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Debris flows are among the most dangerous natural processes affecting the alpine

environment due to their magnitude (volume of transported material) and the long

runout. The presence of structures and infrastructures on alluvial fans can lead to severe

problems in terms of interactions between debris flows and human activities. Risk

mitigation in these areas requires identifying the magnitude, triggers, and propagation

of debris flows. Here, we propose an integrated methodology to characterize these

phenomena. The methodology consists of three complementary procedures. Firstly, we

adopt a classification method based on the propensity of the catchment bedrocks to

produce clayey-grained material. The classification allows us to identify the most likely

rheology of the process. Secondly, we calculate a sediment connectivity index to estimate

the topographic control on the possible coupling between the sediment source areas

and the catchment channel network. This step allows for the assessment of the debris

supply, which is most likely available for the channelized processes. Finally, with the data

obtained in the previous steps, we modeled the propagation and depositional pattern of

debris flows with a 3D code based on Cellular Automata. The results of the numerical

runs allow us to identify the depositional patterns and the areas potentially involved in the

flow processes. This integrated methodology is applied to a test-bed catchment located

in Northwestern Alps. The results indicate that this approach can be regarded as a useful

tool to estimate debris flow related potential hazard scenarios in an alpine environment

in an expeditious way without possessing an exhaustive knowledge of the investigated

catchment, including data on historical debris flow events.

Keywords: torrential mass movement, sediment connectivity, cellular automata, hazard assessment,

Northwestern Italy

INTRODUCTION

In the last decades, several studies have focused on analyzing channel processes in relation to
hydrological, geomorphological and ecological systems; in particular, the concepts of coupling
and connectivity are largely adopted for studying the interaction of hillslope and channel flows
in order to model the hydrological response of catchments (Rickenmann, 1999; Michaelides and
Wainwright, 2002; Glade, 2005; Michaelides and Chappell, 2009) and sediment dynamics (Iverson,
2003; Rickenmann et al., 2003; Berti and Simoni, 2005).
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Sediment connectivity is a measure of the degree of linkage
between sediment sources and downstream areas (Cavalli et al.,
2013) and its spatial characterization in a catchment gives
an estimation of the possible paths of sediment to reach
a target zone. The geomorphic effect of the rainfall acting
on sediment deposits may result in debris flow occurrence.
Debris flows are one of the most dangerous phenomena
within the Italian alpine environment. In fact, they have
been responsible for the 36% of fatalities in the Italian
alpine region during the last century (Tropeano et al.,
2006). Mitigation of debris flow effects on human life has
become one of the most important challenges of the scientific
community.

The complexity of such a type of catchment processes, resulted
in several research field focused on particular aspects governing
the behavior of these flows events.

The aspects related to debris flows are typically investigated
with emphasis on:

1. triggering conditions (Ellen and Flaming, 1987; Gregoretti,
2000; Beylich and Sandberg, 2005;Wieczorek and Glade, 2005;
Cannon et al., 2008; Tiranti et al., 2008; Stoffel et al., 2011,
2014; Kean et al., 2013; Brunetti et al., 2015; Marra et al., 2015;
Cavalli et al., 2017a)

2. propagation and deposition (Chang and Chao, 2006;
Rickenmann et al., 2006; Deangeli et al., 2015; Gregoretti
et al., 2016);

3. magnitude evaluation (Bovis and Dagg, 1988; Marchi and
D’Agostino, 2004; Jakob et al., 2005; Hungr et al., 2008;
Brardinoni et al., 2012; Rickenmann, 2015; Tiranti et al.,
2016a; Cavalli et al., 2017b);

4. rheological behavior (Pierson and Costa, 1987; Costa, 1988;
Hungr, 1995, 2002; Ancey, 2007; Von Boetticher et al., 2016);

5. geomorphological and sedimentary processes (Moscariello
et al., 2002; Wilford et al., 2004);

6. evolution mechanisms (Sassa, 1985; Segre and Deangeli, 1995;
Prancevic et al., 2014);

7. hydrologic modeling (Johnson and Sitar, 1990; Harvey, 1994;
Hürlimann et al., 2006; Gregoretti et al., 2016).

