
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An ensemble approach of recurrent neural networks using pre-trained embeddings for playlist completion / Monti, DIEGO
MICHELE; Palumbo, Enrico; Rizzo, Giuseppe; Lisena, Pasquale; Raphaël, Troncy; Michael, Fell; Elena, Cabrio; Morisio,
Maurizio. - ELETTRONICO. - (2018), pp. 131-136. (Intervento presentato al convegno 12th ACM Conference on
Recommender Systems tenutosi a Vancouver (CA) nel October 2, 2018) [10.1145/3267471.3267484].

Original

An ensemble approach of recurrent neural networks using pre-trained embeddings for playlist
completion

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3267471.3267484

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712365 since: 2018-10-15T13:27:26Z

ACM

An Ensemble Approach of Recurrent Neural Networks using
Pre-Trained Embeddings for Playlist Completion

Diego Monti

Politecnico di Torino

diego.monti@polito.it

Enrico Palumbo

ISMB-EURECOM

palumbo@ismb.it

Giuseppe Rizzo

ISMB

giuseppe.rizzo@ismb.it

Pasquale Lisena

EURECOM

lisena@eurecom.fr

Raphaël Troncy

EURECOM

troncy@eurecom.fr

Michael Fell

Université Côte d’Azur

michael.fell@unice.fr

Elena Cabrio

Université Côte d’Azur

elena.cabrio@unice.fr

Maurizio Morisio

Politecnico di Torino

maurizio.morisio@polito.it

ABSTRACT
This paper describes the approach of the D2KLab team to the RecSys

Challenge 2018 that focuses on the task of playlist completion. We

propose an ensemble strategy of different recurrent neural networks

leveraging pre-trained embeddings representing tracks, artists, al-

bums, and titles as inputs. We also use lyrics from which we extract

semantic and stylistic features that we fed into the network for

the creative track. The RNN learns a probabilistic model from the

sequences of items in the playlist, which is then used to predict

the most likely tracks to be added to the playlist. Concerning the

playlists without tracks, we implemented a fall-back strategy called

Title2Rec that generates recommendations using only the playlist

title. We optimized the RNN, Title2Rec, and the ensemble approach

on a validation set, tuning hyper-parameters such as the optimizer

algorithm, the learning rate, and the generation strategy. This ap-

proach is effective in predicting tracks for a playlist and flexible

to include diverse types of inputs, but it is also computationally

demanding in the training phase.

ACM Reference format:
Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaël

Troncy,Michael Fell, Elena Cabrio, andMaurizioMorisio. 2018. An Ensemble

Approach of Recurrent Neural Networks using Pre-Trained Embeddings

for Playlist Completion. In Proceedings of the ACM Recommender Systems
Challenge 2018, Vancouver, BC, Canada, October 2, 2018 (RecSys Challenge
’18), 6 pages.
https://doi.org/10.1145/3267471.3267484

1 INTRODUCTION
In recent years, music streaming services strongly modified the

way in which people access to music content. In particular, the

music experience does not foresee anymore to follow pre-defined

collections of tracks (albums) edited by music stakeholders (artists

and labels): the end-user can now produce her/his own playlist with

potentially unlimited freedom. As a consequence, the automatic

playlist generation and continuation are now crucial tasks in the

recommender systems field.

This paper describes our results for the task of playlist com-

pletion obtained in the context of the RecSys Challenge 2018 [2].

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada
© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
ACM Recommender Systems Challenge 2018, October 2, 2018, https://doi.org/10.1145/
3267471.3267484.

This work relies on an ensemble strategy which involves different

types of features, including sequential embeddings, title embed-

dings and lyrics features.
1
Following the challenge rules,

2
the target

dataset is the Million Playlist Dataset (MPD), which contains meta-

data for 1 million playlists gathering more than 2.2 million distinct

tracks. The implementation of our approach is publicly available at

https://github.com/D2KLab/recsys18_challenge.

The remainder of the paper is structured as follows: Section 2

presents our ensemble approach, while Section 3 details the design

of the Recurrent Neural Networks, and Section 4 the implementa-

tion of Title2Rec. Section 5 explains the optimization conducted on

the RNN, Title2Rec, and the ensemble.We describe the experimental

results in Section 6 and we conclude the paper with Section 7.

