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ABSTRACT

The present work proposes a closed-form solution based on refined beam theories for the static analysis of fiber-

reinforced composite and sandwich beams under simply supported boundary conditions. The higher-order beam

models are developed by employing Carrera Unified Formulation (CUF), which uses Lagrange-polynomials ex-

pansions (LE) to approximate the kinematic field over the cross section. The CUF-LE allows one to carry out

analysis of composite structure analysis through a single formulation in global-local sense, i.e., homogenized

laminates at a global scale and fiber-matrix constituents at a local scale, leading to component-wise (CW)

analysis. Therefore, three-dimensional (3D) stress/displacement fields at different scales can be successfully

detected by increasing the order of Lagrange-polynomials opportunely. The governing equations are derived in

a strong-form and solved in a Navier-type sense. Three benchmark numerical assessments are carried out on

a single-layer transversely isotropic beam, a cross-ply laminate [0◦/90◦/0◦] beam and a sandwich beam. The

results show that accurate displacement and stress values can be obtained in different parts of the structure

with lower computational cost in comparison with CUF finite element method (CUF-FEM) and 3D FEM.

Besides, this study may serve as benchmarks for future assessments in this field.
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1 Introduction

Over the last few decades, fiber-reinforced composite materials have been widely employed in many civil

and aerospace structures, see for instance the C919 vertical tail manufactured by AVIC Shenyang Aircraft

Corporation (SAC, Liaoning, China). A main advantage is that composite materials have better fatigue re-

sistance and corrosion resistance in addition to high strength- and stiffness-to-weight ratios [1] if compared to

the traditional metallic materials like steels [2]. These excellent material properties, in turn, result in mass

production of corresponding composite components. In spite of this, there are still many key issues to be ad-

dressed, e.g., the correct description of progressive damage and failure behavior. Micro-structural effects, e.g.,

fiber volume fraction, fiber packing and orientation and constituent properties, play a key role in the determi-

nation of various modes of failure macroscopically, including fiber tow kinking in compression, tow breakage

in tension, and matrix cracking [3]. A better prediction of these complicated failure phenomena resides in the

development of an enhanced structured model, which can provide a better prediction of stress/displacement

fields of the matrices, fibers, layers and interfaces of the components and unveil the structural failure mecha-

nism further.

The multiscale approach, as a useful tool for composite structures, has received a considerable attention

and numerous works have been addressed in the literature. A brief but not exhaustive review is given here.

Usually, the precision of the multiscale model depends on the rationality of the micromechanical model, which

correlates the properties of matrix-fiber cells with those of composite laminates. A common evaluation of the

effective elastic behavior of unidirectional fiber-reinforced composite laminates is the analytical models, pro-

viding a explicit formulation in terms of the geometry, position and properties of constituents under simple

loading conditions [4]. Some of well-known models can be found in the literature: the rule of mixture [5, 6, 7] ,

the Mori-Tanaka method [8, 9], the Hashin-Shtrikman bounds [10] and the generalized self-consistent method

[11]. Although analytical models are easy to implement, they cannot detect the local stress and strain fields in

the fiber-matrix constituent. To this purpose, other semi-analytical and numerical methods have been put for-

ward sequentially to retrieve more accurate local fields. Examples are the Generalised Method of Cells (GMC)

[12, 13], the Representative Volume Element (RVE) [14, 15], the variational asymptotic method for unit cell

homogenization (VAMUCH) [16] and the Mechanics of Structure Genome (MSG) [17, 18, 19]. Recently, an

elaborate description of bottom-up, multiscale modelling approach for high-fidelity virtual mechanical tests

of composite materials has been presented in [20], which used molecular dynamics and Monte Carlo methods

at nano-scale, RVEs at micro-scale and structural elements (beams, plates or shells) at macro-scale.

To some extent, the most critical issues in a multiscale simulation are the trade-off between computational

efforts and the high-fidelity analysis, which may affect its reliability and application into the real engineer-

ing structures. Therefore, a proper research on this issue is in sustained growth, aiming at providing an
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approximate solution with an acceptable error and simultaneous increasing efficiency [21].

