
Doctoral Dissertation

Doctoral Program in Energy Engineering (30thcycle)

Automated Knowledge Base Quality
Assessment and Validation based on

Evolution Analysis

By

Mohammad Rifat Ahmmad Rashid

Supervisor(s):
Prof. Marco Torchiano

Doctoral Examination Committee:
Prof. Mario Piattini, Referee, Universidad de Castilla-La Mancha, Spain
Dr. Anastasia Dimou, Referee, RUG - Universiteit Gent, Belgium
Dr. Giuseppe Rizzo, Istituto Superiore Mario Boella, Italy
Prof. Fulvio Corno, Politecnico di Torino, Italy
Prof. Maurizio Morisio, Politecnico di Torino, Italy

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Mohammad Rifat Ahmmad Rashid
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents and my sister Farhana
Rashid for being my source of motivation and inspiration. I could not have asked for

better sister.

To my teachers who guided me in this education process.

Acknowledgements

With this thesis, my Ph.D. journey is reaching the end. I would like to thank all of the
people who contributed in some way during this journey. First and foremost, I would
like to thank my supervisor Prof. Marco Torchiano for his support and confidence
in me. I am grateful for all the support and the valuable discussions and advices,
and the chance to deal with situations which I though beyond my capabilities at
the time. Then, I would like to thank my advisor, Dr. Giuseppe Rizzo, your open
mind, pragmatism, and valuable feedback helped me to grow both intellectually and
personally.

I am also grateful to Prof. Maurizio Morisio for his availability and for sharing
his experience. I also appreciated the precious help in technical subjects and the
hints to deal with the bureaucratic issues received by Luca Ardito.

I would like to express sincere gratitude to all the colleagues of the SoftEng
group. First of all, thanks to Cristhian Figueroa, Iacopo Vagliano, and Oscar Ro-
driguez for the encouragement and suggestions that motivated me a lot in these years.
Indeed, I would like to mention all the mates who made the atmosphere in the Lab
1 more pleasant: Erion Çano, Riccardo Coppola, Diego Monti, Francesco Strada,
Amirhosein Toosi and Alysson Dos Santos. A very special thanks to Diego Monti
for his help during my thesis writing and the bureaucratic procedures.

An outstanding experience was the research visiting at the Universidad Politéc-
nica de Madrid, in Spain. I would like to thank all the colleagues of the Ontology
Engineering Group, in particular, Prof Oscar Corcho, who supervised me, Nanadan
Mihindukulasooriya for the useful discussions, and for the results reached through
our joint effort.

Also, I would like to thank TIM (formerly Telecom Italia) for granting me the
scholarship, without which pursuing a PhD would be more difficult. I express my

v

gratitude to Marco Marengo and JOL Mobile team for cooperative work conducted
together.

Most importantly, thank you to my mother, father, and sisters. Thank you for
teaching me the real values of life. Specially thanks to my sister Farhana Rashid for
your unconditional support. I have never known a day apart from your love, and that
is a priceless gift to me. I hope my life and my choices have honored you.

Abstract

In recent years, numerous efforts have been put towards sharing Knowledge Bases
(KB) in the Linked Open Data (LOD) cloud. These KBs are being used for various
tasks, including performing data analytics or building question answering systems.
Such KBs evolve continuously: their data (instances) and schemas can be updated,
extended, revised and refactored. However, unlike in more controlled types of knowl-
edge bases, the evolution of KBs exposed in the LOD cloud is usually unrestrained,
what may cause data to suffer from a variety of quality issues, both at a semantic
level and at a pragmatic level. This situation affects negatively data stakeholders
– consumers, curators, etc. –. Data quality is commonly related to the perception
of the fitness for use, for a certain application or use case. Therefore, ensuring the
quality of the data of a knowledge base that evolves is vital. Since data is derived
from autonomous, evolving, and increasingly large data providers, it is impractical
to do manual data curation, and at the same time, it is very challenging to do a
continuous automatic assessment of data quality. Ensuring the quality of a KB is
a non-trivial task since they are based on a combination of structured information
supported by models, ontologies, and vocabularies, as well as queryable endpoints,
links, and mappings. Thus, in this thesis, we explored two main areas in assessing
KB quality: (i) quality assessment using KB evolution analysis, and (ii) validation
using machine learning models.

The evolution of a KB can be analyzed using fine-grained “change” detection at
low-level or using “dynamics” of a dataset at high-level. In this thesis we present a
novel knowledge base quality assessment approach using evolution analysis. The
proposed approach uses data profiling on consecutive knowledge base releases to
compute quality measures that allow detecting quality issues. However, the first step
in building the quality assessment approach was to identify the quality characteristics.
Using high-level change detection as measurement functions, in this thesis we
present four quality characteristics: Persistency, Historical Persistency, Consistency,

vii

and Completeness. Persistency and historical persistency measures concern the
degree of changes and lifespan of any entity type. Consistency and completeness
measures identify properties with incomplete information and contradictory facts.
The approach has been assessed both quantitatively and qualitatively on a series of
releases from two knowledge bases, eleven releases of DBpedia and eight releases
of 3cixty Nice.

However, high-level changes, being coarse-grained, cannot capture all possible
quality issues. In this context, we present a validation strategy whose rationale is
twofold. First, using manual validation from qualitative analysis to identify causes
of quality issues. Then, use RDF data profiling information to generate integrity
constraints. The validation approach relies on the idea of inducing RDF shape by
exploiting SHACL constraint components. In particular, this approach will learn,
what are the integrity constraints that can be applied to a large KB by instructing a
process of statistical analysis, which is followed by a learning model. We illustrate
the performance of our validation approach by using five learning models over three
sub-tasks, namely minimum cardinality, maximum cardinality and range constraint.

The techniques of quality assessment and validation developed during this work
are automatic and can be applied to different knowledge bases independently of the
domain. Furthermore, the measures are based on simple statistical operations that
make the solution both flexible and scalable.

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Problem statement . 3

1.1.1 Identification of quality issues for evolving KBs 3

1.1.2 Identification of logical or formal contradiction 5

1.2 Research Questions and Contributions 6

1.2.1 KB evolution-based quality assessment 6

1.2.2 Validation approaches leveraging on quality characteristics
and integrity constraints. 8

1.3 Thesis structure . 9

2 Background 11

2.1 Resource Description Framework (RDF) 12

2.2 RDF Related Core Technologies 13

2.3 Shapes Constraint Language (SHACL) 15

2.4 Knowledge Bases and Their Evolution 18

2.4.1 Use Cases: 3cixty and DBpedia 19

2.4.2 Knowledge Base Evolution 20

Contents ix

2.5 Data Quality Standards . 22

2.6 Data Quality Issues in Evolving KB 24

2.7 Gold Standard Creation . 28

2.8 Learning Models . 29

3 State of the Art 31

3.1 Linked Data Dynamics . 31

3.2 Knowledge Base Quality Assessment 33

3.3 Knowledge Base Validation . 38

3.4 Summary . 41

4 Evolution Analysis and Quality Characteristics 43

4.1 Evolution Analysis . 43

4.2 Dynamic Features . 44

4.3 Evolution-based Quality Characteristics and Measures 45

4.3.1 Basic Measure Elements 46

4.3.2 Persistency . 48

4.3.3 Historical Persistency . 48

4.3.4 Consistency . 49

4.3.5 Completeness . 51

4.4 Summary . 52

5 RDF Shape Induction 53

5.1 SHACL Constraints Components and Shape Induction 55

5.1.1 Cardinality constraints . 57

5.1.2 Range constraints . 59

5.1.3 String based constraints 60

5.2 Summary . 62

x Contents

6 Evolution-based Quality Assessment and Validation Approach 63

6.1 Data Collection . 65

6.2 Quality Evaluation . 66

6.3 Validation Process . 68

6.3.1 Feature Extraction . 68

6.3.2 Manual Validation and Gold Standard Creation 70

6.4 Modeling and Quality Problem Report 71

6.5 KBQ : A proof-of-concept . 72

6.6 Summary . 74

7 Experimental Results 75

7.1 Experimental Settings . 75

7.2 Quantitative Analysis . 78

7.2.1 Persistency . 78

7.2.2 Historical Persistency . 83

7.2.3 Consistency . 84

7.2.4 Completeness . 87

7.3 Qualitative Analysis using Manual Validation 92

7.3.1 Persistency & Historical Persistency 94

7.3.2 Consistency . 96

7.3.3 Completeness . 97

7.4 Validation using Integrity Constraints 100

7.4.1 Feature Extraction . 100

7.4.2 Model Preparation . 105

7.4.3 Model Evaluation . 109

8 Discussion and Limitations 111

Contents xi

8.1 Evolution Analysis to Drive Quality Assessment 111

8.2 Modeling Performance . 114

8.3 Frequency of Knowledge Base Changes 115

8.4 Quality Assessment of Literal Values 116

8.5 Lifespan Analysis of Evolving KBs 117

8.6 Limitations . 121

9 Conclusions and Future Work 123

9.1 Summary of Contributions . 124

9.2 Future Work . 127

References 130

Appendix A User Interfaces for the KBQ Tool and Data Extraction REST
APIs 140

Appendix B Publication List 147

List of Figures

1.1 The process flow of our data-driven procedure for quality assessment
and validation. 9

1.2 Overview of the thesis structure. 10

2.1 Use cases of Knowledge Base evolution. 21

2.2 Example of inconsistent Wikipedia data (December 2016). 25

2.3 Example of incomplete Wikipedia data (December 2016). 26

2.4 Example of a 3cixty Nice KB resource that unexpectedly disappeared
from the release of 2016-06-15 to the other 2016-09-09. 27

5.1 Workflow of profiling based RDF Shape induction. 56

6.1 ISO/IEC 25024 Data Life Cycle (DLC) [1] with proposed quality
assessment approach. The box highlight the components that are
added as improvements to the DLC. 64

6.2 Proposed Quality Assessment and Validation Workflow. 65

6.3 Intermediary data structure that is used as input for the Evaluation
Process. 66

6.4 High level architecture of the KBQ tool. 72

7.1 Structure of input module. 76

7.2 Variation of instances of 3cixty classes lode:Event and dul:Place
over 8 releases. 80

List of Figures xiii

7.3 3cixty KB lode:Event class 50 snapshots of entity count. 81

7.4 DBpedia 10 Classes instance variation over 11 releases. 84

7.5 DBpedia foaf:Person class property frequencies distribution. 85

7.6 3cixty lode:Event completeness measure results 87

7.7 3cixty dul:Place completeness measure results 89

7.8 foaf:Person class dbo:title property string length box plot. 106

8.1 Summary of the main results of the Quality Assessment and Valida-
tion Approach. 112

8.2 3cixty two classes KB growth measure 119

8.3 DBpedia 10 classes KB growth measure 121

A.1 Home page of the KBQ-Tool. 141

A.2 Example of inconsistent Wikipedia data. 142

A.3 Scheduler Architecture. 143

A.4 Example of Analyze module. 145

List of Tables

1.1 Summary of the two analysis type features. 3

2.1 Common Prefixes used over the thesis. 12

2.2 Integrity constraints components from the SHACL presentation. . . 18

2.3 Statistics of the English DBpedia KB updates on the three releases
of 201504, 201510 and 201604. 21

2.4 Measurement terminology . 23

3.1 Summary of Linked Data Quality Assessment Approaches. 39

4.1 Quality characteristics with corresponding quality dimensions and
dynamic features. 46

4.2 Categories of change behaviour. 47

5.1 Minimum and maximum cardinality levels. 58

5.2 Objects Type. 60

5.3 Minimum and maximum String length levels. 61

6.1 Features based on the quality issues. 69

7.1 DBpedia 10 Classes entity count (all classes have dbo: prefix except
the last one). 77

7.2 3cixty KB Dataset Summary. 77

7.3 Entity Count of Spanish DBpedia KB dbo:place class 78

List of Tables xv

7.4 Verification conditions of the quality measures 79

7.5 DBpedia Persistency and Historical Persistency 82

7.6 Properties for the DBpedia classes and Consistency measures. Re-
sults are based on Version 201604 with threshold T=100. 86

7.7 Completeness measure of 3cixty Nice lode:Event class. 88

7.8 Completeness measure of 3cixty Nice lode:Event class properties
from periodic snapshots. 88

7.9 Completeness measure of 3cixty Nice dul:Place class. 89

7.10 DBpedia 10 class Completeness measure results based on release
201510 and 201604. 90

7.11 Completeness measure of DBpedia KB foaf:Person class. 90

7.12 Spanish DBpedia dbo:Place class completeness measure based on
release 201604 and 201610. 91

7.13 Selected classes and properties for manual evaluation. 93

7.14 Summary of manual validation results 94

7.15 Cardinality Counts for dbo:Person-dbo:deathDate. 101

7.16 Cardinality Counts for dbo:Sport/dbo:union. 101

7.17 dbo:Sport/dbo:union 30 statistical measures (p1 to p30) from raw
cardinality estimation. 103

7.18 Object node type information. 104

7.19 Classes of dbo:Person-dbp:birthPlace objects. 104

7.20 Datatypes of dbp:Person-dbp:deathDate literals. 104

7.21 Frequency distribution of foaf:Person/dbo:Title property. 105

7.22 Frequency distribution of foaf:Person/dbo:BirthName property. . . . 105

7.23 DBpedia and 3cixty Nice distribution of cardinality constraints. . . . 107

7.24 Baseline accuracy (using ZeroR) for 3cixty KB and DBpedia KB. . 108

7.25 Classifier accuracy for the DBpedia KB and 3cixty KB 108

7.26 Integrity Constraints performance measures for 3cixty KB. 110

xvi List of Tables

7.27 Integrity Constraints performance measure for English DBpedia. . . 110

7.28 Integrity Constraints performance measure for Spanish DBpedia. . . 110

8.1 A sample of 6 subjects and objects of bnfId property 117

8.2 DBpedia 10 class Summary . 120

A.1 Hedaer details of the CSV file. 141

Chapter 1

Introduction

The Linked Data approach consists in exposing and connecting data from different
sources on the Web by the means of semantic web technologies. Tim Berners-Lee1

refers to linked open data as a distributed model for the Semantic Web that allows
any data provider to publish its data publicly, in a machine readable format, and
to meaningfully link them with other information sources over the Web. This is
leading to the creation of the Linked Open Data (LOD)2 cloud consisting of several
Knowledge Bases (KBs) that make available billions of RDF3 triples from different
domains such as Geography, Government, Life Sciences, Media, Publication, Social
Networking, and User generated data [2].

Such KBs evolve over time: their data instances and schemes can be updated, ex-
tended, revised and refactored [3]. However, unlike what happens in more controlled
types of knowledge bases, the evolution of KBs exposed in the LOD cloud is usually
unrestrained, which may cause data to suffer from a variety of quality issues, both at
a semantic level and at a data instance level. By considering the aggregated measure
of conformance, the empirical study carried out by Debattista et al. [4] shows that
datasets published in the LOD cloud have reasonable quality. Nevertheless, it also
pointed out that significant issues remain concerning individual quality metrics, such
as data provenance and licensing. We can explore certain quality issues by looking
at individual metrics, for example quality issues in the data collection or integration
processes.

1http://www.w3.org/DesignIssues/LinkedData.html
2http://lod-cloud.net
3https://www.w3.org/RDF

http://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net
https://www.w3.org/RDF

2 Introduction

Data quality relates to the perception of the “fitness for use” in a given context [5].
In this thesis, we considered quality assessment as the process of statistically assess-
ing the evolving KB resources to identify anomalies that can affect the knowledge
base exploitation and any application usage. Furthermore, we use the term validation
to indicate the principal mean of evaluating the performance of quality assessment
procedure. Also, validation approaches allow the data stakeholders, such as con-
sumer and curator, to monitor the results thoroughly and provide feedback regarding
the ability to identify possible issues.

Ensuring the data quality of a knowledge base that evolves over time is vi-
tal. Since data is derived from autonomous, evolving, and increasingly large data
providers, it is impractical to perform manual data curation tasks, and at the same
time, it is very challenging to perform a continuous automatic assessment of data
quality. In this context, KB evolution can be analyzed using fine-grained “change”
detection at low-level or using “dynamics” of a dataset at high-level. Fine-grained
changes of KB sources are analyzed with regard to their sets of triples, set of entities,
or schema signatures [6–8]. For example, fine-grained analysis at the triple level
between two snapshots of a KB can detect which triples from the previous snapshot
have been preserved in the later snapshot. Moreover, fine-grained analysis can
detect which triples have been deleted, or which ones have been added [2]. The
dynamic feature of a dataset give insights into how it behaves and evolves over
a certain period [7]. Ellefi et al. [9] explored the dynamic features considering
the use cases presented by Käfer et al. [10]. KB evolution analysis using dynamic
feature help to understand the changes applied to an entire KB or parts of it. It
has multiple dimension regarding the dataset update behavior, such as frequency of
change, change patterns, change impacts, and causes of change. More specifically,
using dynamicity of a dataset, we can capture those changes that happen often; or
changes that the curator wants to highlight because they are useful or interesting
for a specific domain or application; or changes that indicate an abnormal situation
or type of evolution [7, 8]. Table 1.1 summarizes the features of the two types of
analysis.

One of the common tasks for data quality assessment is to perform a detailed
data analysis with data profiling [11]. Data profiling is usually defined as the process
of examining data to collect statistics and provide relevant metadata about the
data [12]. Based on data profiling we can thoroughly examine and understand a KB,
its structure, and its properties before usage. For example, the DBpedia KB [13] has

1.1 Problem statement 3

Table 1.1 Summary of the two analysis type features.

Analysis level Detail Volume Stakeholder

Low-level fine-grained Large Data end-user

High-level coarse-grained Small Data Curator

been already available for a long time, with various versions that have been released
periodically. Along with each release, the DBpedia KB implemented changes at
both the instance and schema level. The changes at the schema level involve classes,
properties, axioms, and mappings to other ontologies [14]. Instance level changes
include resource typing, property values, or identifying links between resources.
Based on the data profiling information we can detect changes between various
releases. Thus, in this thesis, we investigate the following research areas:

• KB evolution analysis using data profiling to identify quality issues.

• Validation based on integrity constraints using data profiling information and
learning models.

1.1 Problem statement

In this thesis, we argue that evolving KBs suffers from issues such as erroneous
instances that get removed or that are added with wrong semantics. Such a phe-
nomenon affects data stakeholders, such as consumers and curators, negatively. Our
work explores two main challenges of evolving KBs: (i) identification of quality
issues due to unrestrained KB evolution, and (ii) identification of logical or formal
contradiction, which we outline in this section.

1.1.1 Identification of quality issues for evolving KBs

Assessing the quality of an evolving knowledge base is a challenging task, as it
often requires to identify correct quality assessment procedures. Also, the quality
assessment process is affected by the evolution of data instances, ontologies and
vocabularies, and queryable endpoints. Furthermore, the KB evolution can directly

4 Introduction

impact the data integration tasks (e.g., synchronization, data linking or fusion), that
may lead to incomplete or incorrect results [15]. For example, DBpedia collects
data from semi-structured sources which is created in a crowdsourcing effort (i.e.,
Wikipedia). This extracted data might have quality problems because it is either
mapped incorrectly or the source information itself is incorrect.

KB evolution can be explored based on simple changes at low-level and complex
changes at high-level [8]. In particular, performing a fine-grained analysis based on
low-level changes means substantial data processing challenges. On the contrary, a
coarse-grained analysis using high-level changes can help to obtain an approximate
indication of the quality a data curator can expect. However, high-level change
detection at the instance level, being coarse-grained, cannot capture all possible
quality issues.

In general, low-level changes are easy to define and have several interesting prop-
erties [8]. Low-level change detection compares the current with the previous dataset
version and returns the delta containing the added or deleted entities. For example,
two DBpedia versions – 201510 and 201604 – have the property dbo:areaTotal in the
domain of dbo:Place (the prefix dbo: present as an alias for the DBpedia ontology
namespace: <http://dbpedia.org/ontology/>). Low-level changes can help to detect
added or deleted instances for dbo:Place entity type. One of the main requirements
for quality assessment would be to identify the completeness of dbo: Place entity
type with each KB releases. Low-level changes can help only to detect missing
entities with each KB release. Such as those entities missing in the 201604 version
(e.g. dbr:A_Rúa, dbr:Sandiás,dbr:Coles_Qurense) 4. Furthermore, these instances
are automatically extracted from Wikipedia Infobox keys. We track the Wikipedia
page from which DBpedia statements were extracted. These instances are present in
the Wikipedia Infobox as Keys but missing in the DBpedia 201604 release. Thus,
for a large volume of the dataset, it is a tedious, time-consuming, and error-prone
task to generate such quality assessment manually.

The representation of changes at low-level leads to syntactic and semantic
deltas [16] from which it is more difficult to get insights to complex changes or
changes intended by a human user. On the contrary, high-level changes can capture
the changes that indicate an abnormal situation and generates results that are intu-

4Here the prefix dbr: present as an alias for the DBpedia resources namespace:
<http://dbpedia.org/resource/>

1.1 Problem statement 5

itive enough for the human user. High-level changes from the data can be detected
using statistical profiling. For example, total entity count of dbo:Place type for two
DBpedia versions – 201510 and 201604 – is 1,122,785 and 925,383 where the entity
count of 201604 is lower than 201510. This could indicate an imbalance in the
data extraction process without fine-grain analysis. However, high-level changes
require a fixed set of requirements to understand underlying changes happening in
the dataset. For example, assuming that the schema of a KB remains unchanged, a
set of low-level changes from data correspond to one high-level change.

1.1.2 Identification of logical or formal contradiction

A data quality analysis using high-level change detection may lead to increasing the
number of false positives if the version of a KB is deployed with design issues, such
as incorrect mappings. Furthermore, without proper data management, the dataset in
an evolving KB may contain consistency issues [17]. Another issue of unrestrained
KB evolution is the unavailability of explicit schema information that precisely
defines the types of entities and their properties [7]. In general, RDF has proven to
be a good model for data integration, and there are several applications using RDF
either for data storage or as an interoperability layer [8]. However, unavailability of
schema information remains as one of the drawbacks of the RDF data model.

In particular, a knowledge base is defined to be consistent if it does not contain
conflicting or contradictory data [18]. When a schema is available with integrity
constraints, the data usually goes through a validation process that verifies the
compliance against those constraints. Those integrity constraints encapsulate the
consistency requirements of data in order to fit for a set of use cases. For example,
in a relational database, the integrity constraints are expressed in a data definition
language (DDL), and the database management system (DBMS) ensures that any
data inserted into the entire database will not lead to any inconsistency. In this
context, various research endeavors focus on validation of RDF data to identify any
logical or formal contradiction [19].

Validation of RDF data is not done in the same manner as traditional database
management systems due to several reasons. One of the key reason is the lack of a
language for expressing constraints or having generic models suitable for wider use
and not for specific use cases. For example, in DBpedia KB [13] (version 2016-04),

6 Introduction

a person should have exactly one value for the "dbo:birthDate" property or the values
of the "dbo:height" property should always be a positive number. The instances of the
Person class have more than 13,000 associated properties (including dbo, DBpedia
ontology properties and dbp, auto-generated properties from Wikipedia infobox
keys). Furthermore, ontologies are usually designed for entailment purposes rather
than for assessment and their representation often lacks the granular information
needed for validating constraints in the data. Taking into account ontology evolution
and data quality, in the empirical study presented by Mihindukulasooriya et al. [20]
explicitly pointed out that changes in the ontology depend on the development
process and the community involved in the creation of the knowledge base. They
also pointed out the drawbacks of finding practical guidelines and best practices
for ontology evolution. This lead to the need for automatic consistency analysis for
evolving KBs.

1.2 Research Questions and Contributions

This thesis is based on the conference and journal publications presented in Ap-
pendix B, in which I have been an author or a contributor. In this section, we outline
the key research questions (RQ) that address the aforementioned problems along
with our contributions towards each of them.

1.2.1 KB evolution-based quality assessment

We address the challenges of quality assessment for evolving KB using dynamic
features from data profiling. We propose a KB quality assessment approach using
quality measures that are computed using KB evolution analysis. Based on the
high-level change detection, we aim to analyze quality issues in any knowledge base.
The main hypothesis that has guided our investigation is:

Dynamic features from data profiling can help to identify quality issues.

We divide this research goal into two research questions:

RQ1: How can we identify quality issues with respect to KB evolution?

In response to this question, we explored the guidelines from two data quality
standards, namely ISO/IEC 25024 [1] and W3C DQV [21]. We also explored

1.2 Research Questions and Contributions 7

the comprehensive survey presented by Zaveri et al. [22] on linked open data
quality. We propose four quality characteristics based on change detection of
a KB over various releases. We use basic statistics (i.e., counts, and diffs) over
entities from various KB releases to measure the quality characteristics. More
specifically, measurement functions are built using entity count and the amount
of changes between pairs of KB releases. Our proposed evaluation-based
quality characteristics (RQ1) and approach (RQ2) are presented in a paper
entitled "A Quality Assessment Approach for Evolving Knowledge Bases",
accepted for publication in the Semantic Web Journal (SWJ) [2]. Furthermore,
details on quality assessment and validation approach for specific use cases are
presented in a paper entitled "Automated Quality Assessment and Validation
for Evolving Knowledge Bases", under review for publication in the Journal of
Web Semantics [23]. We report the conceptualization of KB evolution analysis
and details of evolution-based quality characteristics in Chapter 4.

RQ2: Which quality assessment approach can be defined on top of the the evolution-
based quality characteristics?

To address this question, we present a quality assessment approach for ana-
lyzing quality issues using dynamic features over different KB releases. The
main idea behind our quality assessment approach based on the fact that it is
not sufficient to identify what is changed, but how to interact with changes
and evolving attributes of a KB. Using data profiling, we explored dynamic
features on the class level and the property level. We thus evaluate a KB
using proposed four evolution-based quality characteristics. For validation, we
further explored data profiling information to generate SHACL based integrity
constraints for consistency checks. In particular, we learn what are the integrity
constraints that can be applicable in a large KB by instructing a process of
statistical analysis that is followed by a learning model.

We created KBQ, a tool that automates the detection and report generation
of quality issues for evolving knowledge bases. Evolution-based quality
assessment approach presented in [2], and details about the KBQ-tool has
been published in a paper entitled "KBQ - A Tool for Knowledge Base Quality
Assessment Using Evolution Analysis" in the K-CAP workshops of Machine
Reading [24]. We provide the detailed explanation of the evolution-based
quality assessment approach in Chapter 6.

8 Introduction

1.2.2 Validation approaches leveraging on quality characteris-
tics and integrity constraints.

To validate the quality assessment results, in Chapter 6, we present an experimental
analysis that is based on a quantitative, qualitative and constraints-based validation
approach. We propose RDF shape induction approach to address the challenges
of logical or formal contradiction identification in an evolving KB. Regarding the
constraints-based validation approach, we derived the following hypothesis:

Learning models can be used for validation using data profiling information as
predictive features.

We present this research goal into the following research question:

RQ3: Which approaches can be used to validate a KB evolution based quality
assessment approach?

In order to validate the proposed quality characteristics, we performed both quan-
titative and qualitative analysis. In particular, quantitative analysis is performed using
quality characteristics which are introduced in Chapter 4. Further, we performed
qualitative analysis using manual validation to compute precision by examining the
results from the quantitative analysis. In Chapter 7, we report about the experimenta-
tion of this approach on two KBs: DBpedia [13] (encyclopedic data) and 3cixty [25]
(contextual tourist and cultural data). We illustrate the quantitative and qualitative
analysis results based on the work presented in [2].

Furthermore, we have introduced an RDF validation approach that relies on
SHACL based integrity constraints using Shape induction in Chapter 5. Based on
the results from qualitative analysis, we have performed the RDF validation using
the dataset from the 3cixty KB and the DBpedia KB. In Chapter 7, we reported the
learning model performance of RDF Shape validation approach based on the work
presented in [26].

Based on the data profiling information, we present a set of features taking into
account inconsistency issues. We applied these features in the learning model to
create RDF Shapes. The core concepts regarding RDF Shape induction for creating
integrity constraints have been published in the paper entitled "RDF Shape Induction
using Knowledge Base Profilings" in Proceedings of SAC2018: Symposium on

1.3 Thesis structure 9

Applied Computing 2018 [26]. The details of the RDF Shape induction process
using SHACL representation of cardinality, range, and string constraints presented in
Chapter 5. We chose cardinality constraints to identify any logical contradiction due
to wrong mappings in a evolving KB. Similarly, using range constraints values, we
explored if there are any type mismatch due to inconsistent KB updates. In Figure
1.1, we present the process flow of our validation approaches that is divided into
three main steps:

(i) KB evolution analysis: The target entity types for validation tasks are selected
based on the results from the evolution-based quality characteristics.

(ii) Quality Assessment and Validation approach: Using the information from
KB evolution analysis and statistical profiler, we perform quality assessment and
RDF Shape induction for validation task.

(iii) Evaluation: We perform evaluation using quantitative, qualitative, and
constraints based validation. Furthermore, we apply various learning models to
assess the constraints based feature dataset for a given class and formulate a RDF
Shape.

Fig. 1.1 The process flow of our data-driven procedure for quality assessment and validation.

1.3 Thesis structure

As illustrated in Figure 1.2, this thesis is divided into nine chapters, as follows:
Chapter 2 presents background and motivational examples that demonstrate impor-
tant aspects of our quality assessment and validation approach; Chapter 3 provides
an overview of the state-of-the-art which is part of this thesis, focusing on Linked

10 Introduction

Background State of the Art

Evolution Analysis and
Quality Characteristics

RDF Shape Induction
Evolution-based Quality

Assessment and Validation
Approach

Experimental Results Discussion and Limitations

Conclusions and
Future Work

Chapter 2 Chapter 3

Chapter 4 Chapter 5 Chapter 6

Chapter 7 Chapter 8

Chapter 9

Conclusion

Experiments and Evaluations

Evolution-based Quality
Assessment and Validation

Literature Review

Fig. 1.2 Overview of the thesis structure.

data dynamics, Knowledge Base quality assessment and Knowledge Base validation
approaches. Chapter 4 contains the definition of the proposed evolution-based quality
characteristics and measurement functions. Chapter 5 describes the process of RDF
Shape Induction using SHACL based constraints. Chapter 6 outlines our data driven
quality assessment and validation approach; Chapter 7 presents an experimental
analysis based on two KBs, namely DBpedia and 3cixty. Furthermore, we considered
both English and Spanish versions of the DBpedia KB. Chapter 8 discusses the initial
hypothesis, the research questions and insights gathered from the experimentation.
Finally, Chapter 9 summarizes the main findings and outlines the future research
activities.

Chapter 2

Background

In the following chapter we give an overview of the technical foundations and the
background for the reader to understand the work presented in this thesis. The key
conceptual definitions are mainly based on [19]1.

In section 2.1 we introduce the reader with the basic concepts of Resource
Description Framework (RDF). Section 2.2 gives an overview of RDF related core
technologies. An overview of Shapes Constraint Language (SHACL) presented in
Section 2.3. Furthermore, Section 2.4 presents the definition of RDF Knowledge
base and their evolution. Section 2.4.1 presents an description of the two main KBs
namely, 3cxity and DBpedia used in our experimental analysis. A brief overview of
data quality standards are presented in Section 2.5. Moreover, Section 2.6 describes
the quality issues present in a KB due to evolution. The details of the quality issues
are based on the work presented in [2]. Section 2.7 outlines the gold standard creation
strategies. Finally, Section 2.8 present an overview of machine learning approaches
used in this thesis.

1Standard components of the RDF framework and definitions for them are taken from this book
as they follow the defined standards and are widely used. Examples for each component are provided
by the author.

12 Background

Table 2.1 Common Prefixes used over the thesis.