2 ENSEMBLE
Our approach builds upon an ensemble voting strategy of different

runs of Recurrent Neural Networks (RNNs) and one execution of

Title2Rec. The RNNs are configured differently in terms of network

inputs and hyper-parameters. The RNNs are used to predict the

missing tracks to be part of a playlist and thus assume to have

seed(s) track(s) of the playlist to be utilized as initial elements of

the network bootstrap (Section 3). However, when only the title of

the playlist is available, our approach relies on a fall-back strategy

that implements a K-means clustering of the playlists and a fastText

word embedding model of their titles, called Title2Rec (Section 4).

Figure 1 illustrates the overall approach.

The ensemble weighs the rankings of the different runs by giving

more importance to the top ranked tracks and less to the low ranked

tracks, similarly to a Borda count election.
3
In detail, given a ranked

set of predictions coming from a configuration k , corresponding
to a particular configuration of the RNN jointly combined with

Title2Rec,Rk = {T1,T2, . . . ,T500}, we assign to each track a score sk
that has its maximum for the first track in the ranking andminimum

for the last one, i.e. sk (Ti) = 500 − i + 1. Then, we sum the scores

over all the configurations that we want to ensemble, obtaining a

final score for each track s (Ti) =
∑
k sk (Ti) which we use to create

the final ranking of the tracks. Take as an example a configuration 1

with ranking R1 = {T1,T2,T3} and a configuration 2 with ranking

R2 = {T1,T3,T2}. We would get s1 (T1) = 3, s1 (T2) = 2, s1 (T3) = 1,

s2 (T1) = 3, s2 (T3) = 2, s2 (T2) = 1 and thus s (T1) = 3 + 3 = 6,

s (T2) = 2 + 1 = 3, s (T3) = 1 + 2 = 3, obtaining as a final ranking

1
The lyrics have been used only for the Creative Track.

2
https://recsys-challenge.spotify.com/rules

3
https://en.wikipedia.org/wiki/Borda_count

https://doi.org/10.1145/3267471.3267484
https://doi.org/10.1145/3267471.3267484
https://doi.org/10.1145/3267471.3267484
https://github.com/D2KLab/recsys18_challenge
https://recsys-challenge.spotify.com/rules
https://en.wikipedia.org/wiki/Borda_count

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada D. Monti et al.

RNN1

Title2Rec

RNN2

Title2Rec

RNNn

Title2Rec

Playlist

Title

Playlist

Title

Playlist

Title

Ensemble Tracks

Figure 1: The proposed ensemble architecture for playlist
completion. The inputs are a playlist and its title.

R = {T1,T2,T3}, or equivalently R = {T1,T3,T2} as T2 and T3 have
the same score.

3 RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are one of the most commonly

used typology of neural networks [6]. In recent years, thanks to ad-

vancements in their architecture [3, 4] and in computational power,

they have become the standard to effectively model sequential data.

One of the typical applications of RNNs is language modeling, i.e.

the task of learning a probabilistic model of text in order to generate

new text by recursively predicting the next word in a sentence [10].

We use RNNs, more specifically Long-Short Term Memory (LSTM)

cells [4], in a similar vein to the language modeling problem, i.e.

training the network to predict the next track in a playlist and

sampling tracks from the learned probability model to generate

predictions. In practice, rather than using only the track as input,

we use a richer representation that also exploits the artist, the al-

bum, the title and, possibly, the lyrics features (Figure 2). In the

following sections, we describe in detail the input vectors as well

as the generation strategy.

3.1 Input Vectors
3.1.1 Track, Album and Artist Embeddings. We opt for an ap-

proach based on word2vec [8] embeddings to encode the informa-

tion concerning tracks, artists and albums. More precisely, we train

the word2vec model separately on sequences of tracks, albums and

artists in the order of appearance in the playlist, obtaining three

separated word2vec models encoding co-occurrence patterns of

tracks, albums and artists respectively. Each word2vec model is

based on the Skip-grammodel with negative sampling using default

hyper-parameters of the Gensim implementation [9]: the embed-

ding vector dimension is d = 100, the learning rate is α = 0.025

linearly decaying up tominα = 0.0001, the window size is c = 5,

and the number of epochs is η = 5.

We concatenate the three representations of the tracks, albums

and artists, obtaining an input vector xw2v whose dimensionality

is |xw2v | = 300.