In this paper, an integrated study to gain insight into potential
hazard linked to debris flows is presented. The proposed
methodology starts from the classificati of the catchment and
the characterization of the main active processes. Considering
the characteristics of the dominant bedrock lithology in the area
(Tiranti et al., 2014) it is possible to infer a potential frequency
of occurrence of debris flows, the total rainfall needed for their
triggering, together with the sedimentological and rheological
characteristics of the flow (viscosity, evolution, and depositional
style). The second step consists in the characterization of
sediment source areas, including their degree of coupling to
the main channel by using a sediment connectivity index (IC)
proposed by Cavalli et al. (2013). The final step concerns the
propagation and deposition of material from sediment source
areas actually involved in debris flow process by a Cellular
Automata Model (Deangeli, 2008) simulating the mechanisms
of flow routing and deposition patterns. One of the advantages

of the presented integrated approach relies on the fact that
there’s no need to simulate past debris flow events to define
its deposition areas, but it takes into account a likely volume
based on the availability and distribution of sediment source
areas and a compatible deposition pattern with the alluvial
fan architecture and the processes behavior characterizing the
catchments, according to the CWI classification proposed by
Tiranti et al. (2008, 2014, 2016a), Tiranti and Deangeli (2015).
The aim of the simulations is to match the predominant observed
depositional style on the alluvial fan and the channel bed. In
this way, the model can be applied in absence of a detailed
report (actual magnitude, deposition areas, etc.) of a debris flow
event used as calibration test. In this way, it is possible to get
close to the most likely behavior of a given catchment. The
methodology has been applied to an alpine test-bed catchment,
for which historical documentation on debris flow occurrence
is available, thus helping in the validation of the obtained
results.

Study Area
The Rio Frejus catchment, located at the head of Susa
Valley (upper Susa Valley, Municipality of Bardonecchia,
Turin, North-western Italy), covers an area of about
22 km2 and is composed by several sub-catchments:
Comba Merdovine, Comba del Frejus, Comba Gaudet,
Comba Cougna, Comba Gautier, and Rio Chaulet
(Figure 1).

The upper Susa Valley is dominated by dry climate with
average annual precipitations is under 800mm, whereas the
annual average is about 1,200mm in Piemonte. The average
number of annual rainy days is about 50 with a very low
precipitation density, <10 mm/day (Fratianni and Motta, 2002).

Rio Frejus is characterized by a complex geomorphology due
to the combined action of several processes, such as landslides,
rock falls, debris flows and cryogenic processes (permafrost
degradation and nival processes) at the head of catchments.
Shallow deposits linked to the glacial activity are infrequent
and almost completely reworked by the action of streams and
landslides. For more details on geomorphological settings of Rio
Frejus see Bosco et al. (2007) and Tiranti et al. (2016b).

The pre-Quaternary bedrock of Rio Frejus belongs primarily
to the Tectonostratigraphic Unit of the Lago Nero (Polino
et al., 2002), formed by carbonate or phylladic calc-schists.
The outcropping of thick-bedded serpentinites, ophicalcites and
quartzites is subordinate. The outcrops percentages consist of
74.2% shallow deposits (including colluvial cover), 27.28 schists,
0.22% serpentinites/ophicalcites and 0.03% quartzites (Figure 2).

The main structural setting is represented by slightly-dip
overthrust contacts and subvertical faults. The intensely fractured
rock masses exhibit poor geomechanical characteristics. The
phylladic-rich calc-schists are extremely degraded and can be
classified as blocky/disturbed/seamy according to the Geological
Strength Index (GSI; Marinos et al., 2005). Such conditions favor
weathering with high generation of fine loose materials and slope
instability. The main characteristics of Rio Frejus are reported in
Table 1.
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FIGURE 1 | Rio Frejus catchment and its sub-catchments.