Prefix Namespace
dbo DBpedia ontology: <http://dbpedia.org/ontology/>
dbr DBpedia resources:<http://dbpedia.org/resource/>
foaf FOAF Vocabulary Specification: <http://xmlns.com/foaf/0.1/>
wikipedia-en English Wikipedia: <https://en.wikipedia.org/wiki/>
lode 3cixty event type: <http://linkedevents.org/ontology>

dul
3cixty place type:

<http://www.ontologydesignpatterns.org/ont/dul/DUL.owl>

2.1 Resource Description Framework (RDF)

Resource Description Framework (RDF)2 is a graph-based data model. RDF datasets
produced by different data sources and can be integrated with other data using
semantic web technologies. Data integration using RDF is faster and more robust
than traditional solutions [19]. The RDF data model is based on the concept of
triples. Each triple consists of a subject, a predicate, and an object. RDF triples are
usually depicted as a directed arc connecting two nodes (subject and object) by an
edge (predicate). An RDF triple asserted means that some relationship, indicated by
the predicate, holds between the resources denoted by the subject and object. This is
known as an RDF statement. The predicate is an IRI [19] that denotes a property.

Most RDF formats include some mechanism called prefix declaration which
enables to simplify writing long IRIs declaring prefix labels. A prefix label associates
an alias with an IRI and enables the definition of prefixed names. A prefixed name
contains a prefix label and a local part separated by “:” and represents the IRI
formed by concatenating the IRI associated with the prefix label and the local part.
For example, if ex is declared as a prefix label to represent <http://example.org/>,
then ex:rifat is a prefixed name that represents <http://example.org/rifat>. Table 2.1
reports the common prefixes used over the thesis.

An RDF statement can be thought of as a binary relation identified by the property
between the subject and object. RDF support other serialization formats like Turtle
3, Trig4 and JSON-LD5. Turtle allows an RDF graph to be completely written in a

2https://www.w3.org/RDF
3https://www.w3.org/TR/turtle/
4https://www.w3.org/TR/trig/
5https://www.w3.org/TR/json-ld/

https://www.w3.org/RDF
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/json-ld/

2.2 RDF Related Core Technologies 13

compact and natural text form, with abbreviations for common usage patterns and
data types. The code in 2.1 represents an RDF graph in Turtle. The first three lines
are prefix declarations, and the rest represents a sequence of RDF triples separated
by dots. There are three kinds of nodes: IRIs, literals, and blank nodes.

Listing 2.1 Simple RDF file in Turtle

@prefix ex: <http://example.org/>

@prefix schema: <http://schema.org/>

@prefix dbr: <http://dbpedia.org/resource/>

ex:erion schema:knows ex:rifat .

ex:rifat schema:knows ex:diego .

ex:rifat schema:name "Rashid" .

ex:rifat schema:birthDate "1987 -08 -01"^^ xsd:date .

ex:rifat schema:birthPlace dbr:Khulna .

ex:erion schema:knows ex:diego .

ex:erion schema:knows ex:rifat .

ex:erion schema:birthPlace dbr:Tirana .

IRI6 An IRI (Internationalized Resource Identifier) refers to a resource (the refer-
ent). A resource can be any thing. IRIs can appear as subjects, predicates and
objects. In Turtle, IRIs are enclosed by < and >. For example, an IRI can be
<http://example.org/rifat>.

Literals A literal denotes resources which have an associated value, for example,
an integer or string value. Literals can only appear as objects in triples.

Blank Node A blank node refers to local identifiers which do not identify any
specific resources. It can be used as subjects or objects of triples. They specify
that something with the given relationship exists, without explicitly naming it.

2.2 RDF Related Core Technologies

RDF was designed to used as a central piece for knowledge representation in the
Web. The goal is that agents can automatically infer new knowledge in the form of

6https://www.rfc-editor.org/info/rfc3987

https://www.rfc-editor.org/info/rfc3987

14 Background

new RDF statements from existing RDF graphs. To that end, several technologies
were proposed to increase RDF expressiveness. In this context, various technologies
were proposed to support RDF representation. There are three concepts that are
commonly utilized in RDF: SPARQL, RDF Schema and OWL.

SPARQL (SPARQL Protocol and RDF Query Language)7 is an RDF query
language which is able to retrieve and manipulate data stored in RDF. SPARQL
is based on the notion of Basic Graph Patterns which are sets of triple patterns.
A triple pattern is an extension of an RDF triple where some of the elements
can be variables which are denoted by a question mark. For example, the
following SPARQL query in 2.2 retrieves the nodes ?s whose birth place is
dbr:Khulna and the nodes ?o that are known by them.

Listing 2.2 Simple SPARQL Query.

@prefix schema: <http://schema.org/>

@prefix dbr: <http://dbpedia.org/resource/>

SELECT ?s ?o WHERE {

?s schema:birthPlace dbr:Khulna .

?s schema:knows ?o

}

RDF Schema8 provides a data-modelling vocabulary for RDF data. It is a semantic
extension of RDF which provides mechanisms to describe groups of resources
and relationships between them. It defines a set of common classes and
properties. The main classes defined in RDFS are:

• rdfs:Resource: the class of everything;

• rdfs:Class: the class of all classes;

• rdfs:Literal: the class of all literal values;

• rdfs:Datatype: the class of all datatypes;

• rdf:Property:the class of all properties.
7https://www.w3.org/TR/rdf-sparql-query/
8https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-schema/

2.3 Shapes Constraint Language (SHACL) 15

OWL (Web Ontology Language)9 defines a vocabulary for expressing ontologies
based on description logics. OWL has several syntaxes: an RDF-based syntax,
functional-style Syntax, manchester syntax, and a formally defined meaning.
An ontology can be defined as a vocabulary of terms, usually about a specific
domain and shared by a community of users. Ontologies specify the definitions
of terms by describing their relationships with other terms in the ontology. The
main concepts in OWL are as follows.

• Classes which represent sets of individuals. Classes can be subclasses of
other classes, with two special classes: owl:Thing that represents the set
of all individuals and owl:Nothing that represents the empty set.

• Individuals which are elements in the domain. Individuals can be mem-
bers of an OWL class.

• Properties which represent relationships. Properties are classified as
datatype properties, object properties and annotation properties. Datatype
properties relate an individual with a data value such as a string or
integer. Object properties relate an individual with another individual,
and Annotation properties encode information about the ontology itself
(such as the author or the creation date of an ontology).

• Constructors which allow to define complex concepts from other con-
cepts using expressions.

2.3 Shapes Constraint Language (SHACL)

Shapes Constraint Language (SHACL) has been developed by the W3C RDF Data
Shapes Working Group10, which was initiated in 2014 with the goal to introduce a
language for imposing structural constraints on RDF graphs. SHACL structures are
motivated by other constraints based languages such as SPIN11, some parts from
OSLC resource shapes12 and Shape Expression(ShEx)13. More specifically, SHACL
is inspired by SPIN. The SPIN modeling vocabulary based on RDF properties and

9https://www.w3.org/OWL/
10https://www.w3.org/2014/data-shapes
11http://spinrdf.org/spin.html
12http://open-services.net/resources/
13https://www.w3.org/2001/sw/wiki/ShEx

https://www.w3.org/OWL/
https://www.w3.org/2014/data-shapes
http://spinrdf.org/spin.html
http://open-services.net/resources/
https://www.w3.org/2001/sw/wiki/ShEx

16 Background

classes using SPARQL to specify rules and logical constraints. In the beginning,
the main motivation of this initiative is to combine all the constraint languages into
SHACL. However, due to core difference of representation, ShEx is not completely
converged with SHACL.

SHACL is divided into two parts: (i) SHACL Core describes a core RDF vo-
cabulary to define common shapes and constraints; and (ii) extension mechanism
regarding SPARQL and has been called: SHACL-SPARQL. In this thesis, we ex-
plored the SHACL Core for RDF validation process. More specifically, we looked at
SHACL Shape for a specific class to identify constraints components. In SHACL, a
Shape is defined as the collection of targets and constraints components. Further-
more, targets specify which nodes in the data graph must conform to a shape and
constraints components determine how to validate a node. In this context, Shapes
graph represent an RDF graph that contains shapes, and Data graph represents an
RDF graph that contains data to be validated. Furthermore, SHACL defines two
types of Shapes: (i) Node shapes presents the constraints information about a given
focus node; and (ii) Property shapes present constraints about a property and values
of a path for a node.

For example, let us consider a Person Shape which is based on only name and
email. Person name has an ”xsd:string” type and email addresses are presented with
IRI. In this account, we present a Person SHACL Shape graph in 2.3.

Listing 2.3 A simple example of Person SHACL Shape Graph

@prefix: <http://example.org/>

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@schema schema: <http://schema.org/> .

:PersonShape a sh:NodeShape;

sh:targetNode :rifat , :erion , :diago;

st:targetClass :Person;

sh:property [

sh:path schema:name;

sh:minCount 1;

sh:maxCount 1:

sh:datatype xsd:string;

];

2.3 Shapes Constraint Language (SHACL) 17

sh:property [

sh:path schema:email;

sh:maxCount 1;

sh:minCount 1;

sh:nodeKind sh:IRI;

].

SHACL specify targets using nodes, that must be validated against the shape.
There are several types of targets in SHACL:

targetNode directly point to a node. In 2.3, targetNodes are :rifat, :erion and :diago.

targetClass consider all nodes that have a give type. Such as in Shape graph of
person in 2.3 targetClass is presented as :Person.

targetProperty defines all nodes that have a given property. It is based on sh:property
which is associated with shape property constraint and sh:path identifies the
path. An example of property shape present in 2.4.

Listing 2.4 An example of Property Shape

@prefix: <http://example.org/>

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@schema schema: <http://schema.org/> .

:PersonShape a sh:NodeShape;

sh:property [

sh:path schema:email;

sh:maxCount 1;

sh:minCount 1;

sh:nodeKind sh:IRI;

].

target node used for SPARQL based general mechanisms.

SHACL shapes uses collection of constraints that nodes must satisfy. Table 2.2
present a list of integrity constraints from the SHACL presentation. In the validation
task, a SHACL based approach checks each constraint and reports error for each

18 Background

unsatisfied constraints. From the SHACL report, if no error found, then we can
assume that the RDF graph has been validated. For example, following RDF data
graph conforms to the shape graph presented in 2.3. Here target property :rifat passed
as it meets the constraints of :name and :email. On the other hand, target property
:erion fails as the sh:nodeKind is IRI but it is defined as string in the data graph.

Passed as :PersonShape

:rifat schema:name "Mohammad Rashid";

schema:email <mailto:rifat@gmail.com >

Fails as :PersonShape

:erion schema:name "erion cano";

schema:email "erion@gmail.org"

Table 2.2 Integrity constraints components from the SHACL presentation.

Constraints Type Example

Cardinality minCount, maxCount

Types of values class, datatype, nodeKind

Values node, in, hasValue

Range of values minInclusive, maxInclusive, minExclusive, maxExclusive

String based minLength, maxLength, pattern, languagesIn, uniqueLanguage

Logical constraints not, and, or, xone

Closed shapes closed, ignoredProperties

Property pair constraints equals, disjoint, lessThan, lessThanOrEquals

Other constraints name, value, defaultValue

2.4 Knowledge Bases and Their Evolution

A Knowledge Base (KB) is a technology used to store both complex structured and
unstructured information’s representing domain knowledge[27]. An RDF KB is
a well-defined RDF dataset that consists of RDF statements (triples) of the form
(subject, predicate, object). Considering description logic (DL), a knowledge base
is the equivalent of a theory in first-order logic or an ontology in OWL. A DL

2.4 Knowledge Bases and Their Evolution 19

knowledge base is based on a set of terminological axioms (TBox) and assertions
axioms (ABox) [28]. Axioms are statements that are asserted to be true in the domain
being described14. In the LOD cloud, KBs are created in various ways and depend
on specific domain [29]. For example, proprietary and curated KB like 3cixty [30]
or the crowd-based KB like Freebase [31] and Wikidata [27]. Furthermore, KB
can be based on data extracted from large-scale, semi-structured sources such as
DBpedia [32] using Wikipedia.

2.4.1 Use Cases: 3cixty and DBpedia

In our approach we explored two KBs as use cases namely, 3cixty Nice KB and
DBpedia KB. We selected 3cixty Nice KB and DBpedia KB according to: (i)
popularity and representativeness in their domain: DBpedia for the encyclopedic
domain, 3cixty Nice for the tourist and cultural domain; (ii) heterogeneity in terms
of content being hosted such as periodic extraction of various event information
extracted by 3cixty Nice KB, (iii) diversity in the update strategy: incremental and
usually as batch for DBpedia, continuous update for 3cixty. More in detail:

• DBpedia15 is among the most popular knowledge bases in the LOD cloud.
This knowledge base is the output of the DBpedia project that was initiated by
researchers from the Free University of Berlin and the University of Leipzig, in
collaboration with OpenLink Software. DBpedia is roughly updated every year
since the first public release in 2007. DBpedia is created from automatically
extracted structured information contained in Wikipedia, such as infobox tables
categorization information, geo-coordinates, and external links.

• 3cixty Nice is a knowledge base that describes cultural and tourist informa-
tion. This knowledge base was initially developed within the 3cixty project16,
which aimed to develop a semantic web platform to build real-world and
comprehensive knowledge bases in the domain of culture and tourism for a
few cities. The entire approach has been tested first in the occasion of the Expo
Milano 2015 [25], where a specific knowledge base for the city of Milan was
developed, and has now been refined with the development of knowledge bases

14https://www.w3.org/TR/2002/WD-owl-semantics-20021108/syntax.html
15http://wiki.dbpedia.org
16https://www.3cixty.com

https://www.w3.org/TR/2002/WD-owl-semantics-20021108/syntax.html
http://wiki.dbpedia.org
https://www.3cixty.com

20 Background

for the cities of Nice, London, Singapore, and Madeira island. They contain
descriptions of events, places (sights and businesses), transportation facilities
and social activities, collected from numerous static, near- and real-time local
and global data providers, including Expo Milano 2015 official services in the
case of Milan, and numerous social media platforms. The generation of each
city-driven 3cixty KB follows a strict data integration pipeline, that ranges
from the definition of the data model, the selection of the primary sources
used to populate the knowledge base, till the data reconciliation used for
generating the final stream of cleaned data that is then presented to the users
via multi-platform user interfaces. The quality of the data is today enforced
through a continuous integration system that only verifies the integrity of the
data semantics [30].

2.4.2 Knowledge Base Evolution

Knowledge bases are nowadays essential components for any task that requires
automation with some degrees of intelligence. Furthermore, KBs are performing
an important role in the organizations data management and in supporting data
integration. Stakeholders – curator, consumer, etc. – in various domains routinely
need to combine and compare statistical indicators for various applications. The
majority of the knowledge bases are domain specific and maintained by small groups
of knowledge engineers. Moreover, updating the knowledge bases become very
cost intensive as data sources evolves and need to consolidate those changes with
each release. Within the context of KB evolution, aspects of the KB evolution
managements are becoming increasingly important to produce the data consistent
and usable.

For example, Wikipedia has grown into one of the central hubs of knowledge
sources, and it is maintained by thousands of contributors. DBpedia is a crowd-
sourced knowledge base and extracts structured information from various Wikimedia
projects. Table 2.3 illustrates the overall statistics of English DBpedia17 on three
different releases. With each DBpedia release, the raw infobox statements grow
about 4.2%. Furthermore, millions of triples have been included with each version

17http://wiki.dbpedia.org/

http://wiki.dbpedia.org/

2.4 Knowledge Bases and Their Evolution 21

Table 2.3 Statistics of the English DBpedia KB updates on the three releases of 201504,
201510 and 201604.

Features 201504 201510 201604

Localiced Instances 4,305,028 4,641,890 4,678,230

Canonicalized Instances 4,305,028 4,641,890 4,678,230

Mapping based Properties 1,353 1,369 1,379

Mapping based Statements 32,143,157 37,852,643 37,549,405

Raw Infobox Properties 58,780 60,461 2,062

Raw Infobox Statements 73,686,499 78,498,880 30,024,092

Type Statements 34,911,097 36,583,668 36,704,825

of DBpedia released. For any data stakeholder managing, this exponential growth of
information is a challenging task.

Figure 2.1 illustrates common use cases [10] of knowledge base evolution. These
use cases are explained in detail below.

Fig. 2.1 Use cases of Knowledge Base evolution.

• Dataset Synchronization: In any KB, large quantity of data needs to be repli-
cated and maintained at external sources. Furthermore, these data sources
need to be in periodic synchronization with the original data sources [10].

22 Background

• Link maintenance: In a KB, data is made of statements that link between
resources. Due to KB updates, often resources are erroneously removed or
change semantics, without taking the necessary steps to update their depen-
dent resources. Thus, it creates the need to take appropriate action for link
maintenance.

• Vocabulary evolution: Ontologies, vocabularies, and data schemata in a KB are
often inconsistent and lack metadata information. Due to ontology evolution,
it is difficult to find practical guidelines and best practices [20].

• Versioning: It is relevant for ontologies, vocabularies, and data schemata in a
KB, whose semantics may change over time to reflect usage [10]. Within this
context, KB evolution analysis can show how changes propagate and help to
design a stable versioning methodology.

• Smart Cashing: Query optimization and live querying approaches need a
smart cashing approach for dereferencing and sources discovery. KB evolution
analysis can help to identify which sources can be cached to save time and
resources, how long cached data can be expected to remain valid, and whether
there are dependencies in the cache [10].

• Data Quality: One of the key use case is to ensure a good quality of data in a
KB. Since data instances are often derived from autonomous, evolving, and
increasingly large data providers, it is impractical to do manual data curation,
and at the same time, it is very challenging to do the continuous automatic
assessment of data quality. In this context, using the KB evolution analysis,
we can explore the data quality issues.

2.5 Data Quality Standards

Data quality can be defined as the degree to which a set of characteristics of data
fulfills requirements [1]. Based on user requirements, poor data quality can be
defined as the degree to which a set of characteristics of data does not fulfill the
requirements [33]. The definition of our proposed quality characteristics started
with the exploration of two data quality standard reference frameworks: ISO/IEC
25012 [1] and W3C DQV [21].

2.5 Data Quality Standards 23

Table 2.4 Measurement terminology

Definition ISO 25012 W3C DQV

Category of quality attributes Characteristic Dimension

Variable to which a value is assigned as the
result of a measurement function applied
to two or more measure elements

Measure Metric

Variable defined in terms of an attribute
and the elements for quantify the measure-
ment method

Measure Element -

Quality measurement results that that char-
acterize a quality feature

Numerical Value Observation

Set of operations having the object of de-
termining a value of a measure

Measurement Measurement

ISO/IEC 25012 [1] defines a general data quality model for data retained in
structured format within a computer system. This model defines the quality of a
data product as the degree to which data satisfies the requirements set by the product
owner organization. The W3C Data on the Web Best Practices Working Group has
been chartered to create a vocabulary for expressing data quality1. The Data Quality
Vocabulary (DQV) is an extension of the DCAT vocabulary18. It covers the quality
of the data, how frequently it is updated, whether it accepts user corrections, and
persistence commitments.

Besides, to further compare our proposed quality characteristics19 we explored
the foundational work on the linked data quality by Zaveri et al. [22]. They surveyed
existing literature and identified a total of 26 different data quality dimensions
(criteria) applicable to linked data quality assessment.

Since the measurement terminology suggested in these two standards differs,
we briefly summarize the one adopted in this paper and the relative mappings in
Table 2.4.

18https://www.w3.org/TR/vocab-dcat/
19In our work we will identify the quality aspects using the term quality characteristics from

ISO-25012 [1] that corresponds to the term quality dimension from DQV [21].

https://www.w3.org/TR/vocab-dcat/

24 Background

2.6 Data Quality Issues in Evolving KB

A data quality issue is a set of anomalies that can affect the knowledge base exploita-
tion and any application usage [34]. We can identify quality issues through data
quality measurement. A data quality characteristic analyzes quality issues by using a
set of measurement functions that help to assess the issues present in the data [35].
In this thesis, we focused on three main quality issues of a knowledge base: (i) Lack
of consistency, (ii) Lack of completeness, and (iii) Lack of persistency.

Lack of consistency when a KB is inconsistent with the reality it represents. In
particular, inconsistency relates to the presence of unexpected properties.

As an example, let us consider DBpedia version 201510 where we can find the
resource of type foaf:Person dbpedia:X. Henry Goodnough that represent an entity.
While we find (as expected) a dbo:birthDate property for the entity, we unexpectedly
find the property dbo:Infrastructure/length. This is a clear inconsistency: in fact,
if we look at the ontology, we can check that the latter property can be used for a
resource of type dbo:Infrastructure, not for a person.

To better understand where the problem lies, we need to look at the correspond-
ing Wikipedia page wikipedia-en:X._Henry_Goodnough20. Even though the page
reports the information about an engineer who graduated from Harvard, it contains
an info-box, shown in Figure 2.2, that refers to a dam, the Goodnough Dike. The
inconsistency issue derives from the data present in the source page that resulted
into the resource being typed both as a person and as a piece of infrastructure. We
can expect such kind of structure to be fairly rare – in fact the case we described
is the only case of a person with a dbo:Infrastructure/length property – and can be
potentially detected by looking at the frequency of the predicates within a type of
resource. For instance, considering DBpedia version 2016-04, for the resources of
type foaf:Person there are 1035 distinct predicates, among which 142 occur only
once. Such anomalous predicates suggests the presence of consistency issues that
can be located either in the original data source or – i.e. Wikipedia for this case – or
in the lack of filtering in the data extraction procedure.

Lack of completeness relates to the resources or properties missing from a
knowledge base. This happens when information is missing from one version of the

20https://en.wikipedia.org/wiki/X._Henry_Goodnough

https://en.wikipedia.org/wiki/X._Henry_Goodnough

2.6 Data Quality Issues in Evolving KB 25

Fig. 2.2 Example of inconsistent Wikipedia data (December 2016).

KB because it has been removed at given point during KB’s evolution21. In general,
causes of completeness issues are linked to errors in the data extraction pipeline.
Such as missing instances in a KB that are auto generated from data sources. As an
example, let us consider a DBpedia resource dbpedia:Abdul_Ahad_Mohma of type
dbo:Person/Astronauts22. When looking at the source Wikipedia page wikipedia-

21Of course it is possible the item was never present in the KB at any time during its evolution,
though this kind of mistake is not detectable just by looking at the evolution of the KB.

22http://dbpedia.org/resource/Abdul_Ahad_Mohmand

http://dbpedia.org/resource/Abdul_Ahad_Mohmand

26 Background

en:Abdul_Ahad_Mohman23, we observe that the infobox shown in Figure 2.3 re-
ports a “Time in space” datum. The DBpedia ontology includes a dbo:Astronaut/
TimeInSpace and several other astronauts have that property, but the resource we
consider is missing it.

Fig. 2.3 Example of incomplete Wikipedia data (December 2016).

While it is generally difficult to spot that kind of incompleteness, for the case
under consideration it is easier because that property was present for the resource
present in the previous version of DBpedia, i.e. the 2015-10 release. That is an
incompleteness introduced by the evolution of the knowledge base. It can be spotted
by looking at the frequency of predicates inside a resource type. In particular, in
the release of 2016-04 there are 419 occurrences of the dbo:Astronaut/TimeInSpace
predicate over 634 astronaut resources (66%), while in the previous version there
were 465 out of 650 astronauts (72%). Such a significant variation suggests the
presence of a major problem in the data extraction procedure applied to the original
source, i.e. Wikipedia.

Lack of persistency relates to unwanted removal of persistent resources that
were present in a previous KB release but they disappeared. This happens when
information has been removed. As an example let us consider a 3cixty Nice re-

23https://en.wikipedia.org/wiki/Abdul_Ahad_Mohmand

https://en.wikipedia.org/wiki/Abdul_Ahad_Mohmand

2.6 Data Quality Issues in Evolving KB 27

source of type lode:Event that has as the label “Modéliser, piloter et valoriser les
actifs des collectivités et d’un terrritoire grâce aux maquettes numériques: retours
d’expériences et bonnes pratiques”24. This resource happened to be part of the 3cixty
Nice KB since it has been created the first time, but in a release it got removed even
though, according to the experts curating the KB, it should not have been removed.

Fig. 2.4 Example of a 3cixty Nice KB resource that unexpectedly disappeared from the
release of 2016-06-15 to the other 2016-09-09.

This issue can be spotted by looking at the total frequency of entities of a given
resource type. For example, lode:Event type two releases – 2016-06-15 and 2016-
09-09 – total entity count 2,182 and 689. In particular in the investigated example
we have observed an (unexpected) drop of resources of the type event between the
previous release dated as 2016-06-15 and the considered released from 2016-09-09.
Such count drop actually indicates a problem in the processing and integration of the
primary sources that feed the KB.

24http://data.linkedevents.org/event/006dc982-15ed-47c3-bf6a-a141095a5850

http://data.linkedevents.org/event/006dc982-15ed-47c3-bf6a-a141095a5850

28 Background

Such problems are generally complex to be traced manually because they require
a per-resource check over different releases. When possible, a detailed, low-level
and automated analysis is computationally expensive and might result into a huge
number of fine-grained issue notifications. Such amount of information might cause
an information overload for the user of the notifications. However, provided they
are filtered, such low-level notifications can be useful to KB end-users to assess the
suitability for their purposes.

Such a problem is generally complex to be traced manually because it requires a
per-resource check over the different releases. It can, instead, be spotted by looking
at the total frequency of entities of a given resource type.

2.7 Gold Standard Creation

KBs may contain errors, thus the profiling results cannot be considered as a gold
standard. To instruct and verify the performance of the modeling process, the feature
datasets are further validated by a human annotator. More specifically, to reduce the
wrong annotations a manual validation is performed by a human annotator. There are
different strategies to evaluate a dataset. In the following, we present three common
strategies when dealing with a knowledge base [29]:

(i) Silver Standard: this strategy is based on the assumption that the given KB
is already of reasonable quality. The silver standard method is usually applied to
measure the performance of knowledge graph by analyzing how well relations in a
knowledge graph can be replicated. Although this strategy is suitable for large-scale
data, it can produce less reliable results [36, 37].

(ii) Gold standard: this strategy is based on turning the observations in a set
of gold data points by human annotators. In this context, gold standard is indeed
suitable for our approach since we can obtain gold insights of the completeness
measurement results, however very expensive if the annotation load is large.

(iii) Partial gold standard: in this strategy, a small subset of external graphs,
entities or relations are selected as validation criteria and they, then, are manually
labeled [36]. This helps reducing the number of candidates that an annotator will
process.

2.8 Learning Models 29

2.8 Learning Models

One of the goals of this thesis is to validate the RDF KBs using integrity constraints
in predictive settings. In this context, we present our approach as a classification
problem. Typically a classification learning model maps observations (samples) to a
set of possible categories (classes) [38]. For example, the minimum cardinality value
of an entity type is an observation for its relevant attributes (features). For selecting
a suitable learning model for our problem, we investigated the following research
question: "Which learning model is the most adequate for consistency analysis using
data profiling information as predictive features?". In order to answer this question,
we evaluate the performance of predictive features using five classical learning
models. These learning models are chosen considering five popular categories of
machine learning algorithms [38]: (i) Neural Networks, (ii) Bayesian, (iii) Instance
Based, (iv) Support Vector Machine, and (v) Ensemble. Following we present details
of five well-known learning models.

Multilayer Perceptron [39]: a feed forward Neural Network consisting of at least
three layers of neurons with a non-linear activation function: one for inputs,
one for outputs and one or more hidden layers. Training is carried out through
back propagation.

Naive Bayes [40]: is a simple probabilistic classifier. The core concept is based on
the Bayes theorem [40]. Generally, naive bayes classifiers are based on the
assumption that features are independent with each other.

k-Nearest Neighbors (k-NN) [41]: is an instance-based learning algorithm. It lo-
cates the k-nearest instances to the input instance and determines its class by
identifying the single most frequent class label. It is generally considered not
tolerant to noise and missing values. Nevertheless, it is highly accurate, insen-
sitive to outliers and works well with both nominal and numerical features.

Support Vector Machines (SVM) [42]: it conceptually implements the following
idea: input vectors are non-linearly mapped to a very high dimensional feature
space. In this feature space a linear decision surface is constructed. Special
properties of the decision surface ensures high generalization ability of the
classifier.

30 Background

Random Forest [43]: it creates many classification trees. To classify a new object
from an input vector, it maps the input vector down each of the trees in the
forest. Each tree gives a classification, and we say the tree “votes” for that
class. The forest chooses the classification having the most votes (over all the
trees in the forest).

In our modeling phase we applied k-fold cross validation [38] to reduce the
variance of a performance score. In the k-fold cross validation, k is the number of
splits to make in the dataset. In this approach, we choose value of k=10. This will
result in splitting the dataset into 10 portions (10 folds) and run the learning model
10 times. For each algorithm training will be run on 90% of the data and testing on
the 10%. The model will exchange which 10% of the data is tested with each run. In
particular with k value of 10 will use each data instance as a training instance exactly
9 time and test instance 1 time.

We also adopted general classification performance evaluation measures such as
precision, recall, and F1 score [44]. Evaluation of the classification performance is
based on considering one of the output classes as the positive class and defining: (i)
true positives (TP): the number of samples correctly labeled as in the positive class;
(ii) false positives (FP): the number of samples incorrectly labeled as in the positive
class; (iii) true negatives (TN): the number of samples correctly labeled as not in the
positive class; (iv) false negatives (FN): the number of samples incorrectly labeled
as not in the positive class.

We present the formulas of the aforementioned metrics:

Precision (P): It is based on positive predictive value, defined as P = T P
T P+FP ;

Recall (R): its related to true positive rate also know as sensitivity, defined as
R = T P

T P+FN ;

F1 Score (F1): its a measure of test accuracy and defined as the harmonic mean of
precision and recall: F1 = 2∗P∗R

P+R .

Chapter 3

State of the Art

This chapter provides an overview over the state-of-the art in the context of Knowl-
edge Base (KB) quality assessment and validation approaches. The research activities
related to this thesis fall into three main areas: (i) Linked Data Dynamics, (ii) Knowl-
edge Base Quality Assessment, and (iii) Knowledge Base Validation. In Section
3.1, we illustrate the related works regarding linked data dynamics as well as the
main challenges present in this research area. Next, in Section 3.2 we present a
comparative survey of quality assessment for evolving KBs. Finally, Section 3.3
reports a detailed overview of the existing approaches for KB validation.

3.1 Linked Data Dynamics

Taking into account changes over time, every dataset can be dynamic. In this context,
a comparative analysis is present by Umbrich et al. [45]. More specifically, they
analyzed entity dynamics using a labeled directed graph based on LOD, where a node
is an entity that is represented by a subject. In addition, Umbrich et al. [46] present
a comprehensive survey based on technical solutions for dealing with changes in
datasets of the Web of Data.

Considering dataset dynamicity, Käfer et al. [10] design a Linked Data Observa-
tory to monitor linked data dynamics. They setup a long-term experiment to monitor
the two-hop neighbourhood of a core set of eighty thousand diverse Linked Data
documents on a weekly basis. They explore the dataset dynamics taking into consid-

32 State of the Art

eration of five use cases such as synchronization, smart caching, hybrid architectures,
external-link maintenance, and vocabulary evolution and versioning.

Papavasileiou et al. [8] explored high-level change detection in RDF(S) KBs by
addressing change management for RDF(S). They target the data management issues
in KBs where data is maintained by large communities, such as scientists or librarians,
who act as curators to ensure high quality of data. Such curated KBs are constantly
evolving for various reasons, such as the inclusion of new experimental evidence
or observations, or the correction of erroneous conceptualizations. Managing such
changes poses several research problems, including the problem of detecting the
changes (delta) among versions of the same KB developed and maintained by
different groups of curators, a crucial task for assisting them in understanding the
involved changes. They addressed this problem by proposing a language change that
allows the formulation of concise and intuitive deltas. Similarly, in our work, we
explore the deltas present in consecutive KB releases using data profiling.

Pernelle et al. [15] present an approach that detects and semantically represents
data changes in RDF datasets. Klein et al. [47] analyze ontology versioning in
the context of the Web. They look at the characteristics of the release relation
between ontologies and at the identification of online ontologies. Then they describe
a web-based system to help users to manage changes in ontologies.

In [20], Mihindukulasooriya et al. present an empirical analysis of the ontologies
that were developed in a collaborative manner to understand community-driven
ontology evolution in practice. They have analyzed, how four well-known ontologies
(DBpedia, Schema.org, PROV-O, and FOAF) have evolved through their lifetime and
they observed that quality issues were due to the ontology evolution. They pointed
out the need of having multiple methodologies for managing changes. They also
summarize that the selected ontologies do not follow the theoretical frameworks
found in literature. They present that the most common quality problems caused by
ontology changes include the use of abandoned classes and properties in data and the
presence of duplicate classes and properties. Nevertheless, their work is not focused
on dataset changes but rather how changes in the ontology affect the data described
using those ontologies.