3.1.2 Titles Embeddings. The title of a playlist can potentially

contain interesting information about the intention and the purpose

of its creator. The title can suggest that the tracks in certain playlist

are intended to suit a certain goal (e.g. party, workout), a mood (sad
songs, relaxing), a genre (country, reggae), or a topic (90’s, Christmas).
Our intuition is that playlists with similar titles may contain similar

tracks. The title similarity could rely on pre-trained models and

thesauri. However, we opted for computing a model that is specific

for the playlist continuation task, using the sole data of the MPD.

A playlist embedding pw2v is computed as the mean of the em-

beddings of the tracks composing the playlist, already generated

in Section 3.1.1. The playlist embeddings are then grouped in n
clusters, applying the K-means algorithm.

Each cluster c expresses a composed label, which is the concate-

nation of the titles of all the playlist p ∈ c separated by a blank

space. These labels can be seen as a corpus of n documents (one

for each cluster) that is used as input for the fastText algorithm [5].

Because this algorithm is able to represent textual information at

the level of n-grams from 3 to 6 character, the Title2Rec model in

output computes the embeddings of any playlist title, being this

already seen in the dataset or totally unknown. Figure 3 illustrates

the process of the Title2Rec model generation.

3.1.3 Lyrics Embeddings. Since playlists contain tracks that of-

ten share semantic properties (such as the genre) and acoustic

properties (such as the mood), we hypothesize that their lyrics

contain relevant information to be utilized for the challenge task.

To this end, we extract numerous features from the lyrics for a

large set of tracks used in the MPD dataset (v ∈ Rn) that describe
different stylistic and linguistic dimensions of a song text:

• vocabulary (v ∈ R1): as a measure of the vocabulary richness,

we compute the type-token ratio of a song text.

• style (v ∈ R27): to estimate the linguistic style of a song text,

we measure the line lengths (in characters and in tokens) and

the frequencies of all major part-of-speech tags. We further

count rhyme occurrences and “echoisms” (sung words like

“laaalala” and “yeeeeeeeaaaaaaah”).

• semantics (v ∈ R60): we build a topic model with 60 topics

on the song text bag of words using Latent Dirichlet Alloca-

tion [1]. Each song text is then represented by its association

to these topics.

• orientation (v ∈ R3): this dimension models how the song

narrative (entities, events) is oriented with respect to the

world. We encode a temporal dimension, i.e. whether the

song mainly recounts past experiences or present/future

ones, by representing the fraction of past tense verb forms

to all verb forms as a feature.

• emotion (v ∈ R6): we model the subjectivity (subjective

vs. objective) as well as the polarity (positive vs. negative)

of the song text. Furthermore, the emotions conveyed are

modelled in a common two-dimensional model that accounts

for degrees of arousal and valence.

• song structure (v ∈ R4): as a proxy of the structure of the

lyrics, we use the line lengths as well as the lengths of para-

graphs in the song text.

For experimental purposes, we grouped the previous features in

two additional categories:

An Ensemble Approach of Recurrent Neural Networks RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

LSTM

Softmax
o0

x0

Wo

T1

T0

input vector

h0 LSTM

Softmax
o1

x1

Wo

T2

T1

input vector

h1 LSTM

Softmax
o2

x2

Wo

T3

T2

input vector

h2 LSTM

Softmax
o3

x3

Wo

T4

T3

input vector

h3 Hidden
layer

Output
layer

Input
layer

Target

track w2v embeddings

album w2v embeddings

artist w2v embeddings

title2rec embeddings

lyrics features

Figure 2: RNN architecture for playlist completion. The input vectors include word2vec embeddings for the track, the album,
and the artist, a fastText embedding for the playlist title and numerous features extracted from the lyrics.

xw2v pw2v

mean of tracks
in each playlist

K-means
Titles

concatenation
n clusters

fastText
n documents t2r

model

Figure 3: Pipeline for generating the title embedding model used in Title2Rec. The embeddings are computed through a fast-
Text model trained on a corpus of concatenated titles of similar playlists.

• deterministic (v ∈ R23): it encompasses all features generated

in a deterministic way such as features related to the struc-

ture, the vocabulary, and the style of the lyrics. We excluded

from this group the frequencies of part-of-speech tags, as

they depend on the tagger used.

• fuzzy (v ∈ R18): it includes the features generated in a non-

deterministic fashion such as orientation, emotion, and the

frequencies of part-of-speech tags.