In the present work, a novel approach referred to Component-Wise (CW) is introduced to carry out the

global-local analysis of heterogeneous structures at multiple scales based on a variable kinematic 1D model

and rule of mixture. CW means that components of different scales can be modelled at the same time. In

this sense, users can tune the model according to the practical demands to use micro-scale model at the com-

ponents prone to failure. The variable kinematic model is obtained within the framework of Carrera Unified

Formulation, which was introduced by Carrera [22] to produce 3D-like solutions via higher-order 2D [23, 24]

or 1D models [25, 26]. According to 1D CUF, which is the case of the present paper, the 3D displacement

field can be expanded elegantly as the kinematic field over the cross section. Numerical accuracy can be

improved by employing an arbitrary refinement of kinematics. In the past few years, various types of 1D

CUF model have been developed based on different classes of expanding functions, which are listed as follows:

Taylor Expansion (TE) [25], Lagrange Expansion (LE) [27], Chebyshev Expansions (CE) [28] and Hierarchical

Legendre Expansion (HLE) [19, 29]. The above introduced 1D CUF models can be implemented based on

Equivalent Single Layer (ESL) and Layer-Wise approaches, respectively, where ESL assumes a continuous

and differentiable displacement function through the thickness direction and LW hypothesizes a continuous

displacement function limited to the layer level.

The present multiscale work focuses on the exploitation of LE to build 1D models, endowing LW and

CW abilities in a manner to face multiscale problems sraightforwardly. Carrera et al. [30] carried out a CW

analysis for fiber-reinforced composites using 1D CUF-LE. 3D stress/displacement fields at different scales

can be detected using the global model, i.e., full homogenized laminates, or partial local model, i.e., the

combination of homogenized laminates and fiber-matrix constituents, or, full local model, i.e., only fiber-

matrix constituents. Subsequently, exploiting CW capabilities, Maiarú et al. [31] extended 1D CUF-LE

model for the prediction of failure parameters. Kaleel et al. [32] developed a novel and computationally effi-

cient micromechanics framework based on 1D CUF-LE model to model components within RVEs. However,

the aforementioned work is investigated in the domain of weak-form solutions, i.e. Finite Element Method

(FEM). Navier-type solution, as a strong-form solution, can provide exact solution of structures under the

simply supported boundary conditions and has been increasingly used for a wide range of structural analysis

in conjunction with 1D CUF-LE model, including the free vibration of isotropic [33] and laminated beams

[34] and static analysis of laminated beams [35]. In addition, Navier-type solutions have been also applied in

the domain of CUF-TE models by Giunta et al. [36, 37].

To our best knowledge, this is the first time the same Navier-type close-form solution is proposed for

the CW analysis of fiber-reinforced composites in a multiscale sense by means of 1D CUF-LE models. The

rest of this paper is organized as follows: A brief introduction of 1D CUF theory is presented in Section
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2. The governing equation with CUF fundamental nucleus is derived by applying the principle of virtual

work in Section 3 with the assembly of global stiffness matrix and load vector in Section 3.1 and Section 3.2,

respectively. Section 4 describes the LW and CW ability of the proposed model in detail. Three numerical

cases are considered in Section 5. And finally, main conclusions are outlined in the last section.

2 1D CUF theory

Figure 1: Coordinate systems for a beam with multi-components.

Traditional 1D beam theories do not work properly when an accurate analysis of structures with multi-

components is required due to the deficiency in the kinematic description of the cross-sectional quantities

and because non-classical phenomena may arise. To alleviate this drawback, 1D CUF could be considered

as a competitive alternative. For the sake of an easy illustration, consider a two-layer composite beam in

the Cartesian coordinate system with y-axis being the longitudinal axis in 0 ≤ y ≤ l and xz-plane being the

cross section Ω, as given in Fig. 1. The bottom layer is treated as the homogenized laminate and a fiber

is embedded in the top layer around the matrix. This simple model is just a special case of more complex

structures, i.e., an increasing number of fibers or laminates. Within the framework of CUF, the generic 3D

displacement field can be expanded as any order of generic unknown variables over the cross section, which

can be expressed as follows:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ....,M (1)

where Fτ are functions approximating the kinematic field over the cross section. uτ are the generalized

displacements vector regarding axial coordinates y. M is the number of expanded terms, and τ stands for

summation subscript.

From Eq. (1), one can see that the kinematic field of different components in a beam can be can be
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modelled via a single formulation simultaneously. According to CUF-LE, displacement functions within each

component can be constructed by a sum of the node displacement function elegantly. This feature enables

a direct implementation of Layer-Wise [34] and Component-Wise [38] models by imposing the continuous

displacement condition at the interface nodes. Four representative types of LE polynomials are often adopted,

i.e., four-node bilinear L4, six-node biquadratic L6, nine-node biquadratic L9 and sixteen-node cubic L16. The

function of L9 polynomial is given here for illustrative purposes:

Fτ = 1
4 (r2 + r rτ )(s2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2 s2τ (s2 − s sτ )(1− r2) + 1

2 r2τ (r2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(2)

where r and s are defined over the interval [−1, +1], and rτ and sτ are the coordinates of the nine points in

the natural domain. For more details about the description of other kinds of LE polynomials, one can refer

to the work by Carrera and Petrolo [27].