METHODS

Clay Weathering Index (CWI) and
Catchment Classification
North-western alpine catchments were classified by Tiranti
et al. (2014) into three main catchment lithology classes by
using the Clay Weathering Index (CWI). This index defines
the propensity of a certain lithotype to weather into clay
or other fine minerals with clay-like rheology behavior (e.g.,
phyllosilicate groups). Following this approach, Excellent Clay
Maker (ECM) catchments are characterized by particularly
degradable rocks due to their weak geotechnical characteristics.
Debris flow frequency for these catchments is therefore high (two
events/year) due to the abundance of unconsolidated material
available along the channel network in spring, summer and
autumn with indicative minimum triggering rainfall threshold
of 20 mm/h. In Good Clay Maker (GCM) catchments, rocks
are degradable and consequently, the unconsolidated material
is less abundant if compared to ECM ones. Debris flows
for this class occur usually in late-spring, with an indicative
minimum triggering rainfall threshold of 30 mm/h. In Bad Clay
Maker (BCM) catchments, bedrocks are more resistant to the

weathering and inclined to produce coarse debris (blocks and
boulders in silt-sandy matrix). Debris flows are triggered by
infrequently heavy rainfall. In this case, the debris flows average
frequency is <1 event every 20 years and the main seasons of
occurrence are fall and early spring (very uncommon during
summer). Identified minimum triggering rainfall threshold is 50
mm/h.

Sediment Connectivity Index (IC)
The Sediment Connectivity Index (IC) was originally proposed
by Borselli et al. (2008) with an application to agricultural
catchments. Cavalli et al. (2013) made important modifications
to this approach to take advantage of high-resolution Digital
Terrain Models (DTMs) and to make it suitable for applications
to mountain environment. IC is a distributed morphometric
index focused on the topography influence on sediment
connectivity representing the degree of coupling among different
portions of the catchment with respect to a selected target (e.g.,
main channel network).

Mathematically IC is expressed by the logarithm of the
ratio between the upslope and the downslope components
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FIGURE 2 | The geological sketch map of Rio Frejus catchment.

(Equation 1):

IC = log

(

Dup

Ddn

)

(1)

This index indicates the potential for downward routing of
sediments produced upslope and the (weighted) flow path length
to the nearest target or sink.

To model the impedance to runoff and sediment fluxes,
a weighting factor is included in both components of IC.
In mountain catchments, high-resolution DTMs can represent

an important input for deriving surface roughness in order
to include an objective measure of flow impedance in the
connectivity assessment. We computed the roughness index
as the standard deviation of residual topography according to
Cavalli et al. (2008). The roughness index was used to calculate
the weighting factor by using the following equation (Equation 2;
Cavalli et al., 2013):

W = 1−

(

RI

RI max

)

(2)
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TABLE 1 | A synthesis of the Rio Frejus catchment characteristics (modified from

Tiranti and Deangeli, 2015).

Catchment area (km2) 22.32

Average catchment slope (◦) 28.1

Average elevation (m asl) 2,169

Alluvial fan area (km2) 0.63

Fan/catchment area ratio (%) 2.83

Outcrops area [Quaternary formations and rocks (km2 )] 11.91

Outcrops area [rocks (km2 )] 3.28

Outcrops area [Quaternary formations (km2 )] 8.63

Outcrop density [rocks (%)] 14.69

Outcrop density [Quaternary formations (%)] 38.67

Eluvial-colluvial cover area (km2) 10.42

Eluvial-colluvial cover area (%) 46.68

Average rock condition Sheared

Average shallow deposit type Clast supported,

poorly-cohesive

Main debris flow rheology Viscoplastic

Main depositional style Steep-asymmetrical levee

and flat lobe

WhereRI is the roughness index value andRImax is themaximum
value of RI in the study area.

As the DTM of the study area is at 5-m resolution, we
considered as an optimal spatial scale a moving window of 3× 3
pixel in order to derive a flow-impedance related roughness index
and the related weighting factor.

The determination of the information necessary to identify
sediment source areas were carried out with field surveys coupled
with an analysis of the existent cartography (regional geologic
and geomorphologic maps).