In [7], Nishioka et al. present a clustering technique over the dynamics of
entities to determine common temporal patterns. The quality of the clustering is
evaluated using entity features such as the entities’ properties, RDF types, and

3.2 Knowledge Base Quality Assessment 33

pay-level domain. In addition, they investigated to what extent entities that share
a feature value change over time. In this work, we explore dynamic features for
detecting completeness issues. Instead of using a clustering technique [7] based on
the temporal pattern of entities, we focus on presenting the evolution analysis as a
classification problem to detect quality issues.

3.2 Knowledge Base Quality Assessment

In the field of Linked Data, quality is a largely investigated research field, and many
approaches to data quality management have been proposed. There exists a large
number of data quality frameworks and tools based on manual, crowd-sourced, and
automatic approaches. The main contribution of this thesis is a quality assessment
approach for evolving KB using data profiling. We consider data profiling as a key
measurement component for our approach. In this section, we review literature that
analyze the quality of various aspects of KBs.

Comprehensive Studies. A comprehensive overview of the RDF dataset profiling
presented by Ellefi et al. [9]. Authors explored the RDF dataset profiling feature,
methods, tools, and vocabularies. They present dataset profiling in a taxonomy and
illustrate the links between the dataset profiling and feature extraction approaches.
They organized dataset profiling features into seven top-level categories: 1. General;
2. Qualitative; 3. Provenance; 4. Links; 5. Licensing; 6. Statistical; 7. Dynamics.
They considered dataset dynamics as profiling features using the study presented
by Käfer et al. [10]. Similarly, in this work, we explored the concepts regarding
qualitative, statistical, and dynamic features. Furthermore, we also explored the
studies regarding RDF data validation languages. In this work, we explored the
dataset dynamics features using periodic data profiling. More specifically, we
explored the aspects of dataset dynamics introduced by Ellefi et al. [9] to analyse
various quality characteristics.

Considering the data quality methodologies applied to linked open data (LOD),
a comprehensive systematic literature review presented by Zaveri et al. [22]. They
have extracted 26 quality dimensions and a total of 110 objective and subjective
quality indicators. They organized linked data quality dimensions into following
categories, 1. Contextual dimensions; 2. Trust dimensions; 3. Intrinsic dimensions;
4. Accessibility dimensions; 5. Representational dimensions; 6. Dataset dynamicity

34 State of the Art

dimensions. They explored dataset dynamics features based on three dimensions:
1. Currency: speed of information update regarding information changes; 2. Volatility:
length of time which the data remains valid; 3. Timeliness: information is available in
time to be useful. The work presented in this thesis is related to intrinsic, contextual
and dataset dynamicity dimensions.

Quality Assessment Frameworks. Taking into account data quality analysis using
manual approaches, Bizer et al. [48] present WIQA, a quality assessment framework.
This framework enables information consumers to apply a wide range of policies to
filter information. It employs the Named Graphs data model for the representation of
information together with quality-related meta-information and uses the WIQA-PL1

policy language for expressing information filtering policies. WIQA-PL policies are
expressed in the form of graph patterns and filter conditions. WIQA can be used
to understand the intended changes present in a KB by applying graph patterns and
filtering conditions. Based on this study, instead of a static version of a KB, we can
explore multiple versions of KB using WIQA policy.

Using provenance metadata information, Mendes et al. [49] present Sieve frame-
work that uses user configurable quality specification for quality assessment and
fusion method. Sieve is integrated as a component of the Linked Data Integration
Framework (LDIF).2 In particular, Sieve uses the LDIF provenance metadata and
the user configured quality metrics to generate quality assessment scores. They
propose a set of Linked Data quality assessment measures such as: 1. Intensional
completeness; 2. Extensional completeness; 3. Recency and reputation; 4. Time since
data modification; 5. Property completeness; 6. Property conciseness; 7. Property
consistency. Instead of LDIF provenance metadata and user configuration, we focus
on the dataset dynamics features from data profiling.

In [50], Kontokostas et al. propose a methodology for test-driven quality assess-
ment of Linked Data. They formalize quality issues and employ SPARQL query
templates, which are instantiated into quality test queries. Using test driven qual-
ity assessment approach, they present RDFUnit3 a tool centered around schema
validation. It runs automatically based on a schema and manually generates test
cases against an endpoint. RDFUnit has a component that turns RDFS axioms and
simple OWL axioms into SPARQL queries that check for data that does not match

1http://wifo5-03.informatik.uni-mannheim.de/bizer/wiqa/
2http://ldif.wbsg.de/
3https://github.com/AKSW/RDFUnit

http://wifo5-03.informatik.uni-mannheim.de/bizer/wiqa/
 http://ldif.wbsg.de/
https://github.com/AKSW/RDFUnit

3.2 Knowledge Base Quality Assessment 35

the axiom. In contrast, in this study, we aim to learn the constraints (which might
not be explicitly stated as RDFS or OWL axioms) as RDF Shapes. Although the
overall objectives are somewhat similar to this work, for quality analysis we mainly
explore aspects of KB dynamicity. Furthermore, in our approach, we mainly use
data profiling information as the input for the process. Results from the consistency
analysis can be extended by using RDFUnit for further validation.

In [35], Debattista et al. describes a conceptual methodology for assessing Linked
Datasets, proposing Luzzu, a framework for Linked Data Quality Assessment. Luzzu
is based on four major components: 1. An extensible interface for defining new
quality metrics; 2. An interoperable, ontology-driven back-end for representing
quality metadata and quality problems that can be re-used within different semantic
frameworks; 3. Scalable dataset processors for data dumps, SPARQL endpoints, and
big data infrastructures; 4. A customisable ranking algorithm taking into account
user-defined weights. Luzzu is a stream-oriented quality assessment framework that
focuses on data instance-centric measurement of a user-defined collection of quality
metrics. The metrics validation requires users to write Jave code for implementing
some checks. Resulting to be not feasible for many users such as knowledge
engineers since they need to write an OWL reasoner to detect the logical errors in
the unified dependency tree of a linked data schema. Furthermore, various research
works explored the importance of quality metrics in a probabilistic and deterministic
settings. Debattista et al. [51], explored probabilistic techniques such as Reservoir
Sampling, Bloom Filters and Clustering Coefficient estimation for implementing
a broad set of data quality metrics in an approximate but sufficiently accurate way.
On the other hand, various research works put emphasis on the problem of error
detection in a KB. For example, distance-based outlier detection by Debattista et
al. [52] and error detection in relation assertions by Melo et al. [53] gave more
focus towards error detection in schemes. Although the core concepts are somewhat
similar to this work, the focus of this study is on dataset dynamics and detection of
quality issues using multiple versions of the same dataset. We explore the persistency,
completeness and consistency issues by using data profiling for evolving KBs.

Crowdsourcing. To understand the intended changes by stakeholders due to
KB updates, a crowd-sourcing quality assessment approach can be used. A crowd-
sourcing quality assessment approach has been introduced by Acosta et al. [54] for
quality issues that are difficult to uncover automatically. They explore most common
quality issues in DBpedia datasets, such as incorrect object values, incorrect datatype

36 State of the Art

or language tag and incorrect link. The authors introduce a methodology to adjust
crowdsourcing input from two types of audience: (i) Linked Data experts through a
contest to detect and classify erroneous RDF triples and (ii) Crowdsourcing through
the Amazon Mechanical Turk. In detail, they adapt the Find-Fix-Verify crowd-
sourcing pattern to exploit the strengths of experts and paid workers. Furthermore,
they use TripleCheckMate [55] a crowdsourcing tool for the evaluation of a large
number of individual resources, according to a defined quality problem taxonomy.
To understand the quality of data sources, Flemming’s [56] present an assessment
tool that calculates data quality scores based on manual user input for data sources.
More specifically, a user needs to answer a series of questions regarding the dataset
and assigns weights to the predefined quality metrics. However, it lacks several
quality dimensions such as completeness or inconsistency.

Metadata. In [57], Assaf et al. introduce a framework that handles issues
related to incomplete and inconsistent metadata quality. They propose a scalable
automatic approach for extracting, validating, correcting and generating descriptive
linked dataset profiles. This approach applies several techniques in order to check
the validity of the metadata provided and to generate descriptive and statistical
information for a particular dataset or for an entire data portal. In particular, they
extensively used dataset metadata against an aggregated standard set of information.
This leads to dependency towards availability of metadata information. Instead, in
our approach, we only focus on summary statistics from collected dataset, and it is
independent from external information since the quality profiling can be done only
using summary statistics.

Temporal Analysis. In [58], Rula et al. start from the premise of dynamicity
of Linked Data and focus on the assessment of timeliness in order to reduce errors
related to outdated data. To measure timeliness, they define a currency metric that
is calculated in terms of differences between when the observation is done (current
time) and the time when the data was modified for the last time. Furthermore they
also take into account the difference between the time of data observation and the
time of data creation. Similary, in our work, we explore KB dynamicity using data
profiling information. Rather than using timeless measures, we explore the change
behaviour present in the dataset using dynamic profiling features introduced by Ellefi
et al. [9].

3.2 Knowledge Base Quality Assessment 37

In [59], Furber and Hepp focus on the assessment of accuracy, which includes
both syntactic and semantic accuracy, timeliness, completeness, and uniqueness. One
measure of accuracy consists of determining inaccurate values using functional de-
pendence rules, while timeliness is measured with time validity intervals of instances
and their expiry dates. Completeness deals with the assessment of the complete-
ness of schema (representation of ontology elements), completeness of properties
(represented by mandatory property and literal value rules), and completeness of pop-
ulation (representation of real world entities). Uniqueness refers to the assessment
of redundancy, i.e., of duplicated instances. In this work, we explored the changes
present in the KB to identify quality issues.

Considering the version management and linked data lifecycle, Knuth et al. [60]
identify the key challenges for Linked Data quality. As one of the key factors for
Linked Data quality they outline validation that, in their opinion, has to be an integral
part of Linked Data lifecycle. Additional factor for Linked Data quality is version
management, which can create problems in provenance and tracking. Finally, as
another important factor they outline the usage of popular vocabularies or manual
creating of new correct vocabularies. Futhermore, Emburi et al. [61] developed a
framework for automatic crawling the Linked Data datasets and improving dataset
quality. In their work, the quality is focused on errors in data and purpose of the
developed framework is to automatically correct errors.

Statistical analysis. Paulheim et al. [62] present two approaches SDType and
SDValidate for quality assessment. SDType predicts classes of RDF resources thus
completing missing values of rdf:type properties. SDValidate detects incorrect links
between resources within a dataset. These methods can effectively detect errors
on DBpedia, however they require the existence of informative type assertions.
Furthermore, more complex errors containing wrong entities with correct types
cannot be detected. Taking into account probabilistic approach for linked data
quality assessment, Li et al. [63] presented a probabilistic framework using the
relations (equal, greater than, less than) among multiple RDF predicates to detect
inconsistencies in numerical and date values based on the statistical distribution of
predicates and objects in RDF datasets. However, they mainly focused on detecting
errors in the numerical data. In [64], Ruckhaus et al. present LiQuate, a tool based
on probabilistic models to analyze the quality of data and links. They use Bayesian
Networks and rule-based system for quality assessment. The probabilistic rules are
represented by data experts to identify redundant, incomplete and inconsistent links

38 State of the Art

in a set of resources. In our approach, we mainly focus on the statistical profiling at
instance level. This reduces the dependency towards expert intervention.

In the current state of the art, less focus has been given toward understanding
knowledge base resource changes over time to detect anomalies and completeness
issues due to the KB evolution. Furthermore, for an evolving KB, we investigated
two perspectives: (i) Static: data quality analysis with respect to a specific tasks
without considering dataset dynamics; (ii) Dynamic: process of accessing data and
temporal analysis such as timeliness measure. In Table 3.1, we summarize the
reported linked data quality assessment approaches.

3.3 Knowledge Base Validation

The problem of RDF data validation has been researched using Description Logics
considering both Open World and Closed World Assumption. The Web Ontology
Language (OWL) [65] is an expressive ontology language based on Description
Logics (DL). The semantics of OWL addresses distributed knowledge representation
scenarios where complete knowledge about the domain cannot be assumed. Motik
et al. [66] proposed an extension of OWL that attempts to mimic the intuition
behind integrity constraints in relational databases. They divided axioms into regular
axioms and constraints. To address the above mismatch some approaches use OWL
expressions with Closed World Assumption and a weak Unique Name Assumption
so that OWL expressions can be used for validation purposes such as Stardog ICV4

and Tao et al. [67].

Generally, Description Logics (DLs), in turn, bear a first-order predicate logic
semantics. DLs are monotonic and adhere to the Open World Assumption (OWA).
This means that negative or positive conclusions drawn from a knowledge base must
be based on information explicitly present in a knowledge base. Therefore, negative
conclusion may lead to possible logical issues. Under the Closed World Assumption
(CWA) all non-provable expressions are assumed to be false [68]. In [68], Patel-
Schneider explored Description Logics as a mean to provide the necessary framework
for both checking constraints and providing CWA facilities. They utilized inference
as a mean for constraint checking, which is the core service provided by Description

4https://www.stardog.com/docs/

https://www.stardog.com/docs/

3.3 Knowledge Base Validation 39

Table 3.1 Summary of Linked Data Quality Assessment Approaches.

Paper Degree of Au-
tomation

Goal Dataset
Feature

Bizer et al.
[48]

Manual WIQA quality assessment framework enables in-
formation consumers to apply a wide range of poli-
cies to filter information.

Static

Acosta et
al. [54]

Manual A crowd-sourcing quality assessment approach for
quality issues that are difficult to uncover automat-
ically.

Static

Ruckhaus et
al. [64]

Semi-
Automatic

LiQuate, a tool based on probabilistic models to
analyze the quality of data and links.

Static

Paulheim et
al. [62]

Semi-
Automatic

SDType approach using statistical analysis to pre-
dicts classes of RDF resources thus completing
missing values of rdf:type properties.

Static

Furber and
Hepp [59]

Semi-
Automatic

Focus on the assessment of accuracy, which in-
cludes both syntactic and semantic accuracy, time-
liness, completeness, and uniqueness.

Dynamics
(Time-
liness
analysis)

Flemming [56] Semi-
Automatic

Focuses on a number of measures for assessing
the quality of Linked Data covering wide-range of
different dimensions such as availability, accessi-
bility, scalability, licensing, vocabulary reuse, and
multilingualism.

Static

Mendes et
al. [49]

Semi-
Automatic

Sieve framework that uses user configurable qual-
ity specification for quality assessment and fusion
method.

Dynamic
(Time-
liness
analysis)

Knuth et
al. [60]

Semi-
Automatic

They outline validation which, in their opinion, has
to be an integral part of Linked Data lifecycle.

Static

Rula et
al. [58]

Automatic Start from the premise of dynamicity of Linked
Data and focus on assessment of timeliness in order
to reduce errors related to outdated data.

Dynamic
(Time-
liness
analysis)

Kontokostas
et al. [50]

Automatic Propose a methodology for test-driven quality as-
sessment of Linked Data.

Dynamic

Emburi et
al. [61]

Automatic They developed a framework for automatic crawl-
ing the Linked Data datasets and improving dataset
quality.

Dynamic
(Temporal
Analysis)

Li et al. [63] Automatic They proposed an automatic method to detect error
between multi attributes which can not be detected
only considering single attribute.

Dynamic

Assaf et
al. [57]

Automatic They propose a framework that handles issues re-
lated to incomplete and inconsistent metadata qual-
ity.

Static

Debattista et
al. [35]

Automatic They propose a conceptual methodology for assess-
ing Linked Datasets, proposing Luzzu, a frame-
work for Linked Data Quality Assessment.

Static

40 State of the Art

Logics. OWA makes it challenging to perform certain validation tasks. For example,
a minimum cardinality constraint cannot be violated under OWA because there
is always a possibility that a triple exists somewhere. Furthermore, under certain
circumstances reasoners can find some inconsistencies using the axioms present in
OWL model. This utility can lead to a confusion to think of ontological languages as
validation languages. Nevertheless, the underpinning principles used in OWL such
as the use of Open World Assumption (OWA) and Non-Unique Name Assumption,
can lead to unexpected and confusing results in a validator [68, 69].

Ontology based learning is commonly defined as a field that comprises techniques
for automated acquisition of ontological knowledge from data. Thus, the paradigm
has shifted such that many approaches do not aim to generate a full fledged, gold-
standard ontology from data anymore, but they rather focus on acquiring axioms
of certain shapes such as concept definitions, atomic subsumptions, disjointness
axioms. There are several works done on induction of Description Logic axioms
using methods, such as:

Association rule mining (ARM). Abedjan et al. [70] present rule-based approaches
for predicate suggestion, data enrichment, ontology improvement, and query
relaxation. They identified inconsistencies in the data through predicate sug-
gestion, enrichment with missing facts, and alignment of the corresponding
ontology. Also they allow users to handle inconsistencies during query formu-
lation through predicate expansion techniques.

Probabilistic graphical models (PGMs). An approach of probabilistic graphical
models (PGMs) allows to generate interpretable models that are constructed
and then manipulated by reasoning algorithms [71]. These models can also
be learned automatically from data, allowing the approach to be used in cases
where the manual building of a model is difficult or even impossible.

Statistical Relational Learning (SRL). It is a branch of machine learning that tries
to model a joint distribution over relational data [72]. SRL is a combination of
statistical learning which addresses uncertainty in data and relational learning
which deals with complex relational structures [73].

Inductive logic programming (ILP). Buhmann et al. [74] present an approach
of inductive lexical learning of class expressions by combining an existing

3.4 Summary 41

logical learning approach with statistical relevance measures applied on textual
resources.

Pattern extraction. It is an area of work where RDF data is analyzed to extract
common patterns, for example, in the form of Frequent Graph Patterns [75] or
Statistical Knowledge Patterns [76]. These approaches analyze the underlying
RDF data and extract the characteristics related to the ontological axioms
based on most frequent patterns. This approach is closely related to the work
presented in this thesis.

Our final goal is different from these research approaches. Instead of inducting
the ontological axioms, our goal is to induct validation rules. For example, cardi-
nality estimation has been studied in many different domains including relational
data. In addition, to integrity constraint validation, it has many other applications
such as network monitoring for detecting DDoS attacks or worm propagation, link
based spam detection, relation join query optimization. The existing cardinality esti-
mation algorithms such as Hit Counting [77], Adaptive Sampling [78], Probabilistic
Counting [79] and HYPERLOGLOG [80] aim to estimate the number of distinct
elements in very large set of data with duplicate elements. Neuman and Moerkotte
have proposed “characteristic sets” for performing cardinality estimations for RDF
queries with multiple joins [81]. These works differ from the work presented in this
thesis on two axes. First, they are focused on determining the cardinalities of each
value rather than the cardinality of the entity-value relation. Second, they are focused
on query optimization rather than integrity constraint validation. However, we use
the base of these works such as analysis of mean, variance, and other statistical
features to derive an approach for cardinality estimation for integrity constraint
validation.

3.4 Summary

In this chapter we discussed the state of the art of quality and validation approaches
for KBs. As reflected in this chapter, there is a significant effort in the Semantic
Web community to evaluate the quality of a KB. However, in the current state of
the art, less focus has been given toward understanding knowledge base resource
changes over time to detect anomalies over various releases, which is instead the main

42 State of the Art

contribution of this thesis. On the other hand, various constraints can be computed
in RDF KBs based on their success in the relational model, such as cardinality and
range constraints. Ontology based learning and Shape expression languages aim to
validate RDF data and to communicate data semantics among users. They cover
constraints such as keys and cardinality; however, their expressivity is limited and
require user interventions in every step. In this thesis, we aim to automate the process
of Shape generation using learning models.

Chapter 4

Evolution Analysis and Quality
Characteristics

In this chapter, we explore the concepts of KB evolution analysis and proposed
four quality characteristics. We considered the profiling of a knowledge base as
a key component of the evolution analysis and the feature extraction process. We
investigated the KB evolution analysis using high-level change detection and the
factors affecting the evolution. Taking into account RDF dataset profiling and the
dynamic features, we proposed four evolution-based quality characteristics. This
chapter is structured as follows: Section 4.1 outlines the KB evolution analysis;
Section 4.2 discusses the dynamic features from RDF data profiling. Finally, the
proposed quality characteristics and measurement functions are illustrated in Section
4.3. This chapter is based on the work presented in [2].

4.1 Evolution Analysis

Large Knowledge Bases (KBs) are often maintained by communities that act as
curators to ensure their quality [27]. KBs naturally evolve in time due to several
causes: i) resource representations and links that are created, updated, and removed;
ii) the entire graph can change or disappear [82]. We can identify this changes
using high-level change detection based on dynamics features. However, the kind of
evolution that a KB is subjected to depends on several factors, such as:

44 Evolution Analysis and Quality Characteristics

• Frequency of update: KBs can be updated almost continuously (e.g. daily or
weekly) or at long intervals (e.g. yearly);

• Domain area: depending on the specific domain, updates can be minor or
substantial. For instance, social data is likely to be subject to wide fluctua-
tions than encyclopedic data, which are likely to undergo smaller knowledge
increments;

• Data acquisition: the process used to acquire the data to be stored in the KB
and the characteristics of the sources may influence the evolution; for instance,
updates on individual resources cause minor changes when compared to a
complete reorganization of a data source’s infrastructure such as a change of
the domain name;

• Link between data sources: when multiple sources are used for building a
KB, the alignment and compatibility of such sources affect the overall KB
evolution. The differences of KBs have been proved to play a crucial role in
various curation tasks such as the synchronization of autonomously developed
KB versions, or the visualization of the evolution history of a KB [8] for more
user-friendly change management.

Taking into account the above mentioned factors, the benefit of KB evolution
analysis can be two-fold [17]: (1) quality control and maintenance; and (2) data
exploitation. Considering quality control and maintenance, KB evolution can help
to identify common issues such as broken links or URI changes that create incon-
sistencies in the dataset. Data exploitation can provide valuable insights regarding
dynamics of the data, domains, and the communities that explore operational aspects
of evolution analysis [17].

4.2 Dynamic Features

Considering data profiling, Ellefi et al. [9] presented a set of dynamic features.
This set of features explores the changed behavior of KB resources. In particular,
it explores the impact of KB resource changes over time. An ideal use case for
these features is predicting the availability of resources over various releases. It
directly affects the completeness of KB resources. Dynamic features can be used for

4.3 Evolution-based Quality Characteristics and Measures 45

measuring the completeness quality characteristics. Based on Ellefi et al. [9] study,
we explored the following dynamic features:

Degree of change: it helps to understand to what extent the performed update
impacts the overall state of the knowledge base. Furthermore, the degree
of changes helps to understand what are the causes for change triggers as well
as the propagation effects.

Lifespan: knowledge bases contain information about different real-world objects
or concepts commonly referred as entities. Lifespan represents the period
when a certain entity is available and it measures the change patterns of a
knowledge base. Change patterns help to understand the existence and the
categories of updates or change behavior.

Update history: it contains basic measurement elements regarding the knowledge
base update behavior such as frequency of change. The frequency of change
measures the update frequency of KB resources. For example, the instance
count of an entity type for various versions.

4.3 Evolution-based Quality Characteristics and Mea-
sures

In this section, we define four evolution-based quality characteristics that allow ad-
dressing the quality issues (Section 1.1) due to unrestrained evolution. These quality
characteristics are fall into two dimensions: intrinsic (those that are independent of
user’s context), and representational (those that capture aspects related to the design
of the data) [22]. Table 4.1 illustrates the quality characteristics with corresponding
quality dimensions and dynamic features. In the context of RDF data model our
approach focuses on two different types of elements in a KB: classes and properties.
At triple level we only explored subjects and predicates thus disregarding the objects
either resources or literals. To measure if a certain data quality characteristic is
fulfilled for a given KB, each characteristic is formalized and expressed in terms of a
measure with a value in the range [0..1].

46 Evolution Analysis and Quality Characteristics

Table 4.1 Quality characteristics with corresponding quality dimensions and dynamic fea-
tures.

Dimensions Characteristics Features

Intrinsic
Persistency Degree of change

Historical Persistency Lifespan

Representational
Consistency

Update history
Completeness

4.3.1 Basic Measure Elements

The foundation of our approach is the change at the statistical level regarding the
variation of absolute and relative frequency count of entities between pairs of KB
versions.

In particular, we aim to detect variations of two basic statistical measures that
can be evaluated with the most simple and computationally inexpensive operation,
i.e. counting. The computation is performed on the basis of the classes in a KB (V),
i.e. given a class C we consider all the entities t of the type C:

count(C) = |{s : ∃⟨s, typeof,C⟩ ∈V}|

The count(C) measurement can be performed by means of a basic SPARQL
query such as:

SELECT COUNT(DISTINCT ?s) AS ?COUNT
WHERE { ?s a <C> . }

The second measure element focuses on the frequency of the properties, within a
class C. We define the frequency of a property (in the scope of class C) as:

freq(p,C) = |{⟨s, p,o⟩ ∈V : ∃⟨s, typeof,C⟩ ∈V}|

The freq(p,C) measurement can be performed by means of a simple SPARQL
query having the following structure:

SELECT COUNT(*) AS ?FREQ
WHERE {

4.3 Evolution-based Quality Characteristics and Measures 47

?s <p> ?o.
?s a <C>.

}

There is an additional basic measurement element that can be used to build
derived measures: the number of properties present for the entity type C in the
release i of the KB.

NP(C) = |{p : ∃⟨s, p,o⟩ ∈V ∧⟨s, typeof,C⟩ ∈V}|

The NP(C) measure can be collected by means of a SPARQL query having the
following structure:

SELECT COUNT(DISTINCT ?p) AS ?NP
WHERE {

?s ?p ?o.
?s a <C>.

}

In the remainder, we will use a subscript to indicate the release the measure
refers to. The releases are numbered progressively as integers starting from 1 and,
by convention, the most recent release is n. So, for instance, countn−1(foaf:Person)
represents the count of resources typed with foaf:Person in the last but one release of
the knowledge base under consideration. Table 4.2 illustrates two common types of
change behaviour using property frequency as measurement element.

Table 4.2 Categories of change behaviour.

Type Description

Stable/Growth = 1 If the property frequency in re-
lease N equal or greater than
N −1

Unstable = 0 If the property frequency in re-
lease N less than N −1

48 Evolution Analysis and Quality Characteristics

4.3.2 Persistency

We define the Persistency characteristics as the degree to which erroneous removal
of information from current version may impact stability of the resources. Ellefi et
al. [9] present degree of change feature as an aggregation measure of the dataset
dynamics. In this context, Persistency characteristic measure helps to understand
stability behaviour of an evolving KB. This quality characteristic provides insights
to detect any missing resources in the last KB release.

An additional important feature to be considered when analyzing a knowledge
base is that the information stored is expected to grow, either because of new facts
appearing in the reality, as time passes by, or due to an extended scope coverage [45].
Persistency measures provide an indication of the adherence of a knowledge base to
such continuous growth assumption. Using this quality measure, data curators can
identify the classes for which the assumption is not verified. Persistency measure
requires atleast two releases of a KB for the measurement function.

The Persistency of a class C in a release i : i > 1 is defined as:

PersistencyClassi(C) =

{
1 if counti(C)≥ counti−1(C)

0 if counti(C)< counti−1(C)

the value is 1 if the count of subjects of type C is not decreasing, otherwise it is
0.

Persistency at the knowledge base level – i.e. when all classes are considered –
can be computed as the proportion of persistent classes:

PersistencyKBi(KB) =

NCi
∑
j=1

PersistencyClassi(C j)

NCi

where NCi is the number of classes analyze, and i is the release of the KB.

4.3.3 Historical Persistency

Historical persistency is a derived from the persistency quality characteristic. It
captures the whole lifespan of a KB with the goal of detecting quality issues, in

4.3 Evolution-based Quality Characteristics and Measures 49

several releases, for a specific entity-type [9]. It considers all entities presented
in a KB and provides an overview of the whole KB. It also helps data curators
to decide which knowledge base release can be used for future data management
tasks. Historical persistency measure requires informations regarding history of KB
updates for the measurement function.

The Historical Persistency measure is computed as the average of the pairwise
persistency measures for all releases.

H_PersistencyClass(C) =

n
∑

i=2
PersistencyClassi(C)

n−1

Similarly to Persistency, it is possible to compute Historical Persistency at the
KB level:

H_PersistencyKB(KB) =

n
∑

i=2
H_PersistencyClassi

n−1

4.3.4 Consistency

Consistency characteristics check inconsistent facts that included in a KB due to
unrestrained evolution. This quality characteristic relates to the Consistency quality
characteristic defined in the ISO/IEC 25012 standard. The standard defines it as the
“degree to which data has attributes that are free from contradictions and are coherent
with other data in a specific context of use. It can be either or both among data
regarding one entity and across similar data for comparable entities” [1]. Zaveri et
al. [22] also explored the Consistency characteristics. In detail, a knowledge base is
defined to be consistent if it does not contain conflicting or contradictory facts [22].

We assume that extremely rare predicates are potentially inconsistent, see e.g.
the dbo:Infrastructure/length property discussed in the example presented in Section
2.6. We can evaluate the consistency of a predicate on the basis of the frequency
distribution for an entity type.

We define the consistency of a property p in the scope of a class C:

50 Evolution Analysis and Quality Characteristics

Consistencyi(p,C) =

1 if freqi(p,C)≥ T

0 if freqi(p,C)< T

Where T is a threshold that can be either a KB-dependent constant or can defined
on the basis of the count of the scope class.

Threshold Value Analysis:

We propose a threshold value analysis approach similar to SDValidate approach
presented by Paulheim and Bizer[62]. Similarly to the SDValidate approach, we
assume that properties with low relative frequency are more error-prone. In this
account, in our threshold value analysis, we have explored the frequency distribution
of properties to identify the threshold value. Furthermore, instead of one version, we
considered multiple versions to assess a threshold value empirically.

We started our threshold value analysis by using a histogram of property fre-
quencies distribution. From our initial observation, it is suitable to say that a good
threshold value could be a point where there is a trend present in the distribution.
Here the word trend should be interpreted as “the way things are heading”, e.g., a
possible variation in the property frequency distribution. Concluding this reasoning,
we come to the assumption that a good threshold point should be located at an
extreme value in the first derivative of our histogram. To identify the changes in
the histogram, we simply focus on the kernel density estimation (KDE) [83]. It is
a non-parametric way of the density function estimation. Furthermore, the density
function is based on univariate probability distribution [84]. In the threshold value
analysis, we considered KDE for the following reasons: (i) univariate probability
distribution is considered due to property frequency is the primary measurement
element; (ii) frequency distribution of properties is unknown for each KB releases,
and (iii) update frequency varies with each KB.

In our approach, we use the local minimum of the KDE based on the property fre-
quency distribution as a threshold value. However, in most cases, a priori knowledge
must be applied to select the most appropriate threshold [85]. In this account, we
chose various trend point such as 50, 100, 200, and 500 to maximize the precision of
the qualitative analysis results. On the other hand, the number of properties varies
with each KB release. Therefore, we also evaluated the last three releases of a KB
to further validate our assumption. From our empirical analysis (Sec. 7.2.3) , we

4.3 Evolution-based Quality Characteristics and Measures 51

considered 100 as the threshold value by evaluating properties present in various KB
releases that are optimized in the context of our qualitative analysis.

4.3.5 Completeness

ISO/IEC 25012 defines the Completeness quality characteristic as the “degree to
which subject data associated with an entity has values for all expected attributes
and related entity instances in a specific context of use” [1]. In general, completeness
consists in the degree to which all required information is present in a particular
dataset [22].

Evolution-based completeness focuses on the removal of information as a nega-
tive effect of the KB evolution. It is based on the continuous growth assumption as
well; as a consequence we expect properties of subjects should not be removed as
the KB evolves (e.g. dbo:Astronaut/TimeInSpace property described in the example
presented in Section 2.6). Completeness measure requires two releases of a KB for
the measurement function.

