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Abstract

This thesis concerns the relation of different models of anomalous transport, and

the possibility of identifying a corresponding universality class. Investigation of

transport of matter in highly confining media is a very active field of research with

numerous applications to bio- and nano-technology. We proceed from a model,

called Slicer Map (SM), developed by Salari et al. CHAOS 25, 073113 (2015), that

captures some features of anomalous transport, while being analytically tractable.

The SM is a one-parameter family of non-chaotic, one-dimensional dynamical

systems. Different trajectories neither converge nor separate in time, except at

discrete instants, when the distance between trajectories jumps discontinuously, be-

cause they are separated by a slicer. This is reminiscent to the role of corners in

polygonal billiards. The SM shows sub-, super-, and normal diffusion as a function of

its control parameter α, that characterises the power-law distribution of the length

of ballistic flights. Salari and co-authors analytically expressed the time dependence

of the moments of positions as a function of α, and compared it with the mean-

square displacement of the Lévy-Lorentz gas (LLg), that also depends on a single

parameter β. The LLg is a stochastic process, that is much more complex than

the SM. Surprisingly it was found that the moments of the positions distributions

of the SM and the LLg have the same asymptotic behaviour when the parameters

α and β are chosen in order to match the exponent of the second moment. How-

ever, moments only partially characterise transport processes. Hence in this thesis

we derive analytic expressions for the position auto-correlations of the SM, and

we compare them with the numerically estimated position auto-correlations of the

LLg. Remarkably, the same relation that produces the agreement of the moments

viii



leads to the agreement of the position auto-correlation functions, at least for the

low scatterers density of LLg. In the search of a universality class for these phe-

nomena, we introduce an exactly solvable model called Fly-and-Die (FnD) dynamics

that generates anomalous diffusion, and we derive analytical expressions for all mo-

ments of the displacements, for the position auto-correlation function, and for the

velocity auto-correlation functions. The parameters of the model can be mapped

to other anomalous transport processes by matching the exponents for the mean-

square displacement and the prefactor of the corresponding power law. Indeed, this

simplification of the SM, generates the same transport regimes as the SM.

It is conjectured that the FnD provides the asymptotic behaviour of all the

position moments and the auto-correlation functions, for the universality class of

systems whose positions statistics are dominated by the ballistic events. The con-

jecture is motivated by the fact that the sub-dominant terms in the SM and of the

FnD contribute like the ballistic fights to the asymptotic behaviour, i.e., they con-

tribute the maximum allowed for a system to belong to such a universality class.

Different models in the class may be distinguished considering other variables. This

is demonstrated here for the velocity auto-correlation function. Numerical results

on the Lévy-Lorentz gas support our conjecture.
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Chapter 1

Introduction

“We are what we repeatedly do. Excellence,

then, is not an act, but a habit.”

— Aristotle

In this chapter, we start with the motivation of current developments in nonlin-

ear diffusion processes. Explicit studies on anomalous transport are rare in litera-

ture, but in last few decades analyzing transport properties of energy and mass are

emerging and they settle many questions, like for example, a recent applications to

an osmotic-like phenomenon [28] with anomalous transport of molecules. Models

of transport in pores of size comparable to the transported molecules, exhibit wide

range of transport properties reminiscent to polygonal billiards with zero Lyapunov

exponent, a hallmark of non-chaotic dynamics [32, 31, 26]. Still, the billiards are

difficult to understand in as much detail as wanted (see [23, 60] and Refs. therein).

The original, point of interest was to construct an exactly solvable model that

would reproduce the transport regimes found numerically in polygonal billiards. We

wanted to capture the following main ingredients of their behavior:

• zero Lyapunov exponent with no expanding or contracting region ,

• occasional (discrete set of) sudden jumps ,

• volume preservation ,

1



2 1. Introduction

• deterministic dynamics ,

• at least a weak notion of time reversibility .

To this end Salari et al. [53] construct a non-chaotic map, that mimics the possible

features of polygonal billiards and reproduces all possible transport regimes. More-

over these non-chaotic deterministic systems are not highly appreciable unless the

knowledge of time auto-correlation functions is fully characterised, since moments

carry only the partial information of systems. In this dissertation, we compute the

moments of displacement in alternative fashion from Salari et al. [53]. These com-

putation set a stage for sophisticated derivation of time auto-correlation functions.