3 Principle of virtual work

The governing equations for a generic beam structure within the framework of Navier-type solution can

be derived by means of principle of virtual work. For the static problem, it holds:

δLint = δLext (3)

where δ represents the symbol of a virtual variation. Lint is the strain energy, Line is the virtual work of the

external loading.

The strain energy can be given as:

δLint =

∫
l

∫
Ω

δεTσdΩdy (4)

where Ω and l are the integration domain over the cross section and the length of the beam. Consider the

geometrical relations and 3D constitutive law, as follows:

ε = Du, σ = C̃ε (5)
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where D and C̃ are 6× 3 and 6× 6 matrices. For the sake of brevity, one can find their explicit forms in [27].

Considering the CUF kinematic field in Eq. (1) and Eq. (5), Eq. (4) can be rewritten in a compact form

after opportune integration by parts:

δLint =

∫
l

(δuτ )TKτsusdy + [(δuτ )TΠτsus] |y=ly=0 (6)

where Kτs and Πτs are the fundamental nuclei of the stiffness matrix and the matrix of natural boundary

conditions, which are reported in the book from Carrera et al. [39]. It is possible to demonstrate that the

term containing Πτs is automatically satisfied in the case of simply supported boundary condition.

The virtual variation of the external work done by the surface load pn±
ij , i, j = x, y, z imposed on the nth

sub-domain on the cross section, can be expressed as:

δLext =
(
δLpn±

xx
+ δLpn±

xy
+ δLpn±

xz
+ δLpn±

zx
+ δLpn±

zy
+ δLpn±

zz

)
(7)

For the sake of brevity, only the expression of δLpn±
zz

is reported here:

δLpn±
xx

=
∫
l

δuzτp
n±
zz E

nx±

τ dy,
(
Enx

+

τ , Enx
−

τ

)
=
xn2∫
xn1

(Fτ (zn2 , x) , Fτ (zn1 , x)) dx (8)

[
zk1 , z

k
2

]
indicate the z coordinates of the bottom and upper surfaces, respectively. The explicit expressions of

the other components in Eq. (7) can be found in [39].

3.1 Navier-type solution

Based on the assumption of Navier-type solution, the displacement fields and transverse surface load can

be expressed as a sum of harmonic functions:

uxs(y) = Uxs sin(αy)

uys(y) = Uys cos(αy)

uzs(y) = Uzs sin(αy)

pn±
ij =

 pn±xx sin(αy), pn±xy cos(αy), pn±xz sin(αy),

pn±zx sin(αy), pn±zy cos(αy), pn±zz sin(αy)


(9)

where α is:

α =
mπ

l
(10)
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and Uxτ , Uyτ and Uzτ are amplitudes of the generalized displacement components. l is the length of the

beam. m is the half wave number along the beam axis.

Considering Eq. (9) and Eq. (3), one can obtain the governing equation as:

KτsUs = Pτ (11)

The explicit expressions of the stiffness matrix Kτs and load vector Pτ have been given in [35].

3.2 FE approach

As an alternative approach, FE approach has long been used to obtain approximate solutions of displace-

ments and stresses, which are included in this paper for comparison reasons. In 1D CUF-FEM, the generalized

displacements uτ are interpolated along the beam y-axis utilizing the shape functions Ni, as shown in Eq.

(12)

uτ (y) = Ni(y)uτi i = 1, 2, ...., n (12)

where uτi = {uxτiuyτiuzτi} are the node unknown displacements. i is the the number of node per element

in the case of Lagrangian shape functions. Four-node 1D element is herein adopted to improve convergence

speed and reduce computational cost, whose expression is a cubic-order polynomial in terms of y variable and

can be found in [40].

Combining Eq. (12) and Eq. (3), one has:

KτsijU sj = Pτi (13)

The detailed information of the stiffness matrix Kτsij and load vector Pτi of the CUF-FEM can be found

in [41].