The basic measure we use is the frequency of predicates, in particular, since
the variation in the number of subjects can affect the frequency, we introduce a
normalized frequency as:

NFi(p,C) =
freqi(p,C)

counti(C)

On the basis of this derived measure we can thus define completeness of a
property p in the scope of a class C as:

Completenessi(p,C) =

1, NFi(p,C)≥ NFi−1(p,C)

0, NFi(p,C)< NFi−1(p,C)

At the class level the completeness is the proportion of complete predicates and
can be computed as:

Completenessi(C) =

NPi(C)

∑
k=1

Completenessi(pk,C)

NPi(C)

52 Evolution Analysis and Quality Characteristics

where NPi(C) is the number of properties present for class C in the release i of
the knowledge base, and pk.

4.4 Summary

In this chapter, we proposed four quality characteristics using KB evolution analysis
that can be used to assess a KB. Further, for each quality characteristics, we provide
different measurement functions. Persistency and Historical Persistency measure
depends on the degree of change feature of the entity type dynamics. On the other
hand, Completeness and Consistency measures use the update history of properties
present in a entity type for identifying any issues present in the dataset. These metrics
are implemented as part of a tool, namely, KBQ tool [24]. This tool is employed to
assess the quality of any KB including our use cases. Detailed analysis and validation
of quality characteristics is discussed in Chapter 7.

Chapter 5

RDF Shape Induction

Taking into account KB evolution, we explore the work present by Papavasileiou et
al. [8], where they formalize KB evolution based on simple changes at low-level and
complex changes at high-level. Authors considered low-level and high-level changes
are more schema-specific and dependent on the semantics of data. We adopted a
similar approach using instance profiling information as a building block for quality
analysis (Chapter 4). In this account, high-level change detection at the instance
level, being coarse-grained, cannot capture all possible quality issues. However,
they can help to identify common quality issues such as errors in the data extraction
and/or in the integration process. Furthermore, in evolving KBs, the higher the level
of changes, the more context-dependent the issue becomes, as it is tied with factors
such as the domain at hand, the design decision, the underlying data, volume, dataset
dynamicity and so on. For example, let us consider the issues of erroneous instance
deletion of an entity type. If the schema remains unchanged, high-level changes at
the instance level will capture erroneous changes present in an evolving KB. This
could help to detect completeness issues for a specific entity type. However, if the
version of a KB is deployed with design issues, such as incorrect mappings, a quality
analysis using high-level change detection may lead to increasing the number of
false positives.

Considering the limitations of high-level change detection and the changes
present at the schema level, we have investigated RDF validation using integrity
constraints. Traditionally, in databases, constraints are limitations incorporated in
the data that are supposed to be satisfied all the time by instances [86]. They are

54 RDF Shape Induction

useful for users to understand data as they represent characteristics that data naturally
exhibits [87]. In practical settings, constraints are used for three main tasks: (i)
specifying properties that data should hold; (ii) handle contradictions within the
data or with respect to the domain under consideration; or (iii) as a help for query
optimization. In this thesis, we also explored W3C shapes constraints language
(SHACL) [88] for assessing the structural integrity constraints and validation rules
for RDF instance data.

There are significant theoretical and practical problems in creating a consistent
constraint checking approach using ontologies. For example, the W3C Recommen-
dation OWL, based on Description Logic and the Open World Assumption, was
designed for inferring new knowledge rather than for validating data using axioms.
Both reasoner and validator have different functions, i.e., a reasoner is used for
inferring new knowledge, even though it may find some inconsistencies as well,
while a validator is used for finding violations against a set of constraints. In this
context, we explore the applicability of a machine learning model to automate the
validation process for large KBs.

One of the primary use cases for generating RDF Shapes from data is the quality
assessment. In this chapter, we describe the RDF Shape Induction process using
SHACL constraints components. In this thesis, we mainly focus on three types
of constraints namely, cardinality, range, and string based constraints. We consid-
ered these constraints to identify any logical contradiction due to unrestrained KB
evolution. Moreover, using these constraints, in this chapter we outline the details
of RDF Shape induction process by leveraging on data profiling information. The
RDF Shape induction process is based on the work presented in [26]. This chapter
is structured as follows: Section 5.1 describes the technical details of RDF shape
induction, which is a key step for RDF validation. Furthermore, Section 5.1 outlines
the required data profiling information for shape induction process, and the details of
RDF Shape induction implementation for feature extraction by analyzing the English
DBpedia KB 2016-04 release.

5.1 SHACL Constraints Components and Shape Induction 55

5.1 SHACL Constraints Components and Shape In-
duction

Consistency checks whether inconsistent facts are included in the KB [22]. For
accessing consistency, we can use an inference engine or a reasoner, which sup-
ports the expressivity of the underlying knowledge representation formalism. In
this context, languages such as W3C Shapes Constraint Language (SHACL) and
Shape Expressions Language (ShEx) allow integrity constraints to be defined for
RDF data and to validate data. In this thesis, we explored the integrity constraints
definitions presented in SHACL core definitions for consistency check. Furthermore,
we generate shapes at the class-level using data profiling information. An example
excerpt of RDF Shape in SHACL for the dbo:Person class is illustrated in Listing 5.1.

Listing 5.1 A snippet from an example Person shape

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:DBpediaPerson a sh:NodeShape;

sh:targetClass dbo:Person;

sh:property [sh:path foaf:name;

sh:minCount 1;

sh:nodeKind sh:Literal];

sh:property [sh:path dbo:birthDate;

sh:datatype xsd:date ;

sh:minCount 1;

sh:maxCount 1;

sh:nodeKind sh:Literal] ;

sh:property [sh:path dbo:birthPlace;

sh:datatype dbo:Place;

sh:nodeKind sh:BlankNodeOrIRI;

sh:minCount 1;

sh:maxCount 1] .

We consider three constraints for consistency check for evolving KBs: cardinality,
range, and string constraint. We consider these three constraints based on the
following conditions: (i) to evaluate properties with correct specifications, we explore
cardinality constraints to identify the correct mapping of properties for a specific

56 RDF Shape Induction

class, and (ii) to evaluate contradictions within the data, we explore the range and
sting constraints values.

RDF Shapes could help to validate a KB; nevertheless, it is a tedious task to do
manually. Thus, to address the challenge of automatically generating RDF Shapes,
we propose RDF Shape induction based on data profiling. We define a generic
workflow so that it can apply to any constraint. The goal of the workflow is to
extract the constraints by analyzing the data patterns and statistics. Using the results
from the statistical analysis, we can extract constraints features to generate RDF
Shapes that can be used for validation. The main steps of the proposed workflow are
illustrated in Figure 5.1.

Data Profiling

Data Collection

Constraints Generation

Shape Generation

Feature Extraction

Feature Dataset

SPARQL
Endpoints

KB

Fig. 5.1 Workflow of profiling based RDF Shape induction.

Our Shape induction workflow contains two main stages: (1) Data Collection,
and (2) Feature Extraction. In this context, the data collection phase extracts required
statistical informations for constraints generation. Furthermore, the result of the
feature extraction phase is the constraints based feature dataset which is then used for
predictive modeling and evaluation. More specifically, once the constraint prediction
models are built, feature vectors with constraints can be generated.

Taking into account profiling based shape induction tasks, we computed the
RDF term at instance-level according to the data instances only. We thereby use the
following key statistics: (i) Percentage (%) of IRIs, blank nodes, and literals; (ii)
Triples with IRI and its frequency, length, namespace, patterns; (iii) Triples with
Literals (String/Numarics/Dates) and its frequency, language, length, patterns, min,
max, mean, std, variance.

5.1 SHACL Constraints Components and Shape Induction 57

The motivation for using these key statistics is that these statistics could provide
some insights related to different possible distributions to identify feature vectors.
The percentage (%) of IRIs, blank nodes, and literals are used to extract Range
constraints. Also, statistics of Tiples with IRI is used for Range contraints value
extraction. For cardinality and string constraints extraction, we considered the Triples
with Literals (String/Numarics/Dates) and its frequency, language, length, patterns,
min, max, mean, std, variance. For example, based on the raw cardinality value
distributions we can compute the distinct cardinality values. Further, for various
distributions we derive 11 statistical measures including min-max cardinalities,
mean, mode, standard deviation, variance, quadratic mean, skewness, percentiles,
and kurtosis [89]. Our intuition is that these values are descriptive to classify the
constraints category. Nevertheless, the data can be noisy, and either min or/and max
could be outliers. To address this, we add statistical features that give more insights
about the distribution of the cardinalities such as mean, mode, kurtosis, standard
deviation, skewness, variance and four percentiles.

In the remainder of this section, we describe these three constraints for shape
induction process. We describe each constraint with examples based on the English
DBpedia 201604 release.

5.1.1 Cardinality constraints

We observe a trend in vocabularies where the cardinality constraints are explicitly
expressed [26]. When we analyzed the 551 vocabularies in the Linked Open Vocab-
ularies (LOV) catalogue for the values of owl:minCardinality, 96.91% (848 out of
875) of owl:maxCardinality constraints have value 1 and 93.76% (631 out of 673)
of the owl:minCardinality values either 0 or 1 [26]. Thus, in our work rather than
trying to estimate the exact values of minimum cardinality and maximum cardinality,
we find which cardinality category each property has with respect to a given class.
By doing so, we reduce the problem from a regression problem to a classification
problem. Table 5.1 shows the common cardinality patterns [26].

In the classification task for cardinality constraints, we identify five main types
of cardinality classes: MIN0, MIN1, MIN1+, MAX1, and MAX1+. Out of these,
MIN0 and MAX1+ do not put any constraints on the data, such that, any data will
be valid for those cardinality types. Thus, if we detect those types, we do not

58 RDF Shape Induction

generate constraints. For other types, corresponding SHACL property constraints
are generated as illustrated by Listing 5.2.

Listing 5.2 Cardinality constraints.

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:DBpediaPerson a sh:NodeShape;

sh:targetClass dbo:Person;

for MIN1 and MIN1+

sh:property [sh:path foaf:name;

sh:minCount 1];

for MAX1

sh:property [sh:path dbo:birthDate;

sh:maxCount 1] .

for MAX1+

sh:property [sh:path dbo:union;

sh:maxCount 1] .

Table 5.1 Minimum and maximum cardinality levels.

Key Description

MIN0 Minimum Cardinality = 0

MIN1 Minimum Cardinality = 1

MIN1+ Minimum Cardinality >1

MAX1 Maximum Cardinality = 1

MAX1+ Maximum Cardinality >1

We generate cardinality information for each property associated with the in-
stances of a given class. Our goal is to goal is to induct validation rules using data
from instance level. The work presented by Neumann and Guido [81] help to identify
raw cardinality values using SPARQL queries. They proposed a highly accurate
cardinality estimation method for RDF data using star joins SPARQL queries. Simi-
larly, we also explore the process of cardinality values estimation using the results
from SPARQL queries. Thus, our cardinality constraints generation process is based

5.1 SHACL Constraints Components and Shape Induction 59

on the study presented by Neumann and Guido [81]. We adopted this approach
for cardinality values estimation for each property associated with a given class.
More specifically, we collected distinct cardinality values by using star join SPARQL
query. An example of join queries for raw cardinality values estimation present in
Listing 5.3.

Listing 5.3 SPARQL query for the cardinality value estimation.

SELECT ?card (COUNT (?s) as ?count)
WHERE {

SELECT ?s (COUNT (?o) as ?card)
WHERE {

?s a ?class ;
?p ?o

} GROUP BY ?s
} GROUP BY ?card ORDER BY DESC(? count)

5.1.2 Range constraints

We use the subset of the target Node already identified in SHACL, i.e., IRI, Literal,
BlankNode, and BlankNodeOrIRI. Table 5.2 illustrates the target Node objects type
in SHACL. Each value of target Node in shape is either an IRI or a literal. For range
constraints, our goals are twofold. First, we want to generate an object as target node
constraint for each property associated with a given class. Once the target node type
is determined, then more specific range constraints have to be decided. If the node
type is Literal, the corresponding datatype has to be determined. If the node type is
either IRI, BlankNode, or BlankNodeOrIRI the class type of the objects has to be
determined.

We classify each property associated with instances of a given class to one of the
aforementioned node types. The second task of assigning the corresponding datatype
or class as the range of each property is done based on heuristics of datatype or class
type distributions among the set of objects associated with the property. For example
dbo:Web has distribution of 73.13% for IRI node type and 26.89% for LIT node
type for dbo:SoprtsTeam entity type. In this account, IRI has larger distribution then
LIT node type. Based on our heuristics we considered dbo:Web node type as IRI.
An example of dbo:Person-dbp:birthPlace objects nodeKind constraints Shape is
illustrated in the Listing 5.4.

60 RDF Shape Induction

Table 5.2 Objects Type.

IRI BlankNode Literal Type

X X X Any

X X BlankNodeOrIRI

X IRI

X BlankNode

X Literal

X X IRIOrLiteral

X X BlankNodeOrLiteral

Listing 5.4 Node type constraints.

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/property/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:DBpediaPerson a sh:NodeShape;

sh:targetClass dbo:Person;

node type IRI

sh:property [sh:path dbp:birthPlace;

sh:nodeKind sh:IRI;

sh:or ([sh:class schema:Place]

[sh:class dbo:Place])

];

node type literal

sh:property [sh:path dbp:deathDate;

sh:nodeKind sh:Literal;

sh:datatype xsd:date] .

5.1.3 String based constraints

For string based constraints generation the primary focus is to understand minimum
length (minLength) and maximum length (maxLength) of a property. In this context

5.1 SHACL Constraints Components and Shape Induction 61

max and min length subjected to rdf:type and node with literal values. In general,
if the value of minLength is 0, then there is no restriction on the string length, but
the constraint is still violated if the value node is a blank node. On the other hand,
the value of maxLength without restriction could be any string length based on the
rdf:type. We considered the distribution of string lengths to identify minLength and
maxLength of literal values of a property. More specifically, we explored all the
properties present in a class, literals string lengths distribution interquartile range
for constraints generation. We evaluate the minLength using 1st quartile(Q1) and
maxLength using the 3rd quartile (Q3). Table 5.3 illustrates the string length condi-
tions for minLength and maxLength. In particular, we mainly focus on identifying a
relative range for the maximum and minimum length. An example of string length
based SHACL Shape for dbo:title property is presented in Listing 5.5.

Table 5.3 Minimum and maximum String length levels.

Key Description

minLength0 Minimum Length <Q1

minLength1 Minimum Length ≥ Q1

maxLength0 Maximum Length <Q3

maxLength1 Maximum Length ≥ Q3

Listing 5.5 String constraints.

@prefix dbo: <http://dbpedia.org/ontology/>.

@prefix sh: <http://www.w3.org/ns/shacl#>.

ex:DBpediaPerson a sh:NodeShape;

sh:targetClass dbo:Person;

minLength

sh:property [sh:path foaf:name;

sh:minLength 1;

sh:maxLength 8];

for MAX1

sh:property [sh:path dbo:birthDate;

sh:minLength 1;

sh:maxLength 8] .

62 RDF Shape Induction

5.2 Summary

In this chapter, we described an approach for inducing validation rules in the form of
RDF shapes by profiling the data and use inductive approaches to extract validation
rules. Another use case for inducting shapes consists in describing the data (which
is helpful in generating queries or creating dynamic user interfaces). Based on
the proposed RDF Shape induction approach, in Chapter 6 we present a validation
process in a generic way that applies to any type of constraint using the results
from the evolution based quality assessment. Furthermore, Chapter 7 presents the
details of a predictive learning evaluation for two types of constraints, namely,
cardinality and range type constraints. Although in this chapter we only discussed
the shape induction process for three types of constraints, this approach can be
extended to other types of constraints, such as value range constraints (min and max
values), string constraints (pattern, languagesIn, uniqueLanguage), or property pair
constraints (lessThan, lessThanOrEquals, disjoint, equal) [88].

Chapter 6

Evolution-based Quality Assessment
and Validation Approach

In the context of quality assessment methodology, the Data Life Cycle (DLC) pro-
vides a high-level overview of the stages involved in successful management and
preservation of data for any use and reuse process. Moreover, several versions of
the data life cycles exist with different attributes considering variations in practices
across domains or communities [34]. Data quality life cycle generally includes the
identification of quality requirements and relevant metrics, quality assessment, and
quality improvement [35, 90]. Debattista et al. [35] presents a data quality life cycle
that covers the phases from the assessment of data, to cleaning and storing. They
show that in the lifecycle quality assessment and improvement of Linked Data is a
continuous process. However, we explored the features of quality assessment based
on KB evolution. Our reference Data Life Cycle is defined by the international stan-
dard ISO 25024 [1]. We extend the reference DLC to integrate a quality assessment
phase along with the data collection, data integration, and external data acquisition
phase. This phase ensures data quality for the data processing stage. The extended
DLC is reported in Figure 6.1.

The first step in building the quality assessment approach was to identify the
quality characteristics. Based on the quality characteristics presented in Section 4.3,
we proposed a KB quality assessment approach. In particular, our evolution-based
quality assessment approach computes statistical distributions of KB elements from
different KB releases and detects anomalies based on evolution patterns. The valida-

64 Evolution-based Quality Assessment and Validation Approach

Data Collection

Data Integration

External Data
Acquisition

Evolution-based
Quality Assessment

Approach

Data Design

Data
Processing

Presentation

Other Use

Data Store

Delete

Data Quality Assessment ISO/IEC 25024 Data Life Cycle

Fig. 6.1 ISO/IEC 25024 Data Life Cycle (DLC) [1] with proposed quality assessment
approach. The box highlight the components that are added as improvements to the DLC.

tion approach is based on the RDF Shape induction process introduced in Chapter 5.
Figure 6.2 reports the proposed workflow using the quality assessment and validation
procedures. In this workflow, the left side displays collection of KB releases as input,
while the approach is divided into two phases: (1) Quality evaluation (including the
statistical profiler) using evolution-based quality characteristics (Chapter 4); and (2)
Validation which is composed of feature extraction and manual evaluation.

Elaborating further, quality assessment and validation procedures are based on
four stages: (1) data collection (multiple releases of a knowledge base), (2) quality
evaluation process (relying on statistical and quality profiling), (3) validation process
(based on feature extraction and manual validation), and (4) modeling and quality
problem report (evaluation of learning models and generation of quality problem
report). For the quality assessment process, a prototype using the R statistical package
is implemented, and it is shared as open source in order to foster reproducibility of
the experiments1.

The rest of this chapter is structured using the proposed quality assessment and
validation workflow which is illustrated in Figure 6.2. Section 6.1 provides a general
overview of how the multiple releases of a KB are used as input in the approach.
The quality evolution process is presented in Section 6.2, where each phase in the
pipeline using statistical analysis and quality profiling. The validation process is
outlined in Section 6.3 using features extraction (Sec. 6.3.1) process which is based
on RDF Shape induction (Chapter 6). Furthermore, Section 6.3.2 presents a detailed

1Source: https://github.com/rifat963/KBQ

https://github.com/rifat963/KBQ

6.1 Data Collection 65

description of the manual evaluation and the golden standard generation process.
Section 6.4 discusses the approach for model evaluation and generation of the quality
problem report. Finally, Section 6.5 presents a tool using the proposed quality
characteristics and manual validation approach.

SPARQL
Endpoints

Data Profiling

Data Collection

Modeling

Model Evaluation

Preprocessing

Statistical Profiler

Quality Profiler Measure 1

Measure 2

..............

Measure n

Validation

Quality Measures

Shape Generation

Constraints
Generation

Feature Extraction Manual Validation

Instances

Inspections

Feature Dataset

Report

 Quality
Problem
Report

KB(KB1...n)

Quality Assessment

KB Quality Assessment and Validation (KBQ)

Fig. 6.2 Proposed Quality Assessment and Validation Workflow.

6.1 Data Collection

In this approach, the history of KB releases and summary statistics are applied as
inputs to the quality assessment and validation process. Typically the acquisition
of KB releases is performed by querying multiple SPARQL endpoints (assuming
each release of the KB is accessible through a different endpoint) or by loading data
dumps; from the KB releases the summary statistics are generated. Furthermore,
the Data Collection component is build on top of Loupe [91], an online system that
inspects and extracts automatically statistics about the entities, vocabularies (classes,

66 Evolution-based Quality Assessment and Validation Approach

and properties), and frequent triple patterns of a KB. An intermediate data structure
is created using the entity type and KB releases. This intermediate data structure is
used as an input to the next step. Figure 6.3 reports the intermediary data structure
that is used in the following stages.

Fig. 6.3 Intermediary data structure that is used as input for the Evaluation Process.

6.2 Quality Evaluation

The proposed quality characteristics are based on the assumption that anomalies
can be identified using a combination of data profiling and statistical analysis tech-
niques. The data-driven measurements are based on changes over time in different
releases. In this context, the knowledge base quality analysis is performed using
quality characteristics presented in Section 4.3. Firstly, the quality characteristics are
evaluated by analyzing multiple KB releases; then, the result of quality assessment
consists of quality information for each assessed knowledge base. This generates a
quality problem report that can be as detailed as pinpointing specific issues at the
level of individual triples. These issues can be traced back to data quality problem
and can be more easily identified starting from a high-level report. For example, a
quality problem report can help to identify incompleteness issues due to unrestrained
evolution.

The evaluation process includes the following three steps:

6.2 Quality Evaluation 67

1. Preprocessing: In this component, preprocessing operations is performed
over the intermediate data structure based on schema consistency checks. In
particular, the goal of this component is to check if the chosen entity type
is present in all the releases of a KB to verify schema consistency. This is
essential to perform the schema consistency checks due to high-level changes
that are more schema-specific and dependent on the semantics of data. More
specifically, this component does the following tasks: (i) selection of only
those entity types that are present in all KB releases; (ii) and for each entity
type, selection of only those predicates present in that class. Furthermore, it is
essential to filter those properties for an entity type in the intermediate data
structure in case the instance count is 0 for all the KB releases.

2. Statistical Profiler: Then, in order to identify the dynamic features of the
sequence of KB releases, the following key statistics are computed using basic
statistical operations:

i) number of distinct predicates; ii) number of distinct subjects; iii) number of
distinct entities per class; iv) frequency of predicates per entity;

To identify the KB release changes, it counts the frequency of property values
for a specific class. Also, the distinct entity count for a specific class is
considered that presented as measurement elements in Section 4.3.1. The
change detection between two KB releases is computed by observing the
variation of key statistics. The quality characteristics are divided into class and
property level. For class level quality characteristics, entity count is considered
as the basic measurement elements for change detection. For a particular
class, the property level quality characteristics are measured using frequency
of properties as essential measurement elements for change detection.

3. Quality Profiler: Typically, data profiling is defined as the process of creating
descriptive information and collect statistics about the data [57]. It summarizes
the dataset without inspecting the raw data. This component use the approach
of data profiling together with quality measure to profile quality issues. The
statistical profiler is used to analyze the KB releases. For analyzing the KB
datasets, it used four quality characteristics presented in Section 4.3. Quality
profiler includes descriptive as well as measure values based on the quality
characteristics.

68 Evolution-based Quality Assessment and Validation Approach

Elaborating further, this component does the following tasks: (i) it provides
statistical information about KB releases and patterns in the dataset (e.g. prop-
erties distribution, number of entities and RDF triples); (ii) it provides general
information about the KB release, such as dataset description of class and
properties, release or update dates; (iii) it provides quality information about
the vector of KB releases, such as quality measure values, list of erroneous
analyzed triples.

6.3 Validation Process

The primary goal of the validation process is to analyze the results of the quality eval-
uation process using manual validation (which is a human-driven task). Furthermore,
constraints based features are generated to validate the entities with consistency
issues (Chapter 5). Then, the automatically generated features are further validated
using manual validation. More specifically, the datasets from the quality evaluation
process is considered as input to the validation process. The data validation process
is divided into two parts: (i) features extraction; and (ii) manual validation.

Feature extraction process is based on the results from the quality characteristics
(Sec. 4.3) and RDF shape induction (Sec. 5.1). More specifically, using the results
from the quality evaluation process, RDF Shape induction process is applied in order
to create a constraints-based feature dataset. Furthermore, a qualitative analysis is
performed using manual validation to evaluate the precision of quality measures. The
RDF Shape induction results are manually evaluated to create a partial gold standard
for modeling tasks. The phases of the data validation approach are explained in
details in the following sections.

6.3.1 Feature Extraction

To instruct the learning models, a feature extraction task is performed that is com-
posed of (i) selecting an entity type using the quality measure results, and (ii)
constraints based shape induction to compute the features. The features are five in
total and they are grouped into three categories based on the quality issues as shown
in Table 6.1. More specifically, five features are extracted from quality measures and
shape induction process.

6.3 Validation Process 69

i) Persistency features: It is based on the persistency measures (Sec. 4.3). Using
the selected entity type from schema consistency check, it evaluate changes present in
the current release with respect to the previous release. The result of the persistency
features is indicated by a Boolean value of 0 or 1: 1 indicates a normal growth, while
0 indicates an unstable behaviour.

ii) Completeness features: It is based on the completeness measures (Sec. 4.3).
Using the selected entity type and properties from schema consistency check, it
evaluate the completeness meaures values at the property level. Similar to persistency
features, the result of this features is indicated by a Boolean values of 0 or 1: 1
indicates a normal growth, while 0 indicates an unstable behaviour.

ii) Consistency features: It is based on the results from integrity constraint
checks that are derived from the SHACL representation (Sec. 5.1). In this analysis,
the cardinality and range constraints are applied for consistency evaluation. More-
over, we divide the cardinality constraints into minimum and maximum cardinality
constraints. In particular, this phase will validate the persistency feature dataset using
three features: i) Properties with minimum cardinality values of MIN0 or MIN1+; ii)
Properties with maximum cardinality values of MAX1 or MAX1+; iii) Properties
with range values of LIT or IRI. Each of this feature is used as inputs of a binary
classifier and applied in a supervised learning fashion to evaluate the constraints
datasets.

Table 6.1 Features based on the quality issues.

Quality Issues Feature Classifier Values

Persistency Entity type (0,1)

Completeness Property (0,1)

Consistency Minmum Cardinality (MIN0,MIN1+)

Maximum Cardinality (MAX1, MAX1+)

Range (IRI,LIT)

70 Evolution-based Quality Assessment and Validation Approach

6.3.2 Manual Validation and Gold Standard Creation

The main goal of this step is to extract, inspect, and perform manual validation for
identifying the causes of quality issues as well as create gold standard. Elaborating
further, manual validation tasks are based on the following three steps:

i) Instances: For manual evaluation, a portion of the properties with quality issues
is selected based on the quantitative analysis. The selection has been performed in
a random fashion to preserve the representativeness of the experimental data. The
proposed quality characteristics are based on the results of statistical profiling to
identify any missing entities. For manual validation, a set disjoint operation between
two releases is performed to identify those missing entities in the last release of
a given KB. In particular, in this step, using set disjoint operation all entities are
extracted from the last two releases of a given KB.

ii) Inspections: Using the dataset from instance extraction phase, an inspection
of each instance is performed for manual validation and report. Various KBs adopt
automatic approaches to gather data from the structured or unstructured data sources.
For example, DBpedia KB uses an automatic extraction process based on the mapping
with Wikipedia pages. For the manual validation, inspection of the sources is
performed using the missing instances to identify the causes of quality issues. In
particular, manual evaluation check if the information is present in the data sources
but missing in the KB.

iii) Report: the validation result of a entity is reported as true positive (the subject
presents an issue, and an actual problem was detected) or false positive (the item
presents a possible issue, but none actual problem is found).

In this approach, a partial gold standard strategy (Sec. 2.7) is adopted based on
the assumption that a new (small) training set is needed when dealing with a new
knowledge base. The manual validation phase is then in charge of inspecting and
performing a manual annotation of the detected integrity constraints. In detail:

(i) Feature extraction: it selects the entities and properties from the evolution
analysis for RDF shape induction. Then, it selects the properties annotated with
integrity constraints for further inspection.

6.4 Modeling and Quality Problem Report 71

(ii) Inspection: the validation result of an instance is reported as Correct (the
properties are annotated with correct integrity constraint) or Incorrect (the item
presents a wrong integrity constraint).

(ii) Feature dataset: the outcome of the manual validation tasks is a subset of the
feature dataset according to each integrity constraints. This dataset is considered as
the training set for the modeling phase.

6.4 Modeling and Quality Problem Report

The goal of the modeling phase is to generate a model and validate the results of
the integrity constraints by computing precision, recall, and F-measure (Sec. 2.8).
In particular, the main goal of the validation using integrity constraints is twofold:
(i) creating constraints dataset that can be used for RDF shape induction, and (ii)
evaluating the performance of the cardinality and range constraints classifier using
learning models. The modeling task is run with a 10-fold cross validation setup and
parameter optimization. The performance of constraint classifiers are evaluated using
five classical learning models (Section 2.8). These models are selected to evaluate
classifiers performance considering the diversity in machine learning algorithms
and to identify the best performing model. Based on the empirical analysis the best
performing model is applied for the predictive task.

Finally, a quality problem report is generated based on the quality assessment
results. The reports contain quality measure computation results as well as summary
statistics for each class. The quality problem report provides detailed information
about erroneous classes and properties. Also, the quality measurement results can be
used for cataloging and preservation of the knowledge base for future data curation
tasks. In particular, the Quality Problem Reporting enables, then, a fine-grained
description of quality problems found while assessing a knowledge base. The
quality problem report visualization is implemented using R markdown documents.
R markdown documents are fully reproducible and easy to perform analyses that
include graphs and tables. An example of Quality problem report is presented in the
GitHub repository1.

72 Evolution-based Quality Assessment and Validation Approach

6.5 KBQ : A proof-of-concept

We developed KBQ, a tool2 for KB quality assessment using evolution analysis. It
is based on the quality assessment approach illustrated in Figure 6.2. In particular,
we leverage the evolution-based quality characteristics (Chapter 4) as measurement
elements for quality issues indicator.

Architecture: KBQ is composed of four modules that are illustrated in Fig. 6.4.
We implemented KBQ using the R statistical package that we share as open source
in order to foster reproducibility of the experiments2. In Appendix A, we outlined
the details instruction of KBQ tool in action together with the data extraction REST
API. The modules are explained in detail below.

Fig. 6.4 High level architecture of the KBQ tool.

(i) Collect: generates knowledge base (KB) snapshots and sets up timely sched-
ulers. This module is based on the data collection component of the proposed quality
evaluation process (Sec. 6.1). It supports (i) collection of KB summary statistics
via a dedicated SPARQL endpoint; (ii) collection of periodic KB snapshots that are
accessible through a SPARQL endpoint saved in a CSV file. It names each CSV
file based on the entity type. Also, it uses a set of APIs3 for periodic snapshots

2 Sources:https://github.com/KBQ/KBQ;Website:http://datascience.ismb.it/shiny/
KBQ/

3The source code is available at https://github.com/rifat963/KBDataObservatory

https://github.com/KBQ/KBQ
http://datascience.ismb.it/shiny/KBQ/
http://datascience.ismb.it/shiny/KBQ/
https://github.com/rifat963/KBDataObservatory

6.5 KBQ : A proof-of-concept 73

generation and maintaining scheduled tasks for automatic and timely checks. In
particular, it uses the SPARQL endpoint as input and saves the results extracted from
the SPARQL endpoints into CSV files.

(ii) Analyze: performs quality profiling based on a particular entity type and
generates quality problem report. This module is based on the quality evaluation
process outlined in Section 6.2. It uses the intermediate data structure to speed
up the execution of the measurement functions. This data structure is created by
grouping sets of resources and predicates for an entity type based on KB releases.
The evolution-based quality characteristics measures result value of 0 or 1 are used
as indicators for the quality issues detection. More specifically, the quality indicators
are based on the quality characteristics presented in Section 4.3.

(iii) Visualize: is composed of two modules: (i) list of quality assessment results
and (ii) data set catalogue. Visualization of quality assessment results are embedded
with analysis module based on four quality characteristics. This allows any user to
access quality measures by selecting a specific characteristics. It also allows class
faceted exploration along the various KB releases.

