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Since this effect depends exponentially on the temperature (as described in the

following equation), it can be mitigated by cooling the system.

i(t) = i0e−t/τe f f (3.7)

Working with thin sensors reduces the trapping probability during the charge

drift because this phenomena is proportional to the charge free path; for a fluence of

φ = 1015 neq/cm2, the average free path is about 50µm. Another advantage of thin

sensors over the thick ones is the reduced bias voltage and leakage current.

In UFSDs, the main noise source is the shot noise which reveals whenever charge

carriers cross a potential. This effect is accentuated with the increasing of the leakage

current. The shot noise current density is given by the following equation:

i2Shot = 2q · iDet = 2q · [iDet +(iBulk + iDet)]G
2Gx (3.8)

where q is the electron charge and Gx is the excess noise factor expressed as a

power of the gain value.

The shot noise effect is important for irradiated detectors where it can be equal or

even greater than the electronic noise and the SNR is reduced even if the sensor has

an inner gain. In order to mitigate these effects thus hardening the UFSDs, alternative

sensor wafers have been produced where the Boron dopant has been replaced with

Gallium; the theory and the simulations suggest that this approach should reduce

the formation of the acceptor-interstitial interactions. More in detail, gallium shows

less sensitivity to bias voltage changes and this is related to its more extended,

with a lower gradient doping profile just after the implantation. The smoother gain

curve of a gallium-doped silicon sensor, reaches the break-down condition at voltage

values that are typically higher than the boron-doped sensors. A second even more

sophisticated solution is based on Carbon spray: Carbon enriched wafers exploit the

higher mobility of these atoms that fills the interstitials instead of Boron atoms.

Thanks to Weightfield2, it is possible to simulate the effect of charge trapping and

initial acceptor removal in a silicon sensor. The Figure 3.9 shows a simulated current

signal for a 50 µm thick UFSD exposed to different fluences.
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From process simulations, gallium revealed to have a wider and less pronounced

doping profile immediately after implantation with respect to boron, leading to

less steep gain curves and a lower sensitivity to bias voltage changes, reaching

break-down at higher voltages than boron.

In the framework of the MoVeIT application, the ions crossing the sensor have

an higher stopping power due to the energy range which is in the order of tens or

hundreds of MeV and not GeV, as in HEP. For this reason, the hitting particles are

considered as 2-6 MIPs. Therefore the particle therapy scenario is rather different

and need to be explored properly. Some results related to this aspect are reported in

the following sections.

Fig. 3.9 50 µm UFSD current signals. Left: un-irradiated sensor with gain ∼ 10; center:

UFSD current signal after a fluence φ = 6e14 neq / cm2; right: UFSD current signal after

a fluence φ = 2 ·1015 n eq /cm2 . Is it possible to notice than the decreasing of the current

induced by trapping is higher for longer drift time, while the changes of the location where

multiplication happens, from the gain layer to the bulk, affects the shape of the induced

current signal since the contribution from gain electrons starts to be relevant. Figure taken

with permission from [7].

3.7 UFSD productions

In 2018, there are three centers in the world that are producing 50 micron thick

UFSD sensors: the Centro Nacional de Micrelectrónica (CNM) Barcelona, the

Italian Fondazione Bruno Kessler (FBK), in Trento and Hammamatsu Photonics.

CNM has been the first group proposing and developing the LGAD technology in
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2016 [16]; they proposed a variety of designs, differing mainly in the substrate

manufacturing technique like the float zone (FZ), silicon-on-insulator (SoI) and

epitaxial (epi) with high and medium resistivity. On the other hand, the UFSD group

in Turin is collaborating and is weekly in contact with FBK where they are currently

working on a third jointed sensor production run (planned for summer 2018), after

the first with 300µm thick LGAD and a second production with 50 µm thinned

wafers with various dopant configurations as reported in Table 1.2.

3.8 UFSD coupled amplifiers

For UFSDs applications the most challenging aspect concerning the detector elec-

tronics is the very front-end design. More specifically, the design of the amplifier

and how the other blocks interact with it, starting form the detector. Figure 3.10

depicts the general detector-preamplifier system.

Fig. 3.10 The detector and amplifier (left) and the equivalent detector circuit (right).

An amplifier is a device which applies a multiplication factor to a signal i.e. it

is a device with a certain gain. The most basic and diffused concept of amplifier

is represented by a transistor. It is well known that bipolar or MOSFET transistors

behavior is non perfectly linear and even their gain is not constant. A typical method

used to overcome these issue is to feedback the amplifiers with passive linear com-

ponents such resistors or capacitances; a related improvements in using these kind of

feedback is the fact that the gain is independent of the signal amplitude. Another
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relevant aspect is the way the amplifier is connected with the circuit. The amplifier

input impedance is designed following the input signal generator features (the sensor,

in this case) whereas the output impedance choice is based on the load, independently

form the input impedance. It is possible to distinguish the amplifier types among

four basis configurations: voltage amplifiers, current amplifiers, transconductance

amplifiers and trans-impedance amplifiers (more details are reported in the following

table).

Table 3.1 Amplifier types.

Type Input Output Gain Zin Zin

Voltage Vi Vo AV =Vo/Vi high low

Current ii io Ai = io/ii low high

Transconductance Vi io Ag = io/Vi high high

Transimpedance ii Vo Az =V0/ii low low

The UFSD sensors employed in the MoVeIT project provide a current signal for

the front-end and the microelectronics team decided to adopt the trans-impedance

architecture for the amplifier design. Considered the project R&D character, the

design of two different configurations has been developed and two different ASIC

prototypes are going to be produced. One prototype is based on a resistive feedback,

named for simplicity TIA and a second configuration, with a capacitive feedback, is

a Charge Sensitive Amplifier (CSA).

It is possible to point out some features and the critical aspects emerging form

coupling TIA and CSA amplifiers with UFSDs.

A typical TIA amplifier is characterized in having a wide bandwidth that allows to

tightly follow the time structure of the current sourced by the sensor (low shaping

effect) and convert this values in a high voltage slew rate (dV/dt) at its output. This

quality maximize the use of thin sensors where the current pulse derivative is large.

Although an high slew rate minimizes the jitter contribution, the required high

bandwidth introduces noise effects and is fed by high bias current (power budget

and heat dissipation aspects). Optimizing the TIA performance suggest to keep

the amplifier input time constant (Cd ·Ri) in the order of magnitude of the current

rise-time (∼ 1-2 nanoseconds, for UFSDs).

For a CSA, the approach is complementary. The bandwidth is shorter and the output

voltage depends on the amplifier response to the input stimuli and it does not follow
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the input signal shape. The output signal amplitude is proportional to the input

charge. The CSA jitter minimization is due to the noise filtering related to the signal

integration. The slew rate term is here smoother but, since dV/dt ∼ dQ(t)/dt = i(t),

the maximum slew rate corresponds to the signal current maximum. The minor

steepness (compared to the current-mode) does not affect the fast charge collection

that depends on the sensor thickness. The two fronts of the CSA output signal have

different dependences: • The rise time: t rise ∼ (Cd +Cl)/gm where gm is the input

stage transconductance and Cl is the capacitance value of the circuit loading the

preamplifier output. • The fall (discharge) time: t fall ∼ R f C f , controlled by the

feedback components. The fall time, t f , should be longer than the rise time, t f >> tr

, otherwise the charge will discharge as predicted by the ballistic deficit effect:

V
prek

out =
Q f

C f

[

t f

tr

]tr/(t f+tr)

(3.9)

The detector capacitance strongly influence the CSA performances, in term

of noise, signal rise time and signal amplitude. This latter aspect means that the

fraction of signal charge Qs stored on the feedback capacitor C f (the one that is

amplified), is not the total amount of the charge collected by the detector, as happens

for current-mode amplifiers. The relationship that explain this effect, is hereafter

reported.

Q f

Qs
=

Q f

QDet +Q f

=
(1+A0)C f

CDet +(1+A0)
(3.10)

where A0 is the input transistor open loop gain.

A comparison between a high-bandwidth TIA amplifier and a CSA is shown in

following Table.

Table 3.2 comparison high-bandwidth TIA and CSA

Type SR Rise time Fall time Ballistic deficit Available charge

high-BW TIA di/dt RinCd RinCd 1 Qtot

CSA i(t) (Cl +Cd)/gm R fC f (Q f /C f ) · [t f /tr]
tr/t f+tr (1+A0)C f

Cd+(1+A0)C f
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The non uniform e-h pairs creation is differently managed by TIA and CSA.

While TIAs suffer to Landau fluctuations at the pulse beginning, CSAs have a

cumulative effect for the total charge collected.

Since this thesis work focuses on the CSA-based ASIC prototype, few more

details regarding this topology structure are hereafter presented.

A charge-sensitive amplifier is an active integrator obtained starting from an inverting

voltage amplifier configuration. The input impedance is ideally infinite (no charge

flowing through the input MOSFET gate) and a feedback capacitance shorts the

amplifier output with its input terminal. A CSA representation is reported in Fig 3.11.

The voltage across C f is:

Vf = (A+1) ·Vi (3.11)

thus, assuming Zi ≈ ∞ → Qi = Q f , the charge deposited on C f is:

Q f =C f ·Vf =C f · (A+1) ·Vi (3.12)

Whereas the effective input capacitance, also called dynamic capacitance, is:

Ci = Qi/Vi =C f · (A+1) (3.13)

The gain Aq:

Aq =
dV0

dQi
=

AVi

CiVi
=

A

Ci
=

A

A+1
·

1

C f

(3.14)

if A » 1:

≈
1

C f

(3.15)

The gain of an ideal CSA is regulated selecting a well-controlled component, the

feedback capacitance.
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Fig. 3.11 Schematic representation of the charge sensitive amplifier topology.

3.9 Electronic noise: general considerations

In a detector, both the sensor and the electronics introduce noise perturbation effects

like the resistor thermal noise, leakage current from the sensor and the amplifier

flicker and white noise components. It is possible to represent the effect of each

noise source through a model describing the power associated to this component, in

function of the frequency (the spectral power density). The spectral power density

of an amplifier is strongly related to its architecture whereas passive components

like capacitors and resistors influence the circuit with noise effects that do not

depend on the circuit configuration; even the sensor spectral power density is circuit-

independent.

gnd

Rs

Rf

Cf

Cbias Cd

Rbias

A

Fig. 3.12 Resistive and capacitive components in a generic sensor-amplifier connection.
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Fig. 3.13 Sensor-amplifier noise model: the spectral power density model representation.

The biasing and feedback resistor thermal noise components, as well as the

detector leakage current are conventionally modeled with current sources parallel

connected with the amplifier inputs. With the same approach, other noise sources

like the series resistors thermal effects, the noise frequency-independent (white

noise) and the flicker noise are represented with voltage sources connected in series

with the amplifier. The amplifier transfer function properly calculated for the noise

modelization, is convoluted with the power density components. At this point, an

indicator named Equivalent Noise Charge (ENC) is used to quantify the single noise

source impact. ENC is the number of electrons required as input signal to produce

an output perturbation equivalent to the one produced by the noise component under

study. Since the series, parallel and flicker components do not depend one from the

other, it is possible to calculate the total effect from a quadratic sum of the terms as

ENCtot =
√

ENCs
2 +ENCp

2 +ENC f
2 (3.16)

ENCs ∝
√

1/tp · (Cd +Cin); ENCp ∝
√

tp and ENC f ∝ (Cd +Cin); Cin is the equiva-

lent capacitance in parallel with the detector, tp is the preamplifier peaking time.

The flicker noise component is related to the technology features and is not

relevant for fast architectures, while it is generally better to adopt small capacitance

detectors. The shot noise source results from the leakage current and its spectral

power density is

in
2 = 2qIblG

2+x (3.17)

with Ibl the bulk leakage current, G2+x the contribution of the sensor gain and q

the electron charge. The ENCp term calculated for a CSA amplifier is
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ENCp =

√

Iblτ f

2q
G1+x/2 (3.18)

with τ f = R f ·C f , the feedback constant.

3.10 Beam test with UFSD pads

With the aim to evaluate the counting and timing properties of UFSD sensors in

a real application, four beam tests have been performed at CNAO particle therapy

center in Pavia, Italy.

Fig. 3.14 Test setup at CNAO: the squared black box fixed over the treatment bed contains

two PCB mounting a 50 µ m thin UFSD pad each. the white device with a central metalized

window is the beam monitor chamber, placed at the end of the beam extraction line.

The results presented in [18] and here reported, have been obtained via off-line

analysis of the collected waveforms.

The standard testing condition presented a proton beam in the 62 to 227 MeV energy

range. As an example, the third test is reported. In this test the data acquisition took

place during 32 runs of 2 1010 protons each, with a beam FWHM of 1 cm and a flux

range from 20% to 100% of the maximum value.

Two sensor pads of 50 µm active thickness (1.2 x 1.2 mm2) have been mounted with

a telescope setup that fixed them at 1 cm distance one form the other; by means

of a metallic box (telescope), the two sensors were aligned to the beam (Figure 3.14).
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The pads have been realized by the National Center for Microelectronics (CNM)

in Barcelona and by Hamamatsu (Japan). The sensors outputs were fed to broadband

amplifiers (CIVIDEC 40 dB [19]), readout through an oscilloscope (Teledyne Lecroy

WaveRunner 640Zi, 40 GS/s sampling rate [20]), and acquired in parallel through a

digitizer (CAEN DT5742, 5 GS/s sampling rate [21]), providing snapshot of 200

ns duration. The setup included also a PTW PinPoint ionization chamber (T31015

[22]) aligned to the beam after the sensors, used to provide a reference rate, HV and

LV power supplies. Two computers, one in the treatment room and one in the control

room have been used to acquire the measurements and to remotely control all the

instrumentations. Figure 3.15 shows the pad sensors used in the test.

Fig. 3.15 Picture of the sensors mounted in a metallic box and aligned to the beam. Left-down

corner: Hamamatsu sensor (1 mm Ø x 50 µm thickness). Left-up corner: CNM sensor (1,2

x 1,2 x 50 µm thickness).

Using the digitizer it is possible to record data as time window (Figure 3.16);

this allowed to study the shape and duration of the signal produced by proton tracks.

The measured signal duration was less than 2 ns, which limits the pile-up effect for

incoming beam with a Poisson distribution of particles up to 108 p/s on the single

channel. Under these conditions, the choice of the best discrimination threshold is

clearly fundamental to deal with pile-up issues, as represented in Figure 3.17.
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Fig. 3.16 A 200 ns snapshot acquired with the channel 2 of the digitizer. It is possible to

estimate the nanosecond structure of the CNAO proton beam, looking at the tens of millivolts

peaks, where each peak corresponds to a single ion signal. The black arrow highlights a

pile-up event.

Fig. 3.17 Example of a 200 ns time window collected with the digitizer. The arrow points to a

peak with pileup effect and the rectangular box zooms-in the area to underline the importance

of the threshold selection in pileup situations.

In order to optimize the signal discrimination, a threshold scan technique has

been used on data collected with various sensors. Furthermore dynamic algorithms
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have been adopted for peak counting with specific effort dedicated to overlapped

signals. The signal amplitude distribution reported on the right side of Figure 3.18,

has been obtained deriving the peak-rate distribution reported on the left side of

Figure 3.18 as a function of the discrimination threshold.

Fig. 3.18 On the left: rate versus threshold for three different energies, for both sensors

(C = CNM at 250 V, H = Hamamatsu at 190 V). For low values of the threshold, a high

contribution of the noise is clearly evident, while for high values of the threshold there is

a significant loss of the signal. On the right: amplitude distribution of the signals for three

different energies for the CNM sensor, in which the vertical scale is given in arbitrary units

As previously mentioned, the Landau fluctuations regulates the statistics of the

the charge released into the silicon; at low beam energy the stopping power is higher,

as confirmed by the MPV in 3.18. The signal-to-noise ratio can be deduced by the

separation of this two therms, highlighted in 3.18 and this separation can be even

increased using higher bias voltages. A PinPoint dosimeter [22] positioned behind

the detectors has been used as charge reference for the efficiency estimation reported

in 3.19.
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Fig. 3.19 Measured ion rate vs the expected one. The lack of efficiency is related to the fact

that the particle beam distribution has been considered as Poissonian while, for the CNAO

synchrotron, it is RF bunched with an istantaneous peak intensity higher than expected.

From this plot, a linearity deviation is marked starting from 5 MHz. The data

were fitted with pile-up models assuming a Poisson distribution for the arrival times

and a fixed acquisition dead time [29]. The models were found to describe the

results with an acquisition dead time of about 10 ns, i.e. much larger than the 2 ns

pulse duration observed in Figure 3.16. The reason of this discrepancy originates

from the highly non-uniform time structure of the CNAO beam, as showed in figure

3.20, where a longer time window was acquired on the oscilloscope.

Fig. 3.20 The CNAO particle beam structure. The protons are collected in bunches distributed

with a radio frequency given by the synchrotron. The instantaneous intensity reaches 1010 p

cm−2 s−1.



3.10 Beam test with UFSD pads 103

A bunched structure with a frequency of few MHz was observed, probably

originating from the radio-frequency of the CNAO synchrotron acceleration system.

Since the instantaneous intensity reached 1010 pcm−2s−1, this caused a larger pile-up

probability, if compared with the one related to a uniform time distributed beam.

Acquiring the data in parallel from two sensors, it has been possible to appreciate

the signal correlation; the result of this last data analysis is reported in Figure 3.21.

Fig. 3.21 Digitizer shapshot for two different UFSD pads detecting the same signal, thanks

to a telescope setup. The simultaneous acquisition by two digitizer channels allows to

appreciate the signal coincidences.

In order to reduce the time walk effect related to the fact that large amplitude

signals are detected earlier than small signals (amplitude dependent slew rate), the

Constant fraction discrimination technique has been used calculating the time differ-

ence distribution between two corresponding signals. This method leads to a 50 ps

time difference resolution that means ∼35 ps for a single pad ( 50√
2
).

Another critical aspect related to these sensors is the radiation resistance perfor-

mances. For this reason, the distribution of the signal amplitude for the same sensor

was compared before and after 32 runs, corresponding to about 1012 p cm −2. As

reported in Figure 3.22, the output pulse shows a gain loss of ∼ 20% between the



104 Design of a single ion discriminator for hadrontherapy

two distributions. Similar effects responsible for a loss of gain after irradiation of

the sensors were observed and reported in [23].