All features are scaled using a custom feature scaler that com-

bines two elements: i) account for outliers by scaling the data non-

linearly based on the percentile of the feature value distribution

they belong to; ii) scale the data linearly to the same [−1, 1] interval

that non-lyrics features live in.

Retrieving lyrics for the MPD dataset is achieved by linking it

to the WASABI corpus [7].
4
The WASABI corpus is an evolving

resource that contains 2.1M song texts (from 77k artists), and for

each song it provides the following information: the lyrics extracted

from http://lyrics.wikia.com, the synchronized lyrics (when avail-

able) from http://usdb.animux.de, DBpedia abstracts and categories

the song belongs to, genre, label, writer, release date, awards, pro-

ducers, artist and/or band members, the stereo audio track from

Deezer (when available), the unmixed audio tracks of the song, its

ISRC, BPM, and duration. In total, we linked 416k tracks in MPD

(out of 2.2M unique tracks) to WASABI tracks that contain the

4
https://wasabi.i3s.unice.fr

lyrics. While the linked tracks proportion with ∼20% seems small,

the linked tracks cover 53% of all 66M track occurrences in MPD

because of the typical fat-tailed distribution, where some songs

are extremely common while most titles occur only rarely in a

playlist. Linking the lyrics was done in three levels of accuracy:

direct Spotify URI matching gave us 155k links; exact artist and title

matching provided 334k matches; and, finally, lower casing and

deleting bracketed content (in song titles only) led to 51k matches.

As the results overlap, we ended up with 416k matched tracks in to-

tal. Some of our lyrics features are language-specific, so we decided

to compute lyrics features exclusively on English song texts. This

finally resulted in 367k English song texts we computed lyrical fea-

tures on. Language detection is done with the langdetect package5

and the MPD and WASABI datasets are merged along the axes of

their Spotify URIs, artist names, song title names, respectively.

3.2 Learning Model
As mentioned earlier, we address the problem of playlist continua-

tion as a language modeling problem. More specifically, we train

the RNN to predict the next track in a playlist, defining the targetsY

to be the inputs X shifted in time, i.e. X = {(ˆT j
0,

ˆT j
1, . . . ,

ˆT j Nj−1)}

and Y = {(T j
1,T

j
2, . . . ,T

j
Nj

)} where T̂ represents a track and its

metadata (artist, album, playlist title, lyrics features), T represents

5
https://github.com/Mimino666/langdetect

http://lyrics.wikia.com
http://usdb.animux.de
https://wasabi.i3s.unice.fr
https://github.com/Mimino666/langdetect

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada D. Monti et al.

RNN RNN RNN RNN RNN

Output1 Output2

Input1 Input2 Inputn

Outputn

(a) do_sample

RNN RNN RNN Ranker

Logits

Input1 Input2 Inputn

Output

(b) do_rank

RNN RNN RNN Ranker

Logitsn

Input1 Input2 Inputn

Output

Logits1 Logits2

(c) do_summed_rank

Figure 4: Three strategies for generating track predictions.

a track id in a playlist, j = 1, . . . ,M is a playlist index and Nj is the

length of the j-th playlist. In this way, we train the model to learn a

probability distribution of the next track P(TN |T̂N−1, T̂N−2, . . . , T̂0)
given the previous ones, which is parametrized by the network

outputs that are converted into probabilities by the final softmax

layer (Figure 2). The training algorithm attempts to minimize the

cross-entropy loss function L, that measures the disagreement be-

tween the learned probability model and the observed probability

model of the targets Y .

3.3 Generating predictions
We experiment three different strategies to generate track predic-

tions from the RNN. Given an input seed and the hidden state, the

trained model outputs the logits pi , i.e. un-normalized scores that

are proportional to the probability that a given track appears after

the sequence of seeds s . In details, we considered the following

approaches, as depicted in Figure 4.

do_sample It samples the trackwith the highest logitpi , where
î = arдmax(pi), given the set of seeds s . It adds the sampled

track î to the seeds s , then it repeats the previous operations

until 500 tracks are sampled.

do_rank It ranks the tracks according to their logit value pi ,
given all the seeds s , then it selects the top-500 tracks with

the highest logit.

do_summed_rank It computes the logits pi for every seed. It

averages all the logits in the sequence obtaining p̂i and then

it ranks the tracks according to the values of p̂i .