(iv) Validate: is based on the manual validation approach introduced in Section
6.3.2. More specifically, validate module composed into two stages: extracts and
inspects. Moreover, in KBQ inspects allows manual annotations of quality issues. A
user can extract properties with quality issues after performing a quality profiling that
consists of: (i) Incomplete properties: visualize a list of properties with completeness
quality issues for validation; (ii) Instances: in the quality evaluation approach
profiling is done based on the summary statistics. To extract the missing instances
of a property, the instance extraction component performs comparison between
the list of instances from the last two versions; (iii) Inspections: after the instance
extraction is done, a user can select every instance for evaluation and report. It present
instance inspection based on data sources. In particular, validation is performed
by inspecting the missing instances and manually evaluate cause of quality issues
through data source inspections. In this module, each data sources are linked based
on the corresponding KBs resource URI; (iv) Report: a user can report if the instance
is true positive or false positive, as well as a user can comment on specific issues.
Finally, a user can save the validation report in a HTML file.

74 Evolution-based Quality Assessment and Validation Approach

6.6 Summary

In this chapter, we devise a data quality assessment and validation methodology,
which is comprised of evolution-based quality characteristics and validation using
SHACL constraints components induction. The quality assessment was implemented
using KB evolution analysis by monitoring changes presents in each KB release.
Furthermore, we introduce a twofold validation approach: (1) RDF data validation
using SHACL based integrity constraints induction using predictive modeling; and
(2) manual validation to further validate the quantitative results. Moreover, as a proof
of our concepts and to perform experimental analysis, we have introduced KBQ-tool
based on our quality assessment approach. We reports the experimental results in
Chapter 7 and summary of our findings in Chapter 8.

Chapter 7

Experimental Results

This chapter reports an experimental analysis of our approach that has been conducted
on two KBs, namely DBpedia and 3cixty Nice. The analysis is based on the quality
characteristics and measures described in Section 4.3. The measurement has been
conducted by means of a prototype implementation of a tool that is described in
Section 6.5. We first present the experimental setting of the implementation in
Section 7.1. Then, we report the results of quantitative analysis in Section 7.2. Based
on the results from quantitative analysis, we present a qualitative analysis using
manual validation in Section 7.3. Finally, Section 7.4 outlines the evaluation results
of validation using integrity constraints.

7.1 Experimental Settings

We used the public SPARQL endpoint for each KB and saved the results in the
CSV files using KBQ tool. We named each CSV file based on the knowledge base
release and corresponding class name. In Figure 7.1, we illustrate the entity type
base grouping of extracted CSV files for all DBpedia KB releases. For instance, we
extracted all triples of the 11 DBpedia KB releases belonging to the class foaf:Person
and saved them into CSV files named with the names of the DBpedia releases. Our
experimental datasets are presented at 1.

We present a detailed summary of the extracted datasets for each KB.

1https://github.com/rifat963/KBQ

https://github.com/rifat963/KBQ

76 Experimental Results

Fig. 7.1 Structure of input module.

3cixty Nice: We used the public SPARQL endpoint of the 3cixty Nice KB in our
data extraction module. As the schema in 3cixty KB remains unchanged, we
used the same SPARQL endpoint for collecting 8 different releases of 3cixty
Nice KB from 2016-03-11 to 2016-09-09. We considered those instances
having the rdf:type of lode:Event and dul:Place. These two entity types are the
most common according to the total number of entities. The distinct instance
count for each class is presented in Table 7.2a. The variation of count in the
dataset and the observed history is presented in Figure 7.2. From the 3cixty
Nice KB, we collected a total of 149 distinct properties for the lode:Event
typed entities and 192 distinct properties for the dul:Place typed entities across
eight different releases. To monitor the completeness issues for continuous
updates, we collected 50 snapshots of lode:Event entity type from 2017-07-27
to 2017-09-16. Table 7.2b reports the entity count of lode:Event type using
periodic snapshots generation.

DBpedia: We collected a total of 11 DBpedia releases from which we extracted
4477 unique properties. For this analysis we considered the following ten
classes: dbo:Animal, dbo:Artist, dbo:Athlete, dbo:Film, dbo:MusicalWork,
dbo:Organisation, dbo:Place, dbo:Species, dbo:Work, foaf:Person. The above
entity types are the most common according to the total number of entities
present in all 11 releases. Table 7.1 presents the breakdown of frequency per
class. We also explored the Spanish version of DBpedia to further validating

7.1 Experimental Settings 77
Ta

bl
e

7.
1

D
B

pe
di

a
10

C
la

ss
es

en
tit

y
co

un
t(

al
lc

la
ss

es
ha

ve
db

o:
pr

efi
x

ex
ce

pt
th

e
la

st
on

e)
.

Ve
rs

io
n

A
ni

m
al

A
rt

is
t

A
th

le
te

Fi
lm

M
us

ic
al

W
or

k
O

rg
an

is
at

io
n

Pl
ac

e
Sp

ec
ie

s
W

or
k

fo
af

:P
er

so
n

3.
3

51
,8

09
65

,1
09

95
,9

64
40

,3
10

11
3,

32
9

11
3,

32
9

31
,8

01
7

11
,8

04
2

21
3,

23
1

29
,4

98
3.

4
87

,5
43

71
,7

89
11

3,
38

9
44

,7
06

12
0,

06
8

12
0,

06
8

33
7,

55
1

13
0,

46
6

22
9,

15
2

30
,8

60
3.

5
96

,5
34

73
,7

21
73

,7
21

49
,1

82
13

1,
04

0
13

1,
04

0
41

3,
42

3
14

6,
08

2
32

0,
05

4
48

,6
92

3.
6

11
6,

52
8

83
,8

47
13

3,
15

6
53

,6
19

13
8,

92
1

13
8,

92
1

41
3,

42
3

16
8,

57
5

35
5,

10
0

29
6,

59
5

3.
7

12
9,

02
7

57
,7

72
15

0,
97

8
60

,1
94

13
8,

92
1

11
0,

51
5

52
5,

78
6

18
2,

84
8

26
2,

66
2

82
5,

56
6

3.
8

14
5,

90
9

61
,0

73
18

5,
12

6
71

,7
15

15
9,

07
1

15
9,

07
1

51
2,

72
8

20
2,

84
8

33
3,

27
0

1,
26

6,
98

4
3.

9
17

8,
28

9
93

,5
32

31
3,

73
0

77
,7

94
19

8,
51

6
17

8,
51

6
75

4,
41

5
20

2,
33

9
40

9,
59

4
1,

55
5,

59
7

20
14

19
5,

17
6

96
,3

00
33

6,
09

1
87

,2
85

19
3,

20
5

19
3,

20
5

81
6,

83
7

23
9,

19
4

42
5,

04
4

1,
65

0,
31

5
20

15
04

21
4,

10
6

17
5,

88
1

33
5,

97
8

17
1,

27
2

16
3,

95
8

16
3,

95
8

94
3,

79
9

28
5,

32
0

58
8,

20
5

2,
13

7,
10

1

20
15

10
23

2,
01

9
18

4,
37

1
43

4,
60

9
17

7,
98

9
21

3,
78

5
21

3,
78

5
1,

12
2,

78
5

30
5,

37
8

68
3,

92
3

1,
84

0,
59

8

20
16

04
22

7,
96

3
14

5,
87

9
37

1,
80

4
14

6,
44

9
20

3,
39

2
20

3,
39

2
92

5,
38

3
30

1,
71

5
57

1,
84

7
2,

70
3,

49
3

Ta
bl

e
7.

2
3c

ix
ty

K
B

D
at

as
et

Su
m

m
ar

y.

(a
)l

od
e:

E
ve

nt
an

d
du

l:
P

la
ce

ty
pe

.

R
el

ea
se

lo
de

:E
ve

nt
du

l:P
la

ce
s

20
16

-0
3-

11
60

5
20

,6
92

20
16

-0
3-

22
60

5
20

,6
92

20
16

-0
4-

09
1,

30
1

27
,8

58

20
16

-0
5-

03
1,

30
1

26
,0

66

20
16

-0
5-

13
1,

40
9

26
,8

27

20
16

-0
5-

27
1,

88
3

25
,8

28

20
16

-0
6-

15
2,

18
2

41
,0

18

20
16

-0
9-

09
68

9
44

,9
68

(b
)P

er
io

di
c

sn
ap

sh
ot

s
of

lo
de

:E
ve

nt
cl

as
s.

R
el

ea
se

E
nt

ity
C

ou
nt

20
17

-0
7-

27
11

4,
05

4

20
17

-0
7-

28
11

4,
54

2

20
17

-0
7-

29
11

4,
54

4

20
17

-0
7-

30
11

4,
54

4

ot
he

rr
ow

s
ar

e
om

itt
ed

fo
rb

re
vi

ty

20
17

-0
9-

14
18

8,
96

7

20
17

-0
9-

15
19

2,
11

6

20
17

-0
9-

16
15

4,
74

5

78 Experimental Results

Table 7.3 Entity Count of Spanish DBpedia KB dbo:place class

Release Entity Count

3.8 321,166

3.9 345,566

2014 365,479

201504 389,240

201510 408,163

201604 659,481

201610 365,479

the causes of quality issues. In Table 7.3, we present the dbo:place class entity
count across the seven releases of the Spanish DBpedia.

7.2 Quantitative Analysis

We applied our quantitative analysis approach based on the proposed quality charac-
teristics. The goal is to identify any classes and properties affected by quality issues.
In particular, we analyzed the aforementioned selected classes from the two KBs to
investigate persistency, historical persistency, consistency, and completeness quality
characteristics. In Table 7.4, we present the interpretation criteria for each quality
characteristic measure. More specifically, in this section, we discuss the quality
evaluation results on each use case based on the quality characteristics.

7.2.1 Persistency

3cixty. Table 7.2a reports the entity count measure; in particular we highlight the
latest two releases that are considered in computing Persistency according to the
definition (Section 4.3). In the case of lode:Event-type instances, we can observe that
countn = 689 and countn−1 = 2182, where n = 8. Since we have countn < countn−1,
the value of Persistency(lode:Event)-type = 0. That indicate persistency issue present
in the last KB release for the lode:Event class.

7.2 Quantitative Analysis 79

Table 7.4 Verification conditions of the quality measures

Quality
Characteristics

Measure Interpretation

Persistency Persistency measure
values of 0 or 1

The value of 1 implies no persistency issue
present in the class. The value of 0 indicates
persistency issues found in the class.

Historical
Persistency

Percentage (%) of his-
torical persistency

High % presents an estimation of fewer
issues, and lower % entail more issues
present in KB releases.

Completeness List of properties
with completeness
measures weighted
value of 0 or 1

The value of 1 implies no completeness is-
sue present in the property. The value of 0
indicates completeness issues found in the
property.

Percentage (%) of
completeness

High % presents an estimation of fewer is-
sues, and lower % entail more issues in KB
release.

Consistency List of properties
with consistency
measures value of 0
or 1

The value of 1 implies no completeness is-
sue present in the property. The value of 0
indicates completeness issues found in the
property.

Similarly, concerning dul:Place-type instances, from the dataset we can see
that countn = 44968 is greater than countn−1 = 41018, therefore the value of Persis-
tency(dul:Place) = 1. Thus, no persistency issue is identified.

We computed 3cixty Nice KB percentage of persistency based on lode:Events
and dul:Places class persistency measure value of 0 or 1. The 3cixty Nice KB
percentage of Persistency (%)=(No. of classes with issues

Total no. of classes)∗100 = (1
2)∗10 = 50%.

Furthermore, we performed an empirical analysis by monitoring 3cixty KB
lode:Event entity type. To monitor any changes present for continuous updates,
we collected 50 snapshots of lode:Event entity type from 2017-07-27 to 2017-09-
16. Table 7.2b reports the entity count of lode:Event class 50 snapshots which is
collected using 3cixty KB SPARQL endpoint. Figure 7.3 illustrates the changes
presents in the lode:Event-type due to KB growth. There are significant changes
present in the last four releases (2017-09-13,2017-09-14,2017-09-15,2017-09-16)
entity count. In the 2017-09-13 release, we can see an exponential growth of entity
count of 190,1867 compared to previous releases. Furthermore, on the next two
releases (2017-09-14,2017-09-15) entity count remains stable due to fewer variation
presents in the entity count. However, on the 2017-09-16 snapshots, we can observe a

80 Experimental Results

Fig. 7.2 Variation of instances of 3cixty classes lode:Event and dul:Place over 8 releases.

drop in the entity count which may lead to anomalies in the data integration pipeline.
We further investigated the value chain leading to the generation of the KB, and we
found an error in the external data acquisition process which leads to missing entities
for 2017-09-16 snapshot.

DBpedia. We compare the last two releases (201510, 201604) in terms of
entity counts for ten classes; the two releases are highlighted in Table 7.1. The
resulting Persistency measure values are reported in Table 7.5. For example, the
foaf:Person entity counts for the two release (201510, 201604) are respectively
(1,840,598 < 2,703,493), thus we find no persistency issue. However, Persistency
for the remaining nine classes is 0 since the entity counts in version 201604 are
consistently lower than in version 201510. This implies that when DBpedia was
updated from version 201510 to 201604, Persistency issues appeared in the DBpedia
for nine classes, the exception being only foaf:Person. Furthermore, for the Spanish
version of the DBpedia dbo:Place class 201610 release entity count value of 365,479
is less than 201604 release entity count value of 659,481. Similarly. this implies that
persistency issues may arise for the dbo:Place class release of 201610.

Discussion. According to the interpretation criteria reported in Table 7.4 we
summarize our findings:

• In the case of 3cixty Nice KB, lode:Event class, Persistency = 0. More in
detail, if we consider the two latest releases (i.e. 2016-06-15, 2016-09-09) of
the KB and we filter by the type lode:Event, the distinct entity counts are equal
to 2182 and 689 respectively. Apparently more than 1400 events disappeared

7.2 Quantitative Analysis 81

Fi
g.

7.
3

3c
ix

ty
K

B
lo

de
:E

ve
nt

cl
as

s
50

sn
ap

sh
ot

s
of

en
tit

y
co

un
t.

82 Experimental Results

Table 7.5 DBpedia Persistency and Historical Persistency

Class Persistency
latest re-
lease

Releases
with
Persistency =
0

Historical
Persis-
tency

dbo:Animal 0 [201604] 89%

dbo:Artist 0 [3.7, 201604] 78%

dbo:Athlete 0 [201504, 3.5,
201604]

67%

dbo:Film 0 [201604] 89%

dbo:MusicalWork 0 [3.7, 2014,
201504,
201604]

56%

dbo:Organisation 0 [2014,
201604]

78%

dbo:Place 0 [201604] 89%

dbo:Species 0 [201604] 89%

dbo:Work 0 [3.7, 201604] 78%

foaf:Person 1 [201510] 89%

in the 2016-09-09 release: this indicates a potential error in the 3cixty Nice
KB. For both investigated types, the percentage of knowledge base Persistency
is 50%, which triggers a warning concerning a potential persistency issue
existing in the latest (2016-09-09) KB release.

• In the case of DBpedia KB, the analysis conducted using the persistency mea-
sure, only the foaf:Person class has persistency measure value of 1 indicating
no issue. Conversely, all the remaining nine classes show persistency issues
as indicated by a measure value of 0. The DBpedia version with the highest
number of inconsistent classes is 201604, with a percentage of persistency is
equal to 10%.

• The Persistency measure is an observational measure. It only provides an
overview of the KB degree of changes. It is effective in the case of rapid
changes such as lode:Event class.

7.2 Quantitative Analysis 83

7.2.2 Historical Persistency

3cixty The variations of persistency measure are considered between the 2016-06-15
and the 2016-09-09 releases. The computation starts from the persistency measures
presented in Table 7.2a. For lode:Event-type entities the number of persistency
variations (with value of 1) = 6. Therefore, concerning the lode:Event-type the
percentage of historical persistency measure value= (6

7)∗100 = 85.71%.

Similarly, for dul:Place, the number of persistency variation with value of 1
present over 8 releases = 5. In particular, persistency measure value of 0 presented
among four releases, (2016-04-09, 2016-05-3) and (2016-5-13, 2016-05-27). So, for
the dul:Place-type the historical persistency measure assumes the value= (5

7)∗100 =

71.42%.

DBpedia. Figure 7.4 reports the evolution of the 10 classes over the 11 DBpedia
releases investigated in our analysis; the diagram highlights the area correspond-
ing to the latest two versions (201510, 201604). The measurement values are
reported in Table 7.5 in the rightmost column. The results of dbo:Animal, dbo:Film,
dbo:Place and foaf:Person classes show only one persistency drop over all the re-
leases. However, dbo:MusicalWork has four persistency value of 0 over all releases.
The dbo:MusicalWork class has the highest number of variations over the release
which leads to a low historical persistency value of (5

9)∗100= 55.55%. Similarly,
for the Spanish version of the DBpedia dbo:Place class we found entity count varia-
tion on the last release (201610). So, for the Spanish DBpedia dbo:Place-type the
historical persistency measure assumes the value of 89%.

Discussion. The Historical Persistency quality measure provides an overview of
the different KB releases. It identifies those versions with persistency issues along
the different KB releases. To recap:

• In the case of the 3cixty Nice KB, the lode:Event class has one drop (2016-
06-15, 2016-09-09) and dul:Place class has two (2016-04-09, 2016-05-3),
(2016-5-13, 2016-05-27). Thus, overall historical persistency measure of
lode:Event class higher than dul:Place class.

• In the case of DBpedia KB, looking at the Historical Persistency results,
foaf:Person has persistency value of 0 over the releases of 201504 and 201510.
Such values may represent a warning to any data curator interested in the past

84 Experimental Results

Fig. 7.4 DBpedia 10 Classes instance variation over 11 releases.

evolution of the KB. From the release 3.3 to 201604, dbo:MusicalWork shows
the lowest values of persistency as a result the historical persistence is 55.55%.

• Historical Persistency is mainly an observational measure and it gives insights
on lifespan of a KB. Using this measure value, a data curators can study
the behaviour of the KB over the different releases. An ideal example is
represented by the foaf:Person class. From the results, we observe that for
the last two releases (201510, 201604) foaf:Person is the only class without
persistency issues.

7.2.3 Consistency

Threshold Value. In this experimental analysis, we started by observing histogram of
property frequencies distribution and kernel density estimation. For example, 3cixty
Nice lode:Event-type releases (2016-05-27, 2016-06-15, 2016-06-09) frequency
value of 150 has (12, 16, 10) properties, 100 has (12, 15, 10) properties and 50 has
(2, 3, 2) properties. In this use case, we found a small number of properties with
infrequent distribution. On the other hand, DBpedia KB foaf:Person-type frequency
distribution for three releases (201504,201510,201604) with the threshold value

7.2 Quantitative Analysis 85

of 200 has (178,177,167) properties, 100 has (164,164,158) properties, and 50 has
(154,134,126). Figure 7.5 illustrates DBpedia foaf:Person class property frequencies
distribution. From the foaf:Person class kernel density estimation based on three
releases, the average value of local minimum is 87.63. In this account, the threshold
value of 50 is lower than the local minimum and has the lowest number of properties.
On the other hand, the threshold value of 100 is near to the local minimum. Also, the
threshold value of 100 has the maximum number of properties which is optimized
for our qualitative analysis approach. Thus, we chose 100 since from the empirical
analysis at property level it allowed to maximize the precision of the approach.

Fig. 7.5 DBpedia foaf:Person class property frequencies distribution.

3cixty. we focus on the latest release (2016-09-09) of the 3cixty Nice KB. We
analyzed lode:Event-type and dul:Place-type instances. Based on the threshold
values of 100, we measured the consistency for lode:Event and dul:Place-type. From
the lode:Event-type resources, by applying the consistency analysis, we found that
10 properties reported below the threshold. Similarly, for dul:Place-type resources
we found that 12 properties below the threshold value.

DBpedia. Table 7.6 reports, for the DBpedia ten classes, the total number of
properties, the inconsistent properties – i.e. those with consistency value = 0 –, and

86 Experimental Results

the consistent properties – consistency value = 1. The values are based on the last
release 201604. We measured the consistency by identifying those properties with
the frequency lower than the threshold value T = 100. For example, foaf:Person has
a total of 381 properties in the 201604 release. We found 158 inconsistent properties,
i.e. properties whose frequency is lower than the threshold.

Table 7.6 Properties for the DBpedia classes and Consistency measures. Results are based
on Version 201604 with threshold T=100.

Class Total Inconsistent Consistent

dbo:Animal 162 123 39

dbo:Artist 429 329 100

dbo:Athlete 436 298 138

dbo:Film 450 298 152

dbo:MusicalWork 325 280 45

dbo:Organisation 1014 644 370

dbo:Place 1,090 589 501

dbo:Species 99 57 42

dbo:Work 935 659 276

foaf:Person 381 158 223

Discussion. The consistency measure is based on the assumption that properties
with low relative frequency more error-prone and applicable to all KB releases. More
specifically, we are interested in identifying properties with low relative frequency
for an entity type. The main findings are:

• The consistency measure identifies only those properties whose frequency is
below the threshold value, which triggers a warning to a data curator concern-
ing a potential consistency issue exist.

• In the 3cixty Nice KB latest release (2016-09-09), we only found ten properties
for lode:Event-type and twelve for dul:Place-type resources. We further
investigate this output in the qualitative analysis.

• In the last release (201604) of the DBpedia KB, we have identified consistent
properties for 10 classes. Consistency measure results illustrated in Table 7.6.

7.2 Quantitative Analysis 87

For example foaf:Person class has 158 inconsistent properties. We further
investigate this measure for foaf:Person class through manual evaluation.

7.2.4 Completeness

3cixty. The measure has been computed based on the last two KB releases, namely
2016-05-15 and 2016-09-09. In Table 7.7, we present a subset of completeness
measure results. For the lode:Event entity type, the number of predicates in the last
two releases = 21 and the number of predicates with completeness issues (value of 0)
= 8. In Figure 7.6, we report the measure of completeness for the lode:events-type
where we only present those properties with issues (value of 0). The percentage of
completeness for lode:Event-type is (13

21)∗100= 62%.

Fig. 7.6 3cixty lode:Event completeness measure results

In Table 7.8, we present completeness measures based on 50 periodic snapshots.
For example, based on the frequency count of businessType in the 2017-09-15
snapshot the observed value is (1,74,421) lower than 2017-09-16 snapshots value
(99,996). In this account, the completeness measure value is 0 leading to possible
quality issues.

88 Experimental Results

Table 7.7 Completeness measure of 3cixty Nice lode:Event class.

Property 2016-05-15 2016-09-09 Complete

atPlace 1,632 424 0

atTime 2,014 490 0

businessType 2,182 689 0

hasCategory 1,698 584 1

other rows are omitted for brevity

involvedAgent 266 42 0

Table 7.8 Completeness measure of 3cixty Nice lode:Event class properties from periodic
snapshots.

Property 2017-09-15 2017-09-16 Complete

minDistanceNearestWeatherStation 2,067 2,063 0

nearestWeatherStation 2067 2063 0

businessType 1,74,421 99,996 0

minDistanceNearestMetroStation 72,606 72,606 1

other rows are omitted for brevity

created 118,070 43,861 0

Similarly, for dul:Place-type, the number of predicates in the last two releases
= 28 and the number of predicates with completeness issue (value of 0) = 14.
Table 7.9, report a subset of completeness measure results. Figure 7.7, we present
dul:Place-type completeness measure results of those properties with completeness
issue (value of 0). The percentage of completeness for the dul:Place-type is equal to
(1− 14

28)∗100= 50%.

DBpedia. Table 7.10 illustrates the results of the completeness measure based
on the latest two releases of DBpedia 201510 and 201604. This table reports the
completeness measure, for each class, the total number of properties, the complete
properties, the incomplete properties, and the percentage of complete properties.

For example, Table 7.11 reports the results of completeness based on the latest
two releases of DBpedia 201510 and 201604 for foaf:Person entity type. foaf:Person
has a total of 396 properties over the two considered versions. We computed the

7.2 Quantitative Analysis 89

Table 7.9 Completeness measure of 3cixty Nice dul:Place class.

Property 2016-05-15 2016-09-09 Complete

poster 37570 44968 1

description 435 600 1

priceRange 67 60 0

aggregateRating 1720 1280 0

other rows are omitted for brevity

importance 66 67 1

Fig. 7.7 3cixty dul:Place completeness measure results

completeness measures over those 396 properties and identified 131 properties with
completeness measure value of 0 (incomplete). The remaining 265 properties can be
considered as complete. The percentage of complete properties can be computed as
(265

396)∗100= 66.92%.

Taking into account the Spanish version of the DBpedia on the last two releases
(201604, 201610) there are in total 8659 common properties present in the datasets.
We identified 3606 properties with quality issues based on the frequency difference
between two releases. In Table 7.12, we present a subset of completeness measure

90 Experimental Results

Table 7.10 DBpedia 10 class Completeness measure results based on release 201510 and
201604.

Class Properties Incomplete Complete Complete(%)

dbo:Animal 170 50 120 70.58%

dbo:Artist 372 21 351 94.35%

dbo:Athlete 404 64 340 84.16%

dbo:Film 461 34 427 92.62%

dbo:MusicalWork 335 46 289 86.17%

dbo:Organisation 975 134 841 86.26%

dbo:Place 1,060 141 920 86.69%

dbo:Species 101 27 74 73.27%

dbo:Work 896 89 807 90.06%

foaf:Person 396 131 265 66.92%

results. We have detected quality issues based on the property frequency differ-
ence between the two versions for the dbo:Place class. For example, the property
dbo:anthem count is 316 for the 201610 release while it was 557 in the 201604
release. This implies 241 resources missing in the 201610 version of the DBpedia
201610 release.

Table 7.11 Completeness measure of DBpedia KB foaf:Person class.

Property 201510 201604 Complete

dbo:timeInSPace 465 419 0

dbo:height 139,445 148,192 1

dbo:weight 67,412 66,144 0

dbo:abstract 1,282,025 1,165,251 0

other rows are omitted for brevity

dbo:activeYearsEndDate 26,483 25,221 0

dbo:firstRace 796 788 0

7.2 Quantitative Analysis 91

Table 7.12 Spanish DBpedia dbo:Place class completeness measure based on release 201604
and 201610.

Property 201604 201610 Complete

dbo:abstract 363,572 655,233 1

dbo:address 17,636 13,3781 0

dbo:anthem 557 316 0

dbo:archipelago 3,162 1,871 0

dbo:architect 4,580 2,291 0

dbo:architecturalStyle 6,919 4,373 0

other rows are omitted for brevity

dbo:area 6,764 3,619 0

Discussion. In general, the completeness measure is based on a pairwise compar-
ison of releases. In this experimental analysis, we compared the last two releases to
identify missing data instances in the last release. Below we summarize our findings:

• Looking at the two latest releases (2016-06-15, 2016-09-09) of the 3cixty
Nice KB, we have identified those properties with completeness value of 0
as issue indicator. The total number of properties of the latest two versions
are 21 excluding those properties not presented in both releases. For instance,
the lode:Event class property lode:atPlace2 exhibits an observed frequency
of 1632 in release 2016-06-15, while it is 424 in release 2016-09-09. As a
consequence the Completeness measure evaluates to 0, thus it indicates an
issue of completeness in the KB. In 3cixty, the dul:Place-type percentage of
completeness is 50%, such a figure indicates a high number of incomplete
predicates in the latest version (2016-09-09).

• For DBpedia KB looking at the last two releases (201510,201604) we identified
incomplete properties for 10 classes. Completeness measure results are listed
in Table 7.10. For instance, we identified a total of 131 incomplete properties
for foaf:Person class. The foaf:Person class property dbo:firstRace exhibits
an observed frequency of 796 in release 201510, while it is 788 in release
201604. As a consequence the completeness measure evaluated to 0, thus it

2http://linkedevents.org/ontology/atPlace

http://linkedevents.org/ontology/atPlace

92 Experimental Results

indicates an issue of completeness in the KB. We further validate our results
through manual inspection. In DBpedia, the (foaf:Person) class percentage of
completeness is 66.92%, such figure indicates a high number of incomplete
instances in the last release (201604).

7.3 Qualitative Analysis using Manual Validation

The general goal of our quality assessment approach is to verify how the evolution
analysis of the changes observed in a set of KB releases helps in quality issue
detection. In the quantitative analysis, we identified classes and properties with
quality issues. We, then, summarize on the qualitative analysis based on the results
of the quantitative analysis.

Given the large number of resources and properties, we considered just a few
classes and a portion of the entities and properties belonging to those classes in
order to keep the amount of manual work to a feasible level. The selection has
been performed in a total random fashion to preserve the representativeness of the
experimental data. In particular we considered a random subset of entities. In general,
a quality issue can identify a potential error in the KB. In this account, we focused on
the effectiveness of the quality measures when it is able to detect an actual problem
in the KB. Manual validation is performed based on the steps introduced in Section
6.3.2

In particular, using the interpretation criteria reported in Table 7.4, from the
measure value we can identify a quality issue. The results are a set of potential
problems, part of them are accurate – they point to actual problems –, while others
are not – they point to false problems. We decided to measure the precision for
evaluating the effectiveness of our approach. Precision is defined as the proportion
of accurate results of a quality measure over the total results. More in detail, for
a given quality measure, we define an item – either a class or a property – as true
positive (TP) if, according to the interpretation criteria, the item presents an issue
and an actual problem was detected in the KB. An item represents a false positive
(FP) if the interpretation identifies a possible issue but none actual problem is found.
The precision can be computed as follows:

7.3 Qualitative Analysis using Manual Validation 93

p =
T P

T P+FP
. (7.1)

We evaluated the precision manually by inspecting the results marked as issues
from the completeness and consistency measures.

We considered the results obtained by the quantitative analysis for the entities
types and properties attached to the class lode:Event for the 3cixty Nice KB; we
considered entities and properties related to the classes dbo:Place, dbo:Species,
dbo:Film and foaf:Person for the DBpedia KB. We designed a set of experiments to
measure the precision as well as to verify quality characteristics. In Table 7.13, we
present an overview of our selected classes and properties along with the experiments
and, in Table 7.14, we summarize the manual evaluation results.

Table 7.13 Selected classes and properties for manual evaluation.

KB Level Experiment

3cixty
Nice

Class Event class to verify Persistency and
Historical Persistency.

Property lode:Event 8 properties from complete-
ness measure to verify and compute pre-
cision for completeness.

Property lode:Event 10 properties from consis-
tency measure to verify and compute
precision for consistency.

DBpedia Class dbo:Species and dbo:Film class to ver-
ify persistency and historical persis-
tency

Property foaf:Person and dbo:Place class 50
properties from completeness measure
to verify as well as compute precision.

Property foaf:Person class 158 properties and
dbo:Place class a subset of 114 proper-
ties from consistency measure to verify
as well as compute precision.

94 Experimental Results

Table 7.14 Summary of manual validation results

Characteristics 3cixty Nice DBpedia Causes of quality issues

Persistency
& Historical
Persistency

True positive: lode:Event
entities missing due to al-
gorithm error

False positive;
dbo:Species and
dbo:Film class qual-
ity issues fixed in current
version;

3cixty: instances are missing due
to an error in the reconciliation
framework. DBpedia: erroneous
schema presented in 201510 ver-
sion has been fixed in 201604
version resulting in a false posi-
tive outcome.

Consistency False Positive:
lode:Event proper-
ties 2016-09-09 release
we did not find any error

True positive ;
foaf:Person and
dbo:Place class on
201604 version we
identify properties with
consistency issue. Based
on the threshold value of
100 it has a precision of
68% and 76%.

3cixty: In this use case, the
schema remains consistent for
all the KB releases and no real
issues were found in the proper-
ties with low frequencies. DBpe-
dia: In this use case, the schema
evolves with each release. We
found issues in the properties
due to erroneous conceptualiza-
tion.

Completeness True positive: lode:Event
properties missing due to
algorithm error. Over 8
properties we computed
Precision of 95%

True positive:
foaf:Person proper-
ties missing due to
completeness issue.
Over 50 properties we
computed Precision of
94%. For dbo:Place
over 50 properties we
computed precision of
86%.

We found completeness issues
due to data source extraction er-
ror for both 3cixty KB and DB-
pedia KB.

7.3.1 Persistency & Historical Persistency

For persistency and historical persistency, we have investigated a subset of resources
for an entity type. The primary motivation is to detect the causes of quality issues for
that entity type. Historical persistency is derived from persistency characteristic. We
argue that by persistency measure validation, we also verified historical persistency
results. Therefore we only performed the validation for persistency.