Fig. 3.22 The MPV value of the amplitude distribution passed from 25 10−12 Vs before

irradiation to 20 10−12 Vs after 32 runs of proton irradiation

As explained in the previous dedicated section, in order to address the radiation

damage problems that came out form the tests at CNAO, new sensors have been

produced in a run called UFSD2, which presents different dopant species (B, Ga,

and C spray) and concentrations [24]; Table 3.3 shows a summary of the 18 new

produced wafers with the dopant type and concentrations.

Further test campaign are required to estimate the radiation hardness for the new

UFSD productions.

The high resolution obtained with particle counting up to 109 p/cm2s fluxes, confirm

the effectiveness of a multi-channel ASIC-based systems that embedes amplification

and discrimination stages, in order to cover several square centimeters of detector

area with high spatial and time resolution.

3.11 UFSD for MoVeIT

On the base of the beam test results obtained with silicon pads, the group decided

the features for the strip-segmented sensors, to be developed in the next UFSD

production. These strips have been produced by the Trento (Italy) FBK (Fondazione
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Table 3.3 Summary of the UFSD2 sensors production. From the left to the right: the wafer

number from 1 to 18, the dopant element, the gain dose, the presence of carbon spray and

the diffusion type.

Wafer number Dopant Gain dose Carbon Diffusion

1 Boron 2.45 no low

2 Boron 2.50 no high

3 Boron 2.50 no high

4 Boron 2.50 yes high

5 Boron 2.50 yes high

6 Boron 2.55 yes high

7 Boron 2.55 yes high

8 Boron 2.55 no high

9 Boron 2.55 no high

10 Boron 2.60 no high

11 Gallium 2.50 no low

12 Gallium 2.50 no low

13 Gallium 2.60 no low

14 Gallium 2.60 no low

15 Gallium 2.60 yes low

16 Gallium 2.60 yes low

17 Gallium 2.27 no low

18 Gallium 2.27 no low
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Bruno Kessler) research center. Two geometries of 50 µm thick strips, are currently

under test:

30 strips 30 mm · 0.08 mm, 146 µm pitch

20 strips 15 mm · 0.15 mm, 216 µm pitch

Figure 3.23 shows the gdsII file with the UFSD2 wafer design whereas, Figure

3.24 is a wafer picture.

Fig. 3.23 UFSD strips for MoVeIT. On the left, the gerber file of the UFSD2 production

wafer. On the right, the zoom-in on the MoVeIT sensors: set of 20 short strips and set of 30

long strips.
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Fig. 3.24 Picture of the MoVeIT strips. On the left, the wafer from the UFSD2 production.

On the right, the short and long type strips.

An extensive sensor test campaign is still ongoing, in order to characterize the

strips with current vs voltage and capacitance vs voltage curves. With hundreds of

sensors available and with the aim to speed up the work, the testing procedure has

been automated by mean of a needle-based probe-card, with a software driven switch

for the channels control. The test setup is shown in Figure 3.25.

Fig. 3.25 Test setup photo. From left to right: the microscope station, the probe card with the

connector for the needles control, the needles zoom-in.

An interesting test performed in laboratory consisted in shooting with a laser

source from the sensor edge, thus to cross a couple of strips; analyzing the data of

the collected charge, it has been possible to obtain informations about the sensor

gain profile. Although the details of this procedure lie outside the interest of this

thesis, the qualitative aspects of these results are useful from a front-emd design

point of view. Figure 3.26 represents a 2-D chromatic spatial distribution of the gain

for two strips and a bias voltage of 230 V. Figure 3.27 represents the gain profile as
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signal amplitude in millivolts, vs the material depth in µm; in the same picture, for

better understanding is reported and overlapped to the previus result the same kind

of profile for gain-less sensors.
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Fig. 3.26 Chromatic representation of the 2-D spatial distribution of the gain for a couple of

strips biased at 230 V. The strips collected the charge as result of a laser shooting through

the sensor edge.
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Fig. 3.27 Signal amplitude vs depth for a couple of strips biased at 230 V. The strips collected

the charge as result of a laser shooting through the sensor edge.

The behavior of the strips gain in function of the bias voltage, is shown in Figures

3.28.
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Fig. 3.28 Strip gain in function of the voltage, for a couple strips belonging to the same

sensor.

All the the above reported results are related to short strips form the wafer 8, in

the UFSD2 production.

3.12 The ABACUS design

3.12.1 Introduction

UFSD sensors have been chosen for the MoVeIT project thanks to their fast charge

collection with a reasonable signal amplitude. As previously described, the MoVeIT

front-end electronics has to deal with a nanosecond level rise time with an additional

challenge represented by the 108Hz signal rate (100 MHz as milestone, 250 MHz

the ideal R&D target). In this condition it is no more obvious that the amplifier

output returns to the baseline before a new pulse can be processed; this undesired

aspect could lead to signal pile-up. The quite extreme condition of a therapeutic

particle beam (fluxes up to 109 protons cm−2s−1), considered the requirement of a

pile-up kept ≤ 1%, push the detector designers to develop front-end electronics with
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faster return to baseline supported by a high sensor granularity (to reduce the single

channel event rate).

In order to equip the MoVeIT single ion discriminator prototype with a custom

electronics, our group decided to explore the design of two different architectures in

parallel: one based on a resistive feedback and the second one, based on a capacitive

feedback. The two alternative solutions will be characterized both standalone and

coupled with the UFSDs. The prototype resulting as more efficient, will be upgraded

in a second and complete chip embedding the digital logic of counters and registers

together with the analog part (as the TERA ASIC family does [ [31]]).

The resistive feedback design is based on a differential trans-impedance amplifier

(TIA) adopting a differential cascode structure to achieve high trans-impedance gain,

high bandwidth, and low input referred noise, with good Power Supply Rejection

Ratio (PSRR) and Common Mode Rejection Ratio (CMRR). Albeit less sensitive

to low input charges with respect to the integrating architecture, the TIA approach

can ideally easily deal with the time limits given by the detector. The TIA channel

presents a preamplifier with a relatively low open loop gain (around 10), due to the

low load resistor required to have high speed. Two stages have been connected in

cascade in order to increase the open loop gain and thus decrease the effect of the

input capacitance. Moreover a quite high closed loop gain is needed to keep low the

noise contribution of the following stages.

This chapter focuses on the capacitive feedback prototype, where the charge is inte-

grated following the Charge Sensitive Amplifier (CSA) concept. This specific CSA

has a NMOS input telescopic cascode common source preamplifier, equipped two

independent branches with degeneration resistors for noise reduction. The signal

is discriminated by a two stages comparator and fed to a differential CML driver.

Considering the 108 input signal rate, the preamplifier output must manage high

slew rate for both signal rising and falling edges, in order to speed up the detection

and be ready to receive a close following pulse. With the aim to manage the signal

overlapping and pile-up phenomena while keeping the baseline stable, the circuit

has a balanced switch-reset for the feedback capacitance, activated as discrimination

feedback.

For both TIA and CSA based solutions, a 10 mA order bias current is required to feed

the input transistors and achieve high cut-off frequency and low noise. Such a high

current translates in high power consumption (which is not critical in this application)

and high input parasitic capacitance. The cascode structure has been widely used to
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eliminate the effect of Miller capacitance and thus enhance the bandwidth.

The design of two ASIC has been submitted on January 22nd, 2018, as an Europrac-

tice Multi Project Wafer ( [32] MPW) which tape-out, is planned for the Beginning

of May 2018.

The intent of this thesis section is to describe the technical features and the adopted

design choices for the CSA based device, called ABACUS. ABACUS stands for

Asynchronous Based Analog Counter for Ultra fast Silicon strips.

3.12.2 ASIC overview

ABACUS is a fast single ion discriminator integrating 24 independent channels,

designed in a standard 110 nm CMOS technology, biased at 1.2 V. This number of

channel allows to study an fairly complex system, coupling an entire set of MoVeIT

UFSD strips (20 strips). The technology node choice derives from the design group

experience gained in the last years design submissions. Moreover, we estimated that

the 110 nm technology node is suitable in terms of performances, transconductance

parameter and noise levels, considering the coupling with UFSD type sensors. A

further support has been the know-how that the Turin microelectronics and the UFSD

groups gained with the TOFFEE ASIC [33]. TOFFEE is a 8 channel preamplifier-

discriminator-driver ASIC designed for timing measure with UFSD pads in high

energy physics experiments (CERN CMS-TOTEM Precision Proton Spectrometer).

Although the TOFFEE amplifier features a tr ∼1.5 ns, the R-C signal shaping is

in the order of 10-15 ns. Moreover the charge input range properly managed by

TOFFEE is 3-20 fC. For there reasons this chip could not be adopted for the MoVeIT

task; nevertheless, studying the behavior and testing the design choices with a physi-

cal chip helped to check the reliability of some technical decisions and allowed to

understand the limits in order to overcome or mitigate them.

In a silicon area of 2 · 5 mm2, ABACUS integrates 24 channels and each channel is

equipped with the following functional blocks:

CSA preamplifier

OTA buffer

A two stages discriminator

Single ended to differential converter

Current Mode Logic driver

6-bit Digital to Analog Converter
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Pulser

Recovery circuit

Signal reshaping inverters.

In Figure 3.29 the ABACUS channel is represented in its functional blocks view.

The main concept that characterizes the channel logic is the discrimination-triggered

reset of the feedback capacitance. The high input pulse rate is managed forcing to

the baseline level the falling edge of the CSA out, every time the the discriminator

threshold is crossed. The 500 fF feedback capacitance (C f ) fixes the amplifier gain

while influencing the feedback stability. This value for C f is responsible to a large

R-C therefore, the reset operation is intended as the fastest way to keep ready the

preamplifier in following the next pulse that can be 4-5 ns close in time. This choice

unfortunately introduces a strong perturbation of the system that has to deal with

high frequency reset signal (peaked signals) and an immediate configuration swap

for the shorted feedback. The reset action tends to generate an undershoot of the

signal respect to the baseline and the designer has to control even signal overshoot for

the NMOS switch-reset charge injection. It is moreover true that resetting the CSA

output signal, the device loses the correspondence between the input signal amplitude

and the digitized signal one. Even if the purpose of this prototype is only the signal

discrimination for peak counting, pile-up correction algorithms will most probably

be used during the data analysis. Currently it is expected to clearly distinguish from

the digitized signal duration if overlapped signals have been detected or not but most

probably it would not be possible to extrapolate the number of overlapped pulses: a

typical CML outut has a time duration of 1.2-1.6 ns whereas in case of overlapping,

this is going to be longer but with the reset action, the signal duration vs number of

peaks proportionally is lost.
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Fig. 3.29 Functional block representation of the ABACUS channel.

3.12.3 Preamplifier

Like most of the radiation and particle sensors, UFSDs return single polarity signals

and this has been the starting point for a single-ended front-end design. Due to

the fact that ABACUS has to deal with high repetition rates and small charges, the

intrinsic amplifier noise plays a relevant role in the discrimination efficiency; this

was an additional reason in choosing single-ended stages since they should offer a

better noise figure than differential ones [34]. Once fixed the architecture type, the

input transistor modeling is crucial, especially in a charge sensitive amplifier. The

challenging aspect is due to the fact that bigger transistors implies large transconduc-

tance and lower spectral density for the 1/f noise. At the same time a large MOSFET

contributes more on the input capacitance, worsen the thermal noise component. For

a 110 nm technology and when the thermal noise is reduced by a long shaping time

(like the CSA case), PMOS transistors would be preferable because of their intrin-

sically lower 1/ f noise. Although this is true, the fact that in modern MOSFETs

electrons have 3-4 times the holes mobility makes NMOS preferably preferable as

preamplifier input transistors whereas the PMOS are generally used as active loads.

For a fixed power budget NMOSs offer an higher gm because of its higher mobility

and the fact that the inversion coefficient is inversely proportional to it. Although in

weak inversion there is no distinction anymore between PMOS and NMOS, since
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the gm depends only on the bias current, an NMOS works easier in weak inversion

whereas a PMOS works easier in strong inversion. It is thus possible to say that a

NMOS is preferable whenever a preamplifier requires a high input transconductance.

Another important advantage offered by the modern deep sub-micron technologies

is the fact that both PMOS and NMOS transistors can be isolated from substrate

pick-up noise due to the sharp digital switching: the insulated n-well approach is

used for the PMOS shielding whereas deep n-wells are currently available and they

are used to guarantee a shield effect on NMOSs.

In Figure 3.30 the schematic representation of the ABACUS preamplifier is shown.

At functional level the block is a charge sensitive amplifier which consists of a

telescopic cascode with two independent branches, where the NM1 NMOS input

transistor is a common source with split current bias.

Fig. 3.30 Schematic representation of the ABACUS pramplifier, a telescopic cascode ampli-

fier with split bias current and NMOS input transistor, working as CSA.

The cascode transistors NM2 and PM3 are adopted to increase the output resis-

tance of the cascoded NM1 and PM1 respectively (the current source). The open

loop gain is represented by the product between the transconductance gm and the
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drain-source resistance of the cascoding device. A second independent branch is

used to increase the open-loop gain. The left branch biases the cascodes PM3 and

NM2 (CSAIbiasP1 ∼ 200µA); increasing the value of this current increases the output

voltage slew rate but at the same time decreases the swing. The the most part of

the CSA bias current current feeds NM1 transistor flowing through the right branch

(CSAIbiasP2 ∼ 10mA) and is provided by an additional and completely independent

current source (PM2 and PM4 transistors). This ∼ 10mA current is required to have

a large input transconductance and speed-up the front-end response.

The drain voltage of the input transistor is rather stable due to the cascode config-

uration. This allows to have a CSAVcasP2 lower than CSAVcasP1 thus to free more

the PM2 dynamic, increasing its output impedance. Moreover since ABACUS is a

prototype, it is useful to have the possibility to tune both branches independently,

for instance to mitigate the temperature variation effect and control the baseline

(described in the ABACUS layout section).

In the upper part of Figure 3.30 it is possible to notice that source degeneration re-

sistors have been used for noise reduction, performing an effect on the node between

the CSA branches:

gm3rds3 ·gm4rds4 ·R1, (3.19)

gm2rds2 · (rds1//gm5
rds5 ·gm6rds6 ·R2) (3.20)

The open-loop gain of the ABACUS CSA is obtained by the equation:

A0 =−gmNM1 ·B ≈ 15. (3.21)

Where

B = (C ·D)//E (3.22)

and C = gmNM2 ·RNM2 ;

D = RNM1//[gmPM4 ·RPM4 ·gmPM2 ·RPM2 ·R2] ;

E = gmPM3 ·RPM3 ·gmPM1 ·RPM1 ·R1

for notation simplicity the drain-source resistances are here named R.
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The value of the current in transistor NM1, its transconductance gmPM1 and

dimensions have been chosen to cope with the short collection time of the sensor and

to manage the trade-off between input charge range and rate. If it is true that large

gain would reduce time walk effects and would facilitate the signal discrimination

for small charges, on the other hand high rate instability issues can arise with large

signals. From Figure 3.31 it is possible to see that the -3dB gain is 23.6 dB at 60

MHz leading to a gain-bandwidth product of 900 MHz.

Fig. 3.31 Bode diagrams for the CSA representing the phase vs frequency (up) and the gain

module in dB vs frequency (down).

In the ABACUS channel, by setting a high threshold and thus blinding the

discriminator it is possible to avoid the reset of the signal capacitance. In this way

the amplifier gain linearity can be studied by means of a charge sweep analysis, as

reported in Figure 3.32.
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Fig. 3.32 Gain linearity performance of the CSA, in a 3 fC - 150 fC input charge range

(schematic simulation).

0

More information regarding the CSA impulse response have been achieved with

the same high threshold technique. Results are reported in Figures 3.33, 3.34

where the output voltage of the OTA Buffer (component described in the following

subsection) and the CSA with a single MIP equivalent input pulse (8 fC), and with

different input small charges (3 fC, 5 fC, 7 fC, 9 fC) are shown, respectively.

Fig. 3.33 RC shaping of the CSA for a MIP equivalent signal (8 fC in a 50 µm UFSD). From

the top to the bottom: OTA Buffer output voltage, CSA output voltage, input signal (layout

simulation).
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Fig. 3.34 RC shaping of the CSA for 4 different signals: 3 fC, 5 fC, 7 fC, 9 fC. From the

top to the bottom: OTA Buffer output voltage, CSA output voltage, input signal (layout

simulation).

The effect of a proper setting of the discriminator threshold is visible on Figure

3.35, where the CSA output voltage has a sharp cut induced by the discrimination

activated reset. The small ripple with the undershoot is the effect of the switch-reset

NMOS charge-injection, slightly emerging even after its mitigation with a properly

sized compensation-PMOS.

Fig. 3.35 Front-end shaping for a 3 fC - 150 fC input charge range. The sharp falling edge is

the result of the discrimination triggered reset (schematic simulation).
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CSA transient noise analysis Transient noise analysis have been performed to

estimate the degradation effect in terms of the front-end output signal shape. This

procedure consists in repeating the injection of a single pulse input signal to which

the CAD applies a certain noise frequency component selected from a user specified

interval. The effects of a transient noise analysis on the front-end output signals,

performed in the 1 mHz-10 GHz frequency range for the ABACUS charge boundary

values (3fC-150fC) have been reported in Figures 3.36 and 3.37. Due to the

presence of noise the repeated input signal does not result in preamplifier output

signals perfectly overlapped and the rms noise represents this effect. This information

is obtained assuming a normal distribution of the events and calculating the standard

deviation:

Vstd =

√

√

√

√

1

N −1
·

N

∑
k=1

(Vk −Vav)
2 (3.23)

where Vk is the amplitude of the kth pulse and Vav is the mean value.

In particle detector the terms Equivalent Noise Charge (ENC) is referred to the

amplifier input and is calculated dividing the rms noise by the gain. Considering again

the ABACUS case, a schematic test-bench setup with a 5 pF detector capacitance

results in ∼370 mV rms noise; with a preamplifier gain of 1.15 mV/fC (from Figure

3.32), 0.37mV
1.15mV/ fC

= 0.323 fC corresponding to an ENC = 2020electrons. From a

deeper analysis it is possible to point out that the contribution of the input transistor

amounts to more than 50% of the total CSA noise.
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Fig. 3.36 Result from a 100 Hz - 100 GHz transient noise analysis. The noise effect has been

observed on the CSA output, with a 3 fC input signal.