4 TITLE2REC
Title2Rec recommends tracks taking as input the playlist title, fol-

lowing the procedure illustrated in Figure 5. The title is translated

into a vector pt2r , which is referred as title embedding, and it is

fastText

fastText

t2r model

known

playlists' tit les

new playlist

tit le

title vector
of the new playlist

t it le vectors
for each playlist

cosine
similarity

P
300 most similar

playlists

Figure 5: TheTitle2Rec algorithmcompares the fastText rep-
resentation of the title of a seed playlist to the known ones
using the cosine similarity.

computed by applying the strategy described in Section 3.1.2 to the

playlists defined in the MPD dataset.

Given a new seed playlist, we compute its title embedding in the

same way. Then, we select a subset P including the top-300 most

similar playlists to the given one by comparing its embeddings with

pt2r using the cosine similarity. Finally, the required number of

tracks are selected among the ones available in P . The tracks have
been ordered to ensure that the most popular ones in P are placed

at the top of the list.

5 OPTIMIZATION
In this section, we describe the empirical evaluations conducted

with the purpose of optimizing the configuration of the RNN, Ti-

tle2Rec, and the ensemble approach.

5.1 RNN Optimization
For optimizing the hyper-parameters of the RNN,we executed a grid

search on a down-sampled version of the MPD dataset containing

100,000 playlists. We considered the following parameters:

• optimizer: opt = {Gradient , RMSProp, ADAM}

• learning rate: lr = {1, 0.5, 0.1, 0.01}

• number of steps: ns = {10, 20}

• hidden layer size: hl = {50, 100}

For each configuration (opt , lr , ns, hl), we trained the RNN

model and we measured its perplexity on a validation set consist-

ing of 1,000 playlists. Furthermore, we measured its R-Precision,

NDCG, and Click metrics as defined in the challenge rules on a

separate test set of the same size. The validation and test sets used

for optimization purposes contain playlists with the first 5 tracks

available as the initial seed, while the others are hidden.

We considered a total of 48 possible configurations: the values

of perplexity of the most significant ones are reported in Table 1.

Perplexity measures the ‘surprise’ of the probabilistic model in

observing the data and it is defined as 2
L
where L is the cross-

entropy loss function. Thus, lower values of perplexity corresponds

An Ensemble Approach of Recurrent Neural Networks RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

Optimizer L.R. Steps Hidden ppl Time R-Prec.

ADAM 1 20 100 1357.04 3:29 0.1739

ADAM 1 10 100 1482.86 3:39 0.1742

Gradient 1 10 100 1693.96 3:32 0.1566

ADAM 1 10 50 1716.92 2:30 0.1745

Gradient 1 10 50 2005.54 2:25 0.1543

Table 1: The results of the most significant RNN models.
‘L.R.’ stands for learning rate, ‘Steps’ for the number of time
steps, ‘Hidden’ for the size of the hidden layer, ‘ppl’ stands
for perplexity, ‘Time’ is the training time in hours:minutes.

to better models. We observe that, when the hidden size is fixed,

the best performing optimizer is ADAM. Furthermore, increasing

the number of steps reduces the perplexity of the RNN, but it does

not have a significant effect on the R-Prec.

Finally, because of time constrains, we selected the configuration

(ADAM, 1, 10, 50) as the optimal one, despite its higher perplexity:

in fact, we empirically observed that a smaller hidden size results

in a shorter training duration.

We evaluated in a controlled setting all the strategies for generat-

ing the recommended tracks described in Section 3.3. We observed

that, independently from other hyper-parameters, the technique

called do_summed_rank systematically achieved better results than

the other ones in all the metrics considered. For this reason, we

selected this algorithm as our track generation strategy.

Finally, we analyzed the effects on the evaluation metrics of the

different categories of features extracted from the lyrics as defined

in Section 3.1.3, and we selected the groups emotion and fuzzy as

the most performing ones.

5.2 Title2Rec Optimization
In order to improve the performances of Title2Rec, we worked on

different parts of the pipeline. Each optimization has been tested

by running the algorithm on a validation set of 1,000 playlists.

Then, only the edits that improved the scores with respect to the

non-optimized version have been kept in the final version.

On each single title, we applied a pre-processing phase that

foresees a series of tasks:

• lowercasing;

• detecting and separating emoji from words;

• separating the skin code from the emoji;

• detecting and separating emoticons from words;

• transforming space-separated single letters into words (e.g.

“w o r k o u t” becomes “workout”);
• remove ‘#’ from hashtags.