We evaluated the persistency measure based on the number of entity counts for
lode:Event-type between two different KB releases (2016-06-15, 2016-09-09) of the
3cixty Nice KB. From the quantitative analysis, we detected lode:Event-type has
persistency issue with measure value of 0.

7.3 Qualitative Analysis using Manual Validation 95

For what concerns DBpedia, out of the ten classes under investigation, nine of
them have persistency value of 0, which implies that they have persistency issue. We
investigated dbo:Species and dbo:Film entity type that shows issues.

3cixty. From the extracted KB release on 2016-06-15, there are 2,182 distinct
entities of type lode:Event. However, in the 2016-09-09 release, that figure
falls down to 689 distinct entities. We perform a comparison between the two
releases to identify the missing entities. As a result we identified a total of
1911 entities missing in the newest release: this is an actual error. After a
further investigation with the curators of the KB we found that this is due to
an error in the reconciliation framework caused by a problem of overfitting.
The error present in the 2016-09-09 release is a true positive identified by the
Persistency measure.

DBpedia. We analyzed entity counts of class dbo:Species for the latest two releases
of DBpedia (201510 and 201604). The counts are 305,378 and 301,715
respectively. We performed a comparison between the two releases to identify
the missing entities; we found 12,791 entities that are no more present in
the latest release. We investigate in detail the first six missing entities. For
example, the entity AIDS_II 3 in 201510 was classified with type dbo:Article
as well as dbo:Species. However, in 201604 it has been updated with a new
type and the type dbo:Species was removed. There was clearly an error in the
previous version that has been fixed in the latest, however, from the point of
view of the latest release this is a false positive.

We performed fine grained analysis based on subset of entity type dbo:Film
for the latest two releases of DBpedia (201510 and 201604). The counts are
177,989 and 146,449 respectively. We performed a comparison between the
two releases to identify the missing entities; we found 49,112 entities that are
no more present in the latest release. We investigate in more detail the first
six missing entities. For example, the subject dbpedia:$9.99in 201510 was
classified with type dbo:Work as well as dbo:Film. However, in 201604 it has
been removed from both dbo:Work and dbo:Film was removed. We further
explore the Wikipedia page wikidpedia-en:$9.99 and film exists. It is clearly
an error in the data extraction in 201604 release.

3http://dbpedia.org/page/AIDS_(computer_virus)

http://dbpedia.org/page/AIDS_(computer_virus)

96 Experimental Results

7.3.2 Consistency

We computed the consistency measure values using the threshold T = 100. Properties
with consistency = 0 were considered as potential quality issues. We considered the
properties attached to entities typed lode:Event for the 2016-09-09 3cixty Nice KB.
For the DBpedia KB, we considered the properties attached to the entities of type
foaf:Person and dbo:Place from the 201604 release.

3cixty. We found only 10 inconsistent properties. After a manual inspection of those
properties we were unable to identify any actual error in the resources, so we
classified all of the issues as false positives. In 3cixty KB schema remains
consistent for all the releases. We identified that these properties common for
all instances and we didn’t find any erroneous conceptualization in the schema
presentation.

DBpedia. We extracted all the properties attached to entities of type foaf:Person
and we identified 158 inconsistent properties. From the properties list, we
inspected each of the property resources in detail. From the initial inspection,
we observe that properties with low frequency contain actual consistency
problems. For example, the property dbo:Lake present in the class foaf:Person
has a property frequency of 1. From further investigations, this page relates to
X. Henry Goodnough an engineer and chief advocate for the creation of the
Quabbin Reservoir project. However, the property relates to a person definition.
This indicates an error present due to wrong mapping with Wikipedia Infobox
keys. From the manual validation, the precision of the identified issues using
the consistency measure accounts to 68%.

We have evaluated a total of 114 properties with consistency issues for
dbo:Place class. We extracted all the data instances for the properties with
consistency issues. From the manual inspection in dbo:Place class we identify
data instances with erroneous conceptualization. For example, the property
dbo:weight has 26 data instances mapped with dbo:Place type. We further in-
vestigate each of this data instances and corresponding Wikipedia pages. From
manual investigation we can identity dbo:weight property erroneously mapped
with dbo:Place type. Such as one of the data instance wikipedia-en:Nokia_X5
is about mobile devices is mapped with dbo:Place type. This indicates an

7.3 Qualitative Analysis using Manual Validation 97

inconsistency issue due to wrong schema presentation. Based on the manual
validation results we evaluate precision of 76% for dbo:Place class.

7.3.3 Completeness

For the 3cixty KB, we analyzed the 2016-06-06 and 2016-09-09 releases; we eval-
uated the properties attached to lode:Event entities. DBpedia KB entity type of
foaf:Person and dbo:Place in 201510 and 201604 releases has 131 and 437 proper-
ties with completeness issues. For manual validation, we manually inspected whether
they are real issues.

3cixty. From the analysis of the 2016-06-06 and 2016-09-09 releases of the 3cixty
KB releases, we found eight properties showing completeness issues. Based on
the eight lode:Event class properties, we investigated all entities and attached
properties. We first investigated five instances for each property, manually
inspecting 40 different entities. From the investigation we observed that those
entities that are presents in 2016-06-06 are missing in 2016-09-09 that leads
to a completeness issue. Entities are missing in the 2016-09-09 release due to
an error of the reconciliation algorithm. Based on this manual investigation,
the completeness measure generates an output that has a precision of 95%.

DBpedia. We have randomly selected 50 properties from foaf:Person class which is
identified as incomplete in the quantitative experiment. In our manual inspec-
tion, we investigated a small number of the subjects presented in each property.
More specifically, we first checked five subjects for manual evaluation for each
property. For DBpedia, we checked a total of 250 entities. For example, we
identified that the property bnfId has completeness issue. We extracted all the
subjects for the releases of 201510 and 201610.

In detail, the property dbo:bnfId for version 201604 has only 16 instances and
for version 201510 has 217 instances. We performed a entities comparison
between these two releases to identify the missing instances of the given
property dbo:bnfId in the 201604 release. After a comparison between the
two releases, we found 204 distinct instances missing in 201610 version of
DBpedia. We perform a further manual investigation on the instances to verify
the result.

98 Experimental Results

One of the results of the analysis is John_Hartley _(academic)4 who is avail-
able in the 201510 release. However, it is not found in 201604 release of DBpe-
dia. To further validate such an output, we checked the source Wikipedia page
using foaf:primaryTopic about John Hartley (academic)5. In the Wikipedia
page BNF ID is present as linked to external source. In DBpedia from 201510
version to 201604 version update, this entity has been removed from the prop-
erty dbo:bnfId. This example shows a completeness issue presents in the
201604 release of DBpedia for property dbo:bnfId.

Another example of DBpedia foaf:Person-type, properties with completeness
issues are dbo:firstRace and dbo:lastRace. We extracted all the subjects present
in the last two releases (201510 and 201604) and performed a set disjoint oper-
ation to identify the missing subjects. For manual validation, We first checked
five subjects for the dbo:firstRace and dbo:lastRace property, checking a total
of 250 entities. In the 201604 release, dbo:firstRace has 769 instances and
in the 201510 release it has 777 instances. After the set disjoint operation
between two releases (201510, 201604), we found 9 distinct instances missing
in 201604 release of DBpedia EN. Furthermore, we manually inspected each
instance to identify causes of incompleteness issue. One of the data instance
dbr:Bob_Said for the dbo:firstRace property is available in the 201510 release.
However, it is not present in 201604 release. We further explore the corre-
sponding Wikipedia page using foaf:primaryTopic. In the Wikipedia page firt
race is present as info box key. Due to DBpedia update from 201510 to 201604
version, this entity has been missing from the property dbo:firstRace. Simi-
larly, we also found this entity is missing for the dbo:lastRace property. These
examples present an ideal scenario for completeness issues in the 201604
release of the English version of DBpedia. Based on the manual inspection
of 50 properties, we observed that completeness measure has the precision of
94%.

From the incomplete properties list of dbo:Place class we randomly selected 50
properties. We checked first five entities for manual evaluation. For dbo:Place
class, we checked a total of 250 entities. For example, we identified that the
property dbo:parish has completeness issue. We extracted all the instances for
the releases of 201510 and 201610. Then we perform manual inspection for

4http://dbpedia.org/page/John_Hartley_(academic)
5https://en.wikipedia.org/wiki/John_Hartley_(academic)

http://dbpedia.org/page/John_Hartley_(academic)
https://en.wikipedia.org/wiki/John_Hartley_(academic)

7.3 Qualitative Analysis using Manual Validation 99

each entity and compared with the Wikipedia sources to identify the causes of
quality issues.

For example, property dbo:parish has 26 entities for 201510 and 20 entities
in 201604. We collect missing resources after performing set disjoint oper-
ation. One of the results of the set disjoint operation is Maughold_(parish)
missing in the 201604 version. To further validate such an output, we
checked the source Wikipedia page using foaf:primaryTopic about wikipedia-
en:Maughold_(parish). In the Wikipedia page Parish is presented as title
definition of the captain of parish militia. In particular, in DBpedia from
201510 version to 201604 version update, this entity has been removed from
the property dbo:parish. Based on the investigation of the properties, we
compute our completeness measure has the precision of 86%.

From the Spanish version of DBpedia, dbo:Place entity type completeness
measure we found 3606 properties with completeness value of 0. This indicates
a potential completeness issue present for these properties. From the 3606
property, we randomly select the property dbo:prefijoTelefónicoNombre for
manual validation. We collected all the subjects (56109, 55387) from the two
releases (201604, 201610). Then we performed a set of disjoint operations
between two triples set to identify those triples missing from the 201610.

From the set disjoint operation, we found a total of 1982 subject missing from
201610 version. To keep the manual work in a feasible level, we selected a
subset of 200 subjects for evaluation in a random manner. One of the results
of the analysis is location Morante,6 which is available in the 201604 release.
However, it is missing in 201610 release of DBpedia. To further validate such
an output, we checked the source Wikipedia page using foaf:primaryTopic
about Morante7. In the Wikipedia page prefijo TelefónicoNombre is present in
the infobox as key. In DBpedia ES from 201604 version to 201610 version
update, this subject has been missing from the property prefijo TelefónicoNom-
bre. This example shows a completeness issue presents in the 201610 release
of DBpedia for property prefijo TelefónicoNombre. Based on the investigation
over the subset of property values, we compute our completeness measure has
the precision of 89%.

6http://es.dbpedia.org/page/Morante
7https://es.wikipedia.org/wiki/Morante

http://es.dbpedia.org/page/Morante
https://es.wikipedia.org/wiki/Morante

100 Experimental Results

7.4 Validation using Integrity Constraints

The general goal of the constraints based validation is to evaluate the entity types us-
ing the constraints features from RDF shape induction based on predictive modeling.
Examples of the constraints generation processes are presented in Section 5.1. From
the quantitative analysis, we have identified multiple entity types and properties with
quality issues. In particular, we selected the entity types from the quality analysis
for RDF shape induction and evaluated the constraints classifier performance using
machine learning model. Our approach has been implemented with a prototype
written in R8.

Because we are evaluating the constraints values as a classification problem, it
is necessary to validate the annotations further and create a gold standard. In this
context, we have manually inspected the constraints feature (Sec. 6.3.1) values from
the 3cixty and DBpedia KB. However, to keep the manual inspection tasks at the
feasible level, we have selected a subset of properties for an entity type.

7.4.1 Feature Extraction

In this section, we present examples of the SHACL based integrity constraints
implementation and we report the results of i) Cardinality constraints, ii) Range
Constraints, and iii) String constraints. We describe the above while reporting the
analysis performed on the English DBpedia 201604 release.

Cardinality constraints: We generate cardinality information for each property asso-
ciated with the instances of a given class. For example, by analyzing 1,767,272
dbo:Person instances in DBpedia, we extract the cardinality distribution for
dbo:Person-dbo:deathDate as reported in Table 7.15.

During the feature extration step, this raw profiling data is used to derive a set
of features that can be used for predicting the cardinality. Another example of
cardinality distribution is reported in Table 7.16 for the dbo:Sport/dbo:union
property.

At first we extract the raw cardinalities. Based on the raw values we compute
the distinct cardinality values distributions similar to the one reported in

8 https://github.com/rifat963/RDFShapeInduction

https://github.com/rifat963/RDFShapeInduction

7.4 Validation using Integrity Constraints 101

Table 7.15 Cardinality Counts for dbo:Person-dbo:deathDate.

Cardinality Instances Precentage

0 1,355,038 76.67%

1 404,069 22.87%

2 8,165 0.46%

Table 7.16 Cardinality Counts for dbo:Sport/dbo:union.

Cardinality Instances Precentage

0 1,662 84.88%

1 279 14.14%

2 10 0.05%

3 5 0.02%

4 2 0.01%

Table 7.16. Note that there are three distributions, one is the raw cardinalities
(0,1,0,3,1,2,1,6,1,0), then distinct cardinalities (0,1,2,3,4) and finally one is the
percentages of instances per each cardinality (84.88%, 14.24%, 0.05%, 0.02%,
0.01%). Further, for each of the three distributions we derive 30 statistical
measures including min-max cardinalities, mean, mode, standard deviation,
variance, quadratic mean, skewness, percentiles, and kurtosis[89].

Table 7.17 reports 30 features (P1 to P30) selected for a classifier that predicts
the cardinality category with example values for the dbo:Sport class dbo:union
property. Features P1 to P13 are related to raw cardinality distribution, features
P14 to P20 are related to the distinct cardinality distribution, and features P21
to P30 are related to the percentages distribution. For example, P1 present
a minimum cardinality value of 0 for dbo:Sport/dbo:union and P2 presents
maximum that is 4. Our intuition is that these are descriptive to classify the
cardinality category. Nevertheless, the data can be noisy and either min or/and
max could be outliers. To address this we add statistical features that give
more insights about the distribution of the cardinalities such as mean, mode,
kurtosis, standard deviationsm, skewness, variance and four percentiles. Our
motivation for using these statistical values is that each of these could provide
some insights related to different possible cardinality distributions. Based on

102 Experimental Results

the cardinality level, which is presented in Table 5.1, we create a gold standard
by annotating the properties with corresponding constraints values and create
the RDF Shape for validation. For instance, the dbo:Person-dbo:deathDate
corresponding SHACL property constraints are generated as illustrated by
Listing 5.2.

Range Constraints: We collected statistics about the number of IRIs, Literals, and
Blank nodes for each property associated with instances of a given class as
shown in Table 7.18. The blank node counts are also generated by the data
collection stage but they are not reported because there were no blank nodes
in this example.

Furthermore, we also explore object type information by analyzing all the IRI
and blank node objects. Table 4 shows an example of object type information
by analyzing all the objects of dbo:Person/dbp:deathPlace class-property
combination. It contains the number of objects, the number of distinct of
objects of each class type and their respective percentages. As it can be seen,
the objects of dbo:Person/dbp:deathPlace are typed as many different classes.
And, in general, it can be seen that most objects are typed with multiple classes
(e.g., with equivalent classes, super classes). Also there are some objects that
should not be associated (i.e., inconsistent) with the dbp:deathPlace property,
for example, a Broadcaster should not be a death place of a person. Further,
there are some objects for which the type information is not available.

Similarly, for literal objects our data collection module extracts the information
about their data types. Table 7.20 shows an example of extracted informa-
tion for the class-property combination dbp:Person/dbp:deathDate. For each
datatype, it shows the number of objects, number of distinct objects, and their
corresponding percentages. Such an information provides heuristics about
which should be the corresponding datatype.

String constraints: We use statistics about the literals to identify the minLength
and maxLength of the String values. Based on the string length distribution
of literal values, we explore the 1st quartile and 3rd quartile to identify the
minimum and maximum length.

More specifically, we evaluate the interquartile range (IQR) based on the string
length literal values of a property. For example, in Table 7.21, we report the
string length distribution of the foaf:Person class dbo:Title property together

7.4 Validation using Integrity Constraints 103

Table 7.17 dbo:Sport/dbo:union 30 statistical measures (p1 to p30) from raw cardinality
estimation.

ID Description Example ID Description Example

P1 Min Cardinal-
ity

0 P16 Distinct
Quadratic
Mean

2.4495

P2 Max Cardinal-
ity

4 P17 Distinct Kur-
tosis

-1.2

P3 Mean 0.16445 P18 Distinct
Standard
Deviation

1.5811

P4 Mode 0 P19 Distinct Skew-
ness

0

P5 Quadratic
mean

0.44972 P20 Distinct vari-
ance

2.5

P6 Kurtosis 13.7897 P21 Percentages
Mins

0.0010

P7 Standard De-
viation

0.41868 P22 Percentage
Max

0.8488

P8 Skewness 3.09484 P23 0 Percentage 0.8488

P9 Variance 0.17529 P24 1 Percentage 0.1429

P10 98th per-
centile

1 P25 Percentage
Mean

0.2

P11 2nd percentile 0 P26 Percentage
Quad. Mean

0.3849

P12 75nd per-
centile

0 P27 Percentage
Kurtosis

0.3849

P13 25th per-
centile

0 P28 Percentage
Standard
Deviation

0.3677

P14 Distinct Cardi-
nalities

5 P29 Percentage
Skewness

2.0948

P15 Distinct Mean
Card.

0 P30 Percentage
Variance

0.1352

with frequency of string length. Similarly, in Table 7.22, it is illustrated the
dbo:BirthName property frequency distribution.

In this example, both properties have a small central tendency towards the
mean. Our main focus is to identify a range of minLength and maxLength

104 Experimental Results

Table 7.18 Object node type information.

Class-property IRI Literals
Total Distinct Total Distinct

dbo:Person/dbp:birthPlace 89,355 21,845 44,639 20,405

dbo:Person/dbp:name 21,496 15,746 115,848 100,931

dbo:Person/dbp:deathDate 127 111 65,272 32,449

dbo:Person/dbp:religion 8,374 786 6,977 407

Table 7.19 Classes of dbo:Person-dbp:birthPlace objects.

Object Class
Objects
(89,355)

Distinct Objects
(21,845)

Count % Count %

schema:Place 71,748 80.29 16,502 75.54

dbo:Place 71,748 80.29 16,502 75.54

dbo:PopulatedPlace 71,542 80.07 16,353 74.86

dbo:Settlement 41,216 46.13 14,184 64.93

other rows are omitted for brevity

schema:Product 2 00.00 2 00.01

dbo:Broadcaster 2 00.00 2 00.01

Unknown 9,790 10.95 2,888 13.22

Table 7.20 Datatypes of dbp:Person-dbp:deathDate literals.

Datatype
Objects
(65,272)

Distinct Objects
(32,449)

Count % Count %

xsd:date 39,761 60.92 26,726 82.36

xsd:integer 13,543 20.75 1,758 5.42

rdf:langString 6,388 9.79 3,512 10.82

xsd:gMonthDay 5,446 8.34 366 1.13

dt:second 113 0.17 66 0.20

xsd:double 20 0.03 20 0.06

dt:hour 1 0.00 1 0.00

Total 65,272 100 32,449 100

7.4 Validation using Integrity Constraints 105

Table 7.21 Frequency distribution of foaf:Person/dbo:Title property.

String Length Frequency Percentage

16 20 31.25 %

13 7 10.93%

15 5 7.81%

other rows are omitted for brevity

20 4 6.25%

for literal objects. In this account, we use the interquartile range for dbo:title
to identify minLength and maxLength. We used the 3rd quartile (Q3) of the
string length as maxLength and the 1st quartile (Q1) as minLength for the
dbo:title property. In Figure 7.8, we present a boxplot of the dbo:title property.
In particular, using the interquartile range, we can present the string range
constraints as a binary classifier.

Table 7.22 Frequency distribution of foaf:Person/dbo:BirthName property.

String Length Frequency Percentage

20 32 13.14 %

21 26 10.65%

19 25 10.24%

other rows are omitted for brevity

22 17 6.96%

7.4.2 Model Preparation

In this experimental analysis for English DBpedia KB, we used the expected cardi-
nalities for 174 properties (associated with an instance of a given class). Also, we
collected a subset of 200 properties associated with the dbo:Place entity type for IRI
objects and the datatype for literal objects. On the other hand, for Spanish DBpedia
we collected expected cardinality for 240 properties and 219 properties for the range
constraints based on the dbo:Organization entity type. Furthermore, we collected

106 Experimental Results

Fig. 7.8 foaf:Person class dbo:title property string length box plot.

dataset with cardinality information for each property associated with instances of a
given class for 215 properties for the 3cixty Nice KB. Similarly, for range constraints,
we collected 215 properties associated with IRI and the datatype for literal objects.
In particular, we evaluated each dataset by manually inspecting properties annotated
with integrity constraints to create the gold standards. We considered this partial
gold standard as the training dataset.

From the initial analysis of the datasets, we found that the minimum cardinality
value has an imbalance in the classifier distribution. We observed that rare events
occur in case of selected constraints as response variables where variation between
two variables is less than 15%. We applied SMOTE (Synthetic Minority Over-
sampling Technique) [92] for oversampling the rare events. The SMOTE function
over-samples response variables by using bootstrapping and k-Nearest Neighbor
to synthetically create additional observations of that response variable. In our
experiment, we applied an over-sampling value of 100 to double the number of
positive cases, and an undersampling value of 200 to keep half of what was created
as negative cases. It balances the classifier and achieves better performance than
only under-sampling the majority class. The results are reported in Table 7.23. After
applying the SMOTE technique, we applied 10-fold cross-validation based on the

7.4 Validation using Integrity Constraints 107

learning models mentioned in Section 2.8 and the classifiers use default parameters
unless otherwise stated.

We evaluate each dataset using the simplest classifier (known as ZeroR [93]) to
establish the baseline value that must be enhanced by our model. More specifically,
we used the ZeroR [93] classifier for range, minimum and maximum cardinality. It
is a simple classification method which relies on the target and ignores all predictors.
ZeroR based on predicting the most-frequent class in target variable. For example,
DBpedia minimum cardinality training set has two class MIN0 and MIN1+. As
the number of the MIN0 feature is 215 and the MIN1+ feature is 65. The ZeroR
classifier will be based on MIN0. In the Table 7.24 we present baseline accuracy for
minimum and maximum cardinality for both datasets using ZeroR. Although there is
no predictability power in ZeroR, it is useful for determining a baseline performance
as a benchmark for other classification methods.

Table 7.23 DBpedia and 3cixty Nice distribution of cardinality constraints.

Distribution
Minimum

Cardinality
Maximum

Cardinality
Range

Constraint
MIN0 MIN1+ MAX1 MAX1+ IRI LIT

3cixty Nice KB

Without SMOTE 47% 52.8% 79.2% 20.8% 68.7% 31.3%

With SMOTE (100,200) 50% 50% 50% 50% 50% 50%

English DBpedia KB

Without SMOTE 76.5% 23.5% 53% 47% 71.5% 28.5%

With SMOTE(100,200) 50% 50% 50% 50% 50% 50%

Spanish DBpedia KB

Without SMOTE 72% 28% 56% 44% 69.4% 30.6%

With SMOTE(100,200) 50% 50% 50% 50% 50% 50%

Within this context, at first, we explored the classifier accuracy for each dataset.
Classifier accuracy gives an insight into the performance using the ratio of the number
of correct predictions out of all predictions made and presented as a percentage where
100% is the best an algorithm can achieve. In Table 7.25 we present the percentage
of cardinality classifier accuracy for DBpedia KB and 3cixty KB. From Table 7.25,
most of the machine learning algorithm has a high percentage of accuracy compared
to baseline algorithm. For example, in the case of DBpedia KB, both minimum

108 Experimental Results

Table 7.24 Baseline accuracy (using ZeroR) for 3cixty KB and DBpedia KB.

Knowledge Base Minimum
Cardinality

Maximum
Cardinality

Range
Constraint

3cixty 53.5% 80% 78.2%

English DBpedia 71.2% 81.6% 79.8%

Spanish DBpedia 76.4% 52.9% 72.3%

and maximum cardinality classifier have a high percentage of accuracy such as
Random Forest model has 97.6% for minimum cardinality and 97.03% for maximum
cardinality. However, 3cixty KB minimum and maximum cardinality have significant
variation in classifier performance. Such as, Naive Bayesian (58.3%) has near to
baseline accuracy of 53.5% for minimum cardinality. However, Random forest
model has a higher percentage of accuracy of 74.8%. In this context, random forest
model gives higher accuracy for almost all five models. We further evaluated our
constraints classifier performance using the measures introduced in Section 2.8.

Table 7.25 Classifier accuracy for the DBpedia KB and 3cixty KB

Knowledge
Base

Random
Forest

Least Squares
SVM

Multilayer
Perceptron

K-Nearest
Neighbour

Naive
Bayes

3cixty

Minimum
Cardinality

74.89% 66.67% 61.11% 63.89% 58.3%

Maximum
Cardinality

81.52% 76.29% 79.89% 79.31% 69.44%

Range
Constraint

82.57% 78.23% 83.17% 75.48% 71.68%

English
DBpedia

Minimum
Cardinality

97.61% 94.81% 95.11% 92.64% 87.83

Maximum
Cardinality

97.03% 82.67% 79.81% 83.41% 84.04%

Range
Constraint

91.81% 73.52% 72.22% 71.84% 70.58%

Spanish
DBpedia

Minimum
Cardinality

82.97% 79.36% 84.56% 74.87% 72.67%

Maximum
Cardinality

85.34% 73.74% 78.72% 76.81% 72.36%

Range
Constraint

83.74% 72.22% 71.43% 69.47% 76.37%

7.4 Validation using Integrity Constraints 109

7.4.3 Model Evaluation

In detail, the model evaluation results using precision, recall and F1 measures for the
constraints classifiers are mentioned below.

3cixty Nice. In Table 7.26, we present the 3cixty KB three constraints classifier
performance measures. Overall ensemble algorithm, Random Forest model
achieved a greater than 90% F1 value for all three classifiers. More specifically,
for minimum cardinality, random forest model reached 91% F1 score where
it achieved 96% precision. On the other hand, Neural Network of multilayer
perceptron algorithm reached 90% F1 score for range constraints. However,
simple Naive Bayes learning algorithm has significantly lower F1 (<70%)
score compared to all the classifiers F1 scores. K-Nearest Neighbour (K-NN)
has the lowest F1 score for the maximum cardinality and range constraints.

English DBpedia. Table 7.26 illustrates the three classifiers performance measures
for the English version of DBpedia KB. Similar to 3cixty KB, ensemble
learning algorithm, Random Forest proven to be effective in achieving greater
than 90% F1 value for all three classifiers. Moreover, minimum cardinality
constraints random forest algorithm reached 97% F1 score where it achieved
98% precision. However, in case of minimum cardinality classifier, other
learning algorithms such as Neural Network and Least Squares SVM also
achieved greater than 90% F1 score.

Spanish DBpedia. Table 7.28 illustrates the integrity constraints performance mea-
sure for the Spanish DBpedia Dataset. Compared to other models, Random
Forest achieved the highest F1 score for all three classifiers. Moreover, it
achieved 92.85% F1 score for maximum cardinality classifier. On the other
hand, compared to random forest model, Least Squares SVM achieved also
achieved the F1 score of 87.23% for the minimum cardinality classifier. How-
ever, for Spanish DBpedia, Naive Bayes classifier has the lowest F1 score for
all the constraints.

110 Experimental Results

Table
7.26

Integrity
C

onstraints
perform

ance
m

easures
for3cixty

K
B

.

L
earning

A
lgorithm

M
inim

um
C

ardinality
M

axim
um

C
ardinality

R
ange

Precision
R

ecall
F1

Precision
R

ecall
F1

Precision
R

ecall
F1

R
andom

Forest
0.9626

0.8729
0.9156

0.8909
0.9423

0.9159
0.9333

0.9032
0.9180

M
ultilayerPerceptron

0.8812
0.8812

0.8128
0.8113

0.8269
0.8190

0.9375
0.8823

0.9091

L
eastSquares

SV
M

0.7692
0.7263

0.7471
0.8070

0.8846
0.8440

0.8148
0.9167

0.8627

N
aive

B
ayes

0.7152
0.6932

0.7040
0.7288

0.8268
0.7748

0.8266
0.7462

0.8275

K
-N

earestN
eighbour

0.6991
0.6695

0.6840
0.7049

0.8269
0.7611

0.7837
0.8285

0.8055

Table
7.27

Integrity
C

onstraints
perform

ance
m

easure
forE

nglish
D

B
pedia.

L
earning

A
lgorithm

M
inim

um
C

ardinality
M

axim
um

C
ardinality

R
ange

Precision
R

ecall
F1

Precision
R

ecall
F1

Precision
R

ecall
F1

R
andom

Forest
0.9890

0.9574
0.9730

0.9842
0.9920

0.9881
0.9457

0.9527
0.9594

L
eastSquares

SV
M

0.9944
0.9468

0.9700
0.8491

0.9574
0.9000

0.8596
0.9231

0.8902

M
ultilayerPerceptron

0.9674
0.9468

0.9570
0.8167

0.9601
0.8826

0.8262
0.8657

0.8456

K
-N

earestN
eighbour

0.9511
0.9309

0.9409
0.8797

0.8750
0.8773

0.8361
0.8425

0.8393

N
aive

B
ayes

0.9401
0.8351

0.8845
0.9065

0.7739
0.8350

0.8953
0.7951

0.8422

Table
7.28

Integrity
C

onstraints
perform

ance
m

easure
forSpanish

D
B

pedia.

L
earning

A
lgorithm

M
inim

um
C

ardinality
M

axim
um

C
ardinality

R
ange

Precision
R

ecall
F1

Precision
R

ecall
F1

Precision
R

ecall
F1

R
andom

Forest
0.8971

0.8547
0.8754

0.9247
0.9323

0.9285
0.8741

0.8954
0.8846

L
eastSquares

SV
M

0.8517
0.8940

0.8723
0.8070

0.8846
0.8440

0.8348
0.8416

0.8381

M
ultilayerPerceptron

0.8670
0.8183

0.8419
0.8863

0.8517
0.8685

0.7942
0.7701

0.7819

K
-N

earestN
eighbour

0.8378
0.8170

0.8272
0.8168

0.7901
0.8032

0.7714
0.7808

0.7761

N
aive

B
ayes

0.7091
0.7278

0.7183
0.7862

0.7961
0.7911

0.7620
0.7901

0.7758

Chapter 8

Discussion and Limitations

This chapter reports a synthesis of the main findings of the experimental analysis
presented in Chapter 7. Taking into consideration of quality evaluation, we potentially
detected errors in various stages of evolving KBs. However, we only explored small
subsets of the datasets for manual evaluation. Due to the unrestrained evolution of
KBs, quality measures could lead to increasing number of false positive results. In
this context, we introduced integrity constraints based validation approach. Figure
8.1 illustrates the main results of this thesis, labeled A to G.

More specifically, Section 8.1 discusses the evaluation results of the proposed
quality assessment approach. Section 8.2 addresses the performance of the learning
models. Based on the experimental analysis, Section 8.3 outlines the impact of KB
changes using two use cases and Section 8.4 presents an initial observation on quality
issues of literal values. Section 8.5 introduces an approach to lifespan analysis for
evolving KBs. Finally, Section 8.6 outlines the limitations of the proposed approach.

8.1 Evolution Analysis to Drive Quality Assessment

Similarly to Radulovic et al. [94], we present a discussion of our approach with
respect to the following four criteria:

Conformance provides insights to what extent a quality framework and character-
istics meet established standards. In our approach, we have proposed four
quality characteristics. Among them we selected the completeness and consis-

112 Discussion and Limitations

Problem Definition
In the current literature, quality assessment for evolving KBs using coarse-grained analysis is not
fully explored. The two main issues of evolving KBs: (1) identification of quality issues due to
unrestrained evolution, and (2) identification of logical or formal contradictions.

Objectives
(1) Evolution-based measures that can be used to detect quality issues and address various
quality characteristics.
(2) Propose a methodology that profiles different releases of the same KB and measures
automatically the quality of the data.
(3) Constraints based feature extraction and apply these features in a learning model to create
RDF Shapes.

RQ1-How can we identify quality
issues with respect to KB evolution?

(A) Introduced four evolution-based quality
characteristics using summary statistics.