We carried out an assessment of sediment connectivity based
on the computation of IC (Cavalli et al., 2013) in order to
select the areas effectively coupled to the main channel system
(i.e., areas accountable for sediment supply). The results of this
analysis were interpreted and integrated with field observations
to characterize connectivity patterns at the catchment scale with
a focus on sediment source areas.

The main drainage system was extracted on an empirical basis
from the DTM, adopting an area threshold approach (Figure 3)
to extract a synthetic network corresponding to the presence
of permanent drainage lines from field evidence. The main
permanent drainage network was selected as a target for IC
analysis.

We used the extent of the main channel system to determine
the threshold area for the stream network extraction (i.e., 4.8
km2). IC map, surface roughness and the weighting factor were
computed using the freely available SedInConnect application
(Crema et al., 2015; Crema and Cavalli, 2018).

Cellular Automata Model
Debris flow propagation and deposition patterns were simulated
by a 3D numerical code based on Cellular Automata Method
(Segre and Deangeli, 1995; Deangeli, 2008). In this code,
the computational domain is discretized into elementary

FIGURE 3 | Frejus catchment study area, shaded relief map in transparency

with aerial view of the study area. The main permanent drainage network is

highlighted and has been selected as target for IC analysis.

squared cells. Each cell is characterized by columns of rigid
substratum and mobilizable debris material. The volume of
debris material is characterized by rheological parameters,
depending on the selected constitutive law. Two constitutive
laws are implemented: a frictional/collisional law (Segre and
Deangeli, 1995), based on the Bagnold dilatant fluid behavior
(Takahashi, 1978, 1991), and a viscoplastic law (Deangeli et al.,
2013; Tiranti and Deangeli, 2015), based on Bingham fluid
behavior. The solid-liquid mixture is considered as a single-phase
fluid.

The linear momentum conservation equation, the mass
balance, and the constitutive law are combined and integrated
to obtain flow velocity. The average velocity is used for flow rate
calculation at each cell.

The evolution of the system occurs in discrete time-
steps, based on the Courant criterion. At each time-step,
an initiation rule dependent on flow rheology is verified
in each cell. If the initiation rule is satisfied for a cell, a
sediment flow rate, proportional to the time-step, is calculated
and stored. When all the cells are checked, the system is
simultaneously updated, at the end of the time-step. Deposition
and remobilization of debris can occur at each time-step and
when no cell can receive or supply a rate of solid-liquid
mixture the simulation ends. This numerical tool was successfully
applied to analyze flume experiments (Deangeli, 2008) and
the evolutive behavior of actual flows, occurred in different
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settings and contexts (Deangeli and Grasso, 1996; Deangeli and
Giani, 1998; Deangeli et al., 2013, 2015; Tiranti and Deangeli,
2015).

The numerical analyses for the definition of depositional
scenarios were carried out for each sub-catchment in the
viscoplastic regime (Bingham fluid), as the basin was classified
as an Excellent Clay Maker. The rheological parameters, i.e.,
the yield strength and the viscosity of the fluid, used in the
numerical runs are based on a study of Tiranti and Deangeli
(2015). In this study, the authors analyzed deposition styles
and scenarios of different basins, and also the main Rio Frejus
channel. They estimated the yield strength from the mean basal
shear stress at the time of deposition, and the viscosity from
the maximum debris flow velocity. Tiranti and Deangeli (2015)
found that the yield strength was equal to τy = 1,400 Pa and
the viscosity was equal to µ = 80 Pa∗s, by assuming a solid
concentration equal c = 0.4. An analysis of deposition style
sensitivity to yield strength and viscosity, indicated that in the
Rio Frejus the deposition pattern did not vary substantially in
the range τy = 1,400–2,000 Pa and µ = 80–100 Pa∗s. Based
on this finding, in our numerical runs we used the following
values of yield strength and the viscosity: τy = 1,400 Pa, µ = 80
Pa∗s.

RESULTS AND DISCUSSION

This section reports the results of the integrated study presented
step-by-step to underline the single contribute for each method
and how them can give some more exhaustive results compared
with those resulting from more classical approaches based only
on debris flow routing model output calibrated on debris flow
events of the past (e.g., Bertolo and Bottino, 2008; Pirulli and
Marco, 2010) applied in similar geological and geomorphological
contest.