Hence we compute time auto-correlation functions and focus on the super-diffusive

transport of many systems and we propose an universal class in which the moments

of displacement and the position auto-correlation functions of systems exhibiting

super-diffusive transport are dominated by ballistic trajectories.

1.1 Outline and emerging research questions

The main object of interest in studies of anomalous transport is the transport expo-

nent. This is the exponential rate γ at which the mean-square displacement of the

positions, 〈∆x2
n〉, diverges as the time n grows

γ := lim
n→∞

log〈∆x2
n〉

logn
. (1.1)

Provided the above limit exists, processes with finite maximum speed yield γ ∈ [0, 2].

Regimes with γ < 1 are called sub-diffusion; they are called diffusion if γ = 1, and

super-diffusion if γ > 1. The generalised diffusion coefficient Dγ, defined by:

Dγ := lim
n→∞

〈∆x2
n〉

nγ
, (1.2)

is then a non-negative number.

Transport properties afford only a rather coarse representation of the typically

very rich underlying microscopic dynamics. Understanding them from a microscopic

perspective is an open problem, that motivates a wide and very active research
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community [30, 58]. In the realm of deterministic dynamics, it is understood that

uniformly hyperbolic dynamical systems produce rapid correlations decay. In turn,

rapid decay of correlations is commonly associated with standard diffusion [23, 37].

Because randomly placed non-overlapping wind-trees and related maps [12, 17] enjoy

a sort of stochasticity analogous to that generated by chaotic dynamics, they may

also show standard diffusion.

On the contrary, for fully deterministic systems with vanishing Lyapunov expo-

nents, like periodic polygonal billiards [32], the nature of transport is still a matter of

investigation [2, 37, 53, 63]. A major challenge of the latter systems is that correla-

tions persist or decay rather slowly as compared to what happens in chaotic systems

[32]. This makes their asymptotic statistics much harder to understand than in pres-

ence of chaos. Indeed, the unpredictability of single trajectories in chaotic systems,

that is one aspect of the fast decay of correlations, is associated with regular be-

haviour on the level of ensembles, as proven, for instance, by the differentiability

of SRB states [51] that implies linear response [52]. In contrast, for non-chaotic

systems the parameter dependence of the transport exponent can be quite irregular

[32].

In the field of fully fledged stochastic processes, numerous questions remain open

as well [3, 4, 15, 37, 40, 58, 63]. Among such systems, the Lévy-Lorentz gas, a ran-

dom walk in random environments, in which the scatterers are randomly distributed

on a line according to a Lévy-stable probability distribution, has been thoroughly

investigated by various authors. Different types of anomalous and standard dif-

fusion were observed, upon tuning the parameter β characterising the Lévy-stable

probability distribution [3, 4]. These authors noted that ballistic contributions to

the mean-square displacement, which are considered irrelevant when diffusion is nor-

mal, are in fact important for the transport. Under certain simplifying assumptions,

Burioni et al. [10] analytically calculated the mean-square displacement of the trav-

elled distance for this model, and numerically verified the validity of their reasoning.

More recently, Bianchi et al. [7] rigorously established the validity of the Central

Limit Theorem.
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The Slicer Map (SM) introduced in [53] was motivated by observations of the

mass transport of periodic polygonal billiards [32]. Like in polygonal billiards, the

dynamics of the SM are free of randomness. Their trajectories do not separate

exponentially in time, and they experience sudden deviations from their motion, at

isolated points that are regularly placed in space. Despite these facts, the dynamics

of the SM differs substantially from all other models mentioned so far. For instance,

after an initial transient all trajectories of the SM turn periodic. However, anomalous

transport may be dominated by ballistic flights [1]. Rather than commonalities in the

microscopic dynamics, the equivalence of the transport exponents requires in that

case that the length of ballistic flights in the initial ensemble follows a corresponding

power-law distribution. The transport of the SM is of this kind, and the power-law

distribution of its ballistic flights can be tuned by adjusting its parameter α.

In [53] it was shown that once α is adjusted so that the transport exponent of

the SM coincides with that of the LLg at a given β, all higher order moments of

the position distribution of the SM scale in time like those of the LLg [10]. Of

course such an agreement does not imply a full equivalence of the dynamics, as

mentioned above and further stressed in Chp. 3 and Chp. 6. For instance, from

the particle-transport viewpoint, the LLg can only be super-diffusive (1 < γβ < 2),

while the SM can exhibit all possible diffusion regimes, 0 ≤ γα ≤ 2. Moreover, the

β-dependence of the transport exponent of the LLg is not simple: it splits in three

different functional forms. In contrast, γ = 2 − α for all SM regimes.