RQ2-Which quality assessment approach
can be defined on top of the the
evolution-based quality characteristics?
(B) Proposed a novel quality assessment
approach using evolution-based quality
characteristics.

RQ3-Which approaches can be used to validate a KB evolution based
quality assessment approach?

(C) A qualitative approach using manual validation.
(D) Completeness characteristic is extremely effective and was able to achieve greater than 90%
precision in error detection for both the use cases.
(E) Schema validation by generating RDF shapes and learning models.
(F) Accessing the performance of the validation approach by using five learning models over
three sub-tasks, namely minimum cardinality, maximum cardinality and range constraint.
(G) The best performing model in the experimental setup is the Random Forest, reaching an F1
value greater than 90% for minimum and maximum cardinality and 84% for range constraints.

Fig. 8.1 Summary of the main results of the Quality Assessment and Validation Approach.

tency quality characteristics according to the guidelines from the ISO 25012
standard. On the other hand, we followed the study presented by Ellefi et al.
[9] to propose persistency and historical persistency quality characteristics.

Applicability implies the practical aspects of the quality assessment approach. In
general, coarse-grained analysis significantly improves the space and time
complexity regarding data analysis. We envision that our approach can be au-
tomated using daily snapshot generations and automatically creating periodic
reports. We experimented with two different knowledge bases and verified our
hypothesis for both. Our implementation follows a simple structure and it can
scalable to KBs with a large number of entities and properties.

8.1 Evolution Analysis to Drive Quality Assessment 113

Causes of Quality Issues provides insights regarding detected issues using our
approach. In our approach, we identified two types of quality issues: i) errors
in the data source extraction process, and ii) erroneous schema presentation.
In the case of the 3cixty Nice KB, we only found issues based on the data
source extraction process. For example, we found a significant number of
resources missing in the last release of lode:Event class due to algorithmic
error. On the other hand, the 3cixty Nice KB schema remains unchanged in
all KB releases. More specifically, we did not find any real issues based on
the schema presentation. In the case of the DBpedia KB, we found both types
of quality issues. For example, entities missing in foaf:Person class due to
incorrect mapping of field values in the data extraction process. For example,
we found a significant number of resources missing due to wrong schema
presentation for the DBpedia KB. Such a property dbo:Lake is mapped with
foaf:Person-type due to automatic mapping with wrong Wikipedia infobox
keys. Based on the two use cases, our approach has proven highly efficient to
identify quality issues in the data extraction and integration process.

Performance measures how much the output generated by our approach is accurated
by counting true positives (TP) or false positives (FP). Using persistency and
historical persistency measures, we analyzed the KB changes with each release
to detect any quality issues. For each use cases, we have only detected if
the persistency measure leads to TP or FP results. Based on the qualitative
analysis, the persistency measure for the 3cixty Nice KB lode:Event class has
quality issues in the last release(2016-09-09). In the case of the DBpedia KB
dbo:Species class, we did not find any quality issues on the last release(201604)
which lead to FP results. On the other hand, we have evaluated precision based
on completeness and consistency measures for the both KBs. Overall, we
evaluated the property completeness measure in terms of precision through
manual evaluation. Considering computational complexity, we only use count
and difference operation for measurement functions. We assume that our
computational complexity will be O(NT) where the NT is the total number
of entities for type T. The computed precision of completeness measure in
our approach is: i) 94% for foaf:Person-type entities of the English DBpedia
KB; ii) 89% for dbo:Place-type entities of the Spanish DBpedia KB, and iii)
95% for the lode:Event-type entities of the 3cixty Nice KB. We only identify
consistency issue in case of DBpedia and computed precision of 68% through

114 Discussion and Limitations

manual evaluation for foaf:Person-type entities and 76% for dbo:Place-type
entities.

8.2 Modeling Performance

The goal of the validation using integrity constraints is twofold: (i) evaluating the
performance of the cardinality and range constraints classifier using learning models,
and (ii) creating constraints dataset that can be used for RDF shape generation.

In this context, the prediction performance of constraint classifiers are measured
by precision, recall and F1 score. Overall, our constraints classifiers achieved
high predictive performance with the Random Forest model. For example, the
Random Forest cardinality classifiers achieved the highest F1 score for all the KBs.
Furthermore, the Multilayer Perceptron and the Least Squares SVM also achieved
high F1 scores greater than 90% for the English DBpedia. Concerning the range
constraints, we explored the object node type constraint for each property associated
with a given class. Similar to cardinality constraints, Random Forest algorithm
achieved a high F1 score of 95.94% for the English DBpedia KB. This makes the
consistency evaluation approach adaptable and facilitate adoption for multiple KBs.

Furthermore, we applied a Naive Bayes classifier. The model provides apriori
probabilities of no-recurrence and recurrence events as well as conditional probability
tables across all attributes. We considered Naive Bayes as a baseline model to explore
the classifier performance compared to other learning algorithms. In this context,
other models achieved better performance values compared to the Naive Bayes
learning algorithm.

Finally, we generate constraints once the constraint prediction models are built.
Based on the Random Forest model, we created the constraints datasets. More
specifically, we combined all the constraints related to a given class and, for each, we
generate an RDF Shape. An example of the RDF Shape in SHACL for the foaf:Person
class is illustrated in 8.1 using cardinality and range constraints. Furthermore, we
perceived that the generated constraints datasets can be used in other tools such as
RDFUnit [50]. We considered this extension of our RDF shape induction approach
as a future work.

Listing 8.1 DBpedia Person SHACL Shape

8.3 Frequency of Knowledge Base Changes 115

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:DBpediaPerson a sh:NodeShape;

sh:targetClass foaf:Person;

node type Literal

sh:property [sh:path foaf:name;

sh:minCount 1;

sh:nodeKind sh:Literal];

for MIN1 and MAX1 cardinality

sh:property [sh:path dbo:birthDate;

sh:datatype xsd:date ;

sh:minCount 1;

sh:maxCount 1;

sh:nodeKind sh:Literal] ;

node type IRI

sh:property [sh:path dbp:birthPlace;

sh:nodeKind sh:IRI;

sh:or ([sh:class schema:Place]

[sh:class dbo:Place])

];

node type literal

sh:property [sh:path dbp:deathDate;

sh:nodeKind sh:Literal;

sh:datatype xsd:date] .

8.3 Frequency of Knowledge Base Changes

KBs can be classified according to application areas, schema changes, and frequency
of data updates. The two KB we analyzed, namely 3cixty Nice and DBpedia, fall into
two distinct categories: i) continuously changing KB with high frequency updates
(daily updates), and ii) KB with low frequency updates (monthly or yearly updates).

i) KBs continuously grow because of an increase in the number of instances and
predicates, while they preserve a fixed schema level (T-Box). These KBs are usually

116 Discussion and Limitations

available via a public endpoint. For example DBpedia Live 1 and 3cixty Nice KB
falls in this category. In fact, the overall ontology remains the same but new triples
are added as effect of new information being generated and added to the KB. In our
analysis, we collected batches of data at nearly fixed time intervals for 8 months.

ii) KBs grow at intervals since the changes can be observed only when a new
release is deployed. DBpedia is a prime example of KBs with a history of releases.
DBpedia consists of incremental versions of the same KB where instances and
properties can be both added or removed and the schema is subjected to changes.
In our approach we only considered subject changes in a KB over all the releases.
In particular, we only considered those triples T from common classes (c1...ci) or
properties (p1...pi) presented in all releases (V1....V n) of the same KB.

8.4 Quality Assessment of Literal Values

We performed experimental analysis based on each quality characteristics. From the
quantitative analysis, we identified properties with quality issues from consistency
and completeness measures. We validated the observed results through manually
investigating each properties value. From our investigation, we perceive that those
properties that have quality issues may contain an error in literal values. We then
further investigated our assumption in the case of DBpedia. We choose one random
property of the foaf:Person-type entities. We finally examined the literal values to
identify any error present.

From our quantitative analysis on the completeness characteristics of DBpedia,
we detected the property dbo:bnfId triggered a completeness issue. Only 16 resources
in DBpedia 201604 version had such an issue, while 217 resources in 201510 version.
We, therefore, further investigated the property dbo:bnfId in details on the 201604
release. We explored the property description that leads to Wikidata link2 and
examined how BnF ID is defined. It is an identifier for the subject issued by BNF
(Bibliothèque nationale de France). It is formed by 8 digits followed by a check
digit or letter. In Table 8.1, we present 6 subjects and objects of 207 bnfId property
where each object follows the formatting structure. However, the literal value for

1http://wiki.dbpedia.org/online-access/DBpediaLive
2https://www.wikidata.org/wiki/Property:P268

http://wiki.dbpedia.org/online-access/DBpediaLive
https://www.wikidata.org/wiki/Property:P268

8.5 Lifespan Analysis of Evolving KBs 117

subject Quincy_Davis_(musician)3 contains a "/" between the digits "12148" and
"cb16520477z", which does not follow standard formatting structure issued by BNF
(Bibliothèque nationale de France). It clearly points to an error for the subject
Quincy_Davis_(musician).

From the initial inspection, we assume that it can be possible to identify an
error in any literal value using our approach. However, to detect errors in literal
values, we need to extend our quality assessment framework to inspect literal values
computationally. We considered this extension of literal value analysis as a future
research endeavour.

Table 8.1 A sample of 6 subjects and objects of bnfId property

Subject Object

dbp:Tom_Morello "14051227k"

dbp:David_Kherdian "14812877"

dbp:Andrè_Trocmè "cb12500614n"

dbp:Quincy _Davis_(musician) "12148/cb16520477z"

dbp:Charles_S. _Belden "cb140782417"

dbp:Julien_Durand _(politician) "cb158043617"

8.5 Lifespan Analysis of Evolving KBs

On the basis of the dynamic feature [9], a further conjecture poses that the growth
of the knowledge in a mature KB ought to be stable. From our analysis on the
3cixty Nice and the DBpedia KB, we observed that variations in the knowledge base
growth could affect quality issues. Furthermore, we argue that quality issues can be
identified through monitoring lifespan of an RDF KBs.

We can measure growth level of KB resources (instances) by measuring changes
presented in different releases. In particular, knowledge base growth can be measured
by detecting the changes over KB releases utilizing trend analysis such as the use of
simple linear regression. Based on the comparison between observed and predicted

3http://dbpedia.org/resource/Quincy_Davis_(musician)

http://dbpedia.org/resource/Quincy_Davis_(musician)

118 Discussion and Limitations

values, we can detect the trend in the KB resources, thus detecting anomalies over
KB releases if the resources have a downward trend over the releases. Following,
we derive KB lifespan analysis regarding change patterns over time as well as
experiments on the 3cixty Nice KB and the DBpedia KB. To measure the KB growth,
we applied linear regression analysis of entity counts over KB releases. In the
regression analysis, we checked the latest release to measure the normalized distance
between an actual and a predicted value. In particular, in the linear regression we
used entity count (yi) as dependent variable and time period (ti) as independent
variable. Here, n = total number of KB releases and i = 1...n present as the time
period.

We start with a linear regression fitting the count measure of the class (C):

y = at +b

The residual can be defined as:

residuali(C) = a · ti +b− counti(C)

We define the normalized distance as:

ND(C) =
residualn(C)

mean(|residuali(C)|)

Based on the normalized distance, we can measure the KB growth of a class C
as:

KBgrowth(C) =

{
1 i f ND(C)≥ 1
0 i f ND(C)< 1

More specifically, the value is 1 if the normalized distance between actual value
is higher than the predicted value of type C otherwise it is 0. In particular, if the KB
growth measure has the value of 1 then the KB may have an unexpected growth with
unwanted entities otherwise the KB remains stable.

3cixty Nice case study The experimental data is reported in Table 7.2a. We
applied the linear regression over the eight releases for the lode:Event-type and
dul:Place-type entities. We present the regression line in Figure 8.2a and 8.2b.

8.5 Lifespan Analysis of Evolving KBs 119

(a) lode:Event (b) dul:Place

Fig. 8.2 3cixty two classes KB growth measure

From the linear regression, the 3cixty Nice has a total of n = 8 releases where
the 8th predicted value for lode:Event y

′
event8 = 3511.548 while the actual value=689.

Similarly, for dul:Place y
′
place8

= 47941.57 and the actual value=44968.

The residuals, eevents8= |689− 3511.548| = 2822.545 and eplaces8= |44968−
49741.57|= 2973.566. The mean of the residuals, eeventi = 125.1784 and eplacei =

3159.551, where i = 1...n.

So the normalized distance for, 8th lode:Event entity NDevent = 2822.545
125.1784 =

22.54818 and dul:Place entity NDplace = 2973.566
3159.551 = 0.9411357.

For the lode:Event class, NDevents ≥ 1 so the KB growth measure value = 1.
However, for the dul:Place class, NDplaces < 1 so the KB growth measure value =0 .

In the case of 3cixty Nice KB, the lode:Event class clearly presents anomalies as
the number of distinct entities drops significantly on the last release. In Figure 8.2a,
the lode:Event class growth remains constant until it has errors in the last release. It
has higher distance between actual and predicted value based on the lode:Event-type
entity count. However, in the case of dul:Place-type, the actual entity count in the
last release is near to the predicted value. We can assume that on the last release the
3cixty Nice KB has improved the quality of data generation matching the expected
growth.

DBpedia Case study The experimental data is reported in Table 7.1. Based on
the KB growth measure definition, we measured the normalized distance for each
class (Table 8.2). We compared with the number of entities from the last release

120 Discussion and Limitations

(201604) actual value and predicted value from the linear regression to measure
the normalized distance. From the results observed for dbo:Artist, dbo:Film, and
dbo:MusicalWork, the normalized distance is near the regression line with ND < 1.
In Figure 8.3, we present the DBpedia 10 classes KB growth measure value and we
can observe that there is no issue in the KB.

For instance while inspecting the different trends over the KB releases and
calculating the normalized distance, we identified that foaf:Person-type last release
(201604) entity count has a higher growth (over the expected). Such as foaf:Person
has KB growth measure of 1 where normalized distance, ND = 2.08. From this
measure we can implies that, in foaf:Person there is persistency issue. We can imply
that additions in a KB can also be an issue. It can include unwanted subjects or
predicates.

Table 8.2 DBpedia 10 class Summary

Class Normalized Distance(ND) KB Growth measure

dbo:Animal 3.05 1
dbo:Artist 0.66 0
dbo:Athlete 2.03 1
dbo:Film 0.91 0
dbo:MucsicalWork 0.56 0
dbo:Organisation 2.02 1
dbo:Place 5.03 1
dbo:Species 5.87 1
dbo:Work 1.05 1
foaf:Person 2.08 1

We define this KB growth measure as stability characteristic. A simple interpre-
tation of the stability of a KB is monitoring the dynamics of knowledge base changes.
This measure could be useful to understand high-level changes by analyzing KB
growth patterns. Data curators can identify persistency issues in KB resources using
lifespan analysis. However, a further exploration of the KB lifespan analysis is
needed, and we consider this as a future research activity.

8.6 Limitations 121

(a) dbo:Animal (b) dbo:Artist

(c) dbo:Athlete (d) dbo:Film

(e) dbo:MusicalWork (f) dbo:Organization

(g) dbo:Place (h) dbo:Species

(i) dbo:Work (j) foaf:Person

Fig. 8.3 DBpedia 10 classes KB growth measure

8.6 Limitations

We have identified the following three main limitations.

122 Discussion and Limitations

First, as a basic measurement element, we only considered aggregated measures
from statistical profiling such as frequency of properties in a class. For the qualitative
analysis, we considered raw knowledge base differences among releases. In order to
detect actual differences, we would need to store two releases of a KB in a single
graph, and perform the set difference operation. We performed manual validation
by inspecting data sources. However, this approach of qualitative analysis has
several drawbacks from a technical point of view. Furthermore, regardless of the
technical details, the set difference operation is, computationally-wise, extremely
expensive. As a future work, we plan to extend our manual validation approach by
cross-referencing GitHub issues or mailing lists.

Second, KBs are growing over time with new resources that are added or deleted.
In this study, we only considered the negative impact of erroneous deletion of
resources. As a future work, we plan to investigate the negative impact of the
erroneous addition of resources in the KBs.

Third, in the experimental analysis of validation using integrity constraints, we
have adopted the manual evaluation strategy in order to create the training dataset.
In this context, the training set depends on the specific KB, and the evaluation of
the annotations require considerable domain knowledge to decide if a constraint is
correct or incorrect. As a future work, we plan to extend our partial gold standard
creation strategy by using data mining approach or automatic validation using schema
definitions.

Chapter 9

Conclusions and Future Work

The main motivation for the work presented in this thesis is rooted in the concepts
of Linked data dynamics [9] on the one side and knowledge base quality on the
other side. We focused on automated shape validation as well as on automating
the timely process of quality issue detection without user intervention using KB
evolution analysis. Knowledge about Linked Data dynamics is essential for a broad
range of applications such as effective caching, link maintenance, and version-
ing [10]. However, less focus has been given towards understanding knowledge
base resource changes over time to detect anomalies over various releases. To verify
our assumption, we proposed four quality characteristics, based on the evolution
analysis.

We proposed a quality assessment approach by profiling quality issues using
different Knowledge Base (KB) releases. In particular, we explored the benefits of
aggregated measures using quality profiling. The advantage of our approach lies
in the fact that it captures anomalies for an evolving KB that can trigger alerts to
the data curators in the quality repairing processes. More specifically, we consider
coarse-grained analysis as an essential requirement to capture any quality issues for
an evolving KB. Although coarse-grained analysis cannot detect all possible quality
issues, it helps to identify common quality issues such as erroneous deletion of
resources in the data extraction and integration processes. Moreover, it addresses the
main drawback of fine-grained analysis using raw change detection, the significant
space and time complexity. Since, we perceive that if the KB has design issues, our
quality assessment approach might lead to increase the number of false positives. We

124 Conclusions and Future Work

introduced an RDF validation approach using integrity constraints based on SHACL
representation to further verify the results.

We conclude this thesis by providing an overview of the main contributions along
with the answers to the research questions introduced in Chapter 1 (Section 1.2).
Furthermore, we present the future directions in which we intend to solve the
limitations and move forward with the research conducted in the specific areas.

9.1 Summary of Contributions

In this section, we revisit each research questions and summarize the solutions for
the problems identified at the beginning of this thesis (Section 1.1).

RQ1: Evolution-based quality characteristics. The research question we aimed
to answer is:

• RQ1: How can we identify quality issues with respect to KB evolution?

To answer this question, at first, an empirical study is performed to identify
the quality issues present in the evolving KBs (Chapter 2). In this study,
three main quality issues of an evolving knowledge base is explored (Chapter
2.6): (i) Lack of consistency, (ii) Lack of completeness, and (iii) Lack of
persistency. Furthermore, the issues of quality assessment in the evolving KBs
is explored using a comprehensive survey of current approaches about linked
data dynamics, knowledge base quality assessment and validation (Chapter 3).
As shown in chapter 3, there are significant approaches present for KB quality
assessment and validation, however, less focus is given towards benefit of KB
dynamicity.

In this context, the factors affecting the KB evolution and data profiling dy-
namic features is explored in Chapter 4. Using the dynamic features of the data
profiling, four evaluation-based quality characteristics are proposed (Chap-
ter 4.3): Persistency, Historical Persistency, Consistency, and Completeness.
The lack of persistency issues are explored by using persistency and historical
persistency characteristics. The proposed persistency and historical persis-
tency quality characteristics use the degree of change feature of the dataset

9.1 Summary of Contributions 125

dynamics. Furthermore, completeness and consistency quality characteristics
is proposed from the ISO 25012 standard, and the measurement function is
based on the history of a KB update. The quality measures are based on simple
statistical analysis using entity count and property frequency for an entity type.
These quality characteristics can be applied to any knowledge base, and it is
demonstrated for two different use cases, namely 3cixty Nice and DBpedia
(Chapter 7).

RQ2: Evolution-based quality assessment approach. The research question we
aimed to answer is:

• RQ2: Which quality assessment approach can be defined on top of the
the evolution-based quality characteristics?

In response to this question, a quality assessment approach is proposed using
evolution analysis and validation using RDF shape induction based on pre-
dictive modeling (Chapter 6). In this work, quality assessment is considered
as the process of statistically assessing a KB using evolution analysis. On
the contrary, validation as a mean to evaluate the performance of the quality
evaluation process. Within this context, RDF validation approach is introduced
using SHACL based constraints shape induction which relies on the data pro-
filing information (Chapter 5). In particular, using the evolution-based quality
characteristics and RDF shape induction approach, a KB quality assessment
approach (KBQ) is proposed that explore the KB changes over various releases
of the same KB (Chapter 6).

The approach provides an assessment of the overall quality characteristic and is
not aimed at pinpointing the individual issues in the KB, but it aims to identify
potential problems in the data processing pipeline. Such an approach produces
a smaller number of coarse-grained issue notifications that are directly man-
ageable without any filtering and provide useful feedback to data curators.
This approach can be applied to any knowledge base, and it is demonstrated
for two different use cases, namely 3cixty Nice and DBpedia (Chapter 7).
The proposed approach can provide a quality problem report to KB curators.
Furthermore, as a proof of concepts, we have created KBQ, a tool for KB
quality assessment and validation using evolution-based quality characteristics
(Chapter 6).

126 Conclusions and Future Work

RQ3: Validation approaches leveraging on quality characteristics and integrity
constraints. The research question we aimed to answer is:

• Which approaches can be used to validate a KB evolution based quality
assessment approach?

In order to address this research question, the proposed approach is applied
to two different knowledge bases of different size and semantics, and its
operations verified using empirical analysis (Chapter 7). Besides, since this
approach uses the first stage of statistical profiling, it reduces the search
space of the suspicious issues, which are then verified by the learning models
(Sec.7.4). Thus, it can be applied to also larger knowledge bases (Chapter 8).

From the experimental analysis applied on two different KBs, three causes of
quality issues are identified (Chapter 8): (i) errors in the data source extraction
process, (ii) erroneous conceptualization, and (iii) error in object type. In
the case of the 3cixty Nice KB, only issue is found due to error in the data
source extraction process. On the contrary, all three types of quality issues
are found for DBpedia KB. Also, significant number of issues are identified
due to wrong schema presentation for the DBpedia KB. From the empirical
investigation, we perceive that those properties that have quality issues may
contain an error in literal values. Based on the two use cases, the proposed
approach has proven to be highly effective to identify quality issues in the data
extraction and integration process.

The experimental analysis is based on four quality characteristics: persistency,
historical persistency, consistency, and completeness. The analysis of Persis-
tency and Historical Persistency shows that KB with periodic update (3cixty
Nice KB) could lead to detect missing values. Missing values could happen
due to algorithm error as in the case of 3cixty Nice KB lode:Event class. On
the contrary, KB with long duration of updates (DBpedia KB) issues do not
always indicate actual errors. For example, dbo:Species subjects with the
wrong type in version 201510 fixed in version 201604. From the quantitative
and qualitative analysis of consistency measure, quality issues only found in
the case of DBpedia KB. For example, no logical or formal contradiction found
in the case of 3cixty Nice KB. In this context, periodicity of KB update could
affect consistency issue. Continuously changing KBs with high-frequency
updates (daily updates) such as the 3cixty Nice KB, has less quality issues

9.2 Future Work 127

considering consistency quality characteristic. On the contrary, KBs with
low-frequency updates (monthly or yearly updates), such as DBpedia KB,
have more logical or formal contradictions based on consistency analysis. In
the experimental analysis, completeness quality characteristics demonstrates
extremely good performances for both 3cixty Nice and DBpedia KB. The
completeness measure was able to detect actual issues with very high precision
– 95% for the 3cixty Nice KB lode:Event class and 94% for the DBpedia
foaf:Person class.

Proposed consistency analysis is extended using a profiling-based RDF shape
induction approach and predictive modeling. RDF shape induction approach is
tested based on cardinality constraints and range constraints. In this analysis,
the performance of the five learning models are empirically assessed and the
best performing model is identified according to the F1 score. In this context,
among the five learning model, the best performing model is the Random
Forest for both KBs. The approach reaches an F1 score greater than 90%
with DBpedia datasets for cardinality constraints using Random Forest model.
Nevertheless, the proposed approach is defined in a generic and flexible manner
which can be extended to other types of constraints. In general, all learning
models have good performances meaning that the problem is well configured
and the features are predictive (Chapter 8).

9.2 Future Work

In this section, we describe the future work with regards to the main contributions of
this thesis.

Quality Characteristics. We plan to expand our evolution based quality analysis
approach by analyzing other quality characteristics presented in literature
such as Zaveri et al. [22]. Also, we intend to apply our approach to KBs in
other domain to further verify our assumption. Moreover, for consistency
characteristics, we chose 100 as threshold value since from the empirical
analysis at property level it allowed to maximize the precision of the approach.
However, the process of threshold value selection needs further investigation.
As a future work, we plan to perform additional statistical analysis to motivate
the choice of this threshold.

128 Conclusions and Future Work

Impact of addition of resources. A limitation of the current approach is that we
only considered the negative impact of deletion of resources. We plan to study
how we can dynamically adapt impact of the addition of resources in a KB.
Within this context, we explored the lifespan analysis of evolving KBs. We
argue that quality issues can be identified through monitoring lifespan of a
KB. This has led to conceptualize the Stability quality characteristics, which
is meant to detect anomalies in a KB. We plan to monitor various KB growth
rates to validate this assumption. In particular, we want to explore further
(i) which factors are affecting stability characteristics and (ii) validating the
stability measure.

RDF Shape induction in KBQ tool. We plan to integrate the RDF Shape induction
process presented in this thesis to KBQ-tool, in order to perform all validation
approaches in a single tool which can cover different validation tasks. Further-
more, we plan to extend our validation approaches using automatic snapshots
generation and to publish quality problem report in a triple format.

Literal Analysis. From the initial experiments, we assume that it can be possible to
identify an error in literal value using our approach. We want to extend our
quality assessment approach to inspect literal values;

Schema based Validation. We presented experimental analysis using three SHACL
constraints types: cardinality, range, and string. As future work, we plan to
extend our implementations to remaining SHACL constraints. As an output
of our approach, we generate SHACL integrity constraints. We envision that
these constraints can be applied to other tools such as RDFUnit [50] as a
direct input. However, in RDFUnit they considered constraints in the form of
RDFS/OWL axioms. We considered extending our approach to RDFUnit as
future research work to favor the interoperability.

Furthermore, in our experimental analysis, we involved a human annotator to
validate the datasets in order to create the partial gold standards. As future
work, we plan to extend our evaluation strategy with an alternative approach
such as the validation using OWL schema. However, it is challenging to ex-
plore an OWL schema for validation tasks. For example, DBpedia KB 201610
version ontology lacks axioms about cardinality constraints (owl:cardinality,
owl:minCardinality, maxCardinality). The only information that we can ex-
tract from the ontology is indirectly using the axioms that define functional

9.2 Future Work 129

properties (i.e., MAX 1 constraints). In this context, we plan to extend our
approach to other KBs which contain complete OWL schema representations.

References

[1] ISO/IEC. 25012:2008 – software engineering – software product quality
requirements and evaluation (square) – data quality model. Technical report,
ISO/IEC, 2008.

[2] Rashid Mohammad, Torchiano Marco, Giuseppe Rizzo, Mihindukulasooriya
Nandana, and Corcho Óscar. A Quality Assessment Approach for Evolving
Knowledge Bases. Semantic Web, 2018.

[3] Thomas Gottron and Christian Gottron. Perplexity of Index Models over
Evolving Linked Data. In Valentina Presutti, Claudia d’Amato, Fabien Gandon,
Mathieu d’Aquin, Steffen Staab, and Anna Tordai, editors, The Semantic Web:
Trends and Challenges, pages 161–175, Cham, 2014. Springer International
Publishing.

[4] Jeremy Debattista, Christoph Lange, Sören Auer, and Dominic Cortis. Evaluat-
ing the Quality of the LOD Cloud: An Empirical Investigation. Semantic Web,
2017.

[5] Giri Kumar Tayi and Donald P. Ballou. Examining Data Quality. Communica-
tions of the ACM, 41(2):54–57, February 1998.

[6] Renata Dividino, Ansgar Scherp, Gerd Gröner, and Thomas Grotton. Change-
a-LOD: Does the Schema on the Linked Data Cloud Change or Not? In
Hartig Olaf, Sequeda Juan, Hogan Aidan, and Matsutsuka Takahide, editors,
Proceedings of the Fourth International Workshop on Consuming Linked Data
(COLD2013) co-located with the 12th International Semantic Web Conference
(ISWC 2013), Volume 1034 of CEUR Workshop Proceedings, pages 87–98,
Sydney, Australia, 2013. CEUR-WS. org.

[7] Chifumi Nishioka and Ansgar Scherp. Information-theoretic Analysis of Entity
Dynamics on the Linked Open Data Cloud. In Proceedings of the 3rd Interna-
tional Workshop on Dataset Profiling and Federated Search for Linked Data
(PROFILES ’16) co-located with the 13th ESWC 2016 Conference, Volume
1597 of CEUR Workshop Proceedings, Anissaras, Greece, 2016. CEUR-WS.
org.

[8] Vicky Papavasileiou, Giorgos Flouris, Irini Fundulaki, Dimitris Kotzinos, and
Vassilis Christophides. High-level Change Detection in RDF(S) KBs. ACM
Transactions on Database Systems (TODS), 38(1):1:1–1:42, April 2013.

References 131

[9] Mohamed Ben Ellefi, Zohra Bellahsene, J Breslin, Elena Demidova, Stefan
Dietze, Julian Szymanski, and Konstantin Todorov. RDF Dataset Profiling - a
Survey of Features, Methods, Vocabularies and Applications. Semantic Web,
pages 1–29, 2018.

[10] Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich, Patrick O’Byrne, and
Aidan Hogan. Observing Linked Data Dynamics. In Philipp Cimiano, Oscar
Corcho, Valentina Presutti, Laura Hollink, and Sebastian Rudolph, editors, The
Semantic Web: Semantics and Big Data, pages 213–227, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[11] Jack E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2003.

[12] Felix Naumann. Data profiling revisited. SIGMOD Rec., 42(4):40–49, February
2014.

[13] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. DBpedia–a large-scale, multilingual knowledge base ex-
tracted from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[14] Nandana Mihindukulasooriya, María Poveda-Villalón, Raúl García-Castro, and
Asunción Gómez-Pérez. Collaborative Ontology Evolution and Data Quality
- An Empirical Analysis. In OWL: Experiences and Directions – Reasoner
Evaluation: 13th International Workshop, OWLED 2016, and 5th International
Workshop, ORE 2016, Bologna, Italy, November 20, 2016, Revised Selected
Papers, pages 95–114, 2017.

[15] Nathalie Pernelle, Fatiha Saïs, Daniel Mercier, and Sujeeban Thuraisamy. RDF
data evolution: efficient detection and semantic representation of changes.
In Proceedings of the Posters and Demos Track of the 12th International
Conference on Semantic Systems - SEMANTiCS2016 and the 1st International
Workshop on Semantic Change & Evolving Semantics (SuCCESS’16), Volume
1695 of CEUR Workshop Proceedings. CEUR-WS. org, 2016.

[16] Max Völkel and Tudor Groza. SemVersion: An RDF-based Ontology Ver-
sioning System. In Miguel Baptista Nunes, editor, Proceedings of IADIS
International Conference on WWW/Internet (IADIS 2006), pages 195–202,
Murcia, Spain, October 2006.

[17] Marios Meimaris, George Papastefanatos, Christos Pateritsas, Theodora Galani,
and Yannis Stavrakas. A Framework for Managing Evolving Informa-
tion Resources on the Data Web. Computing Research Repository(CoRR),
abs/1504.06451, 2015.

[18] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan Decker, and Axel
Polleres. Weaving the Pedantic Web. In Bizer Christian, Heath Tom, Berners-
Lee Tim, and Hausenblas Michael, editors, 3rd International Workshop on

132 References

Linked Data on the Web (LDOW2010), in conjunction with 19th International
World Wide Web Conference, Volume 628 of CEUR Workshop Proceedings,
Raleigh, USA, 2010. CEUR-WS. org.