4 Multiscale analysis of composites

Eq. (11) and Eq. (13) are written at the component level. Composition of fiber, matrix or homogenized

laminates can be assembled into a global matrix using the CW approach. To be specific, the global matrix

can be obtained by the contribution of LE expansions on the cross-section sub-domain in each component,

and the matrix elements of the shared kinematics at the interface between different components should be

superposed to assure the continuity of the displacement solutions, enabling the construction of CW analysis

straightforwardly. In the case of Navier-type solution, prismatic bodies can be analysed by systematically

solving a linear system of algebraic equations via exact closed-form solution. Similarly, in terms of FE

approach, global matrices needs to be expanded and eventually assembled along the beam axis direction. For
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the sake of illustration, Fig. 2 presents the contructions of the stiffness matrix for the multi-scale and CW

analysis of a fibre/matrix laminate. In detail, the figure shows the case of both Navier-type approach and

FEM for a L4 expansion above the cross-section of each component. In the case of FEM, moreover, a single

four-node cubic finite element along the beam axis is considered in the picture. It should be underlined that

the main novelty of this work is the development of CW closed-form solution for the multiscale analysis of

composites. FEM approximation is used hereinafter for comparison purposes.

Figure 2: Comparison of assembly process between Navier-type and FE models in a two-layer laminated beam
via multiscale CW approach.

5 Numerical results

In the current section, numerical examples are performed on three different structures under the simply-

supported boundary condition by means of multiscale analysis via the CUF-LE formulation. First, a single-
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layer composite beam is considered, followed by multi-layered composite and sandwich beams.

5.1 Single-layer transversely isotropic beam

b

h

l

10000sin( / )y l

z

x

y

(a) MAM

b

h

+

d

z

x

y

l

10000sin( / )y l

(b) MIM

Figure 3: Multiscale model for a transversely isotropic beam under sinusoidal pressure load

As the first assessment, a transversely isotropic beam is selected to test the capabilities of the present

CUF-CW method. Macro-scale (MAM) and micro-scale (MIM) Models are provided in Fig. 3 with a 3D

view of this case. MAM is regarded as a homogenized medium, while MIM is treated as a fiber-matrix

composition to mimic the mechanics of each component. The characteristic dimensions of the structure are:

width, b = 1/15m, height, h = 0.2m, and slenderness ratio, l/h = 10. The fiber diameter is d = 0.056m in the

MIM. Material properties for different components in the material coordinate system (1,2,3) are given in Table

1. To be specific, the fiber is assumed to be transversely isotropic, and the matrix is isotropic. For comparison

purposes, material properties of the homogenized cell are calculated from those of the corresponding fiber and

matrix by means of rule of mixture. A transverse sinusoidal loading is applied at the face [h, :, :] with regard

to q(y) = p0 sin πy
l Pa with p0 equal to 10000. All the results are given in the following dimensionless form:

ūi = E2

h ui with i = x, y; ūz = 100E2h
3

l4 uz

σ̄ij =
σij
p0

with i = x, y, z; z̄ = z
h

(14)

where ūi and σ̄ij stand for the dimensionless displacement and stress components.

Table 2 presents the non-dimensional results regarding displacements (ūx, ūy) and stresses (σ̄yy, σ̄yz) at

representative locations for different-scale models. For each-scale model, CUF closed-form (Navier) solutions

are compared to FEM solutions, which make use of 16B4 beam elements along the y-axis. The enhanced

capability of CUF FEM solutions has been validated comprehensively in Ref.[38] and, therefore, serving as
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(b) 60 L16 cross-sectional distribution for MIM

Figure 4: Two different cross-sectional models

Table 1: Material properties for different components of a transversely isotropic beam

Component E1 (Pa) E2 (Pa) E3 (Pa) G12 (Pa) G13 (Pa) G23 (Pa) ν12 ν13 ν23

Fiber 4.44×1011 1.16×1010 1.16×1010 8.67×109 8.67×109 4.80×109 0.21 0.21 0.21

Matrix 8.55×109 8.55×109 8.55×109 3.28×109 3.28×109 3.28×109 0.31 0.31 0.31

lamina 2.50×1011 1.00×1010 1.00×1010 5.00×109 5.00×109 2.00×109 0.25 0.25 0.25

Table 2: Non-dimensional displacement and stress values of a transversely isotropic beam for different models,
l/b = 10.

Model ūx ūy σ̄yy σ̄xy DOFs

[h/3, l/2, 0] [2h/3, 0, 0] [h/6, l/2, 0] [5h/6, 0, 0]
MAM-Exact solution

A: 3× 1 L4 0.714 -2.246 -40.351 2.508 24
B: 3× 1 L9 0.734 -2.349 -39.241 2.509 63
C: 3× 1 L16 0.734 -2.351 -39.291 2.711 120

MAM-FE solution
A: 3× 1 L4 0.713 -2.220 -40.314 2.524 1176
B: 3× 1 L9 0.732 -2.231 -39.232 2.510 3087
C: 3× 1 L16 0.733 -2.313 -39.278 2.715 5880