CWI Classification of Catchment
Based on the dominant bedrock lithology characteristics reported
in section “Study Area,” Rio Frejus is classified as Excellent Clay
Maker based on the Clay Weathering Index (CWI) classification
(Tiranti et al., 2014; Table 2).

Due to the dominant lithology (phyllosilicates-rich schist),
the catchment is characterized by a very high production
of unconsolidated material which is rich in clay or clay-like

TABLE 3 | Observed processes from 26 historical events occurred between 1934

and 2015.

Sub-catchment Date Process type

? August-3-1934 Mud/debris flow

? June-12-1947 ?

? September-5-1948 ?

Comba Merdovine May-2-1949 Mud/debris flow

Comba Merdovine May-27-1951 Mud/debris flow

? June-21-1954 Mud/debris flow

? August-21-1954 Mud/debris flow

? June-8-1955 Mud flow

? June-14-1957 ?

? October-19-1966 ?

? Nuvember-4-1968 Mud/debris flow

Comba Gautier August-7-1997 Mud/debris flow

Comba Gautier June-21-2002 Mud/debris flow

Comba Gautier August-6-2004 Mud flow

Comba Gautier July-25-2006 Mud flow

Combas Gautier, Merdovine, and

Gaudet

August-?-2006 Mud flow

Comba Gautier July-16-2013 Mud flow

? July-17-2013 Mud flow

? August-9-2015 Mud flow

TABLE 2 | Dominant lithologies of Rio Frejus.

Outcrop type Structure*/Texture Cohesion/Strength** Main lithology group (CWI) Area (km2) %

Glacial deposits Clast supported Cohesive Schist (ECM) 0.28 2.37

Talus deposits Openwork Non-cohesive Crystalline (BCM) 0.04 0.34

Talus deposits Openwork Non-cohesive Schist (ECM) 1.96 16.49

Alluvial fans Clast supported Poorly-cohesive Schist (ECM) 0.06 0.49

Diamicton Clast supported Poorly-cohesive Schist (ECM) 0.09 0.72

Glacial deposits Clast supported Poorly-cohesive Schist (ECM) 0.35 2.96

Landslide deposits Clast supported Poorly-cohesive Schist (ECM) 0.43 3.68

Landslide deposits Clast supported Poorly-cohesive Schist (ECM) 5.41 45.42

Serpentinites Blocky Extremely strong Crystalline (BCM) 0.03 0.22

Marble and phyllades Blocky/Disturbed/Seamy Medium strong Schist (ECM) 2.37 19.87

Carbonate schists Blocky/Disturbed/Seamy Medium strong Schist (ECM) 0.17 1.42

Laminated limestones and black shales Blocky/Disturbed/Seamy Medium strong Schist (ECM) 0.24 2.05

Black shales Laminated/Sheared Medium strong Schist (ECM) 0.36 2.97

Calc-schists Very blocky Strong Schist (ECM) 0.12 0.97

Quartzites Very blocky Very strong Crystalline (BCM) 0.004 0.03

Bedrock and deposits are classified according to CWI classification based on characteristics of lithofacies forming deposits sediment and the bedrock rocks.

*Sensu Marinos and Hoek (2001), **Sensu Hoek and Brown (1997).
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minerals. This material favors the occurrence of cohesive debris
flows showing a viscoplastic rheology, as resulting from the
analysis of historical reports on torrential processes occurred in
the Rio Frejus catchment (Table 3).

FIGURE 4 | An example of main type of torrential process that most frequently

reaches the Rio Frejus’s alluvial fan area (6th August 2004).

Debris flows occurred along the Rio Frejus show high viscosity
and on average 45% of material is commonly deposited along the
channels while only 55% of sediment reaches the alluvial fan as
mud flow or mud/debris flow (Tiranti and Deangeli, 2015) as
shown in Figure 4.