Other tasks that have been tested with no improvements are:

• detecting and separating punctuation from words;

• removing stop words;

• removing all spaces.

The latter point has been partially exploited because we noticed

an improvement in the results by including in the corpus both

versions of the title – keeping the spaces (as in “green day”) and

removing them (“greenday”).

Another optimization step included the usage of different pa-

rameters for executing the pipeline. The clustering phase has been

tested with different values of k (the number of clusters in output

for the K-means algorithm). The value of 500 gives better results

than smaller and bigger ones, which produce clusters that are re-

spectively less specialized and less populated. The fastText training

has been run with 5 epochs, a learning rate of 0.1 and different loss

functions (ns, hs, softmax), window sizes (3, 5, 10). The values in
italics represent the best results.

The ordering by popularity described in Section 4 has been mod-

ified so that the impact of each playlist is proportional to the sim-

ilarity of its title to the seed. In other words, a track has a higher

chance to be recommended if it is included in a large number of

playlists in P and if most of them are among the top ones more

similar to the seed.

Finally, some improvements come from the inclusion of the

playlist descriptions in the training. On thewhole set of descriptions

in the MPD dataset, we compute a TF-IDF model. Thanks to this,

we are able to extract a set of keywords for each description by

selecting the 3 words with the highest score. These keywords are

added to the documents used to build the clusters. The contribution

of the description is null when the playlist does not include any.

5.3 Ensemble Optimization
We studied the performance of the ensemble by applying a combi-

nation without repetition sampling of the different runs for each of

the tracks, namely main and creative, and for different groups of

runs. In detail, given the total number of runs n, and the grouping

factor k , we considered a number of
n!

k !(n−k)! ensemble configura-

tions, where we varied k = 1, . . . ,n − 1. We then selected the best

performing one for both the main and the creative tracks: these

configurations are reported in Section 6.

6 EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of our approach, we have

divided the official MPD dataset in a training, a validation, and a

test set. The validation and the test set contain 10,000 playlists each,

that is the 1% of the original dataset. These playlists have been

selected according to the characteristics of the MPD provided by

Spotify.
6
Thus, the validation and test playlists are divided into 10

different categories: each of them defines a peculiar way of hiding

some information during the testing phase, i.e. the number of seed

tracks or their order.

Furthermore, we have implemented an evaluation tool that com-

putes on our split the same metrics that are described in the chal-

lenge rules. Following this approach, it is possible to inspect the

evaluation results for each category of the test set separately. As

expected, the category containing playlists with only their title and

no tracks proved to be the most difficult one to address.

Table 2 contains the results obtained on our test set by the Most

Popular, Title2Rec, and Word2Rec baselines, and the RNNs trained

with different parameters. Word2Rec corresponds to the word2vec

model trained on sequences of tracks as described in Section 3.1.1

and used to generate predictions directly by looking up the 500

most similar tracks to the seeds. All the neural models, but the

6
https://recsys-challenge.spotify.com/challenge_readme

https://recsys-challenge.spotify.com/challenge_readme

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada D. Monti et al.

Approach Optimizer Epoch R-Prec. NDCG Click

Most Popular - - 0.0373 0.0959 18.529

Title2Rec - - 0.0837 0.1260 12.007

Word2Rec - - 0.0963 0.1444 8.4322

RNN 300 Gradient 1 0.1417 0.1621 4.1902

RNN 300 Gradient 2 0.1500 0.1656 3.9433

RNN 300 ADAM 1 0.1557 0.1702 3.9213

RNN 300 ADAM 2 0.1457 0.1672 4.4224

RNN 400 ADAM 1 0.1572 0.1708 3.9340

RNN 400 ADAM 2 0.1520 0.1694 4.1307

RNN Emotion ADAM 1 0.1556 0.1702 4.0101

RNN Emotion ADAM 2 0.1500 0.1680 4.3594

RNN Fuzzy ADAM 1 0.1555 0.1698 3.9950

RNN Fuzzy ADAM 2 0.1503 0.1683 4.3456

Table 2: Results of different approaches on our test set.

Track R-Precision NDCG Click

Main 0.1611 0.1710 3.6349

Creative 0.1634 0.1717 3.5964

Table 3: Results of the ensemble on our test set.

first two, were trained with the optimal configuration described

in Section 5.1. These models are computationally demanding: the

training phase lasted more than three days per epoch. The numbers

300 and 400 represent the dimensionality of the input vectors: the

300 models were trained without the title embeddings, while the

400 ones also exploit the fastText model described in Section 3.1.2.