Fig. 3.37 Result from a 100 Hz - 100 GHz transient noise analysis. The noise effect has been

observed on the CSA output, with a 150 fC input signal.

Defining Jitter the ratio between the rms noise and the slew rate (intended as

the signal slope in its 10%− 90% interval), it is possible to appreciate the results
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in Figure 3.38, where the Jitter vs Qin is shown for both schematic and layout

models of the preamplifier. Figure 3.39 offers a more complete understanding of the

phenomena: while the rms noise is almost constant increasing the input charge, the

slew rate increases enhancing the time resolution (i.e. the Jitter).

Fig. 3.38 CSA jitter vs input charge: comparison between schematic and post-layout simula-

tion behavior.

Fig. 3.39 CSA details for the low-charge range (layout simulation).

Another information regarding the Jitter is its inverse proportionality with the

detector capacitance, as confirmed by the simulation result in Figure 3.40. In a
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parallel planes structures like silicon detector the capacitance goes inversely with

the thickness but it is not possible to use thicker detectors because it would increase

the collection time. Another approach colud be to reduce the area of the sensor; this

choice carries the drawback to increase the sensitive area with a granularity that is

limited by mechanical and electrical constraints. High granularity detectors have an

implicit level of complexity descending to the higher number of front-end channels,

the power consumption and dissipation issues, dead areas etc..

Fig. 3.40 CSA jitter vs the detector capacitance (layout simulation).

3.12.4 Buffer

As represented in Figure 3.29, the preamplifier feedback has the integration ca-

pacitance (C f ) connected between the CSA input and its output and then there is

a a resistive connection (R f ) between the OTA Buffer and the CSA input. The R f

resistor is used to discharge C f after a signal is detected and it provides a DC value

at the preamplifier input thus keeping the proper NMOS input transistor operating

point. The OTA Buffer placed between the amplifier and the discrimination stage

is therefore used as impedance adapter and to protect the CSA input by a direct

resistive feedback connection. Its architecture is based on a source follower with an

active feedback, intended to present a low output impedance; this is suitable to deal

with high frequency signal outputs.
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Fig. 3.41 Buffer pdf

3.12.5 Discriminator

The MoVeIT detector for single ion discriminator is based on a binary system concept:

a comparator fires if the front-end output goes above a preset threshold, generating a

digital pulse; no further information are recorded. A common practice adopted to

achieve high speed discriminator is to design cascade architectures such that the gain

is improved, being the product of the block gains (Figure 3.42).

Fig. 3.42 To maximize the speed, a discriminator must be implemented cascading low-gain

cells.

The ABACUS comparator implements as first stage a differential amplifier where

the two input NMOS (NM1, NM2) are cascoded to mitigate the Miller capacitance
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effect on their gate-drain connection ( 3.43). This stage increases the signal amplitude

to the minimum value required to make a decision and isolates the input from the

the second stage, avoiding to introduce the kickback noise from the discrimination

switch. The load of this block is passive (high resistance polysilicon film) to minimize

the parasitic capacitance that would be present with a PMOS load. The presence

of two PMOSs diode connected and placed between the differential pair arms is

intended to limit the voltage swing to boost the baseline recovery after detection

[34]. Considering the wide amplitude range that ABACUS manages, this aspect has

a critical impact over the system-level performance (as is explained later).

Fig. 3.43 Schematic representation of the comparator first block.
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Fig. 3.44 Schematic representation of the comparator second block.

The second discriminating stage, Figure 3.44 provides a further signal amplifica-

tion and performs the differential to single ended conversion. A couple of inverter

buffers the output, increasing the impedance thus to properly drive the following

block in the chain.

An important drawback of this configuration is the fact that it suffers from time

walk effect. Figure 3.45 shows that even after the application specific optimization,

the ABACUS comparator experiences simulation results with time walk induced

discrimination delays up to ∼1.7 ns between the highest and the lowest charge that

the ASIC should manage.
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Fig. 3.45 timewalk

In the design of a multi-channel ASIC, a key point is the study of the threshold

spread. ABACUS has a single ended front-end that is therefore more sensitive to

mismatch effects than a fully-differential device and this aspect can be quantitatively

estimated performing Monte Carlo analysis. Figure 3.46 represents the histogram

result of a 200 runs Monte Carlo analysis over the complete ABACUS channel. This

simulation shows that ABACUS has a threshold dispersion with 3σ ∼ 20 mV and

for this reason ABACUS has channel-level embedded DACs for the threshold fine

tuning.

For the sake of completeness, the Monte Carlo study highlighted as 95% the pream-

plifier influence the overall result and specifically, the preamplifier input transistor

actively contributes as 25%.
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Fig. 3.46 Monte Carlo analysis for the discriminator threshold dispersion.

3.12.6 Local threshold DAC control

In a binary multi-channel system, the comparator threshold homogeneity among all

the ASIC channels is a crucial point. ABACUS deals with charges extending from

few femto-coulombs up to 150 femto coulombs. The UFSD sensor gain is limited

(factor 10) to avoid the avalanche phenomena and control the signal collection while

the front-end preamplifier open-loop gain is limited too (26 dB) to cope with the

discriminator dynamic at high signal rates. In the low charge limit condition, the

ABACUS comparator has to discriminate signal that are 5 mV over the baseline (as

shows in Figure 3.34) and a sub millivolt threshold control is therefore mandatory. A

common technique adopted to minimize the mismatch is to increase the dimensions

of the discriminator input transistors but this approach is limited by the increasing

of the parasitic capacitance. A more effective compensation method is to have a

channel level threshold fine tuning employing a Digital to Analog Converter (DAC)

through which an analog voltage can be programmed sending a digital code from

outside. A chip level global threshold is therefore channel-by-channel properly tuned.

The basic idea is depicted in Figure 3.47.
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Fig. 3.47 Discriminator offset compensation with a fine tuning performed with an Digital to

Analog Converter (DAC)

In a DAC, increasing the number of bits allows to achieve a higher resolution i.e.

a lower value of the LSB:

VLSB =
Vf s

sn
(3.24)

where n is the number of bits.

The DAC bit number is mainly limited by the available silicon area. The typical

way to implement a DAC for threshold fine tuning is through an array of binary

weighted current mirrors. In ABACUS the MonteCarlo theshold dispersion rms is ∼
20 mV and a factor 2 is considered cautioning the on-silicon effect. The ABACUS

DACs requirement is thus 6 bits over a full range scale of 40mV, centered on the

nominal value (∼475 mV).

Fig. 3.48 ABACUS functional blocks dedicated to the digital-to-analog conversion. The

Vth_global is fine tuned adding or subtracting a certain value selected by the user through a

binary configuration.

Figure 3.48 represents the three components of the calibration DAC: the control

logic containing six flip-flops implemented with digital standard cells (Figure 3.51),
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the 64 unity current cells driven by the control logic (the signals are inverted to take

into account that the current sources are made of PMOS transistors). Figure 3.49

represent the DAC bit control and Figure 3.50 is the inner bit logic. The third block

is the linear current-to-voltage converter. The current in each DAC bit cell can be

steered to a current-to-voltage converter, shown in in Figure 3.53. The generated

voltage difference is fed to the comparator stage.

Fig. 3.49 Block representation of the DAC bit control. The inverters are used to keep an

intuitive behavior with the stream of configuration bits: increasing the binary number means

adding a positive value to the global threshold.

Fig. 3.50 Transistor detail of the unity current cell logic. The cascoded PMOS is controlled

with the switch signal SWn.
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Fig. 3.51 DAC logic: block representation of the standard cell flip-flop chain and the

extraction of the switch activation signals to control the bits.

In order to linearly convert iDAC into the voltage threshold Vth sent to the com-

parator, a trans-impedance amplifier is used. The logic of this amplifier is represented

in Figure 3.52 whereas Figure 3.53 shows the transistor level schematic.

Fig. 3.52 Working principle of the adopted architecture for linear current to voltage conver-

sion. The triangular block is the high gain transconductance amplifier.

The block is based on a single stage differential amplifier connected to the gate

of a PMOS transistor and a feedback resistor placed between the amplifier output

and the input node, suitable to perform a linear current to voltage conversion. This

solution guarantee a low impedance connection with the DAC aiming to keep the

node voltage constant even if the current sourced by the DAC changes (DAC code

modification). The DAC and the amplifier circuit are therefore decoupled.
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Fig. 3.53 Schematic representation of the trans-impedance amplifier employed for iDAC →Vth

conversion.

Since all the current sourced by the DAC flows through the resistance, the voltage

Vth changes linearly, as required. In fact, considering a gain A for the differential

amplifier, follows that

VO = (V1 −Vre f ) ·A (3.25)

Since all the IDAC current flows through the resistance R:

V1 −Vth = R · IDAC (3.26)

If the PMOS transistor works in the saturation region, the current ISD is given by:

ISD = I1 + IDAC ≈
1

2
·µp ·Cox ·

W

L
(VGS −VthP

)2 (3.27)

And from straight quite basic calculations, assuming that the differential amplifier

gain A is high enough to adopt the limit a → ∞:

Vth ≈ (Vre f +R · IDAC) (3.28)
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Figures 3.54, 3.55 prove the quality of the conversion linearity and Figures

3.56, 3.57 show the DAC voltage steps obtained with the 64 combinations of the 6

bits. It is possible to observe that a ∼ 0.5 mV step accuracy has been achieved over

a more than 30 mV range.

Fig. 3.54 DAC linearity: the conversion linearity is maintained over a∼40 mV range. The

plot shows the DAC output voltage in function of the global threshold voltage Vth_global . The

latter is the top level threshold shared among all the chip channels and is then fine tuned with

DACs, at channel level.

Fig. 3.55 DAC linearity: offset at 475 mV, a typical global threshold voltage.
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Fig. 3.56 The DAC voltage steps obtained with the 64 combinations of the 6 bits

Fig. 3.57 DACsteps3

Thanks to its 6-bits DAC, each ABACUS channel works with his own threshold,

with the aim to keep all the 24 channels equalized and ready to switch triggering at

the same point, if all the front-ends would be ideally stimulated with an identical

input. DAC-based compensation methods require also a local digital memory to

store the chosen bit pattern for the converter; this is performed with a shift-register

which input and output connections are linked to external pads for configuration via
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FPGA. The configuration shift-register has a self-reset that is performed with a R-C

low-pass filter at the ASIC power-on.

3.12.7 Pulse generator

ABACUS yearns for being a single ion discriminator which mode of operation is

based on a discrimination activated reset of the amplifier feedback capacitance. When

the OTA Buffer output voltage crosses the discriminator threshold the discriminator

fires and the resulting digitized signal takes two paths: on one way this signal moves

to the CML driver while in parallel, the discriminator output drives the CSA feedback

reset. The discriminator output suffers on time walk effects and has a duration which

depends on the input signal amplitude therefore it is not suitable, to be directly used

for the C f reset, especially in a 108 Hz application field. This task is conducted by a

block called Pulser (shown in Figure 3.58).

Fig. 3.58 Pulser: transistor level schematic. The output signal results form a bolean AND

between the input and a delayed and inverter copy of the input. The two signals overlapping

duration can be regulated with the PulserVbiasP and PulserVbiasN voltages.

Basically, referring to Figure 3.58, the Pulser takes the discriminator output

that is inverted one first time (net S1), then is inverted again with a starved inverter

to introduce a delay (net S2); finally a third inverter digitizes again the signal

(delayed_IN). The inverted and delayed signal goes through a boolean AND gate

with the original discriminator output (Pulser_out). Figure 3.59 shows the resulting

pulse form the two signal overlapping (logic AND) whereas Figure 3.60 reports all
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the pulser elaboration steps. It is possible to change the pulse duration regulating the

R-C shaping with the two signals PulserVbiasP and PulserVbiasN that control the

second inverter delay. Figure 3.61 shows a simulation of the pulse width selection.

Fig. 3.59 Pulser working principle: the logic AND between the input and a delayed and

inverter copy of the input (up) results in the pulse signal (bottom).

Fig. 3.60 Pulser, signal elaboration. Form the top to the bottom: the discriminator output

(IN), the inverted discriminator output (S1), S1 inverted and delayed through a controlled

RC shaping (S2), S2 inverted and digitized and in the picture bottom, the resulting pulse.
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Fig. 3.61 Pulser feature: pulse widht control. Light blue: PulserVbiasP = 700 mV, PulserVbi-

asN = 500 mV; blue: PulserVbiasP = 785 mV, PulserVbiasN = 700 mV.

3.12.8 Recovery system

The proposed solution has the drawback that whenever the pulse duration is not

enough to bring the front-end signal under threshold, the comparator remains fixed

in a stack configuration and the system is completely blind. To avoid this effect, a

Recovery circuit has been designed and implemented (shown in Figure 3.62.

Fig. 3.62 Recovery: transistor level schematic
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The working principle of this Recovery block is based on a boolean OR between

the Pulser outputs and those discriminator outputs signals after an high-pass filter.

The Recovery functional principle is represented in Figure 3.63.

Fig. 3.63 The Recovery block working principle: the Recovery is different from the Pulser

output only when the discriminator remains over threshold for more than a R-C fixed at 3.5

ns; whenever this happens, the boolean OR between the delayed discriminator output and

the pulser signal, creates an extended reset signal.

In this way, the front-end output is forced down only in the case in that a

discriminator signal remains over threshold for a time that can be critical. Studying

the discriminator output shape as resulting from different input signal amplitudes in

both schematic and layout configurations, it is possible to say that the signal width

(i.e. the time duration of the signal) remains in the 1.5 ns - 2.1 ns range. Knowing

that, the high-pass filter time constant has been fixed at 3.5 ns: a discriminator

output signal that remains over threshold for this time (or more) is considered as

a stuck one. After this time the Recovery actively participate to the reset action

adding to the Pulser output a delayed discriminator output. In the general and

more common situation, the Recovery output is equivalent to the Pulser one, with a

unavoidable small delay induced by the CMOS inverter chain. The Recovery block

has a differential output since it has to control the NMOS switch-reset transistor and

the PMOS adopted for the collection of the charge injection. The PMOS control is

operated with a small delay with respect to the NMOS, in order to properly interact

after the former action. The Recovery signal elaboration is represented in Figure

3.64.
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Fig. 3.64 Recovery, signal elaboration. From top to the bottom: the front-end input signal

followed by the CSA output and the OTA Buffer output, the digitized discriminator output and

the Pulser output. In the picture center, in orange, the Recovery output and its complement,

followed by the signal added as active action from the Recovery (blue) and the RC with its

digitized and inverted version, in the picture bottom.

3.12.9 The CML driver

The ABACUS ASIC is a prototype device which output is a differential signal that

is going to be readout by an FPGA. The choice of the FPGA-type is related to

the number of I/Os with the capability to perform a synchronous sampling with a

frequency of at least 1 GHz. Concerning the chip embedded logic, the ABACUS

discriminator output passes through a block that performs the single-ended to differ-

ential conversion (Figure 3.65) which in turn drives a Current Mode Logic driver

which schematic is shown in Figure 3.66 (the CML bias OTA schematic is reported

in Figure 3.67).
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Fig. 3.65 Single-ended to differential converter: transistor level schematic.

Fig. 3.66 CML driver: transistor level schematic

This logic standard has been chosen after a comparison with LVDS (Low Voltage

Differential Signaling). The fact that CML requires a 1.2 V power supply domain

(CMOS compatible) instead of the 2.5 V for the LVDS, added to the fact that the

CML voltage swing can be controlled by a current source (thus the power too) with

a simpler output stage, favors this driver type. Another option would be the scalable

Low Voltage Signaling format which turned out to be not compatible compatible

with the FPGAs already available. A comparison among the three data transmission

formats is reported in Appendix1.

A CML driver operates in the MOS active region to maximize the speed (i.e. triode

region avoided). The reduced voltage swing (compared to CMOS static circuits), the
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fact that the current switching takes place at the input differential pair transistors and

considering also that a CML driver is terminated at its input, make this device more

suitable for high speed data transmission.

Fig. 3.67 CML embedded buffer: transistor level schematic

3.13 ABACUS layout

3.13.1 Introduction and general aspects

The level of complexity typical of a VLSI device, is such that the approach on

microelectronics design is distinctly split in schematic and layout phases. The layout

design phase is based on the conversion of a symbols system into a geometric shapes

one, introducing metals, silicon wells, polysilicon contacts etc.. During the layout the

designer deals with physical layers placing objects in two-dimensional surfaces that

are interconnected through VIA, considering the coupling capacitance of overlapped

layers as well as the R-Cs that each line carries in the layout view.

The layout standard flow requires a series of verification steps like the Design Rule

Check (DRC). The DRC mainly controls the minimum width of metal lines with

a given current, the minimum distance between two different layers, the minimum

number of vias required for connection, the maximum distance between the channel

and its closest bulk connection. To ensure the correct function of the fabricated chip

and enhance the yield, some margin on those limits are usually requested.

Consider now the parasitic effects. For metal transmission lines, the smaller width

they have, the larger parasitic resistance they will introduce. Considering the current
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density limitation for a specific metal layer, large biasing currents would require

wide metal paths however, this would introduce strong capacitive coupling between

overlapped layers. At the same time, long metal connection on MOSFET gates

violate antenna rules. As previously mentioned different layers are interconnected

through VIAs in large number, avoiding highly resistive paths. Concerning the tran-

sistors an important effort has been taken during the ABACUS design in protecting

the substrates from pick-up noise generated by the digital signals fast clipping (a

dedicated subsection focuses on this aspect).

Once all the above implicit and the explicit rules are satisfied a further control is

provided by the Layout Versus Schematic (LVS) check: the software verifies the

correspondence between the schematic and the layout in terms of components, nets

and interconnection equivalence. Only after the design is LVS clean, the flows allows

to proceed with the extraction of the parasitics (PEX).

3.13.2 Layout view

The ABACUS ASIC has been designed with a 8-metals technology and a minimum

MOSFET gate length of 110 nm (it is a 130 nm shrink). The design area is 2 · 5 mm2

and the number of pads is 140. The number of blocks that a channel can integrate

can be limited by both area and pad number, since proper bias and control signals

are usually required.