The agreement of the moments constitutes a striking example of the fact that

the characteristics of a transport process, like the moments of the displacement,

do not fully characterise its nature in general. The common wisdom is that also

correlations should be considered [2, 58], and the two-point correlation functions

should suffice for the rather reduced, but physically relevant, description afforded

by transport properties.

In Sec. 3.4 we derive explicit analytic expressions for the position auto-correlations

of the SM, to check whether they suffice to distinguish its transport properties from

those of the LLg. Information on the correlations of the LLg is minimal in the
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literature, hence we resort to numerical simulations of the LLg, to compare the two

models in Sec. 4.3. Remarkably, we find that the equivalence of the positions mo-

ments obtained in [53] extends to the case of the position-position auto-correlation

functions; for 1.5 . γ < 2 their functional forms have been numerically found to

match without adjustable parameters.

The reason of this equivalence lies in the fact that the transport processes of the

SM and of the LLg get an asymptotically relevant contribution from the ballistic

flights, the flights that in a finite time n travel a distance v n with constant velocity

v [21]. Such flights constitute rare events in both systems, because the probability

of bouncing back tends to 1 as n grows. However, because the associated travelled

distance is the largest possible, the contribution of ballistic fights to transport is

sizable. In particular, the ballistic flights of the SM give the smallest possible con-

tribution to asymptotic transport regimes dominated by ballistic flights, since they

contribute like the non-ballistic flights. From this point of view, the SM can be taken

as a representative of the universality class of transport phenomena asymptotically

dominated by ballistic motions.

The essence of the SM transport properties is that any “particle” travels ballis-

tically, till it reaches a period 2 periodic orbit, which consists of one step forward

followed by one step backward. This suggests an even simpler representative for

the universality class, i.e., a map whose particles travel ballistically up to a given

(random) time and then they stop. We call this map Fly-and-Die (FnD), and intro-

duce it in Sec. 5.1. The simplicity of the FnD easily leads to a scaling form for the

position auto-correlation function, that depends on a single parameter, cf. Section

5.1.2.

We compare the transport properties of various systems, finding out that the class

in which the asymptotic transport regimes are dominated by ballistic flights includes

stochastic as well as deterministic particle systems, with quite different microscopic

dynamics. In particular, the billiard systems1 include the Lorentz gas with infinite

1This thesis does not cover results on billiard systems, that are still under discussion with an

other collaborator. This work will be furnished in a forthcoming research article.
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horizon, which is chaotic, and non-chaotic polygonal channels with finite horizon.

The main point related to the above is that the asymptotic transport properties of

any element in the class can be predicted using the FnD map, something useful when

direct evaluation is not possible or problematic. For instance, the FnD map allows

a simple calculation even of the n-point position auto-correlation functions, that

can be associated with any other element in the class, from mere knowledge of the

scaling of the second moment. Having strongly different dynamics, the equivalence

of FnD, SM, LLg and other transport models cannot be complete, as discussed e.g.,

in Refs. [25, 53]. For instance, they have quite different velocity auto-correlation

functions, as shown in sections 3.7 and 5.1.5.

1.2 Structure of the thesis

This thesis is organised as follows: In chapter 2 we review different notions of the gen-

eral models for standard and anomalous diffusion. Some deterministic and stochastic

dynamics are focused in the eye of anomalous transport.

Chapter 3 formally introduces the SM and summarises its main properties. They

are derived here in an alternative fashion, compared to that of [53]. Some examples

of the SM position auto-correlation functions are explicitly computed in Sec. 3.4.

In Sec. 3.5 results are furnished for moments of the velocity. The 1-, and 2-time(s)

velocity auto-correlation function are present in Sec. 3.6 and 3.7 respectively.

Chapter 4 summarises the LLg and its analytical derivation of the moments for

the displacement. The correspondence between the LLg and the SM is discussed

in Sec. 4.2. The correlations of the SM and the LLg are compare in Sec. 4.3. In

Sec. 4.4 a quantitative comparison of the SM and the LLg position auto-correlation

is presented.