All the RNNs that include the features extracted from the lyrics

were trained with input vectors of dimensionality higher than 400.

Table 3 lists the results computed on our test set for the best

performing configurations in the two tracks of the challenge. The

models combined in the ensemble are the following:

Main track RNN 300 (Gradient; Epoch 1 and 2), RNN 300

(ADAM; Epoch 1 and 2), and RNN 400 (Epoch 1 and 2).

Creative track RNN 300 (Gradient; Epoch 1 and 2), RNN 300

(ADAM; Epoch 1), RNN 400 (Epoch 1 and 2), RNN Emotion

(Epoch 1 and 2), and RNN Fuzzy (Epoch 1 and 2).

7 CONCLUSION AND FUTUREWORK
Completing automatically playlists with tracks contained in the

MPD dataset is a particularly difficult task due to the dataset di-

mension and the variety of playlists generated by numerous users

having different likes and behaviors bringing great diversity. In this

paper, we present the D2KLab recommender system that imple-

ments an ensemble approach of multiple learningmodels differently

optimized combined with a Borda count strategy. Each model runs

an RNN that exploits a wide range of playlist features such as artist,

album, track, lyrics (used for the creative track), title and a so-called

Title2Rec that takes as input the title and that is used, as fall-back

strategy, when playlists do not contain any track. The approach

showed to be robust in such a complex setting demonstrating the

effectiveness of learning models for automatic playlist completion.

The experimental analysis brought to further attention three

points, namely the generation strategy, the complementarity of the

learning models, and the computing time. The generation strategy

has a great impact on the results and it pointed out that a recurrent

decoding stage is less performing than using a ranking strategy

that weighs the output of each RNN of the encoding stage. The en-

semble strategy aggregates different outputs of the learning model

runs by pivoting the generated ranking. This has granted a sensible

increment in performance, so we plan to study further the comple-

mentarity of the runs and to build a learning model to automatically

select the best candidates. Finally, the computing time has been a

crucial experimental setup element due to the generation of the

RNN learning model; we addressed it by creating different sizes of

the MPD dataset randomly selected and by optimizing the learning

models on the hardware a disposal, becoming another factor of

differentiation for shaping a performing submission.

ACKNOWLEDGMENTS
This work has been partially supported by the French National

Research Agency (ANR) within the DOREMUS Project, under grant

number ANR-14-CE24-0020. The computational resources were

provided by eurecom (http://www.eurecom.fr) and hpc@polito

(http://hpc.polito.it).

REFERENCES
[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. J. Mach. Learn. Res. 3 (March 2003), 993–1022. http://dl.acm.org/

citation.cfm?id=944919.944937

[2] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. RecSys

Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the
12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY,

USA.

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).
[4] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[5] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,

and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.

arXiv preprint arXiv:1612.03651 (2016).
[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444.

[7] Gabriel Meseguer-Brocal, Geoffroy Peeters, Guillaume Pellerin, Michel Buffa,

Elena Cabrio, Catherine Faron Zucker, Alain Giboin, Isabelle Mirbel, Romain

Hennequin, Manuel Moussallam, Francesco Piccoli, and Thomas Fillon. 2017.

WASABI: a TwoMillion Song Database Project with Audio and Cultural Metadata

plus WebAudio enhanced Client Applications. InWeb Audio Conference 2017 –
Collaborative Audio #WAC2017. Queen Mary University of London, London,

United Kingdom. https://hal-univ-cotedazur.archives-ouvertes.fr/hal-01589250

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[9] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling

with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50.

[10] Ilya Sutskever, James Martens, and Geoffrey E Hinton. 2011. Generating text with

recurrent neural networks. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11). 1017–1024.

http://www.eurecom.fr
http://hpc.polito.it
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937
https://hal-univ-cotedazur.archives-ouvertes.fr/hal-01589250

	Abstract
	1 Introduction
	2 Ensemble
	3 Recurrent Neural Networks
	3.1 Input Vectors
	3.2 Learning Model
	3.3 Generating predictions

	4 Title2Rec
	5 Optimization
	5.1 RNN Optimization
	5.2 Title2Rec Optimization
	5.3 Ensemble Optimization

	6 Experimental Results
	7 Conclusion and Future Work
	Acknowledgments
	References