[19] Jose Emilio Labra Gayo, Eric Prud'hommeaux, Iovka Boneva, and Dimitris
Kontokostas. Validating RDF Data, volume 7 of Synthesis Lectures on the
Semantic Web: Theory and Technology. Morgan & Claypool Publishers LLC,
sep 2017.

[20] Nandana Mihindukulasooriya, María Poveda-Villalón, Raúl García-Castro, and
Asunción Gómez-Pérez. Collaborative Ontology Evolution and Data Quality
- An Empirical Analysis. In Mauro Dragoni, María Poveda-Villalón, and
Ernesto Jimenez-Ruiz, editors, OWL: Experiences and Directions – Reasoner
Evaluation, pages 95–114, Cham, 2017. Springer International Publishing.

[21] Antoine Isaac and Riccardo Albertoni. Data on the Web Best Prac-
tices: Data Quality Vocabulary. W3C note, W3C, December 2016.
https://www.w3.org/TR/2016/NOTE-vocab-dqv-20161215/.

[22] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens
Lehmann, and Sören Auer. Quality Assessment for linked Data: A Survey.
Semantic Web, 7(1):63–93, 2016.

[23] Giuseppe Rizzo Nandana Mihindukulasooriya Mohammad Rashid,
Marco Torchiano and Oscar Corcho. A Quality Assessment Approach
for Evolving Knowledge Bases. Journal of Web Semantics, 2017.

[24] Rashid Mohammad, Rizzo Giuseppe, Mihindukulasooriya Nandana, Torchiano
Marco, and Corcho Óscar. KBQ - A Tool for Knowledge Base Quality Assess-
ment Using Evolution Analysis. In Tiddi Ilaria, Rizzo Giuseppe, and Corcho
Óscar, editors, Proceedings of Workshops and Tutorials of the 9th International
Conference on Knowledge Capture (K-CAP2017), Volume 2065 of CEUR
Workshop Proceedings, Austin, Texas, 2017. CEUR-WS. org.

[25] Giuseppe Rizzo, Raphaël Troncy, Oscar Corcho, Anthony Jameson, Julien
Plu, Juan Carlos Ballesteros Hermida, Ahmad Assaf, Catalin Barbu, Adrian
Spirescu, Kai-Dominik Kuhn, Irene Celino, Rachit Agarwal, Cong Kinh
Nguyen, Animesh Pathak, Christian Scanu, Massimo Valla, Timber Haaker,
Emiliano Sergio Verga, Matteo Rossi, and José Luis Redondo Garcia.
3cixty@Expo Milano 2015 enabling visitors to explore a smart city. In ISWC
2015, 14th International Semantic Web Conference, Semantic Web Challenge,
October 11-15, 2015, Bethlehem, PA, USA, Bethlehem, UNITED STATES, 10
2015.

[26] Nandana Mihindukulasooriya, Mohammad Rifat Ahmmad Rashid, Giuseppe
Rizzo, Raúl García-Castro, Oscar Corcho, and Marco Torchiano. RDF Shape
Induction Using Knowledge Base Profiling. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, SAC ’18, pages 1952–1959, New
York, NY, USA, 2018. ACM.

References 133

[27] Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative
Knowledge base. Commun. ACM, 57(10):78–85, September 2014.

[28] Krzysztof Goczyła, Aleksander Waloszek, and Wojciech Waloszek. Contextual-
ization of a DL knowledge base. In 20th International Workshop on Description
Logics (DL2007),Brixen-Bressanone, near Bozen-Bolzano, Italy 8–10 June,
2007, Volume 250 of CEUR Workshop Proceedings. CEUR-WS. org, 2007.

[29] Heiko Paulheim. Knowledge Graph Refinement: A Survey of Approaches and
Evaluation Methods. Semantic Web, 8(3):489–508, 2017.

[30] Raphaël Troncy, Giuseppe Rizzo, Anthony Jameson, Oscar Corcho, Julien
Plu, Enrico Palumbo, Juan Carlos Ballesteros Hermida, Adrian Spirescu, Kai-
Dominik Kuhn, Catalin Barbu, Matteo Rossi, Irene Celino, Rachit Agarwal,
Christian Scanu, Massimo Valla, and Timber Haaker. 3cixty: Building com-
prehensive knowledge bases for city exploration. Web Semantics: Science,
Services and Agents on the World Wide Web, 46-47:2 – 13, 2017.

[31] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the ACM International Conference on Manage-
ment of Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA, 2008.
ACM.

[32] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. DBpedia–A large-scale, multilingual knowledge base ex-
tracted from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[33] Nuno Laranjeiro, Seyma Nur Soydemir, and Jorge Bernardino. A Survey on
Data Quality: Classifying Poor Data. In IEEE 21st Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 179–188. IEEE, Nov
2015.

[34] Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Introduction
to Linked Data and Its Lifecycle on the Web. In Proceedings of the 7th
International Conference on Reasoning Web: Semantic Technologies for the
Web of Data, RW’11, pages 1–75, Berlin, Heidelberg, 2011. Springer-Verlag.

[35] Jeremy Debattista, Sören Auer, and Christoph Lange. Luzzu - A Methodology
and Framework for Linked Data Quality Assessment. Journal of Data and
Information Quality (JDIQ), 8(1):4:1–4:32, October 2016.

[36] T. Groza, A. Oellrich, and N. Collier. Using silver and semi-gold standard
corpora to compare open named entity recognisers. In IEEE International
Conference on Bioinformatics and Biomedicine, pages 481–485. IEEE, Dec
2013.

134 References

[37] Ning Kang, Erik M. van Mulligen, and Jan A. Kors. Training text chunkers
on a silver standard corpus: can silver replace gold? BMC Bioinformatics,
13(1):17, Jan 2012.

[38] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Min-
ing: Practical Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2016.

[39] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359 – 366,
1989.

[40] Pedro Domingos and Michael Pazzani. On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2):103–130,
Nov 1997.

[41] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning
algorithms. Machine Learning, 6(1):37–66, Jan 1991.

[42] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, Sep 1995.

[43] Bernhard Pfahringer. Random model trees: an effective and scalable regression
method. University of Waikato, Department of Computer Science, 2010.

[44] Marina Sokolova and Guy Lapalme. A Systematic Analysis of Performance
Measures for Classification Tasks. Information Processing and Management:
an International Journal, 45(4):427–437, July 2009.

[45] Jürgen Umbrich, Stefan Decker, Michael Hausenblas, Axel Polleres, and Aidan
Hogan. Towards dataset dynamics: Change frequency of linked open data
sources. In Proceedings of the WWW2010 Workshop on Linked Data on the
Web(LDOW), Volume 628 of CEUR Workshop Proceedings, Raleigh, USA,
2010. CEUR-WS. org.

[46] Jürgen Umbrich, Boris Villazón-Terrazas, and Michael Hausenblas. Dataset
dynamics compendium: A comparative study. In Proceedings of the First
International Workshop on Consuming Linked Data (COLD2010) at the 9th
International Semantic Web Conference (ISWC2010), Volume 665 of CEUR
Workshop Proceedings, Shanghai, China, 2010. CEUR-WS. org.

[47] Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanov. Ontol-
ogy versioning and change detection on the web. In Asunción Gómez-Pérez
and V. Richard Benjamins, editors, Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web, pages 197–212, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg.

[48] Christian Bizer and Richard Cyganiak. Quality-driven Information Filtering
Using the WIQA Policy Framework. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(1):1–10, January 2009.

References 135

[49] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. Sieve: Linked Data
Quality Assessment and Fusion. In Proceedings of the 2012 Joint EDBT/ICDT
Workshops, EDBT-ICDT ’12, pages 116–123, New York, NY, USA, 2012.
ACM.

[50] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri. Test-driven Evaluation
of Linked Data Quality. In Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14, pages 747–758, New York, NY, USA, 2014.
ACM.

[51] Jeremy Debattista, Santiago Londoño, Christoph Lange, and Sören Auer. Qual-
ity Assessment of Linked Datasets Using Probabilistic Approximation. In
Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-
Mauroux, and Antoine Zimmermann, editors, The Semantic Web. Latest Ad-
vances and New Domains, pages 221–236, Cham, 2015. Springer International
Publishing.

[52] Jeremy Debattista, Christoph Lange, and Sören Auer. A Preliminary Investiga-
tion Towards Improving Linked Data Quality Using Distance-Based Outlier
Detection. In Yuan-Fang Li, Wei Hu, Jin Song Dong, Grigoris Antoniou, Zhe
Wang, Jun Sun, and Yang Liu, editors, Semantic Technology, pages 116–124,
Cham, 2016. Springer International Publishing.

[53] André Melo and Heiko Paulheim. Detection of Relation Assertion Errors in
Knowledge Graphs. In Proceedings of the Knowledge Capture Conference,
K-CAP 2017, pages 22:1–22:8, New York, NY, USA, 2017. ACM.

[54] Maribel Acosta, Amrapali Zaveri, Elena Paslaru Bontas Simperl, Dimitris
Kontokostas, Fabian Flöck, and Jens Lehmann. Detecting Linked Data quality
issues via crowdsourcing: A DBpedia study. Semantic Web, 9:303–335, 2018.

[55] Dimitris Kontokostas, Amrapali Zaveri, Sören Auer, and Jens Lehmann.
TripleCheckMate: A Tool for Crowdsourcing the Quality Assessment of Linked
Data. In Pavel Klinov and Dmitry Mouromtsev, editors, Knowledge Engineer-
ing and the Semantic Web, pages 265–272, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[56] Volker Nannen. Quality Characteristics of Linked Data publishing data sources.
Master’s thesis, Humboldt-Universität of Berlin, Berlin, Germany, 2010.

[57] Ahmad Assaf, Raphaël Troncy, and Aline Senart. Roomba: An Extensi-
ble Framework to Validate and Build Dataset Profiles. In Fabien Gandon,
Christophe Guéret, Serena Villata, John Breslin, Catherine Faron-Zucker, and
Antoine Zimmermann, editors, The Semantic Web: ESWC 2015 Satellite Events,
pages 325–339, Cham, 2015. Springer International Publishing.

[58] A. Rula, M. Palmonari, and A. Maurino. Capturing the Age of Linked Open
Data: Towards a Dataset-Independent Framework. In 2012 IEEE Sixth Interna-
tional Conference on Semantic Computing, pages 218–225, Sept 2012.

136 References

[59] Christian Fürber and Martin Hepp. SWIQA - A Semantic Web information
quality assessment framework. In Proceedings of the 19th European Conference
on Information Systems (ECIS 2011), volume 15, page 19, 2011.

[60] Magnus Knuth, Dimitris Kontokostas, and Harald Sack. Linked Data Qual-
ity: Identifying and Tackling the Key Challenges. In Proceedings of the 1st
Workshop on Linked Data Quality co-located with 10th International Confer-
ence on Semantic Systems (SEMANTiCS), Volume 1215 of CEUR Workshop
Proceedings, Leipzig, Germany, 2014. CEUR-WS. org.

[61] Suzanne M Embury, Binling Jin, Sandra Sampaio, and Iliada Eleftheriou. On
the Feasibility of Crawling Linked Data Sets for Reusable Defect Corrections.
In Magnus Knuth, Dimitris Kontokostas, and Harald Sack, editors, Proceedings
of the 1st Workshop on Linked Data Quality co-located with 10th International
Conference on Semantic Systems (SEMANTiCS), Volume 1215 of CEUR Work-
shop Proceedings, Leipzig, Germany, 2014. CEUR-WS. org.

[62] Heiko Paulheim and Christian Bizer. Improving the Quality of Linked Data
Using Statistical Distributions. Int. J. Semant. Web Inf. Syst., 10(2):63–86,
April 2014.

[63] Huiying Li, Yuanyuan Li, Feifei Xu, and Xinyu Zhong. Probabilistic error
detecting in numerical linked data. In Qiming Chen, Abdelkader Hameurlain,
Farouk Toumani, Roland Wagner, and Hendrik Decker, editors, Database and
Expert Systems Applications, pages 61–75, Cham, 2015. Springer International
Publishing.

[64] Edna Ruckhaus, Maria-Esther Vidal, Simón Castillo, Oscar Burguillos, and
Oriana Baldizan. Analyzing Linked Data Quality with LiQuate. In Valentina
Presutti, Eva Blomqvist, Raphael Troncy, Harald Sack, Ioannis Papadakis, and
Anna Tordai, editors, The Semantic Web: ESWC 2014 Satellite Events, pages
488–493, Cham, 2014. Springer International Publishing.

[65] Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL,
pages 67–92. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[66] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between OWL
and relational databases. Web Semantics: Science, Services and Agents on the
World Wide Web, 7(2):74 – 89, 2009.

[67] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L McGuinness. Extending OWL
with Integrity Constraints. In Haarslevand Volker, Toman David, and Weddell
Grant, editors, International Workshop on Description Logics (DL), Volume
573 of CEUR Workshop Proceedings, Waterloo, Ontario, Canada, 2010. CEUR-
WS. org.

[68] Peter F. Patel-Schneider. Using Description Logics for RDF Constraint Check-
ing and Closed-world Recognition. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages 247–253. AAAI Press,
2015.

References 137

[69] Heiko Paulheim and Heiner Stuckenschmidt. Fast Approximate A-Box Con-
sistency Checking Using Machine Learning. In Harald Sack, Eva Blomqvist,
Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph
Lange, editors, The Semantic Web. Latest Advances and New Domains, pages
135–150, Cham, 2016. Springer International Publishing.

[70] Ziawasch Abedjan and Felix Naumann. Improving RDF Data Through Associ-
ation Rule Mining. Datenbank-Spektrum, 13(2):111–120, Jul 2013.

[71] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The MIT
Press, 2009.

[72] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2007.

[73] Hassan Khosravi and Bahareh Bina. A survey on statistical relational learning.
In Canadian Conference on AI, pages 256–268. Springer, 2010.

[74] Lorenz Bühmann, Daniel Fleischhacker, Jens Lehmann, Andre Melo, and
Johanna Völker. Inductive Lexical Learning of Class Expressions. In Krzysztof
Janowicz, Stefan Schlobach, Patrick Lambrix, and Eero Hyvönen, editors,
Knowledge Engineering and Knowledge Management, pages 42–53, Cham,
2014. Springer International Publishing.

[75] Adrien Basse, Fabien Gandon, Isabelle Mirbel, and Moussa Lo. DFS-based
frequent graph pattern extraction to characterize the content of RDF Triple
Stores. In Web Science Conference 2010 (WebSci10), Raleigh, United States,
April 2010.

[76] Ziqi Zhang, Anna Lisa Gentile, Eva Blomqvist, Isabelle Augenstein, and Fabio
Ciravegna. Statistical Knowledge Patterns: Identifying Synonymous Relations
in Large Linked Datasets. In Harith Alani, Lalana Kagal, Achille Fokoue,
Paul Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha Noy,
Chris Welty, and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013,
pages 703–719, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[77] Philippe Flajolet and G. Nigel Martin. Probabilistic Counting Algorithms for
Data Base Applications. Journal of Computer and System Sciences, 31(2):182–
209, September 1985.

[78] P. Flajolet. On Adaptive Sampling. Computing, 43(4):391–400, February 1990.

[79] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor. A Linear-
time Probabilistic Counting Algorithm for Database Applications. ACM Trans.
Database Syst., 15(2):208–229, June 1990.

[80] Stefan Heule, Marc Nunkesser, and Alexander Hall. HyperLogLog in Practice:
Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm.
In Proceedings of the 16th International Conference on Extending Database
Technology, EDBT ’13, pages 683–692, New York, NY, USA, 2013. ACM.

138 References

[81] Thomas Neumann and Guido Moerkotte. Characteristic Sets: Accurate Car-
dinality Estimation for RDF Queries with Multiple Joins. In Proceedings of
the 2011 IEEE 27th International Conference on Data Engineering, ICDE ’11,
pages 984–994, Washington, DC, USA, 2011. IEEE Computer Society.

[82] Yannis Roussakis, Ioannis Chrysakis, Kostas Stefanidis, Giorgos Flouris, and
Yannis Stavrakas. A Flexible Framework for Understanding the Dynamics of
Evolving RDF Datasets. In Marcelo Arenas, Oscar Corcho, Elena Simperl,
Markus Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Du-
montier, Jeff Heflin, Krishnaprasad Thirunarayan, Krishnaprasad Thirunarayan,
and Steffen Staab, editors, The Semantic Web - ISWC 2015, pages 495–512,
Cham, 2015. Springer International Publishing.

[83] Emanuel Parzen. On estimation of a probability density function and mode.
The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[84] Richard A. Davis, Keh-Shin Lii, and Dimitris N. Politis. Remarks on Some
Nonparametric Estimates of a Density Function, pages 95–100. Springer New
York, New York, NY, 2011.

[85] Joakim Lindblad. Histogram Thresholding using Kernel Density Estimates. In
In Proceedings of the Swedish Society for Automated Image Analysis (SSAB)
Symposium on Image Analysis, Halmstad, Sweden, pages 41–44, 2000.

[86] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of
Databases: The Logical Level. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1995.

[87] Stephen W. Liddle, David W. Embley, and Scott N. Woodfield. Cardinality con-
straints in semantic data models. Data & Knowledge Engineering, 11(3):235 –
270, 1993.

[88] Holger Knublauch and Dimitris Kontokostas. W3C Shapes Constraint Lan-
guage (SHACL), July 2017.

[89] David A Freedman. Statistical models: theory and practice. cambridge
university press, 2009.

[90] N. Mihindukulasooriya, G. Rizzo, R. Troncy, O Corcho, and R. Garcia-Castro.
A Two-Fold Quality Assurance Approach for Dynamic Knowledge Bases: The
3cixty Use Case. In H. Paulheim, J. Lehmann, S. vatek, C. Knoblock, Horridge
M., Lambrix P, and Parsia B, editors, International Workshop on Completing
and Debugging the Semantic Web (ESWC’16), Heraklion, Greece, 05 2016.

[91] Nandana Mihindukulasooriya, María Poveda-Villalón, Raúl García-Castro, and
Asunción Gómez-Pérez. Loupe-An Online Tool for Inspecting Datasets in the
Linked Data Cloud. In Proceedings of the ISWC 2015 Posters & Demonstra-
tions Track co-located with the 14th International Semantic Web Conference
(ISWC-2015), Volume 1486 of CEUR Workshop Proceedings, Bethlehem,
USA, 2015. CEUR-WS. org.

References 139

[92] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique. Journal
of Artificial Intelligence Research, 16(1):321–357, June 2002.

[93] WEKA. Weka manual for version 3-7-8. Technical report, WEKA, 2013.

[94] Filip Radulovic, Raúl García-Castro, and Asunción Gómez-Pérez. SemQuaRE
- An Extension of the SQuaRE Quality Model for the Evaluation of Semantic
Technologies. Comput. Stand. Interfaces, 38(C):101–112, February 2015.

[95] Rashid Mohammad, Rizzo Giuseppe, Mihindukulasooriya Nandana, Torchiano
Marco, and Corcho Óscar. Knowledge Base Evolution Analysis: A Case Study
in the Tourism Domain. In Proceedings of Workshops on Knowledge Graphs
on Travel and Tourism co-located with 18th International Conference on Web
Engineering (ICWE), Caceres,Spain, 2018.

[96] Mohammad Rashid and Marco Torchiano. A systematic literature review of
open data quality in practice. In Proceedings of 2nd Open Data Research
Symposium (ODRS), Madrid, Spain, 2016.

[97] Rashid Mohammad, Torchiano Marc, Rizzo Giuseppe, Mihindukulasooriya
Nandana, and Corcho Oscar. Completeness and Consistency Analysis for
Evolving Knowledge Bases(Under Review). Journal of Web Semantics, 2018.

[98] M. Rashid, L. Ardito, and M. Torchiano. Energy Consumption Analysis of
Algorithms Implementations. In 2015 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–4. IEEE,
Oct 2015.

[99] Mohammad Rashid, Luca Ardito, and Marco Torchiano. Energy Consumption
Analysis of Image Encoding and Decoding Algorithms. In Proceedings of the
Fourth International Workshop on Green and Sustainable Software, GREENS
’15, pages 15–21, Piscataway, NJ, USA, 2015. IEEE Press.

Appendix A

User Interfaces for the KBQ Tool and
Data Extraction REST APIs

This appendix illustrates examples of the web based interfaces and the data extraction
REST APIs for KBQ-tool. The application is available at 1. A recorded video of
KBQ in action for two KBs namely, DBpedia and 3cixty is available at 2.

KBQ is a tool that helps you to perform quality analysis on any Knowledge
Base (KB) using four quality characteristics that are computed using evolution
analysis. We share KBQ-tool as open source in order to foster reproducibility of the
experiments 3.

Figure A.1 shows the home page of the KBQ-tool. It contains four main modules:
(1) Collect (2) Analyze (3) Visualize, and (4) Validate. Following we present detailed
instructions for each module.

(1) Collect: This module performs data collection by selecting a class for any
KB. Furthermore, data extraction is performed based on specific set of SPARQL
queries for extracting summary statistics. This module collects periodic snapshots of
a selected class by using a scheduler or by saving data manually. All the datasets
are saved in CSV (comma-separated-value) file format. Table A.1 reports the header
details of the CSV files.

1KBQ-Tool:http://datascience.ismb.it/shiny/KBQ/
2Demonstration: https://youtu.be/F02l7ImOZV8
3Source: https://github.com/KBQ/KBQ

http://datascience.ismb.it/shiny/KBQ/
https://youtu.be/F02l7ImOZV8
https://github.com/KBQ/KBQ

141

Fig. A.1 Home page of the KBQ-Tool.

Table A.1 Hedaer details of the CSV file.

Header Description

Property Name of a Property present in the Selected Class.

freq Instance count of a property

Release Date of the snapshot.

ClassName Name of the selected class.

Graph Name of the Graph.

Count Entity Count of the Class.

For periodic data extraction, we have created a set of REST API. We use this
API to create scheduler on the hosting server based on the selected class. Figure A.3
illustrates the scheduler architecture in the hosting server. REST APIs 4 are deployed
in: http://datascience.ismb.it:9500/.

Figure A.2 reports the user interface for data collection module. Following we
present instructions on how to build a scheduler in the data collection module.

4Source: https://github.com/rifat963/KBDataObservatory

http://datascience.ismb.it:9500/
https://github.com/rifat963/KBDataObservatory

142 User Interfaces for the KBQ Tool and Data Extraction REST APIs

Fig. A.2 Example of inconsistent Wikipedia data.

(i) As an input, users need to provide a KB SPARQL endpoint URL. For exmaple,
in the Figure A.2 we present DBpedia SPARQL Endpoint as an input.

(ii) User can collect available graphs present in the KB by selecting the button
"Graph".

(iii) For performing the data collection, a user needs to choose a class name. It is
mandatory to select a class name for snapshots generation due to quality profiling is
done based on an entity type. By selecting the button "Class Name" the user can
extract all the available classes present in the KB.

(iv) In order to create schedulers, a user needs to provide a scheduler name and
time for daily scheduling task. Then, he/she can press the button "Create Scheduler"
to start the scheduler on the server. Any error present in the process is presented in
the "Notification" labels. A simple example of data extraction using the REST API
calls R code is presented in Listing A.1.

143

Create Scheduler

Scheduler 1

Scheduler 2

.............

Scheduler n

Create R script

Save results in CSV

Create R script

Save results in CSV

Create R script

Save results in CSV

Fig. A.3 Scheduler Architecture.

Listing A.1 R code for scheduler task creation

#Input: Class Name , Graph , Sparql Endpoint.

#Process: Extract summary statistics using sparql.

#Return: Extracted data in JSON format

DBpedia Sparql endpoint

endpoint <-"https://dbpedia.org/sparql"

schedulerName="scheduler_owl"

endpoint <-"https://dbpedia.org/sparql"

className <-"<http://www.w3.org/2002/07/owl#Class >"

className <-gsub("#", "%23", className)

graph <-"<http://dbpedia.org/resource/classes#>"

144 User Interfaces for the KBQ Tool and Data Extraction REST APIs

graph <-gsub("#", "%23", graph)

It is necessary to create the R script before creating

the Cron Job in the server

parm <-paste0("http://datascience.ismb.it:9500/","

createRfile?filename=",schedulerName ,"&className=",

className ,"&endpoint=",endpoint ,"&graph=",

graph)

responseCreateRfile <-GET(parm)

resCreateRfileContent <-content(responseCreateRfile)

In the server duplicate scheduler will generate error.

For this before createing scheduler please check

current available schedulers.

parm <-"http://datascience.ismb.it:9500//readSchedulerIndex

"

r<-tryCatch(GET(parm), error = function(e) return(NULL))

dt<-content(r)

DF<-fromJSON(dt [[1]])

DF$filename

#/createCornJob

#Input: Scheduler Name , time and frequency

#Process: Create scheduling task as a corn jon in the

server based on the time and frequency.

#Return: Response as success or error

Create the cron job

freq="daily"

time="14:25:00"

parm <-paste0("http://datascience.ismb.it:9500/","

createCornJob?filename=",schedulerName ,"&freq=",

freq ,"&time=",time)

r<-GET(parm)

145

content(r)

(2) Analyze: This module automatically performed the quality profiling and
visualize the results using the indexed dataset (DBpedia) or by selecting the sched-
ulers presented in the server. Quality profiling results are reported based on the
four quality characteristics: Persistency, Historical Persistency, Consistency, and
Completeness. Each of the quality characteristics present as a separate module to
visualize the details of measurement results. For example, Figure A.4 illustrate
the Historical Persistency result from analyze module. A user can save the quality
profiling results in an HTML file. We visualize the analysis results into two parts:

Fig. A.4 Example of Analyze module.

(i) Indexed KB: We considered DBpedia KB as an indexed KB and collected
history of dataset updates using a dedicated SPARQL endpoint. To perform quality
analysis, the user needs to select a class by using "Class Name" button. Then, he/she
can perform quality profiling simple by selecting the button "Quality Profiling."

(ii) Sanapshots dataset: All the schedulers are presented in a list, and a user can
run the quality profiling simply by selecting a scheduler.

(3) Visualize: We illustrated the results of quality profiling in two-stage: (i)
summary of the quality profiling results is present together with a link to detail
quality problem report, and (ii) data exploitation using schedeular and indexed KBs.
A user can explore overall statistics on the saved classes simply by selecting a
scheduler name presented in the list.

146 User Interfaces for the KBQ Tool and Data Extraction REST APIs

(4) Validate: This module is used for extracting, inspecting and commenting on
the instances with quality issues. An end user can extract properties with quality
issue after performing quality profiling. It follows the similar stages introduced
in the manual evaluation phase of quality assessment process (Section 6.3.2). In
the KBQ-tool, users can select a property then press the button "Inspect" to further
explore the missing instances. Finally, user can save the validation report in a CSV
file. Currently, this module can only performed validation for the Spanish version of
DBpedia KB.

Appendix B

Publication List

The work presented in this thesis have been published in the following conference
and journal conference proceedings, in which I have either been an author or a
co-author.

Conference Proceedings

• Mohammad Rashid, Giuseppe Rizzo, Nandana Mihindukulasooriya, Marco
Torchiano, and Oscar Corcho, "Knowledge Base Evolution Analysis: A Case
Study in the Tourism Domain", In Proceedings of Workshops on Knowledge
Graphs on Travel and Tourism co-located with 18th International Conference
on Web Engineering (ICWE), Caceres,Spain, 2018 [95].

• Nandana Mihindukulasooriya, Mohammad Rashid, Giuseppe Rizzo, Raúl
García-Castro, Oscar Corcho, and Marco Torchiano, "RDF Shape Induction
using Knowledge Base Profiling", In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC ’18, pages 1952–1959, New York,
NY, USA, 2018. ACM [26].

• Mohammad Rashid, Giuseppe Rizzo, Nandana Mihindukulasooriya, Marco
Torchiano, and Oscar Corcho, "KBQ - A Tool for Knowledge Base Qual-
ity Assessment Using Temporal Analysis", In Proceedings of Workshops
and Tutorials of the 9th International Conference on Knowledge Capture (K-
CAP2017), Volume 2065 of CEUR Workshop Proceedings, Austin, Texas,
2017. CEUR-WS. org [24].

148 Publication List

• Rashid, Mohammad, Torchiano Marco, "A systematic literature review of
open data quality in practice", In Proceedings of 2nd Open Data Research
Symposium (ODRS), Madrid, Spain, 2016 [96].

Journal article

• Mohammad Rashid, Giuseppe Rizzo, Marco Torchiano, Nandana Mihinduku-
lasooriya, and Oscar Corcho, "A Quality Assessment Approach for Evolving
Knowledge Bases." Accepted for publication in Special issue on Benchmark-
ing Linked Data, Semantic Web Journal (2018) [2].

Journal article, under review

• Mohammad Rashid, Giuseppe Rizzo, Marco Torchiano, Nandana Mihinduku-
lasooriya, and Oscar Corcho, "Completeness and Consistency Analysis for
Evolving Knowledge Bases.", Journal of Web Semantics (2018) [97].

Other papers published during the PhD

• Rashid, Mohammad, Luca Ardito, Marco Torchiano, "Energy Consumption
Analysis of Algorithms Implementations" In Proceedings of 9th International
Symposium on Empirical Software Engineering and Measurement (ESEM),
China, 2015 [98].

• Rashid, Mohammad, Luca Ardito, Marco Torchiano, "Energy Consumption
Analysis of Image Encoding and Decoding Algorithms", In Proceedings of
4th International Workshop on Green and Sustainable Software (GREENS),
2015 [99].

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.1.1 Identification of quality issues for evolving KBs
	1.1.2 Identification of logical or formal contradiction

	1.2 Research Questions and Contributions
	1.2.1 KB evolution-based quality assessment
	1.2.2 Validation approaches leveraging on quality characteristics and integrity constraints.

	1.3 Thesis structure

	2 Background
	2.1 Resource Description Framework (RDF)
	2.2 RDF Related Core Technologies
	2.3 Shapes Constraint Language (SHACL)
	2.4 Knowledge Bases and Their Evolution
	2.4.1 Use Cases: 3cixty and DBpedia
	2.4.2 Knowledge Base Evolution

	2.5 Data Quality Standards
	2.6 Data Quality Issues in Evolving KB
	2.7 Gold Standard Creation
	2.8 Learning Models

	3 State of the Art
	3.1 Linked Data Dynamics
	3.2 Knowledge Base Quality Assessment
	3.3 Knowledge Base Validation
	3.4 Summary

	4 Evolution Analysis and Quality Characteristics
	4.1 Evolution Analysis
	4.2 Dynamic Features
	4.3 Evolution-based Quality Characteristics and Measures
	4.3.1 Basic Measure Elements
	4.3.2 Persistency
	4.3.3 Historical Persistency
	4.3.4 Consistency
	4.3.5 Completeness

	4.4 Summary

	5 RDF Shape Induction
	5.1 SHACL Constraints Components and Shape Induction
	5.1.1 Cardinality constraints
	5.1.2 Range constraints
	5.1.3 String based constraints

	5.2 Summary

	6 Evolution-based Quality Assessment and Validation Approach
	6.1 Data Collection
	6.2 Quality Evaluation
	6.3 Validation Process
	6.3.1 Feature Extraction
	6.3.2 Manual Validation and Gold Standard Creation

	6.4 Modeling and Quality Problem Report
	6.5 KBQ : A proof-of-concept
	6.6 Summary

	7 Experimental Results
	7.1 Experimental Settings
	7.2 Quantitative Analysis
	7.2.1 Persistency
	7.2.2 Historical Persistency
	7.2.3 Consistency
	7.2.4 Completeness

	7.3 Qualitative Analysis using Manual Validation
	7.3.1 Persistency & Historical Persistency
	7.3.2 Consistency
	7.3.3 Completeness

	7.4 Validation using Integrity Constraints
	7.4.1 Feature Extraction
	7.4.2 Model Preparation
	7.4.3 Model Evaluation

	8 Discussion and Limitations
	8.1 Evolution Analysis to Drive Quality Assessment
	8.2 Modeling Performance
	8.3 Frequency of Knowledge Base Changes
	8.4 Quality Assessment of Literal Values
	8.5 Lifespan Analysis of Evolving KBs
	8.6 Limitations

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Future Work

	References
	Appendix A User Interfaces for the KBQ Tool and Data Extraction REST APIs
	Appendix B Publication List