MIM-Exact solution
A: 24 L6+28 L9 0.763 -2.608 -74.777 2.962 567
B: 60 L16 0.756 -2.570 -73.784 3.198 1695

MIM-FE solution
A: 24 L6+28 L9 0.762 -2.570 -74.990 2.965 27783
B: 60 L16 0.754 -2.533 -73.986 3.145 52545
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ūy

x̄

Exact-MAM C

FEM-MAM C

Exact-MIM B

FEM-MIM B
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Figure 5: Non-dimensional axial displacement, ūy , single-layer beam.
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Figure 6: Non-dimensional axial stresses, σ̄yy and transverse shear stress, σ̄xy, single-layer beam.

reference solutions in the present paper. In Table 2, the first column represents the type of the CUF-LE model

and the last column represents the number of degrees of freedom (DOFs) for each model. For the sake of

brevity, we just give two CUF-LE cross-sectional distributions in Fig. 4 for illustrative purposes. Interested

readers can refer to Pagani et al. [35] for the detailed description of each type of the model. Results over the

end-side and midspan cross sections along the thickness direction are shown in Fig. 5 and Fig. 6 with regard

to non-dimensional axial displacement, axial stress and transverse shear stress, respectively. In addition, Fig.
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Figure 7: Comparison of axial stresses, σyy for two different-scale models at cross section [:, l/2, :].
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Figure 8: Comparison of shear stresses, σxy for two different-scale models at cross section [:, 0, :].
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7 and Fig. 8 depict a direct comparison of stresses (σ̄yy and σ̄xy) between MAM and MIM for different closed-

form solutions of the mentioned CUF models. Through the present assessment, the following conclusion can

be reached:

1. FE and exact closed-form solutions of CUF models are in good agreement for both MAM and MIM

with a significant reduction in computational cost in Table 2.

2. Displacement values, computed by MAM and MIM, show less difference compared with stress values,

especially for axial stress solution. Therefore, MAM is suggested for the detection of displacement fields

for saving computational costs, in this special analysis case.

3. According to distributions in Fig. 5 and Fig. 6, it is possible to see that MAM cannot describe the

mechanical behavior of fiber and matrix, which is even worse for axial stress due to the simplified

homogeneous properties introduced in the corresponding layer. On the other hand, concerning MIM,

quadratic 24 L6+28 L9 fails to capture the interface continuity of the shear stress. Higher-order model

with enough DOFs (60 L16) is adequate enough to retrieve the continuous shear stress fields.

5.2 Cross-ply laminated beam

This section performs a multiscale analysis of a three-layer [0◦/90◦/0◦] cross-ply laminated beam. Three

different-scale models, i.e., Meso-scale Model (MEM), MIM 1 and MIM 2 are selected, whose cross-sectional

configurations are displayed in Fig. 9. In MEM, homogenized material properties are assumed for each layer;

in MIM 1 and 2, the fiber and matrix are modelled separately for the bottom layer and both of the top

and bottom layer. The aim of the analysis is to reveal more complex mechanical characteristics of interfaces

between different components. Each layer is of the same thickness with value h/3 = 1/15m, Other character-

istic dimensions, material properties of different components are the same as those in the previous case. The

transverse sinusoidal loading is applied on the top face with q(y) = sin πy
l Pa.

Numerical results concerning non-dimensional displacements ūz ([0, l/2,−h/2]), ūy ([0, 0,−h/2]) and non-

dimensional stresses σ̄yy ([b/2, l/2, 0]), σ̄yz ([b/2, 0,−h/3]) obtained from present LE-close-form model with

various approximations of the cross-section kinematics are given in Table 3. 1D CUF FEM solutions, the

Exact Solution for the Cylindrical Bending of Plates (ESCBP) developed by Pagano [42], the Beam Layer-

Wise Theory (BLWT) employed by Tahani [43] and the 3D ABAQUS model are also shown in this table for

comprehensive comparisons along with DOFs. 1D CUF 16B4 beam elements along the y−axis and 3D brick

element C3D20 (15× 40× 15) are selected from convergence analysis. To make a further comparison of the

solutions among MEM, MIM 1 and MIM 2, Fig. 10 and Fig. 11 show the distribution of these variables

across the thickness of the layer at two specific locations. Stress maps over the surface are plotted in Fig. 12
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Figure 9: Three different cross-sectional configurations of a cross-ply laminated beam.

and Fig. 13, in which, the reader can have an intuitive appreciation for the diversity of three-scale models.