During the layout design, particular attention has been paid on the block interconnec-

tions in order to reduce RC delays. The electro migration rules have been checked

with particular care on the high current nodes. The channel level topology takes into

account first of all the signal propagation by placing the front-end as close as possible

to the input pad and the driver close to the output pads; the comparator logic is close

to the front-end to optimize the signal integrity but it is biased with a different power

domain to protect the analog side from the digital switching. The pulser and recovery

block are still quite close to the amplifier due to the feedback reset connected to the

integrating capacitance: long paths would pick-up noise and provide delayed reset

which fast reaction is essential with high signal repetition rates. The central part of

the channel hosts the blocks fed by signals that are already digitized and/or that do

not interact directly with the front-end (DAC and its control logic, the single-ended

to differential converter, the shift register for DAC programming).
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Figure 3.68 shows the ABACUS channel layout view and a front-end zoom-in is

depicted in 3.69.

Fig. 3.68 ABACUS channel in its layout view.

Fig. 3.69 Front-end layout with block identification.

The ASIC top level is arranged in four sectors by six channels each (Figure

3.70). This choice descends from various reasons, starting from the fact that this

chip is a prototype and and thus it must be suitable for detailed testing; therefore,

the possibility to tune as much signal as possible (e.g. the CSA and discriminator

cascode bias currents and voltages) has to be used. Due to the limited number of pads

it is not possible to route out many signals at channel level but it is at least possible

to group channels to make intermediate signal externally available. Another reason
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supporting the sectors division is the implementation of sector level bias cells instead

of biasing all the channels with pads mirrored on the chip edges: this choice has

been preferred in mitigating the bias gradients responsible for channel-by-channel

behavior inhomogeneity.

Fig. 3.70 ABACUS: sector division.

Having a sector modularity has been a great advantage in the heavy simulation

phase that flanked the designed till the end. It has been possible to simulate increasing

the level of complexity, from the single channel, moving to the six channel packed

in a sector, a sector with only one channel (mini-sector) and the chip made by mini-

sectors. Only at the end it has been possible to simulate the entire chip moreover, this

is even more complex and slow for the layout view simulation with the parasitics.

The channel to channel interconnections as well the sector to sector ones have been

simulated only with an higher level block that routes those lines. Figures 3.71, 3.72,

reports a top level view of the ABACUS layout. In the bottom of the pictures it is

possible to see the inputs packaged between grounds, to shield and better isolate the

channel signal. In the upper part there are the two polarity driver outputs. On the

shorter edges the bias currents, voltages and the set and control signal are placed, as
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well as the contacts for the power domains. The available area and the number of

the channels are responsible of the right and left separation with two sectors each

side. The ASIC center is filled with filtering capacitors and the higher metals are

here used for the power distribution net.

Fig. 3.71 Black and white layout view of the ABACUS top.

Fig. 3.72 Colored layout view of the ABACUS top.

Parasitic induced delays

The simulation of the net-list back-annotated with parasitic components extracted

by the PEX tool reveals variations in the circuit characteristics like the bandwidth,

signal amplitude and noise performance (if large resistors appear in the signal path).

The component mismatch issue and the fact that small transistors suffer more for

flicker noise would push to use bigger devices but the area constraint is against this.

Moreover, big components complicates the routing and spread blocks require long

path connections that degrade the signal. Figure 3.73 is useful to appreciate the
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propagation delay for a digital signal, into the ABACUS channel; Figure 3.74 is a

detail of the previous one.

Fig. 3.73 Signal propagation delay among the discriminator (top), pulser and recovery output

signals. The input signal is the bottom one. In the upper part, there is the superposition of

three discriminator signals as the channel experiences having two CMOS inverter for signal

reshaping. The waveforms are taken from a post-layout simulation.

Fig. 3.74 Propagation delay among the discriminator, pulser and recovery output signals

(post layout simulation): focus on the 2 inverter chain for the discriminator output signal

reshaping.

3.13.3 Power domain splitting

The ABACUS ASIC has separated power domains for the analog and the digital

sectors, as showed in Figures 3.75 3.76 3.77 3.78. This choice has been adopted to

separate as much as possible the front-end (intended as the preamplifier plus OTA

buffer), which is the most sensible part, form the rest of the chain especially from

the discriminator and the driver that, during switching, can inject large spikes into
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the power lines (up to ∼ 40mV peak-to-peak). Unfortunately this technique was

not sufficient to avoid instability, emphasized in a multiple channel firing situation.

Details related to this issue are reported in the following subsection.

Going back to the first aspect, the front-end-dedicated power domain is also suitable

for keeping the current signal in a loop that starts from the detector and possibly

finishes as close as possible, in order to minimize the noise pickup.

Fig. 3.75 ABACUS layout tip view: digital vdd highlighted.

Fig. 3.76 ABACUS layout tip view: digital gnd highlighted.
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Fig. 3.77 ABACUS layout tip view: analog vdd highlighted.

Fig. 3.78 ABACUS layout tip view: analog gnd highlighted.

3.13.4 Substrate noise coupling mitigation

In the field of integrated circuit design, high speed and high power digital blocks

feature current and voltage glitches in their transients, that can arise as parasitic

currents through the silicon substrate. The presence of a common substrate causes

an electrical coupling of devices in various parts of the circuit meaning degradation

in performance and reduction of the system performances, especially for analog

circuits. More challenging fields in this sense are those integrating mixed signal

architectures and/or radio-frequency (RF) components, commonly added since the

continuous shrinking of the technology size pushed for higher level of integration.

A crucial point in the ABACUS layout design has been the stability control of the

CSA baseline, whenever the CML driver switches. In addition to have separate

power and ground two more techniques allowed to overcome the fact that the
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CMOS substrate is eventually shared among the whole ASIC. First of all, the CML

high-dynamic transistors (e.g. the input ones) have been designed as triple-well

(Figure 3.79) thus to disentangle the typical inner ground-substrate or vdd-substrate

connection, respectively for NMOS and PMOS. In this way it is possible to change

the substrate connection of certain CML transistors forcing them to follow a longer

path to reach the ground. It is important to remark that a direct connection substrate-

ground-source for a NMOS has a different impact than a substrate-ground connection

at symbol level, that means for instance a longer path for the signals.

Fig. 3.79 Drawing of a CMOS triple well solution for transistor shielding.

A qualitative but highly indicative evidence of the mitigation results can be

understood looking at Figures 3.80 3.81. These two pictures report one over the

two polarity for the CML signal (which is differential), for ten channels that are

stimulated with different kind of signal inputs (different amplitudes, rates and starting

time). The idea is to highlight the possible crosstalk and interference effects as result

of high frequency parasitic signal, coupled from the drivers to the CSA. Figure 3.80

shows a situation in witch the CML has ground and bulk shorted at transistor level

whereas in Figure 3.81, the CML RF transistors have been modified as triple well

and the substrate is connected to the channel one, the ground is connected to the

channel digital ground.
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Fig. 3.80 CML positive output signals. The substrate connection propagates spikes on the

power lines.

Fig. 3.81 CML positive output signals. Result for the substrate noise coupling mitigation

technique: the CML output is connected to the digital domain gnd, thanks to triple-well

transistors.

Another technique that has been adopted to mitigate the interference noise

propagation through the substrate is based on a design layer named P-Well Blockage

(PWBL). Using this approach it is possible to keep the substrate continuity in a

critical region enclosing the critical blocks with a trench that excludes p++ doping

elements in the substrate thus to increase its local resistivity. This (PWBL) structure

is placed into the layout by the designer and physically realized before the transistor,

during the semiconductor device fabrication process. Unfortunately the effect of

this technique could not be simulated with the CAD, since the designers did not
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have the proper tools for doing it (neither the substrate models nor the proper

simulator licenses). Nevertheless this approach is rather common and has been

already successfully adopted by the group in other projects.

Figures 3.82 3.83 are snapshot captured form the ABACUS channel layout and

show respectively the PWBL for the S2D block and the latter shows the PWBL for

the CML driver.

Fig. 3.82 P-Well Blockage adopted to mitigate the substrate noise coupling of the S2D. The

PWBL is the semi-transparent trench boundary enclosing the block in the centre.

Fig. 3.83 P-Well Blockage adopted to mitigate the substrate noise coupling of the CML

driver. The PWBL is visible at the very picture boundary.

3.13.5 Discrimination capability

Among the channel single functional block design and characterization, the figure

of merit for ABACUS remains the ability to discriminate signals resulting from 60

MeV - 250 MeV protons hitting a UFSD strip. This subsection collects a series of

CAD simulation results for both schematic and layout test benches, where GEANT4

time distributed and Weightifeild2 shaped signals are set as ABACUS channel inputs.
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During the efficiency tests a standard digital counter in Verilog has been used to

count the 0→1 transition number for the discriminator output. The number of the

input pulses is known from the file that has been artificially created, therefore an

efficiency estimation is obtained dividing the digital discriminator pulses by the

analog input pulses coming from the sensor (as explained in previous sections, the

sensor is modeled with a capacitor connected in parallel with a current generator

linked to a text file with the simulated signals).

Firstly schematic simulation results for MIPs at the limits of the considered frequency

range are reported: MIP, 50 MHz in Figure 3.84 and MIP 250 MHz in Figure 3.85.

Fig. 3.84 Schematic simulation waveforms for MIPs at 50 MHz. From the top: the input sig-

nal, the CSA output voltage, the OTA buffer output voltage with the discriminator threshold

superimposed and the CML+ and CML- on the bottom.
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Fig. 3.85 Schematic simulation waveforms for MIPs at 250 MHz. From the top: the

input signal, the CSA output voltage, the OTA buffer output voltage with the discriminator

threshold superimposed and the CML+ and CML- on the bottom.

Fixing the rate at the higher value, the effect of the two energy boundaries are

reported in Figure 3.86, the 60 MeV and Figure 3.87 the 250 MeV and 250 MHz,

keeping in mind that lower energy ions have an higher stopping power and are thus

responsible for larger amount of energy released into the crossed medium.

The time of arrivals of the events on a radiation detector usually follows a Poisson

distribution, described by the following equation:

P(n) =
µn · e−µ

n!
(3.29)

where P(n) is the probability to observe n events in a process having µ as mean

value of events.

Marked in Figure 3.86 with time difference indicators, the fact that the statistics

regulating the input pulses temporal distribution, is responsible for overlapped signals

or signals that are 1-2 ns close already as sourced from the detector. These cases are

going to result in unavoidable pile-up events.
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Fig. 3.86 Schematic simulation waveforms for 60 MeV protons at 250 MHz. From the top:

the CSA output voltage, the OTA buffer output voltage with the discriminator threshold

superimposed, the discriminator output the input signal.

Fig. 3.87 Schematic simulation waveforms for 250 MeV protons at 250 MHz. From the

top: the CSA output voltage, the OTA buffer output voltage with the discriminator threshold

superimposed, the discriminator output the input signal.

Looking at Figure 3.88, it is possible to understand a certain amount of effects

that come out or are just emphasized with the layout version of the channel. It is

possible to observe walk effects for different amplitude pulses and the delay between

the time when the OTA buffer signal crosses the threshold and the discriminator starts
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to rise; an increasing delay propagates until the recovery signal is finally used to

reset the feedback capacitance. Another interesting situation is highlighted by a red

circle in the right lower corner that indicates the action of the recovery circuit, as a

logic OR between the pulser signal and a delayed discriminator output but only if the

latter remains up at least for 5 ns (otherwise the recovery is equivalent to the pulser

output as explained in the dedicated subsection). Since it is a feedback command

that brings down the discriminator output at the low logic level, it is possible to see

only the shorten discriminator output signal, as modified by this action.

Fig. 3.88 Post-layout simulation waveforms for 60 MeV protons at 250 MHz. From the

top: the CSA output voltage, the OTA buffer output voltage with the discriminator threshold

superimposed, the discriminator output, the pulser output, the recovery block output and the

input signal on the bottom.

In the following couple of pictures ( 3.89 3.90) a more complex test bench has

been set to maximize the simulation run contents: an ABACUS sector (six channels)

as been arranged with 4 different input sources and two channels unconnected.

Figure 3.89 reports a 100 ns transient simulation with the waveforms of the analog

input signals and the digitized signal as discriminator outputs, with four different

configurations; from top to bottom: 250 MeV_200 MHz, 60 MeV_200 MHz, 60

MeV_100 MHz, 250 MeV_100 MHz. The same configuration setting but for the

layout channel is reported in Figure 3.90.
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Fig. 3.89 Counting efficiency, schematic simulation. The waveforms represent the front-end

input signal and the discriminated one, for four different configuration. From top to bottom:

250 MeV_200 MHz, 60 MeV_200 MHz, 60 MeV_100 MHz, 250 MeV_100 MHz.

Fig. 3.90 Counting efficiency, layout simulation. The waveforms represent the front-end

input signal and the discriminated one, for four different configuration. From top to bottom:

250 MeV_200 MHz, 60 MeV_200 MHz, 60 MeV_100 MHz, 250 MeV_100 MHz.
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Table 3.4 Summary of the channel level power consumption, separating the analog and the

digital domain

Domain mW blocks

AVDD, AGND 12.5 CSA, OTA buffer, DAC logic

DVDD, DGND 32 all the rest

Total 44.5 channel

Table 3.5 Summary of the ASIC top level power consumption, separating the analog and the

digital domain

Domain mW blocks

AVDD, AGND 304 CSA, OTA buffer, DAC logic

DVDD, DGND 764 all the rest

Total 1070 channel

Power consumption and temperature sweep analysis In all the simulation re-

sults presented in the previous sections the temperature parameter was set at 55

Celsius degrees. This is a typical value expected for a custom chip of this dimen-

sion. Even if the power consumption was not a MoVeIT requirement, it influences

the ASIC temperature. Considering the CSA nanosecond rising time and the high

frequency input signals, it is easy to say that the circuit would be a considerable sink.

Details concerning the power consumption are reported in tables 3.4, 3.5.

It is well known that the expected ∼1 W chip power consumption and without a

proper mechanical heat sink or an active cooling system, the ASIC will most probably

overheat up to 80-90 Celsius degrees. By studying the temperature influence in the

ABACUS channel working condition it is possible to resume claiming that the most

important thing that influence a correct and efficient behavior is the preamplifier (and

thus the OTA buffer) baseline value. Specifically, the OTA buffer baseline should

remain in the 465-480 mV range, with an optimum in the intermediate value of 474

mV. Typically happens that the baseline moves inversely with the temperature.
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Fig. 3.91 Schematic simulation waveforms for 250 MeV protons at 200 MHz at 27 degC

and Ibias = 7 mA. From the top: the CSA output voltage, the OTA buffer output voltage, the

discriminator output and the input signal.

Fig. 3.92 Schematic simulation waveforms for 250 MeV protons at 200 MHz at 55 degC

and Ibias = 9 mA. From the top: the CSA output voltage, the OTA buffer output voltage, the

discriminator output and the input signal.
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Fig. 3.93 Schematic simulation waveforms for 250 MeV protons at 200 MHz at 90 degC

and Ibias = 10 mA. From the top: the CSA output voltage, the OTA buffer output voltage, the

discriminator output and the input signal.

To control this phenomena it is possible to tune the bias current of the right

branch of the telescopic cascode amplifier (in CSA configuration). The nominal

value for this current is 9mA at 55deg C and it has to be reduced to 7mA at 27deg C

or increased to 10 mA at 90deg C, as shown in Figures 3.91, 3.91, 3.91.
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3.14 Summary

The goal of this project is to realize a single ion discriminator for particle therapy

applications. Promising experimental results on UFSD sensors show an excellent

time resolution of 35 ps and signal duration at nanosecond level with a high S/N

value. Nevertheless critical aspects have to be managed from now on in order to

minimize effects like pile-up and radiation damage. Sensors have then to be coupled

with custom front-end electronics, called ABACUS, able to discriminate nanosecond

wide pulses at 107 MHz rate, in a pulse charge range extending from 3fC up to 150

fC.

In Turin, the microelectronics team collaborating with MoVeIT, approached this

challenge designing two different ASICs featuring the first a resistive feedback

amplifier and the second one a capacitive feedback amplifier. The device that will

appear more efficient in terms of discrimination efficiency, will be upgraded and

integrated in a full ASIC embedding the counter and register logic.

This thesis macro-chapter focuses on the design of the capacitive feedback archi-

tecture. This 24-channel chip design has been extensively tested with GEANT4

provided files that replicates the amplitude and time distribution of the signals com-

ing from the MoVeIT sensors; the pulse shapes have been modeled using TCAD

and Weightfield2 which are dedicated silicon sensor simulation tools. Analyzing

the schematic level simulation results, ABACUS behave properly, with a discrim-

ination efficiency of the input files close to 100%. From post-layout simulations

the quality of this result is degraded to 85% but it is still not possible to understand

the mitigation effect due to the P-Well Blockage since both the substrate models

and the dedicated simulator tool licenses were not available. Due to the fact that

simulations at the ASIC top level require a huge amount of computing power (∼
24h for few nanoseconds of transient simulation), it is still not possible to predict

the cumulative R-C effects for the sector to sector interconnections and the top level

routing. In this application, these effects could be a benefit, smoothing the CML

induced perturbations that propagate on ground and substrate paths. The simulation

results are going to be compared soon with the on-silicon behavior, once the ASIC

prototypes will be delivered.
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Chapter 4

The Mini-EUSO multi-level trigger

integration and testing

4.1 Introduction

Ultra-High Energy Cosmic Rays (UHECRs) are still a mysterious physic phe-

nomenon which origin and composition are mostly unknown. Recent data confirmed

the UHECRs extragalactic nature but an increased effort in the observation at ex-

treme energy limit (around 1020 eV) is thus needed to identify their primary source.

Since at such extreme energy the flux of the UHECRs at Earth is very small (in

the order of ∼ 1 particle/km2 /century), UHECRs can be detected by measuring

the extensive air showers (EAS) produced as interaction with these cosmic rays in

the atmosphere. At ground level, physicist use air fluorescence detectors and large

arrays of particle detectors, like in the Pierre Auger Observatory [1] [2] (Auger,

which cover 3000 km2) and Telescope Array [3] [4] (TA, which cover 700 km2).