For this reason, the Rio Frejus alluvial fan shows a rather small
area (“starved alluvial fan” sensu Tiranti and Deangeli, 2015)
compared to the feeding catchment (see Figure 2 and Table 1),
according to CWI classification.

Index of Connectivity and Sediment Source
Areas
We identified extensive sediment source areas primarily as
landslide deposits (Figure 5), typically incised by several gullies
(Figure 6a), covering 58% of the catchment, with 35% of active
phenomena. The most frequent debris flow initiation points
occur at the landslide deposits intersected by channel network.
In these zones the sediments are chaotic and heterometric,
characterized by a prevalent gravel and clayey silt-forming
matrix. These deposits represent the main sediment source for
erodible clayey sediments.

Moreover, the colluvial cover (<2m) on steep slope is affected
by shallow landslides and widespread rill erosion. Another
important sediment source is represented by the abundant

FIGURE 5 | Distribution of sediment source areas within the Rio Frejus catchment. A and B represent the location of example deposits shown in Figure 7.
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presence of past debris-flow deposits along the main incised
channel (Figure 6b).

IC map (Figure 7A), resulting from the analysis reported
in section “Methods,” was subdivided into 4 classes (i.e.,
Low, Medium-Low, Medium-High, High), using the Natural
Breaks (Jenks, 1967) classification algorithm (Figure 7A) as
proposed by Crema and Cavalli (2018) and Tiranti et al.
(2016a).

Figure 7B shows the results of IC analysis based on two
classes (high/low) This analysis was carried out to highlight
potentially coupled and decoupled areas. Figure 7 clearly shows
that three sub-catchments seem characterized by a general
decoupled behavior. Two of these sub-catchments, located in

the upper and western portion of the study area, exhibit signs
of geomorphic activity and active erosional processes, but also
a structural decoupling barrier can be detected at the outlet of
these sub-catchments. This physical barrier could account for
the upstream low IC values playing an important role in the
catchment morphological evolution. Unlike these two cases, the
decoupled subcatchments in the eastern portion of the study
area do not show important ongoing erosional processes. The
disconnectivity here could be related to the presence of flatter
areas and gentler slopes that affect primarily the flow paths in the
downslope component of IC.

The comparison between coupled and decoupled results are
shown in Figure 8. in which it is clear how the high connectivity

FIGURE 6 | Example of deposits located at the head of Rio Frejus catchment: (a) A slow earth flow landslide deposit incised by gullies. (b) A thick debris flow deposit

near a main incised channel located at the catchment head.

FIGURE 7 | (A) Results of IC analysis with the main river as a target. Results are divided in four classes according to Natural Breaks algorithm. (B) Results of IC

analysis grouping the values in two classes.
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FIGURE 8 | Intersection between sediment source areas and IC map.

distribution is mainly close to the gullies related to large sediment
source areas.

The most likely amount of sediment that actually can
contribute to a debris flow of usual magnitude by selecting
the source areas on the basis of the IC distribution and the
intersection with the channel network within 50m buffering
from channels axes is showed in Figure 9, according to Bosco
et al. (2007).

Based on field observations, we estimated the average depth of
detachment surfaces for each deposit in order to determine the
mobilizable volume from slope sediment source areas.

We compared the resulting volumes with standard volumes
of the same deposit types available in the literature (Hungr
et al., 1984; Dadson et al., 2004; Marchi and D’Agostino, 2004;
Guzzetti et al., 2009; Tiranti et al., 2016a). The identified portion

of sediment source areas represents the effective total sediment
volume potentially mobilizable by debris flows that can reach the
channel network. In order to find the total sediment volume,
we considered the average thickness for each type mobilizable
deposit (1.5m for rockfall accumulation areas, 1m for areas
subject to wide shallow landslides, 2.5–3m for slow earth flows,
3–5m for marginal/surficial portions of complex landslides, 2–
7m for rotational landslides) according to the method proposed
by Tiranti et al. (2016a). We calculated a likely maximum
sediment volume equal to 3,342,286 m3.