Through the present example, the following comments can be made:

1. The solutions for three-scale models provided by the proposed exact solutions are in perfect agreement

with those of ABAQUS, FE models of CUF and the literature with lower computational cost. In the

case of MEM, closed-form solution employs a maximum of 300 DOFs, with equivalent FE model having

14700 DOFs and ABAQUS 3D 197496 DOFs, as shown in Table 3. On the other hand, displacement

values presents a faster convergence rate than stress components for all the models.

2. MIM 2 gives a perfect description of displacements and stresses regardless of fibers, matrices and middle

laminates. However, in order to fulfill the continuity condition of the shear stress in the fiber-matrix

contact area, L16 model with enough cross-sectional discretization is required, accompanied by the

increasing computational cost in the case of FE method. This means that if an accurate CUF-FEM

mechanical analysis is needed at the given fibers (Fig.12(b)), the adoption of fiber-matrix cell is rec-

ommended around the area where needed with the use of L16 model, making an excellent compromise
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(b) ūz at (x, y) = (b/2, l/2)

Figure 10: Non-dimensional axial displacements, ūy and transverse displacements, ūz for the various multiscale
models of the three-layer beam.
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Figure 11: Non-dimensional axial stresses, σ̄yy and transverse shear stresses, σ̄yz for the various multiscale
models of the three-layer beam.
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Table 3: Non-dimensional displacement and stress values of a cross-ply laminated beam for different models,
l/b = 10.

Model ūz ūy σ̄yy σ̄yz DOFs

[0, l/2,−h/2] [0, 0,−h/2] [b/2, l/2, 0] [b/2, 0,−h/3]
Reference solutions for MEM

ESCBP [42] 0.920 9.300 – – –
BLWT [43] 0.900 – – – –
FEM 3Da 0.931 9.369 0.108 2.967 197496

MEM-Exact solution
A: 3× 3 L4 0.911 9.038 0.108 2.648 48
B: 3× 3 L9 0.931 9.353 0.109 2.656 147
C: 3× 3 L16 0.932 9.363 0.109 2.922 300

MEM-FE solution
A: 3× 3 L4 0.912 9.043 0.092 2.648 2352
B: 3× 3 L9 0.931 9.358 0.093 2.656 7203
C: 3× 3 L16 0.932 9.368 0.094 2.924 14700

MIM 1-Exact solution
A: 24 L6+48 L9 0.958 10.051 0.098 3.532 819
B: 72 L16 0.957 9.995 0.059 3.310 2037

MIM 1-FE solution
A: 24 L6+48 L9 0.959 10.061 0.068 3.529 40131
B: 72 L16 0.957 10.005 0.083 3.321 38703

MIM 2-Exact solution
A: 48 L6+66 L9 0.980 10.328 0.097 3.627 1197
B: 132 L16 0.986 10.237 0.108 3.391 3846

MIM 2-FE solution
A: 48 L6+66 L9 0.987 10.339 0.071 3.626 58653
B: 126 L9 0.982 10.272 0.083 3.438 30039
a: The number of elements is 15× 40× 15

between accuracy and computational cost. Conversely, a Navier-type solution can easily overcome the

above limitations of computational efficiency and provide results with high accuracy at arbitrary scale

with acceptable DOFs elegantly (Fig. 10 and Fig. 11).

5.3 Sandwich beam

To test the component-wise ability of the present 1D models on heterogeneous structures with different

material properties, a sandwich beam is chosen as the last analysis case. Following the global-local modelling

procedure as in the first two cases, MEM supposes all the layers with homogenized material properties and

MIM assumes the bottom layer as a fiber-matrix cell, as shown in Fig. 14. Its geometric dimensions are

considered as follows: width b = 0.04m, height h = 0.12m and length-to-height ratio l/h = 10. The top and

bottom faces have the same thickness: h/6 = 0.02m. To build a more reasonable MIM model, eight fibers

19



with each of fiber diameter d = 0.008m are accounted for the present assessment. Table 4 shows material

properties of four components, i.e., fiber, matrix, soft core and top face, where the homogenized properties in

the top layer are obtained via rule of mixtures. The transverse sinusoidal loading is applied on the top face

with q(y) = sin πy
l Pa.

Table 4: Material properties for each component of the sandwich beam

Component E1 (Pa) E2 (Pa) E3 (Pa) G12 (Pa) G13 (Pa) G23 (Pa) ν12 ν13 ν23

Fiber 4.44×1011 1.16×1010 1.16×1010 8.67×109 8.67×109 4.80×109 0.21 0.21 0.21

Matrix 8.55×109 8.55×109 8.55×109 3.28×109 3.28×109 3.28×109 0.31 0.31 0.31

Core 2.21×105 2.00×105 2.76×109 1.66×106 5.45×108 4.55×108 0.99 3.00E-05 3.00E-05

Top face 2.28×1011 9.85×109 9.85×109 4.77×109 4.77×109 3.92×109 0.26 0.26 0.26
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Figure 14: Cross-sectional configurations of a sandwich beam at different scales.