The intrinsic geometrical limit of these ground-based experiments can be overcame

reversing the direction of the exposition with a space detector looking at the Earth

atmosphere to increase by orders of magnitude the FoV at ground. With this purpose

the JEM-EUSO collaboration (Japanese Experiment Module, Extreme Universe

Space Observatory) bases the study of UHECRs on the detection of the secondary

light emissions induced by cosmic rays in the atmosphere, maximizing the statistics

of these rare events through a wide field of view from space. Chasing such a goal, a

good strategy is to plan and develop intermediate pathfinder experiments.
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The JEM-EUSO collaboration scheduled the work flow of such ambitious project

planning the realization of several intermediate pathfinder experiments. Mini-EUSO,

along with EUSO-TA, EUSO-Balloon, and EUSO-SPB, forms the next step towards

the observation of UHECRs from space. Mini-EUSO is a JEM-EUSO 1:10 in-scale

telescope, designed to trace a UV-map of the Earth from the vantage point of the

International Space Station (ISS) in low Earth orbit. A multi-level trigger logic oper-

ates data selection over different time scales thus optimizing the collection efficiency

through a sort of on-line data analysis. Owing to the limited amount of storage avail-

able, an efficient trigger system has to be developed. Such a system has to be deeply

and exhaustively tested both at software level and during the hardware integration in

the processing system. This thesis chapter first introduces the Mini-EUSO scientific

context and features and then focuses on the motivation behind the trigger logic. In

the second half of the chapter the topic moves to the integration technicality and the

testing phase.

4.1.1 The author’s contribution

The author’s contribution on the work presented in Chapter 4, is related to the Mini-

EUSO first level trigger logic. During one year work (six months in parallel with

the TERA09 project and six months full-time), the author interacted with the the

Mini-EUSO trigger responsible and the department technician that developed the

firmware for the trigger algorithm. After this support and consulting phase, the

author moved to the Skobelstyn Institute of Nuclear Physics of the Moscow State

University (where the FPGA main developer works), to develop from scratch some

trigger ancillary IPs like the Artificial Data Generator (ADG). The ADG allows

to test the trigger stand-alone, after its hardware implementation, stimulating the

trigger logic (suitable for both, first and second level trigger) with signals of different

complexity levels; in this way it is possible to discriminate electrical problem from

algorithm ones. Other IP blocks developed are a time stamp generator which attaches

a time reference to trigger events and a pixel masking block that is suitable to reduce

the wrong data saving, in case of bad pixel behavior. Further efforts provided by the

writer, have been collaborating to both a readout chain test (from photomultiplier

tubes to the main FPGA) with a pulser and the Mini-EUSO test in TurLab. The

results of these studies, as well as the detector hardware and logic description, will

be presented in the following sections.
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4.2 Mini-EUSO in the behalf of the JEM-USO collab-

oration

Conventionally, UHECR refers to the extreme part of the detected particles energy

spectrum. In the cosmic ray physics, recurrent fundamental questions are:

• how does the cosmic-ray spectrum continue beyond the existing data? is there

a maximum energy?

• is there an anisotropy that indicates source regions?

• are UHECRs protons, nuclei, photons, neutrinos or exotic particles?

In the energy spectral region above 1019eV , the amount of available physics infor-

mation is inversely proportional to the rate of the detected particles, leading to an

extremely poor statistics above 1020eV . World wide research groups agree to the

fact that space mission are needed to increase the acceptance as well the exposure

and the statistics oriented to this kind of detection campaign. The expensive and

heavy effort demanding nature of a space mission, favors as consolidate succeeding

strategy of being carried on by international collaborations like EUSO.

EUSO has been an European Space Agency (ESA) mission, designed to be

hosted on the International Space Station as an external payload of the Columbus.

Even if EUSO successfully completed the "Phase A" study, programmatic but mainly

financial constraints brought ESA to suspend the program in 2004. Although this

problematic initial phase, the project goal was at a later time re-oriented as a payload

to be hosted on board the JEM module nicknamed Kibo (hope, in Japanese), the

Japanese science module for the ISS developed by Japan Aerospace Exploration

Agency (JAXA). At that point the collaboration renamed the mission as JEM-EUSO.

JEM-EUSO is the first space mission concept devoted to the investigation of cosmic

rays (CR) and neutrinos of extreme energy (E > 5× 1019eV ). Using the Earth’s

atmosphere as a giant gas detector, the detection is performed by looking at the streak

of fluorescence produced when such a particle interacts with the Earth’s atmosphere.

JEM-EUSO is currently studied by hundreds pf researcher in 95 Institutes from

16 Countries, with the support of the most important International and National

Space Agencies, aiming for a flight after 2020. The proposed instrument consists

of a set of three large Fresnel lenses of 2.65 m diameter (with top and bottom cut
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off to reduce the minimum diameter to 1.9 m so that they fit in the resupply vehicle

in which the instrument has to be launched) feeding a detector consisting of 137

modules each a 48x48 array of photomultiplier tubes. The imaging takes place in the

300-450 nm band (low energy UV through deep-blue), and photons are time-tagged

with 2.5 microsecond precision [5].

4.3 The scientific scenario and motivations

The main scientific goal of Mini-EUSO is to produce a high-resolution Earth map

in the 290 nm - 430 nm UV range; this radiation sensitive window has been chosen

considering the nitrogen molecules abundance in atmosphere and the fact that excited

nitrogen atoms have a 268 nm-546 nm second positive line in the emission spectrum.

This map is crucial since the event detection is based on the signal discrimination

from a background pattern and the event itself is indirectly detected looking at the

UV emission as cosmic rays-atmosphere interaction result. With a spatial resolution

of ∼5 km and a temporal resolution of 2.5 µs, Mini-EUSO is expected to find new

information regarding UHECRs detection threshold from space, estimating the duty

cycle of future experiments.

Even if the Mini-EUSO energy threshold is too high to directly detect UHECRs,

laser-induced CR-like tracks will be provided by ground shooting, allowing the

validation of the trigger logic principles and testing the instrumentation developed

for UHECRs detection. Furthermore Mini-EUSO presents the opportunity to study a

variety of other scientific phenomena, including atmospheric physics, strange quark

matter, space debris detection and bio-luminescence and anthropogenic lights. Con-

sidering data resulting from previous missions, a minimum flux of 3× 1011 photons

× m−2 s−1 sr−1 has been detected by the Tatiana experiment, with a 100 km spatial

resolution [6]. This value came out as minimum for dark areas of the Earth during

moonless nights. A factor 2-5 higher is expected over clouds or cities, whereas

a factor 1-2 higher over aurora regions. Higher resolution measurements of the

UV ground emission have been performed by pressure flying balloons like EUSO-

Balloon and BABY [7]. These detection campaign with a 10 km spatial resolution

were located at less than 40 km altitudes thus excluding high altitude peculiar events

such air-glow emissions and aurora. Furthermore there are Transient Luminous

Events (TLEs), typical for being upper-atmospheric, in the UV range and occurring
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with high repetition rate [8], [9] (more detail in the next subsection). Character-

izing TLEs like events helps to increase the UHECRs detection efficiency. In this

rare-events region the flux is as low as 1 particle/km2 x century and thus the effective

area that can be observed by a detector is a key feature. The JEM-EUSO collabora-

tion actually chose a space-based detector in order to increase the sensitive volume

for a more complete statistics [10], [11]. Prior to reach this goal, intermediate

pathfinder experiments have been developed by the collaboration. Mini-EUSO, as

well as EUSO-TA [12], EUSO-Balloon [13], and EUSO-SPB [14], forms the

pioneer set of detectors looking at UHECRs from space. Additionally, UV night

glow measurements are currently being conducted with a spatial resolution of 5 km

by the TUS experiment on board the Lomonosov satellite [15]. The UV radiation

measured by satellite missions is highly variable due to the presence of clouds, cities,

aurora and other factors in the moving field of view. Mini-EUSO and TUS have

a similar spatial resolution ∼5-6 km and their space missions are going to catch

unprecedented high resolution informations. The Mini-EUSO mission, originated as

a joint project between Italy and Russia, was selected in Italy by the Italian Space

Agency (ASI) and is supported by the National Institute of Nuclear Physics (INFN);

then, under the name ºUV atmosphereº, it has been approved by the Russian Space

Agency Roscosmos which included it in the long-term program of space experiments

on the ISS. After the signature of a common Scientific Agreement, Mini-EUSO is

now an established project between the participating countries of the JEM-EUSO

collaboration. The Mini-EUSO launch is scheduled for the end 2018 (or early 2019)

and the detector is going to be installed inside the International Space Station (ISS),

placed at a nadir-facing, UV-transparent window on the Russian Zvezda module

[16].

4.3.1 UHECRs: basic concepts

The detection of Cosmic Rays (CRs) with energies greater than 1018 and even ex-

ceeding 1020 eV is performed at Earth ground with almost random arrival directions,

classifying these phenomena origin well far away the Solar System. A key role

in the CRs study is played by the energy spectrum that falls off close to a power-

law function (average power index of γ ∼3). From 1014 eV and downward, the

CRs flux is very low and forces to an indirect detection approach by measuring

secondary particles, or the extensive air showers (EAS) produced by the primary
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CR particles in the atmosphere. The ultra-high energy CR spectrum extends by over

ten orer of magnitude and has been characterized by several experiments [17]. At

energies of ∼5 x 1019eV, there is a sharp cut-off in the cosmic ray flux to the level

of ∼ 1 particle/km2 x century [18]. This phenomena, currently named the GZK

cutoff, has been independently predicted in 1966 by Greisen [19], Zatsepin and

Kuz’min [20] whose theories explained it as a consequence of photo-pion produc-

tion resulting form the interaction between the CRs with the low energy cosmic

microwave background (CMB) photons. In the case of a pure proton composition,

the explanation basis on the electron-positron pair-production from CR protons with

the CMB photons interaction [21]. Considering a mixed composition, propagation

effects are complicated by the fact that the primary nuclei also suffer interactions that

cause fragmentations. Other alternative models point to a cut-off originated from

acceleration mechanism features at the source [22]. Due to the rare event statistics,

the observation of the cut-off in the energy spectrum requires detectors with a large

effective area working for tens of years keeping a good energy resolution. AGASA

(Akeno Giant Air Shower Array) [23] and Hi-Resolution Fly’s Eye (HiRes) [24]

have been the first cosmic ray detectors working in the energy spectrum of UHECRs

above 1019 eV, as represented in 4.1. AGASA used an array of scintillation counters

to detect EAS particles at the ground level, while HiRes was based on fluorescence

detectors sensitive to fluorescence light emitted due to the energy deposition of the

EAS particles in the atmosphere.
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Fig. 4.1 Energy spectra measured by the AGASA and HiRes. The energy of AGASA data

points is scaled down to 75% to match the position of the ankle with HiRes at ∼5 × 1018 eV.

Picture from [18]

Since the systematic uncertainties in determining the CR primary energy were

∼20% in both cases, in modern experiments a hybrid detection technique is adopted,

where the CR EAS are simultaneously observed with fluorescence detectors (FDs)

and surface detectors (SDs), allowing a very precise determination of the CR en-

ergies and arrival directions. The FDs measure fluorescence light emitted by the

atmospheric molecules excited by the charged particles in the EAS, and observe the

longitudinal development of the EAS using mirror telescopes coupled with clusters

of photo-multiplier tubes. The FDs operate at a ∼10% duty cycle because the FD

data can be collected only during nights with low moonlight background and with

dry air and clear skies. The SDs, on the other hand, directly measure EAS particles

at the ground level at a nearly 100% duty cycle, regardless of the weather conditions.

Regarding the experiment setup, alternative possibilities respect to ground-based

detectors are represented by atmospheric balloons and space orbiting telescopes,

as the EUSO collaboration experienced during its evolution. From tens or even

hundreds of km altitude, the FoV at ground is easily extended by order of magnitude

moreover, orbiting detectors allow an improved statistics due to their periodic motion

around the Earth. Although all these positives, a flying devices like Mini-EUSO has
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to deal with a lot of technical difficulties due to its motion, eterogenesous luminosity

conditions etc., as explained in this chapter.

4.3.2 TLEs: basic concepts

Since their discovery in 1989, TLEs became an hot topic in the atmospheric physics

study, leading in the following years to various data acquisition campaigns by aircraft,

satellite and even by space shuttle and ISS. The nature of these phenomenons is

characterized by a bright milliseconds duration, a reduced spatial scale (1 km to

tens of km) and mesosphere altitudes (TLEs generally appears above the clouds

level, 50 km-100 km high and they rarely interest the ionosphere). In 1925 the

Scottish physicists C.T.R. Wilson elaborated the first experimental evidence related

to the connection with the thunder cloud discharge (light source) due to the classic

breakdown mechanism as result of an electric field threshold limit crossing. More

than 60 years later Robert Franz, Robert Nemzek and John Winckler, University of

Minnesota scientists, experimentally discovered a red sprite in night time. In 1998

the first TLE has been detected in daytime by Mark Stanley Schneider [25]. Apart

from red sprites, other types of TLE like blue jets, elves, halos and trolls have been

observed and classified as reported in Figure 4.2. It has been estimated that the

energy production by all types of TLEs in the atmosphere is about 700 MJ per minute

[26]. Sprites and elves follow cloud to Earth discharges with a strong correlation

between events-rate and thunderstorms-frequency.



4.3 The scientific scenario and motivations 171

Fig. 4.2 A schematic overview of different types of the Transient Luminous Events. Aggiun-

gere fonte

ELVES Emission of Light and Very Low Frequency perturbations due to

Electromagnetic pulse Sources, are low ionosphere concentric rings, expanding at

light-speed up to 200 km-500 km diameters in one millisecond. An hypothesis on

the ELVES production considers a rapid electric field change as result of a strong

lighting. This field gradient performs an upward electromagnetic pulse propagation

showing as light emission once it reaches the ionosphere. From [26], the world

wide ELVES occurrence rate is 35 per minute. The spatially averaged brightness of

an elves is: 0.17 ± 0.08 MR = 1.36 · 1014 ph sr−1 m−2 s−1. The unit R stands for

ªRayleighº (unit of photon flux) typically used for these atmospheric phenomena.

The observed characteristics of different types of TLE is depicted in Figure 4.3.

Sprites are low-luminosity massive events appearing at altitudes of 40 - 90

km. Like a giant storm clouds 1000 km and over widespread produce strong electric

field in the mesosphere, characterized by a bright region at 65-75 km above which it

extends a red glow up to 90 km whereas below, blue structures like filaments extend
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downward to 40 Km. Usually two or more sprites are observed together for a typical

milliseconds time duration. Measurements of microsecond time resolution may help

to explain the mechanism behind the peculiar shaping phenomenon. The measured

brightness is 1.5 ± 1.1 MR, which translates into some 3.48 ·1011 ph in total and

1.46 ·1011 in the wavelength region detected by Mini-EUSO. This number is the

spatially integrated amount of photons recorded throughout the whole event duration.

Blue Jets differ from sprites in that they are optical ejections from the top of

the electrically most active regions of the cumulonimbus above a thunderstorm. a

Blue Jets propagate with a 100 Km/s vertical speed with about 15 degrees full width

narrow cone, 400 m large at the base that disappears at about 40 - 50 km altitude.

Brighter than sprites, Blue Jets are more rare and blue colored events not related with

lighting occurrences but triggered by the cloud inner electric field. The brightness

of blue jets is estimated as 0.5 MR [27]. They were firstly recorded on October

21, 1989, on thunderstorm video on the horizon taken from the Space Shuttle as it

passed over Australia.

Giant Jets are originated from the cloud top thus developing in a cascade until

the lower ionosphere. As the name claims, Giant Jets are much more extended events

than Blue Jets and they propagate at the same speed of the former.
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Fig. 4.3 Principal TLEs types in the upper atmosphere [28]

4.4 The Mini-EUSO telescope: Instrument overview

The Mini-EUSO telescope consists of three main sub-systems: the Fresnel-based

optical system, the Photo Detector Module (PDM) and the readout electronics.

The idea behind the Mini-EUSO project is to test a single JEM-EUSO detection

unit, the PDM, consisting of 36 Hamamatsu Multi Anode Photo Multiplier Tubes

(MAPMT Hamamatsu R11265-M64 [29]), 64 independent pixels each, for a total of

2304 pixels. Two double sided flat, UV transparent Fresnel lenses made of PMMA

(polymethyl methacrylate) and 25 cm diameter each form the optical system, which

focuses the light onto the PDM Focal Surface reaching a 44 ◦ × 44 ◦ Field of View

(FoV) at r = 85 mm on the focal surface. The short diameter lenses and their 11 mm

thickness, reduces the optics mass for a light and compact system (∼0.3 kg/lens),

as required in space applications. The Mini-EUSO optics has a low focal number

F= 0.6, and the effective focal length is 150 mm. As previously reported, the PDM

detects UV photons (300 nm - 400 nm) with a readout sampling period of 2.5µs,

having a spatial resolution at ground of ∼6 km. A custom software code has been
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developed for the photon collection efficiency (PCE) study. This model includes and

takes into account several loss factors as surface reflection and roughness, material

absorption, Fresnel facet back cut and support structure obscuration. The resulting

data is a ∼45% PCE.

In addition to the main detector, Mini-EUSO includes two ancillary cameras for

complementary measurements in the near infrared (1500 nm - 1600 nm) and visible

(400 nm - 780 nm) range with the main task of performing atmospheric monitoring

measurements (as the thermodynamic phase detection of clouds) [30]. Moreover

cameras will help in the measurements of the emissions of the Earth and the study of

transient phenomena. Mini-EUSO will be housed in a space qualified mechanical

box (Al Ergal). Fig. 4.4 shows the CAD design of the container box with an inner

view of the detector components.

Fig. 4.4 A CAD representation of the Mini-EUSO instrument. The main sub-systems are

shown: the two double-sided Fresnel lenses, the PDM and the readout electronics. The near

infra-red and visible cameras are mounted at the level of the first lens, outside of the optical

system. The dimensions of the instrument are 37 × 37 × 62 cm3.

A special adapter provides the interface connection with the nadir looking, UV-

transparent window of the Russian ISS module Zvezda.