Routing Model (Cellular Automata Model)
Based on the results of IC analyses and field observations, the
source areas and the volumes of sediments were identified
for each sub-catchment. These outcomes were used as
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FIGURE 9 | Sediment source areas resulting from intersection between source deposits and a 50m buffer of the channel network.

an input to simulate sub-catchment dynamics through
deposition scenarios with the Cellular Automata Model.
Figure 10 shows the initial sediment input determined
from the intersection of buffered source areas and
IC map.

In the numerical simulations, we subdivided the whole
catchment area into a West area and East area. Each area
was further subdivided into sub-catchments, characterized by a
potential mobilizable volume of sediments:

• West area. Comba Merdovine sx_1 and Comba Merdovine
sx_2 with potential mobilizable volume of 258,784 m3

and 323,856,32 m3 respectively; Rio Chaulet and unnamed
channels (sx_3) with a mobilizable volume of 554,578 m3

(Figure 11).

• East area. Comba del Frejus (dx_1) with potential mobilizable
volume of 678,918 m3; Comba Gaudet and Gautier (dx_2)
with potential mobilizable volume of 827,388 m3; unnamed
channels (dx_3) with potential mobilizable volume of 532,745
m3 (Figure 12).

Figures 11, 12 show the results of the simulations in the West
area and East area, respectively. All the sediment flows reach the
target channel, in agreement with the IC spatial pattern. A part
of the initial deposits of sediments remains in the original place
or propagates for a small distance on channels belonging to the
sub-catchments. This outcome is related to the local morphology
of each sub-catchment and to the viscoplastic rheology of the
mixture and agrees with in situ observations. Furthermore, the
results also show a significant sediment deposition along the
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FIGURE 10 | Initial sediment input used in the numerical runs.

main channel, in agreement with in situ observation and CWI
class of catchments. Only the debris flows occurring in sub
catchments with the higher initial sediment volumes reach the
valley bottom, with very low deposition thicknesses. This result
agrees with the characteristics of the fan highlighted from in situ
observations.

For this reason, we stress herein the fact that the evaluation of
debris flow hazard needs to be considered in a dynamic way as an
evolving process, with continuous updates.

CONCLUSIONS

The presented integration of different methodology to
characterize debris flows initiation, propagation and deposition
allows to define hazard scenarios without refer the simulations
to past debris flow events. Thanks to the application of the
Clay Weathering Index classification it is possible to infer
“a priori” the potential typology of torrential processes that
can occur and its evolution according to flow rheology and
transported sediment characteristics. The characterization of
sediment source areas by applying of a sediment connectivity
index permitted to include into the analysis a potential for the

sediment to be coupled to the main drainage system. Finally,
the scenarios of debris flow propagation and deposition can
be modeled using a 3D cellular automata model. Through this
third step, it is possible to obtain numerous propagation and
deposition scenarios considering only the sediment source areas
that can actually feed a debris flow. Thanks to the proposed
integrated approach, it is possible to gain accurate insights
into the most likely impacts of a debris flow, characterizing its
dynamics from the initiation areas to the alluvial fan. Moreover,
the study demonstrates that the maximum expected magnitude
of a debris flow can be forecasted excluding all the sediment
source areas not connected to the main channel network, with
interesting applications also in urban planning and hazard
mitigation strategies.

The limits of this integrated method are mainly linked to
the availability of territorial dataset (detailed geological and
geomorphological maps, high resolution DTM, knowledge of
nature and distribution of potential sediment source areas).

Moreover, this study represents the beginning of the
experimentation of the integratedmethod, whichmust be applied
to catchments characterized by different geomorphological
geologic contexts before being considered sufficiently reliable to
be used as a decision makers’ support tool.
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FIGURE 11 | Results of the numerical runs performed in the West area. Colored scale: simulated deposition patterns. Gray scale: initial deposits of sediments.

FIGURE 12 | Results of the numerical runs performed in the East area. Colored scale: simulated deposition patterns. Gray scale: initial deposits of sediments.

Another point of future development will consist in
comparing the here proposed method with others already widely
tested and available in the literature.

At this moment, the presented study represents an interesting
line of research that will provide a new and useful tool for debris
flow hazard assessment.
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