Table 5 compares the numerical solutions in terms of displacements and stresses at some representative

points predicted by different models. Fig. 17 and Fig. 18 show a detailed comparison of the distribution

of axial and shear stresses over the surface of the section ([:, l/2, :] and [:, 0, :]) modelled by MEM and MIM,

respectively. In particular, the reader can find the plots of these displacements and stresses across the thickness

of the corresponding cross section in Fig. 15 and Fig. 16. The analysis of the results suggest the following

considerations:

1. One can notice the results by CUF closed-form solutions are in high agreement of those by FEM. It

is worth noting that the transverse displacements ūz predicted by different models show better consis-

tency than other variables, as shown in Table 5. Besides, the axial stress solution of the point in the
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Figure 15: Non-dimensional axial displacements, ūy and transverse displacements, ūz for all the CUF models
of the sandwich beam.
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Figure 16: Non-dimensional axial stresses, σ̄yy and transverse shear stresses, σ̄yz for all the CUF models of
the sandwich beam.
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Table 5: Non-dimensional displacement and stress values of a three-layer sandwich beam for different models,
l/b = 10.

Model ūz ūy σ̄yy σ̄yz DOFs

[0, l/2,−h/2] [0, 0,−h/2] [b/2, l/2, 5h/12] [b/2, 0,−h/3]
MEM-Exact solution

A: 4× 8 L9 0.025 15.979 69.654 3.758 459
B: 4× 8 L16 0.025 15.797 69.650 3.666 975

MEM-FE solution
4× 8 L9 0.025 15.837 69.820 3.774 8721

MIM-Exact solution
272 L16 0.025 16.015 69.927 3.736 7509

MIM-FE solution
208 L9 0.025 15.995 70.326 3.789 33891

homogenized layer shows smaller discrepancies than that in the fiber-matrix cell, referring to the first

case when global-local analysis is performed.

2. Due to the adoption of a more complex MIM, an increasing computation cost is required in the analysis

at each scale. This drawback is eliminated by exact closed-form solutions of higher-order L16 models,

which provides a continuous distribution of shear stress at the interfaces between different components.

FEM models of refined CUF models within the framework of L9 fails in the correct representation of

this issue, as shown in Fig. 16(b). On the other hand, it is possible to see an interesting phenomenon of

the maximum axial stress in the lower fibers and maximum shear stress in the top fibers in Fig. 17(b)

and Fig. 18(b). Such local mechanical behaviors do not appear in MEM, as shown in Fig. 17(a) and

Fig. 18(a)

6 Conclusions

In the present article, a unified exact solution is extended to the multiscale analysis of laminated and sand-

wich beams based on Carrera Unified Formulation (CUF). This novel CUF model enables a straightforward

structural modelling in a component-wise sense due to the employment of cross-sectional description of the

kineatics by Lagrange polynomials (Lagrange Expansion, LE). The utilization of CUF-LE allows the capa-

bility of the multiscale model through arbitrary combinations of different structural components (laminates,

fibers and matrices). The numerical assessment of the proposed model has been performed by studying three

typical composite structures. The following considerations arise from the obtained results:

1. CUF-close-form solutions can provide accurate stress/displacement results in high agreement with those

of CUF-FEM with a significant reduction of computational cost.
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2. Displacements predicted by models at different scales exhibit a higher level of consistency than stresses,

that is, micro-scale model is recommended for the detection of stress fields. On the other hand, Macro-

scale and Meso-scale Models may be suggested for the calculation of displacements for the analysis cases

considered in the present research.

3. A continuous distribution of shear stress at the interface between different components can be efficiently

described by higher-order model, e.g., L16 expansion. Besides, the use of L16 in mirco-scale model with

CUF-FEM will lead to higher computational efforts. Thus, the partial micro-scale model is an alterna-

tive approach for the balance of the desired accuracy and computation cost, which means fiber-matrix

cell is desired to be selected where failure may take place, in a pure multi-scale sense.

24



Acknowledgments

The first author acknowledges the support by the scholarship from the China Scholarship Council (CSC)

(Grant No. 201606710014) and Fundamental Research Funds for the Central Universities (Grant No. 2014B31414).

References

[1] S. W. Tsai, Theory of composites design, Think composites Dayton, 1992.