4.4.1 The digitization data path

The data acquisition system,incorporating the functionality of several subsystems

into one single board, is an evolution of the system adopted and validated on-field
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in the previous EUSO pathfinders, such as EUSO-TA, EUSO-Balloon and EUSO-

SPB. The reference module, called PDM consists of an array of 3x3 Elementary

Cells (ECs), each of which has 4 MAPMTs. The single MAPMT is readout by a

SPACIROC3 ASIC [31], [32], a 64 channels chip in AMS 0.35 µm SiGe technology.

Each channel is related to one MAPMT pixel. Every EC has a dedicated PCB called

EC ASIC Board that works in LVDS logic managing the 40 MHz SPACIROC3

throughput. The MAPMTs generates either pulsed signals, elaborated in a discrete

single photon counting mode or DC signals, elaborated by means of a charge-to-time

conversion, for photon flux intensity measure. This data is digitized every 2.5 µs

acquisition window which is hereafter referred as a gate time unit (GTU). The output

of the SPACIROC3 ASIC is then passed to the photo detector module data processing

system (PDM-DP) that was specially developed for the experiment. The PDM-DP

consists of three boards, the Cross Board, the Zynq Board and the Power Board as

shown in Figure 4.5. The Cross Board contains three synchronized Xilinx Artix7

FPGAs ( [33] ) to perform data gathering from the EC, pixel mapping and data

multiplexing. The three Artix7 placed in a row are synchronized and organized with

the central FPGA working as the master and the lateral ones as slaves. Data leave

the Cross Board in a 48 × 48 bits format transferred at 200 MHz, using a 100 MHz

clock in DDR3 mode, reaching the ZYNQ Board. As well the SPACIROCs are

synchronized from Artix7 FPGAs (that pass a DDR clock signal), the ZYNQ Board

is synchronized by Artix7 master too.

The Zynq Board interfaces the cross board and contains a ZYNQ XC7Z030

system of programmable logic (PL) Xilinx Kintex7 FPGA, with an embedded dual

core ARM9 CPU Processing System (PS). The Zynq Board does the majority of

the data handling including data buffering, slow configuration of the SPACIROC3

ASICs, triggering (both Level I trigger, Level II trigger are managed by the ZYNQ

Board), synchronisation, and interfacing with the separate CPU system for data

storage. In addition to these tasks, the high-voltage control to the MAPMTs is also

under the Zynq Board control. The Power Board provides the necessary voltages to

the system. Figure 4.6 summarizes the digitization data path. A multi-level trigger

[34] is implemented in the Zynq Board for the mini-EUSO instrument to perform

measurements in various time scales (temporal resolutions of 2.5 µs, 320 µs, 40 ms)

in order to maximize the scientific output efficiency of the instrument while limiting

the volume of the stored information. This trigger was successfully implemented

and tested during laboratory trials. The CPU, a PCIe/104 form factor, performs the
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control of the instrument sub-systems as well as the data management and storage,

housekeeping, switching between operational modes and collecting data from the

infrared and visible cameras. Estimating the storing flux, we know that the ZYNQ

Board receives data from an EC Board hosting 4 SPACIROC3s, multiplied by 9

EC Boards thus 36× 400 KHz (2.5 µs GTU windows) x 64 pixels (SPACIROC3s

channels) x 8 bits/pixel = 921.6 MB/s. Such amount of data is managed by internal

BRAMs (Block RAM), 2 MB deep. Therefore the system is able to store 2304 Bytes

for GTU×128 GTUs x 4 = 1.2 MB (in case of multiple triggered events storage, as

better explained in later sections). In case the storage of more than 2 MB data is

needed, PL DDR memories should be used (where PL is the Programmable Logic

embedded into the ZYNQ chip). These 16 bits memories are 512 MB deep, with a

533 MHz x 2 (DDR3 format) x 2 (2 bytes for the 16 bits) bandwidth. The incoming

data speed is about 1GB/s therefore the 512 MB memory has a 0.5 sec autonomy.

Fig. 4.5 The PDM-DP is shown with dimensions in mm. The 3 separate boards are shown

with the mechanical support for the SPACIROC3 ASICs on their left.
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Fig. 4.6 A schematic representation showing the detecting system digitization data path.

Fig. 4.7 CAD modeling of a part of the Mini EUSO mechanical structure (left). Picture of

the Power Board, ZYNQ Board and Cross Board, assembled in a PCBs commpact block

(right).
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Fig. 4.8 A schematic representation showing the interconnection among the PCBs whit inner

components details.

4.4.2 The multi-level trigger

Looking for UHECR-like events, Mini-EUSO is also capable of capturing a variety

of both atmospheric and terrestrial UV phenomena such as TLEs, meteors, space

debris, strange quark matter (SQM), bio-luminescence and anthropogenic lights.

The duration of such events varies on the order of 106 s, motivating a multi-level

trigger system to maximize the scientific return, given constraints on the duty cycle

and data storage. The Mini±EUSO trigger logic is implemented in VHDL inside the

PL of the ZYNQ Board and consists of two levels, level 1 (L1) and level 2 (L2), that

work with different time resolution. Each level is dedicated to a specific category

of events that will be observed by Mini-EUSO. The motivation behind the trigger

algorithm is to capture different events of interest on short timescales, but also to

provide continuous imaging on slower timescales as Mini-EUSO orbits around the

Earth. In order to achieve this target efficiently, 3 different types of data are stored

with different time resolution.
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The L1 trigger returns data with a time resolution of 2.5 µs and looks for signal

over threshold on a timescale of 20 µs, as this corresponds to the timescale of

UHECR±like events. Each pixel is considered as independent, motivated by the fact

that the field of view at ground is ∼6 km, so light takes ∼20 µs to cross one pixel

FoV at ground.

The first level trigger has three tasks:

a) it searches for signal exceeding the threshold on a pixel integrating 8 consecutive

GTUs.

b) it accumulates data in bunches of 128 GTUs (320 µs).

c) it sends data to memory to be accumulated at steps of 2.5 µs.

A brief description of the three macro steps is hereafter reported.

a The SPACIRO3 ASIC output data, moving through the Artix Boards, is

accumulated in a memory with 8 GTU depth. Starting from the 8th GTU, for each

GTU a check is performed to verify if one pixel has accumulated in the past 8 GTUs

a signal higher than a prefixed threshold, which is set at 8 sigma above the average

background calculated on bunches of 128 GTUs. If 1 pixel has a signal higher than

8σ × the background threshold, a L1 trigger event signal (L1Event) is issued, the

whole focal surface is read out and a packet of 128 GTUs are saved in memory.

b Data coming from the ASIC is accumulated in a register. This register stores

the integral of 128 GTUs (µs) for each pixel. These values are used to set the L1

trigger thresholds at pixel level. In parallel, every 320 µs these data are transferred

to the L2 trigger logic.

c Data coming from SPACIROC is sent to the memory for storage. These data

can fill only a memory depth of 128 GTUs, therefore data is overwritten. When L1

trigger occurs, a write-disable signal is sent to the memory after some latency (64

GTUs after, if we want a trigger-event-centered data storage) and data cannot be

written anymore in the memory. L1 logic continues performing point b), which is

the creation of 320 µs-long GTUs.
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The L2 trigger receives the integration of 128 GTUs (= 1 L2 GTU, or GTUL2)

as input from the L1. It operates with a similar logic, but with a time resolution of

320 µs, well-suited to capture atmospheric events, such as TLEs and lightning, which

have timescales of <1 ms. Background is set by integrating 128 GTUL2, which is

also stored as the level 3 (L3) data, or 1 GTUL3. An L2 trigger occurs when the

signal in 8 GTUL2 is greater than 4 times the background level, and the event is

stored.

After the accumulation of 128 GTUL3, or every 5.24 s, all stored events from

L1, L2 and the continuous storing (named L3 data) are transferred to the CPU for

formatting and storage on the disk. If no L1 or L2 events are triggered, the last 128

GTUL2 present in the buffer are read out. In this way, a continuous and controlled

readout is achieved with a resolution of 40.96 ms whilst also capturing interesting

events at faster timescales. This 40.96 ms ªmovieº will be used to search for meteors,

space debris and strange quark matter using off-line trigger algorithms, as well as

for the mapping of the Earth in UV. The L1 and L2 trigger algorithm is summarized

in Figure 4.9. In principle, key parameters such as the threshold and the duration of

signal integration can be altered to optimize the trigger performance.

Fig. 4.9 A block diagram summarizing the trigger logic. Top: L1, bottom: L2. The trigger

outputs 3 separate types of data with time resolutions of 2.5 µs, 320 µs and 40.96 ms.
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The memory buffer will, therefore, contain:

• the latest 320 µs (128 GTUs) of the 5.24 s sequence with 2.5 µs time resolution

if no L1 trigger occurs. In case of L1 trigger, the 128 GTUs around the over

threshold event.

• the latest 40.96ms of data of the 5.24s sequence with 320µs time resolution

if no L2 trigger occurs. In case of an L2 trigger, the 128 frames of 320 µs

each, for a total of 40.96 ms around the L2 trigger (e.g. lighting events) will

be stored.

• 128 frames of 40.96 ms each of the last 5.24 s which represent a continuous

movie taken by MINI-EUSO from the ISS.

The 40.96 ms time frames are similar to what is typically done from ground for

meteors (30 frames/s). A data analysis will be performed on ground looking for

meteors, nuclearities, and space debris as well as for reconstruct UV maps, search

for bio-luminescence, etc. The 320 µs long frames will record lightnings, TLEs

and other types of events which last several ms and in which a few hundreds µs

resolution is enough. The short 2.5 µs resolution frames should contain events which

last a few GTUs (tenths of µs), therefore on the cosmic ray time scale.

As previously reported, L1 and L2 thresholds are set to trigger, on average, at

a rate lower than 1 event per 5.24 s. Assuming that 3 byte/pixel are recorded, the

presented trigger algorithm gives a data readout of 507 kB/s. Assuming an optimistic

duty cycle of 50%, this results in a data storage requirement of 660 GB/month.

Assuming some ancillary data from the camera and housekeeping systems, it is still

reasonable to estimate a maximum data output of 1 TB/month.

4.5 Verification of the trigger algorithm

Prior to the implementation of the trigger algorithm in hardware, the logic has been

tested extensively using both simulated data and data taken at the TurLab facility in

the Physics Department of the Turin University.
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4.5.1 L1 trigger tests at TurLab

The EUSO@TurLab project is an ongoing activity aimed to reproduce atmospheric

and luminous phenomena that the JEM±EUSO and EUSO style telescopes will

observe from Earth orbit. TurLab is a laboratory equipped with a 5 m diameter

rotating tank and located 15 m below ground level. Therefore, without artificial

illumination, the room is darker than the night sky by several orders of magnitude.

The EUSO@TurLab project makes use of the TurLab rotating tank with a series

of different light configurations to reproduce the UV emission of the Earth. The

Mini±EUSO detector is represented by one elementary cell (EC) unit of 4 MAPMTs

and the necessary readout electronics. The detector is suspended from the ceiling and

looks down on the rotating tank to mimic the observation from orbit (see Figure 4.10).

Fig. 4.10 The TurLab rotating tank. The black tube on the ceiling shows the collimator of

the experimental setup used to mimic the Mini-EUSO telescope. Light sources and materials

used to mimic other UV sources are also shown.

The capability of controlling the tank rotation speed (3 s -20 minutes per turn)

allows for the reproduction of events of different duration and spatial extent, as seen

from ISS, with the same configuration.

Vital to the testing of the trigger algorithm in this setup is the choice and variety

of light sources. There are two types of light source: 1) direct light emitting sources;

2) materials reflecting ambient light. A range of different light sources are used, with
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the intent of reproducing different kinds of phenomena: a) LEDs inside tubes of

different dimension, in order to reproduce extended intense light directly pointing

towards the MAPMT: this is to represent urban areas; b) an oscilloscope generating

Lissajous curves for events such as meteors; c) LEDs driven by a pulse generator

for fast luminous events such as lightning; d) LEDs or optical fibers driven by and

Arduino board for light pulses with µs duration. A more detailed discussion of the

setup is reported in [35].

For the EUSO@TurLab measurements, the apparatus consists of one fully-

equipped EC unit, similar to those used in Mini-EUSO, with a 1 inch focusing lens

(50 cm focal length) placed directly in front of the MAPMTs. A test board is used to

retrieve data from the EC ASICs and a LabView program is used for data acquisition.

The main differences between the TurLab setup and Mini±EUSO are that data is

acquired in packets of 100 GTU instead of the nominal 128 GTU, and the system has

a ∼50 ms delay between two consecutive acquisitions of 100 GTU. This condition

slows down the measurements and introduces artificial discontinuities in the recorded

light between two acquisitions. To avoid them, 200 simulated data packets were

added between two experimental packets in order to smooth out such discontinuities.

In this way it was possible to extend the 8.2×105 collected GTUs in about 7 minutes

rotation, to a total number of 1.6×108 GTUs used to test the L1 trigger off-line.

Figure 4.11 shows an example of the performance of the trigger logic described

in Section 4.4.2 for one EC unit. The figure is divided in 4 different blocks. In each

block the top plot shows the average number of counts per pixel normalized at PMT

and packet level as a function of time for one PMT, while the bottom plot indicates

the location in time when the L1 triggers were activated. The different letters (from

A to I) in the plot of PMT 2 indicate different types of light surface or reflective

source present in the tank which are responsible for a different light intensity seen by

the PMTs. The same pattern is apparent in all 4 PMTs but with different intensities

and slightly shifted in time due to the movement of the tank and the size of the light

source.

Pictures of these sources are displayed in Figure 4.10. A represents clouds; B

and D represent the response to ground glass in which D looks brighter because

the glass is illuminated by a led; C, E and F is the reflection from sand, brick and

moss, respectively; G is due to meteor-like signals, while H to Arduino-emulated

cosmic ray and I to the reflection of pure water. The Arduino event looks quite dim
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compared to other signals because the track is limited to a few pixels, therefore, it is

almost overwhelmed by the total number of counts in the PMT.

Despite the presence of several light sources of different intensity, duration and

extension, most of the triggers occur in coincidence of the Arduino UHECR±like

signal transit in the field of view of the telescope for all four PMTs. The rate of

spurious triggers is ∼0.2 Hz, therefore, compatible with the acquisition logic.

The most significant portions of these data were tested also with the VHDL code

implemented in FPGA. and same results were obtained. These result demonstrate

that the L1 trigger is sensitive to the presence of UHECR±like light signals.

Fig. 4.11 The figure is divided in 4 different blocks. In each block the top plot shows the

average number of counts per pixel normalized at PMT and packet level as a function of time

for one PMT. The bottom plot indicates the time of L1 trigger activation. See text for details.



4.5 Verification of the trigger algorithm 185

4.5.2 L1 trigger tests with ESAF

The main objective of the TurLab tests was the verification of the capability of the

L1 trigger logic and the optimization of the trigger thresholds with the variations

of light intensity. This is important in order to keep the rate of false triggers at an

acceptable level. The logic demonstrated the capability of recognizing and triggering

on EAS-like signals. Events of longer duration such as meteors, city lights, clouds,

etc. do not generate triggers, as required.

In order to evaluate the trigger performance for UHECR observation, simula-

tions using the ESAF code were performed. The EUSO Simulation and Analysis

Framework (ESAF) [36] is currently used as the simulation and analysis software

for the JEM-EUSO and its pathfinder missions. ESAF performs the simulation of

the shower development, photon production and transport in the atmosphere, and

detector simulations for optics and electronics. Furthermore, algorithms and tools for

the reconstruction of the shower properties are included in the ESAF package [37].

Recently, all the necessary steps were taken to implement the Mini-EUSO mission

configuration, including the L1 trigger logic, in order to assess its performance.

Figure 4.12 shows the expected track (left) and light curve (right) of an Extreme

Energy Cosmic Ray with energy E = 1021 eV. Figure 4.13 right plot shows the trigger

efficiency curve for Mini±EUSO adopting the L1 trigger logic here described.

Fig. 4.12 Left: Photon counts observed in the Mini±EUSO focal surface for a simulation of a

E = 1021 eV event with an inclination of 80◦ to the nadir (background is not included in the

simulation). Center: Light curve for the same event. The x-axis shows time in units of GTU

(1 GTU = 2.5 µs)
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Fig. 4.13 Trigger efficiency curve as a function of the EAS energy.

Despite its energy threshold is too high for cosmic ray detection (Ethr ∼ 1021

eV), with its annual exposure of ∼ 15,000 km2 year sr, Mini-EUSO will provide a

significant contribution in estimating an absolute limit on the cosmic ray flux above

such energies for a null detection.

As ESAF allows the simulation of phenomena or longer durations such as TLEs,

meteors, cities, etc., a few examples of these classes of events were generated. These

simulations confirmed the capability of the L1 trigger logic to avoid triggers on

meteors and cities, while in case of TLEs it was verified that the L1 would trigger

if the derivative of the light curve in the rising phase is so steep that the adaptation

of the trigger thresholds at steps of 320 µs is too slow to follow the light increase.

Even though the detection of TLEs and lightning is one of the main objectives of the

L2 trigger logic, the L1 will allow recording with much higher time resolution the

rising phase of the brightest and fastest signals.

4.5.3 L2 trigger tests

As described in section 4.4.2, the L2 trigger operates on integrated packets of 128

GTU generated by the L1 trigger. Triggering is performed on the timescale of ∼ 40

ms with a time resolution of 320 µs , designed to capture the range of transient

luminous events (TLEs) in the Earth’s atmosphere that will be visible to Mini-EUSO.

TLEs are important to study as they are part of the UV background that will be
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encountered by future instruments looking to study UHECRs from space. However,

the high time and spatial resolution of Mini-EUSO means that it will also be possible

to make unique observations of these atmospheric events, complementing those of

other dedicated instruments scheduled to fly in Earth orbit during the same period

(e.g. TUS [9], ASIM [38]).

In order to test the algorithm, the ESAF simulation software was used to generate

a range of typical TLE events (namely blue jets, elves and sprites), as would be seen

by the Mini-EUSO focal surface. Background was superimposed onto the simulated

data packets, assuming a Poisson distribution of background events centered on 1

photon/pixel/GTU. Examples of the TLE events considered are shown in Figure

4.14. The L2 trigger was then run on this simulated data to test its performance. Two

key parameters, the threshold level and the persistence, were varied to investigate

their effect on the trigger efficiency. The threshold is simply the level at which

the signal is triggered and the persistence is the time frame used to compare the

instantaneous signal to background.

Fig. 4.14 Left: A typical integrated frame showing a diffuse elf event which brightens the

whole PDM. Right: A similar integrated frame showing 3 localized blue jet events summed

over 554 ms. The x and y axes represent the pixel grid of the Mini-EUSO focal surface and

the colormap shows the number of photons counted by each pixel. All events are simulated

with a Poisson statistic background distribution centered on 1 photon/pixel/GTU.
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Fig. 4.15 The result of running the L2 trigger algorithm on the simulated data packet. The

included events (from left to right) are a blue jet, a sprite, another blue jet, an elf and a final

sprite. The events were spread over different areas of the focal surface. The red dashed

line marks an L2 trigger. This result was achieved following the optimization of the trigger

parameters and a trigger efficiency of 100% is obtained.

The testing of the trigger algorithm confirmed its ability to distinguish events of

interest from typical background levels and also allowed approximate lower limits

to be set on the magnitude of the TLEs that Mini-EUSO will be able to detect (for

typical sprites and blue jets, an absolute magnitude of ∼3, and for elves an absolute

magnitude of ∼1). Figure 4.15 shows the trigger response to five different simulated

TLEs. The optimal trigger parameters were a threshold of 5σ above background level

and a persistence of 8 frames of 320 µs. It should be noted that a longer persistence

increases the sensitivity of the algorithm to the more diffuse elves, but at the expense

of the detection of the more localized blue jets and sprites. The final implementation

of the L2 trigger should allow for some compromise here and ideally have parameters

which are adjustable in-flight.
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4.6 Trigger implementation in the Engineering Model

hardware

4.6.1 First tests

As already anticipated, the Mini EUSO trigger is coded in VHDL. The used FPGAs

are Xilinx type and the software is Vivado (up to the 2016.2 release 3). As a

common procedure related to an FPGA code implementation, it moved through the

code test-bench simulations, post-synthesis simulations and then the bit stream has

to be exported on hardware for the place and route. After this phase, the trigger logic

has been tested by means of data coming from software simulations and real data

from atmospheric balloon campaigns. Moreover, a first and more realistic test for

the trigger logic consisted in artificially stimulating the hardware chain from the EC

ASIC Board to the ZYNQ Board. The resulting L1 events were consistent with the

set pulse generator rate. Some details about this last test are hereafter reported.

4.6.2 Pulse generator as signal source: setup and outcomes

The hardware chain tested consists in the following: a wave function generator in

pulse mode, connected whit a proper Kapton cable to the PMT connection point on

the EC ASIC Board that is packaged with the Cross Board, ZYNQ Board and Power

Board. Through the pin configuration in the Vivado Layout view, the L1 Event signal

has been associated to one ZYNQ Board physical output pin. From that pin, an

oscilloscope probe, detected the trigger results.

Agilent wave functions generator setup:

• Burst period 1 ms;

• Charge input: pulse width = 8 ns, pulse height = 100mV ≈ 2 photon electron

charge equivalent (PE), for a 5*106 PMT gain.

3www.xilinx.com/products/design-tools/vivado.html
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Tektronix Digital Osciloscope setup:

• Monitor input pulse and trigger output by probe;

• Measured trigger rate during 1min.

Fig. 4.16 Picture of the PDM module.

Fig. 4.17 Picture showing the input and output test probes.
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Fig. 4.18 In the upper part, the wave functions generator. The Digital Oscilloscope screen,

reporting 8 consecutive L1 Events (lower part).

The charge input pulsed by Agilent function generator was a 100 mV amplitude

signal with 8ns pulse width. This signal moved through an RC circuit with Rin =

500 Ohm, C =100 nF:

Qin = 100 mV *8 ns /500 Ohm = 1.6∗10−12 (corresponding to roughly 2 PE charge

for the PMT gain 5*106). After that configuration, we changed the pulse generator

set to a burst mode: pulses were fired every 1s, testing the ASIC Channel number 49,

at the pixel 17.

In the table below (Figure 4.19), the results for different number of pulses

sent are reported, specifying the burst time duration. In this setup, the EC ASIC

Board had the SPACIROC1 ASICs and in the Figure 4.19 specific case, the DAC

threshold for the ASIC discriminator, was set to 150. Currently the migration form

SPACIROC1 to SPACIROC3 ASIC is in progress and the later one will be the Mini

EUSO official readout chip.
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Fig. 4.19 L1 trigger testing in hardware. The hardware chain was stimulated with a pulse

burst with a burst rate of 1 Hz. Changing the number of pulses within the pulse changes the

trigger efficiency as expected.

4.6.3 Trigger ancillary IP blocks

Another important test source is the Artificial Data Generator, a block coded and

implemented in hardware, that allows to provide a trigger stimuli in the case of a

completely assembled detector and even with a stand alone ZYNQ Board. Others

custom-realized IP blocks are the Pixel Masking module and the Time Stamp Gener-

ator module; in a data-flow scheme those FPGA-integrated components are placed

respectively before and after the trigger, as represented in Fig.4.20.

During the FPGA design phase with Vivado, has been adopted a Block Design level

based on IPs and on the classical Master to Slave paradigm. This means that our

coded components should be properly packaged thus to create a standard commu-

nication protocol between them. The chosen format is the AXI4_Stream one [40].

An AXI DMA standard IP, provided by Vivado, is needed to interconnect the PL

part with the processor since the first uses the AXI Stream format while the second

one, needs the AXI Memory Mapped type. The ZYNQ PS has the DRAM controller

embedded. The IP block essential notes are hereafter reported. All these blocks,

share with the L1 and L2 trigger blocks the same clock signal and the same Frame

signal, a single bit signal that is high when there are sensitive GTU-data.
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Fig. 4.20 Schematic representation of the trigger logic surroundings. Blocks names: ADG =

Artificial Data Generator, PM = Pixel Masking, FC = Format Converter, L1 = First Level

Trigger, L2 = Second Level Trigger, TSG = Time Stamp Generator.

The Artificial Data Generator In order to use the Artificial Data Generator

IP (ADG IP) the architecture is equipped with a real data - artificial data switch.

The Artificial Data Generator receives a clock, a start/stop command and a mode

of operation instruction. With the operation mode, is it possible to set a different

behavior, among the following ones, consistent in terms of format to the Cross Board

output (timing constraints, input data, frame and clock signals correspondence).

ADG IP mode:

• Mode 00 is the coarse trigger test (interconnection test): all zero except one

high pixel-value that is able to rise up the L1_Event, output signal. This mode

is a kind of electric test or a component interconnections test.

• Mode 01 is the AXI DMA test (data transfer PL-PS): 128 GTUs are transferred

between the FPGA PL and the CPU.
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• Mode 10 is the L1 mode: one pixel-value increasing by one count every 128

GTUs, remains high for all the GTUs thus replicating the suitable condition to

trigger only with the L1 algorithm.

• Mode 11 is the L2 mode: one pixel-value increasing every 128 GTUs, remains

high only for the first GTU, replies the suitable condition to trigger only with

the L2 algorithm.

For the coarse mode, the generator provides a 2304 pixels matrix, which are all

zero except one, set with an high value (e.g. 50, considering that the minimum fixed

values for the L1 threshold is 15 counts), thus assuring trigger events. This is useful

mainly to have a direct connectivity test. Whereas for the more complex modes, it is

possible to generate values at pixel level, with a steep or smooth increase according

to the level of trigger (L1 or L2) which is under test.

The Pixel Masking A pixel masking module is a reliable way to exclude those

pixels which behavior is not the expected one (e.g. too noisy and/or a too high

number of induced fake triggers). The easiest way to do this is using a pre compiled

text file, a sort of 2304 bits binary file, that declares with ones and zeros the pixels

that respectively need to be masked (with "1", the associated pixel is fine whereas,

with "0", the 8 bits associated to the pixels, have to be replaced with 8 zeros). This

IP allows to reject the corrupted data before saving them, once the user knows the

detector behaviour (which has to be checked in advance). Fake triggers due only to

the fact that the hardware have broken pixels would mean a huge waste of storage

space and computing power.

Time Stamp Generator We need to recognize the GTU in time relation to the

trigger, especially when both L1 and L2 events occur. The output data storage format

is: DatYYMMDDHHmmSSGGGGGG.ready (G stands for GTU and 6 characters

are needed to represent the 399999 2.5 µs GTUs, in each second). We can summarize

the time stamp procedure in four steps:

(I)Starting data boot, (II)Time counter, (III)Time-latched Trigger event and (IV)Count-

to-string: output data format.

I) Whenever the Counter set is high, the preloaded data referred to Year, Month, Day,

hour, minute and second are booted into a counter module. From that moment, the
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frame signal (i.e. the GTU signal), which is generated from the Artixs (Cross Board),

controls the time flow.

II) The counter module works in a cascade way: as a first level, there is a Frame

counter (2.5 us GTU), that resets itself after 399999 counts; this reset implies the

first count for the level number 2, i.e. the Second counter. This second level resets

itself as soon it reaches 59 counts to increment a third counter, the Minute counter.

The same procedure is used to increment the hour and the date counters.

III) The trigger signals is then latched with the time reference.

IV) The data output has to be rearranged as a string file like this: DatYYMMDDHH-

mmSSGGGGGG.ready. Since each character is represented by 8 bits, the string

YYMMDDHHmmSSGGGGGG , needs a 144 bits vector. Currently the Time Stamp

Generator is a Vivado custom IP and it has been implemented in the ZYNQ FPGA,

and tested with the SDK (Software Development Kit, a Vivado tool that provides the

instruments for CPU programming), PS (Processing System) interaction. The Figure

4.21 gives a block representation of the IP.

Fig. 4.21 Schematic representation of the Time Stamp Generator logic.
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4.7 Trigger logic improvements

4.7.1 Dynamic threshold setting

Concerning the trigger logic principle, the L2 has been improved underway. Let’s

have a look at the Figure 4.22. In such scheme we decide to have a trigger if S2_pixel

is > 4 x S2_pixelvalue, in other words if the signal in a pixel is 4 times higher than

the average background calculated on the previous 128 L2GTUs (1 L2GTUs=320

µs) and re-normalized to 8 L2GTUs blocks.

Fig. 4.22 L2 logic block diagram.

In order to increase the degrees of freedom and thus the system flexibility, we

define as external parameters 2 values called N and P. N indicates how many times

the signal should exceed the background to trigger an event. P indicates how many

L2GTUs we integrate to calculate the average background and its sum. As an

example in L1 we calculate the excess on blocks of 8 GTUs, therefore P = 8. This

number is not needed to be the same also for L2 since signals might last longer in

one pixel in case they do not move at speed of light; moreover, lightnings are events

with a large variation in their characteristics. Therefore, the new formula to calculate

the background would be: S2_pixel = N × (SUM_PIXEL / 128) × P

where SUM_PIXEL = sum of counts recorded by the pixel in 128 L2GTUs, N and P

can vary between 1 and 16 (even though N = 1 would be meaningless). By default,

N=4 and P=8. The concept is represented in the block diagram of Figure 4.23. N

and P values should be defined (write) and then read from a FIFO at the beginning

of the acquisition. The choice of N as number of times the signal is higher than

the background, instead of using the standard deviation, is due to the fact that with
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very high numbers the Poisson number of sigma is not a good parameter, since the

interfering fluctuations become Gaussian. This new version of L2 has been coded in

VHDL and deeply tested as well the previous one.

Fig. 4.23 Block diagram representing the L2 trigger logic modified with a threshold adjust-

ment capability

4.7.2 High Level Synthesis trigger implementation

As previously mentioned, the FPGA-side of the Mini-EUSO project is being devel-

oped using the Xilinx tools [33]. The project started with the ISE Webpack [39],

and then migrated to the Vivado Webpack [41] once we chose the Xilinx 7th serie

devices (Artix7 and Kintex7). For the whole project the FPGA firmware has been

coded in VHDL thus obtaining the Register Transfer Level (RTL) description in a

classical way. In digital circuit design, RTL is a design abstraction which models

a synchronous digital circuit in terms of the flow of digital signals (data) between

hardware registers, and the logical operations performed on those signals. RTL

abstraction is described in Hardware Description Languages (HDLs) like Verilog

and VHDL to create high-level representations of a circuit, from which lower-level

representations and ultimately actual wiring can be derived. Design at the RTL level

is typical practice in modern digital design [42]. The Xilinx platform is rich of very

powerful tools, giving the user the chance of conveniently adapt the strategy to its

task, in order to maximize the efficiency. A smart example of this is represented by

the Vivado High-Level Synthesis compiler (HLS). Vivado HLS enables C, C++ and

SystemC programs to be directly targeted into Xilinx devices without the need to

manually create RTL. To an FPGA user this should sound like a great step forward

that is even greater if the logic that has to be integrated in hardware came from a
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scientific software like the Mini-EUSO trigger, born as a C-like code. The Vivado

HLS concept flow is represented in Figure 4.24.

Fig. 4.24 Vivado High Level Synthesis flow, represented as a block diagram.

Differently from the classical HDL approach, currently the HLS doesn’t allow

the user to deeply control every step from the code to the hardware implementation.

The design flow asks the user to rely on some black-box steps. For this reason, the

HLS reliability has to be proved in our specific scenario. The Mini-EUSO trigger

integration group decided to test and use the HLS approach for a spare version of the

L2 HDL-based. Since the L2 algorithm is more complex than the L1 one, a direct

passage from C++ to net-list greatly simplify the engineer work. With this HLS-L2

version tested and implemented in the ZYNQ Board, in parallel with the HDL one,

the Mini-EUSO Engineering Model is useful for an additional test. Moreover, a

redundant trigger gives a more severe crosscheck to the idea behind the code.

4.7.3 Further upgrading idea: multiple events recording

The trigger integration is a matter of memory capability and data throughput that has

to suit the higher level system gear. its integration moves through technical boundary

that are primary hardware and than logic dependent. On this premise we can think

about improving possibilities that might be soon adopted. Hereafter is presented a

technical solution for a multiple event recording capability.
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As first implementation, the output data from the L1 Trigger logic (Figure 4.25)

is the continuous sum over 128 GTUs (2.5 µs GTU) and the L1 Event signal.

Following what has been previously explained, whenever the First L1 Event occurs,

the procedure just wait until the end of the 5.24 s period. In this situation it should

be clear that it might happens to waste more than 5 seconds of data for just 320 µs

of useful informations. Moreover, the entire data section could be related to a fake

trigger event. When we have an L1 trigger, we would like to have an information

on which L1 packet triggered inside the 5.24s (every 5.24s the data are transferred

to disk); the situation would be even more complicated in case L1 and L2 trigger

in the same time range. A case could be a TLE (Transient Luminous Event) which

triggers firstly L1 and then L2 since the two events are correlated. It is thus useful to

understand from the time stamp or a packet number, that the two triggered events are

indeed the same one triggered at different time scale. An improvement in this sense,

is obtained implementing the possibility to store more than one event, for example 4

events, before stopping the write data process. Another free parameter is the number

of GTUs that we want to keep in memory. Although t_1 has to be fixed to 2.5 µs

(raw data from the ASICs), t_2 , the time resolution of the L2 Trigger scales, can

vary following t_2 = t_1 * N*GTU . Let assume to have 300 or 500 GTUs blocks,

and multiple event storage capability; in these conditions the dead time is reduced

and it becomes possible saving data related to lightnings, with the maximum time

resolution (2.5 µs). Suppose having a four slots memory, where each slot has a

referred address as presented in Figure 4.25

.
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Fig. 4.25 Trigger logic improvements for L1 and L2 multiple events data storage.

Until the first L1 Event is not triggered, the pointed slot of the memory will be

the first one (1A in Figure 4.25). In this memory position the sum over N GTU

are continuously overwritten. When the first L1 Event occurs, the PS has to change

the pointed memory location to the second one. This happens only after a certain

delay which allows to put the event in the middle of the N GTU block. The events

that occur during one event registration are rejected. After the fourth event has been

recorded, the writing process is stopped until the end of the 5.24s period (the address

changing request will be rejected).

The same architecture is repeated for the L2 level. This latter level is moreover

responsible to the no-event case behavior. We want to extend the records of useful

data therefore we would like to save something even in the case of no-event during

the entire 5.24 s period. More in detail, we want to always have 4 recorded events

and this can be done inducing fake events or simply forced data acquisition up to

fill the four memory slots related to L1 as well the L2 level. To make it easier, we

can use the data as they were defined in Figure 4.22. From the second level trigger

we have sums every 40.96 ms. A packet counter is needed to alert the system about

the situation in which the time equivalent to the packet number is 5.24 s- 163.84

ms (40.96 * 4); at this point a memory-address-change-request is sent. If the actual
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memory slot is not the fourth one, the request is accepted and the new memory

position is fulfilled. This happens for both L1 and L2. In this case, instead of having

no data at the end of the 5.24 s period, we can save informations related to the sums,

in order to enrich the data statistics. It is true that, since we force also the L1 memory

slots, we will waste 163.84 ms but this is only the 3% of data over the 5.24 s period.

As previously mentioned, once arrived the memory slot number four, the address

changing request will be rejected. At the end of the 5.24 s period, the system moves

to a second memory blocks level 1E, 1F, 1G, 1H, for L1 and 2E, 2F, 2G, 2H for L2,

(represented in gray in Figure 4.16). This two memory levels swipe allows a death

time free data transfer.

With the new configuration, we add new informations to the data acquisition.

The Mini EUSO FoV is 19 ◦ i.e. a 275 Km diameter at ground (tan 19*400 Km*2*).

The ISS speed is 7.6 Km/s thus it needs 36 s to cover the 275 Km length. The Mini

EUSO trigger logic works with 5.24 s steps, plus some dead time to transfer data i.e.

approximately 6s steps. For each 6s step the system catch 4 L1 events (plus 4 L2

events). In 6s, the ISS moves by 45 Km at ground. This means that the PMT FoV

is 45 Km and 45 * 6 = 270 Km thus, if we are in the main axes position, 6 PMTs

will see the same situation. This is of course different for the perimeter PMTs but

we can say that the systems has a sort of redundant data acquisition, which allows to

extrapolate informations about PMTs gains and efficiencies.