[2] Y. Yan, Q. W. Ren, N. Xia, L. F. Zhang, A close-form solution applied to the free vibration of the

euler–bernoulli beam with edge cracks, Archive of Applied Mechanics 86 (9) (2016) 1633–1646.

[3] D. Zhang, A. M. Waas, C.-F. Yen, Progressive damage and failure response of hybrid 3d textile composites

subjected to flexural loading, part ii: mechanics based multiscale computational modeling of progressive

damage and failure, International Journal of Solids and Structures 75 (2015) 321–335.

[4] F. Tornabene, M. Bacciocchi, N. Fantuzzi, J. Reddy, Multiscale approach for three-phase

cnt/polymer/fiber laminated nanocomposite structures, Polymer Composites.

[5] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A

65 (5) (1952) 349.

[6] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in

thermal environments, Composite Structures 91 (1) (2009) 9–19.

[7] L. Zhang, K. Liew, J. Reddy, Postbuckling analysis of bi-axially compressed laminated nanocomposite

plates using the first-order shear deformation theory, Composite Structures 152 (2016) 418–431.

[8] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting

inclusions, Acta metallurgica 21 (5) (1973) 571–574.

[9] L. Zhang, K. Liew, Geometrically nonlinear large deformation analysis of functionally graded carbon nan-

otube reinforced composite straight-sided quadrilateral plates, Computer Methods in Applied Mechanics

and Engineering 295 (2015) 219–239.

[10] Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals,

Journal of the Mechanics and Physics of Solids 10 (4) (1962) 343–352.

[11] T. O. Williams, A three-dimensional, higher-order, elasticity-based micromechanics model, International

Journal of Solids and Structures 42 (3) (2005) 971–1007.

[12] M. Paley, J. Aboudi, Micromechanical analysis of composites by the generalized cells model, Mechanics

of materials 14 (2) (1992) 127–139.

25



[13] E. J. Pineda, A. M. Waas, B. A. Bednarcyk, C. S. Collier, P. W. Yarrington, Progressive damage and

failure modeling in notched laminated fiber reinforced composites, International journal of fracture 158 (2)

(2009) 125–143.

[14] W. Drugan, J. Willis, A micromechanics-based nonlocal constitutive equation and estimates of represen-

tative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids 44 (4)

(1996) 497–524.

[15] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative

volume element for random composites: statistical and numerical approach, International Journal of

solids and structures 40 (13) (2003) 3647–3679.

[16] W. Yu, T. Tang, Variational asymptotic method for unit cell homogenization of periodically heterogeneous

materials, International Journal of Solids and Structures 44 (11) (2007) 3738–3755.

[17] W. Yu, A unified theory for constitutive modeling of composites, Journal of Mechanics of Materials and

Structures 11 (4) (2016) 379–411.

[18] X. Liu, W. Yu, A novel approach to analyze beam-like composite structures using mechanics of structure

genome, Advances in Engineering Software 100 (2016) 238–251.

[19] A. De Miguel, A. Pagani, W. Yu, E. Carrera, Micromechanics of periodically heterogeneous materials

using higher-order beam theories and the mechanics of structure genome, Composite Structures 180

(2017) 484–496.
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[31] M. Maiarú, M. Petrolo, E. Carrera, Evaluation of energy and failure parameters in composite structures

via a component-wise approach, Composites Part B: Engineering 108 (2017) 53–64.

[32] I. Kaleel, M. Petrolo, A. Waas, E. Carrera, Computationally efficient, high-fidelity micromechanics frame-

work using refined 1d models, Composite Structures.

[33] M. Dan, A. Pagani, E. Carrera, Free vibration analysis of simply supported beams with solid and thin-

walled cross-sections using higher-order theories based on displacement variables, Thin-Walled Structures

98 (2016) 478–495.

[34] Y. Yan, A. Pagani, E. Carrera, Exact solutions for free vibration analysis of laminated, box and sandwich

beams by refined layer-wise theory, Composite Structures 175 (2017) 28–45.

[35] A. Pagani, Y. Yan, E. Carrera, Exact solutions for static analysis of laminated, box and sandwich beams

by refined layer-wise theory, Composites Part B: Engineering.

[36] G. Giunta, F. Biscani, S. Belouettar, A. Ferreira, E. Carrera, Free vibration analysis of composite beams

via refined theories, Composites Part B: Engineering 44 (1) (2013) 540–552.

[37] G. Giunta, S. Belouettar, H. Nasser, E. Kiefer-Kamal, T. Thielen, Hierarchical models for the static

analysis of three-dimensional sandwich beam structures, Composite Structures 133 (2015) 1284–1301.
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