The new requirement would require the following effort:

• L1 trigger: 4 events/5.24s * 512 GTUs /event * 2304 pixel * 1byte/pixel = 900

kB/sec

• L2 trigger: 4 events/5.24s * 128 GTUs/event * 2304 pixel 2bytes/pixel = 450

kB/sec

• movie: 1 event/5.24s * 128 GTUs/event * 2304 pix * 2bytes/pixel = 110 kb/sec

• TOTAL: about 1.5 MB/s

Assuming to have a 500 GB disks:

500 GB / 1.5 MB/s = 333333 s = 92.6 h. Assuming now 8 h/day = 11.6 days/month.

Taking into account also a lower duty cycle because we share the window with

another experiment the data transfer will be in the order of 1 TB/month. This solution

would allow to have more or less 1 event/1.3 s for both L1 and L2. Therefore, in
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case there are TLEs we could record 1.28 ms/event during the rising phase of the

TLE with a 2.5 µs resolution and then the entire duration of the event with a 320 µs

resolution.

4.8 Project status summary

In the last 12 months the JEM-EUSO Collaboration members concentrated the

efforts on successful tests for Mini-EUSO. These activities took place in world wide

locations, shared among the research groups following the subsystem:

• Japan for the lenses

• France for the front-end electronics

• Russia for the Data Acquisition system and the mechanical interfaces to the

ISS

• Italy for the CPU, the mechanics, the trigger and the LVPS, the ancillary

cameras and the SiPM

• Poland for the HV system

• Sweden for the software

• Mexico for the Housekeeping

• and several other countries for the MAPMTs acquiring.

In summer and autumn 2017 the final integration and calibration of the Engineer-

ing Model (EM) occurred at the Physics Department of the University of Rome Tor

Vergata 4.26. After this step, thermo-vacuum test, vibration test, electromagnetic

compatibility check and out gassing tests are going to be performed in spring 2018,

at the Kayser Aerospace Company in Italy. The final step before the launch will be

the acceptance tests in Russia. In the meanwhile the Flight Model (FM) has to be

prepared waiting for the succeeding milestone of the Russian acceptance test. This

step is needed to optimize the time schedule for the FM integration in Rome and

the delivery to Russian Space Agencies Roscosmos and Energia for the final phases

prior the space mission start. ASI and Roscosmos are setting up the final agreements
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to choose one of the next launch increment mission to ISS with the Progress carrier

and select and train the astronauts who will operate Mini-EUSO on board.

Fig. 4.26 Mini-EUSO Engineering model photo, during its integration phase, June 2017.

4.9 Summary

The Mini-EUSO trigger algorithm has been integrated in the Zynq Board FPGA.

Before this integration, the trigger algorithm was tested successfully using simulated

data and data generated as part of the EUSO@TurLab project. Once integrated in

the hardware, the trigger was then tested using a pulse generator and the complete

data acquisition chain. The artificial data generator implemented in the Zynq board

will allow for stand alone testing of the trigger logic. At this point, the logic

allows a reliable FPGA pixels masking, just booting a binary input vector as pixels

correspondence ("1" = fine pixel, "0" pixel to be masked). The trigger events are time-

stamp latched to save data in time order, moreover allowing events discrimination in

situations with multiple levels triggers firing. Following the trigger implementation

the PDM-DP system has been integrated with the Min-EUSO Engineering Module

for end-to-end testing of the data acquisition system.



References

[1] The Pierre Auger Collaboration, Nucl. Instrum. Meth. A 798 (2015) 172.

[2] P. Ghia, for the Pierre Auger Collaboration, in Proc. 34th ICRC 2015, The

Hague, The Netherlands, PoS (ICRC2015) 034.

[3] M. Fukushima et al., Prog. Theor. Phys. Suppl. 151 (2003) 206.

[4] C. Jui, for the Telescope Array Collaboration, in Proc. 34th ICRC 2015, The

Hague, The Netherlands, PoS (ICRC2015) 035.

[5] Adams, J. H. Aet al., An evaluation of the exposure in nadir observation of the

JEM-EUSO mission. Astroparticle Physics, 44±76 (2013).

[6] G.K. Garipov et al., UV radiation from the atmosphere: Results of the MSU

ªTatianaº satellite measurements. Astroparticle Physics, 24(4-5): 400±408, Dec.

2005.

[7] G. Catalano, et al. The atmospheric nightglow in the 300 ± 400 nm wavelength

Results by the balloon-borne experiment BABY. Nuclear Instruments and Meth-

ods in Physics Research Section A, 480(2-3):547±554, Mar. 2002.

[8] G.K. Garipov Aet al., Program of transient UV event research at Tatiana-2

satellite. Journal of Geophysical Research: Space Physics, 115(A5), 2010. ISSN

2156-2202. A00E24.

[9] M. I. Panasyuk Aet al., Transient luminous event phenomena and energetic

particles impacting the upper atmosphere: Russian space experiment programs.

Journal of Geophysical Research: Space Physics (1978±2012), 115(A6) (2010).

[10] J. H. Adams, Aet al., The JEM-EUSO instrument. Experimental Astronomy,

40(1):19±44 (2015).



References 205

[11] V. Olinto, E. Parizot, M. Bertaina, and G. Medina-Tanco. JEM-EUSO Science.

In Proceedings of the 34th International Cosmic Ray Conference (2015).

[12] Y. Kawasaki et al., for the JEM-EUSO Collaboration. Ground-based tests of

JEM-EUSO components at the Telescope Array site, ªEUSO-TAº. Experimental

Astronomy, 40(1):301±314 (2015).

[13] V. Scotti and G. Osteria. EUSO-Balloon: The first flight. Nucl. Instrum. Meth.,

A824:655±657, 2016.

[14] L. Wiencke, Aet al., The EUSO-SPB Mission. In Bulletin of the American

Physical Society, 2016.

[15] J. H. Adams, S. Ahmad, J. N. Albert, et al. Space experiment TUS on board

the Lomonosov satellite as pathfinder of JEM-EUSO. Experimental Astronomy,

40(1): 315±326, Nov. 2015.

[16] M. Ricci, et al. Mini-EUSO: a precursor mission to observe Atmosphere and

Earth UV emission from the International Space Station Proc. 35th ICRC, 2017,

these proceedings

[17] V. Verzi, Rapporteur Report of 34th ICRC 2015, The Hague, The Netherlands,

PoS (ICRC2015) 015.

[18] V. Verzi et al. Measurement of energy spectrum of ultra-high energy cosmic

rays, Progress of Theoretical and Experimental Physics, Volume 2017, Issue 12,

12A103

[19] K. Greisen, Phys. Rev. Lett. 16 (1966) 183

[20] G. T. Zatsepin and V. A. Kuz’min, Sov. Phys. JETP Lett. 4 (1966) 114.

[21] V. Berezinsky et al., Phys. Rev. D 74 (2006) 043005.

[22] R. Aloisio et al., J. Phys. Conf. Ser. 337 (2012) 012042.

[23] M. Takeda et al., Astropart. Phys 19 (2003) 447; K. Shinozaki et al., Nucl. Phys.

B (Proc. Suppl.) 151 (2006) 3.

[24] R.U. Abbasi et al., Phys. Rev. Lett., 100 (2008) 101101.

[25] D. Schenider: Sci. Am. 88(4), 1 (2000))



206 References

[26] Kuo, C.L.Aet al.,: Radiative emission and energy deposition in transient lumi-

nous events. J. Phys. D: Appl. Phys. 41, 234014 (14pp) (2008)

[27] Wescott Aet al., Preliminary results from the Sprites94 aircraft campaign: 2.

Blue jets. Geophys. Res. Lett. 22(10), 1205±1208 (1995)

[28] Sentman, D.D.: Overview of transient luminous events, University of Berkeley,

California, 2005

[29] http://www.hamamatsu.com

[30] S.Turrizziani et al. - JEM-EUSO Collaboration, "Ancillary detectors for the

Mini-EUSO telescope: control software development and expected science" Proc.

35th ICRC, 2017, these proceedings

[31] H. Miyamoto et al., - JEM-EUSO Collaboration, "Performance of the

SPACIROC front-end ASIC for JEM-EUSO" Proc. 33rd ICRC, 2013, these

proceedings

[32] S. Ahmad et al., - JEM-EUSO Collaboration, "SPACIROC: A Front-End

Readout ASIC for Spatial Cosmic Ray Observatory" Proc. 32nd ICRC, 2011,

these proceedings

[33] https://www.xilinx.com/

[34] M. Bertaina et al., - JEM-EUSO Collaboration, "The Mini-EUSO multilevel

trigger algorithm and its performance" Proc. 35th ICRC, 2017, these proceedings

[35] M. Bertaina, et al., EUSO@TurLab: An experimental replica of ISS orbits,

EPJ Web of Conferences 89 (2015) 03003.

[36] C. Berat et al., Astrop. Physics, vol. 33/4 pag. 221-247, 2010.

[37] M. Bertaina, et al., Performance and air-shower, 315 reconstruction techniques

for the JEM-EUSO mission, Advances in Space Research.

[38] T. Neubert, et al., ASIMÐan Instrument Suite for the International Space Sta-

tion, COUPLING OF THUNDERSTORMS AND LIGHTNING DISCHARGES

TO NEAR-EARTH SPACE, Corte (France) 1118 (1) (2009) 8±12.

[39] https://www.xilinx.com/products/design-tools/ise-design-suite/ise-

webpack.html



References 207

[40] https://www.xilinx.com/products/intellectual-property/axi4-

stream_interconnect.html

[41] https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

[42] F. Vahid, "Digital Design with RTL Design, Verilog and VHDL (2nd ed.)",

John Wiley and Sons. p. 247., (2010).



Chapter 5

Conclusions

This thesis document reports the author’s Doctoral research activity in the period

November 2014-January 2018. The activity concerns the development of custom

microelectronics for innovative particle physics detectors. The author worked on the

design of front-end and readout electronics, mainly devoted to the projects run by the

medical physics group of the Turin University. This group has a decennial history in

the field of particle therapy, developing detector and the related analysis software that

both have been integrated into clinical centers, as successful technology transfers.

During his collaboration in this group, the author took part in two projects: TERA09

and MoVeIT. The TERA09 project consisted in the design and characterization of

a front-end and readout electronics ASIC, to be coupled with ionization monitor

chambers working with high-intensity pulsed-particle beams. These new clinical

detectors have to deal with pulses 5-20 µs long, with a 0.1-1 kHz frequency, 108

proton per pulse and an instantaneous intensity of 1012-1013 protons per second,

corresponding to an average current during the pulse, in the range 1 nA-25 µA.

The TERA09 chip is a 64-channels current-to-frequency converter managing

100 pA -750 µA input currents with a linearity deviation in the conversion in the

order of few percents (∼3%). The TERA09 project started with the feasibility study

based on testing the previous version of the chip, TERA08 (current limited at 4 µA),

with a custom upper board that parallel interconnected the ASIC channels. From

this point, the group developed the idea behind the architecture of the TERA09 chip

that has been patented and then designed with a 350 nm VLSI technology node (the

author is one of the inventors and he took part in the design). The TERA09 ASIC
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has been fully characterized both in its technical features (dynamic range, conversion

linearity and gain homogeneity among the channels) and with a radiation damage

test. From this analysis, it resulted that TERA09 satisfies the technical requirements

of compatibility with the current and standard version of IC chambers and it can

be integrated into the new-era of monitor chambers. From the Single Event Upset

test, it has been possible to predict the TERA09 expected error rate in a typical

clinical treatment room. This number, ∼70 SEU/year, is absolutely under control,

considering that each monitor chamber has at least one redundant detector. For

instance, the probability that both the main and the redundant detector incur in SEU

simultaneously is dramatically lower than the estimated number mentioned before.

The ASIC characterization has been performed using a custom test board with a chip

socket. A second PCB has been realized, carrying two ASICs for the integration of

the front-end and readout electronics into the gas detector. This second board has an

improved management of the critical signals (e.g. the 250 MHz differential clock),

based on the ground metal layers packaging and a careful routing of the fast digital

signals. From spring 2018, TERA09 is under test at GSI, Darmstadt. From these

tests it resulted that a dedicated ring biased at the preamplifier reference voltage and

shielding the input channels, would be needed to improve the channel-by-channel

counting homogeneity.

The MoVeIT project is an Italian national collaboration working for a cohesive

upgrade in Modeling and Verification techniques for Ion beam Treatment planning,

in particle therapy. The Turing medical physics group is in charge of developing a

detector prototype based on thin Low Gain Avalanche silicon detectors, for single ion

discrimination in particle beams. Both the sensor and the front-end microelectronics

designs have been developed in Turin. Even if the collaboration milestone is related

to radio biology beams with fluxes up to 108 cm−2 s−1 particles, the same community

is interested in applying the same principle of ion level discrimination and particle

counting to particle therapy beams. Although moving from ionization chamber to

such a precise silicon device would lead to a revolution in this field, the technical

issues make this goal very challenging. The system realized coupling this Ultra Fast

Silicon Sensors and the front-end electronics have to deal with a wide charge range

(3 - 150 fC) and a ∼ 109 Hz particle fluence. Concerning the signal rate, the sensor

prototype is a 3x3 cm2 silicon area segmented in strips and this segmentation lowers

the single channel counting frequency constraint. The front-end channel has to reach

a high counting efficiency starting from a 100 MHz rate upward (radio biology limit).
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The author worked on the design of a front-end chip prototype, named ABACUS

equipped with 24 identical channels capable to deal with the entire charge range up

to 250 MHz, keeping an efficiency close to 100%, form schematic level simulations.

Simulating the post-layout design, the counting efficiency value is degraded to 85%.

Nevertheless, the real counting efficiency on silicon could be higher, due to the fact

that some layout techniques adopted to mitigate the propagation of electronics noise

from the digital to the analog domain could not be simulated, since the related model

was not available from the Process Design Kit. Sixty ABACUS prototypes have

been delivered on the 21st of June 2018. A dedicated test board where to glue the

strip sensors and the ASIC before coupling them through wire bonding has been

designed. The PCB production is ongoing and a new production of silicon sensors

with different design approach is planned for the next autumn.

Apart from the activities related to the medical applications, the author collab-

orated for one year period (six months part-time and six months full-time), in the

JEM-EUSO international collaboration for the Mini-EUSO development. Mini-

EUSO is a UV-telescope that is going to be installed inside the Zvezda module of

the International Space Station (installation foreseen in 2019), with the aim to map

the Earth background in the ultraviolet spectrum; this approach is needed for the

incoming JEM-EUSO experiments looking for Ultra High Energy Cosmic Rays (en-

ergies up to 1021eV ) from space, using the Earth atmosphere as a giant gas detector.

Furthermore, this detector is suitable for the detection of various kind of events like

meteors, fluorescence phenomena, sprites, air-glows..

The telescope integrates multi-anode photomultiplier tubes and a 2034 pixels array.

In order to discriminate among relevant events through a very large amount of raw

data, a multi-level triggering system is needed. The astrophysics Turin group is in

charge of the trigger algorithm logic and implementation in hardware. Working on

this topic, the author collaborated on the first level trigger (L1 trigger) coding in

VHDL and hardware implementation in FPGA. The development of trigger ancillary

blocks like a time stamp generator, an artificial data generator and the pixel masking

block have been author’s duties which have been coded, integrated into FPGA and

tested with the L1 trigger logic, resulting precisely working. A preliminary and

successful test for the L1 trigger test has been performed using a pulse generator

to stimulate a photomultiplier tube interconnected with the front-end and readout

system. The main FPGA, named ZYNQ board, manages the data flow and integrates

the trigger logic. Further tests on the Mini-EUSO entire device have been performed
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in the Turin TurLab facility, with the telescope hanged up from a rotating tank that

contained different light stimuli; this study was intended to emulate the detector

space orbit and its capability in discriminating the events in various conditions,

avoiding to trigger fake events (e.g. the artificial light pollution from a city).

Although the timescale of a space experiment is generally quite broad, the author

experienced breakthroughs in the Mini-EUSO L1 trigger implementation in hardware

and testing. The algorithm has been extensively verified through software simu-

lations before to be hardware-integrated and then gradually tested with: artificial

stimuli generated inside the FPGA, voltage pulses through the front-end and readout

system and with the entire Mini-EUSO telescope in TurLab.



Appendix A

High speed signal transmission

formats

A.1 Current Mode Logic (CML)

CML strength points:

• commonly used in high speed data transmission (e.g. laser driver, DVI and

HDMI data transmission modules)

• simple output stage (Figure A.1)

• compatible with CMOS power domains (e.g. 1.2 V)

• voltage swing can be easily controlled by current source (as well the power)

CML drawbacks:

• asymmetric drive strength for rise and falling edges

• not fully-differential transmission (the mirror current is carried by the shield

and not by the second conductor, Figure A.2)

The not fully-differential transmission limits the CML utilize to short connection

on PCB (not suitable for cable differential signaling).
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Fig. A.1 Typical structure for a CML output stage

Fig. A.2 CML driver for AC-coupling.
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A.2 Low Voltage Differential Signaling (LVDS)

LVDS strength points:

• is a popular format adopted for differential signal transmission, especially for

long cable connections

• symmetric drive strength for rise and falling edges

• fully differential transmission (the mirror current is carried by the second

conductor, the shield does not carries transient currents, Figure A.4

• floating termination

• excellent as standard digital I/O for sensitive analog ASICs

LVDS format drawbacks:

• more complex output stage (Figure A.3)

• not compatible with low power CMOS supply voltages (2.5 V required)

• voltage swing on 100 Ohm is equal to 2 · 300 mV, with a 1.2 V commod mode

voltage
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Fig. A.3 Typical structure for a LVDS output stage

Fig. A.4 LVDS driver for DC-coupling.

A.3 Scalable Low Voltage Signaling (sLVS)

sLVS strength points:

• popular in electric high speed signaling for images and portable devices



216 High speed signal transmission formats

• compatible with low voltage CMOS power domains (common mode = 200

mV)

• voltage swing can be controlled with current sources (0.5 mA - 2 mA)

• symmetric drive strength for rise and falling edges

• fully differential transmission (the mirror current is carried by the second

conductor, the shield does not carries transient currents)

The sLVS has a 100 mV - 400 mV differential voltage over the 100 Ohm

termination.
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