In Chapter 5, the FnD dynamics is introduced, which simplifyies the recently

developed SM [53]. Section 5.1 introduces the FnD map, it illustrates its main

properties and provides a universal formula for the 2-, 3-, and n-point position

auto-correlation function. The velocity auto-correlation function is computed in
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Sec. 5.1.5, to accomplish the difference between different dynamics in the universality

class. Sections 5.2 and 5.3 briefly summarises the 2-, and 3-point position auto-

correlation of the SM in connection with the universal formula for the position

auto-correlation function and test the universal scaling for LLg position correlation

with analysis of data.

Lastly but not least, in Chp. 6 we conclude the thesis with a discussion of our

main result: In the strongly super-diffusive regime, 1.5 . γ < 2, the position auto-

correlations of the SM and of the LLg scale in the same fashion with time. We

defined a universality class for many systems that show super-diffusive transport

dominated by ballistic trajectories. It comprises many systems with totally dif-

ferent microscopic dynamics, that share the same asymptotic transport properties

(i.e., moments of displacement and position auto-correlation function). They are

hardly distinguishable as far as statistics or positions are concerned. Hence other

observables e.g., the velocity auto-correlation function, are needed to separate the

different system in the class.

In an appendix A some technical points of the proof concerning the time asymp-

totics of the SM moments and the position auto-correlation function are provided.

The proof of proposition 3.5.1 and lemma 3.5.3 are also shown to ease down the

computation of velocity auto-correlation function of the SM. Later on App. A.4

devote to the 3-point position correlation of the SM.

In an appendix B, the construction of the position auto-correlation function

and the derivation for the scaling of the correlation function of the FnD dynamics

are provided. Moreover proof of lemma 5.1.2 for scaling of the n-point position

correlation of the FnD dynamics is presented.



Chapter 2

Models of anomalous transport

“Bring forth what is true; Write it so it it’s clear

Defend it to your last breath”

— Ludwig Boltzmann

In this chapter, we discuss the basic framework of dynamical systems from both

physical and mathematical point of view, and we define their dynamics in terms

of continuous and discrete-time. Moreover some general and classical framework

of standard and anomalous diffusion is reviewed in the eye of deterministic maps.

Finally we provides a brief discussion on Lévy walk approach to anomalous diffusion.

2.1 Dynamical system

As a scientific trend, the investigation of dynamical frameworks most likely originates

at the end of nineteenth century through the work crafted by Henri Poincaré in his

investigation of celestial mechanics [46]. Once the system of equations describing

the motion of the planets around the sun were figured i.e., the mathematical model

was built, he searched for mathematical solutions as a way to depict the planets

movements and make predictions of positions in time finding solution for the sets

of equation was impossible he concentrated on the mathematical structure of the

system to narrow down the possible solution functions [47]. This perspective, to

concentrate on the nature and structure of the equations in a mathematical model

8



2.1. Dynamical system 9

in order to obtain (pieces of) information with regards to the nature and structure

of its possible solutions is the general thought behind the procedures and hypothesis

(or somehow possible techniques) of what we now call dynamical frameworks. Being

just hundred years of age, the mathematical idea of a dynamical framework is a

moderately new thought. Moreover, since it truly is an focused investigation of

the concept of functions of a usually single and real independent variable, it is

a sub-branch of real analysis on the other hand the theory of dynamical system

draws its techniques and theory from numerous branches of mathematics, from real

analysis to algebra and topology and into geometry. One might call mathematical

areas like geometry, topology and dynamics second generation mathematics, since

they tend to bridge other more pure areas in their theories. But as the study of

what is actually means to model phenomena via functions and equations, dynamical

systems is sometimes called the mathematical study of any mathematical concept

that evolves over time. So as a way to characterize this idea more definitely, we

start with the broad [8]:

Definition 2.1.1 (Dynamical system). A dynamical system consist of phase

space P and collection of transformations ψt : P → P, where t is the time parameter.

The time parameter t is from R (time-continuous system) or from Z or from Z
+

(time-discrete system). Furthermore for x ∈ P the transformation obeys ψ0(x) = x,

and ψt(ψs(x)) = ψt+s(x) for all t, s.

In the following some characteristics of dynamical system will come under dis-

cussion. The time set is denoted by Υ. If Υ = R then the dynamical system is

called flow, if Υ = Z or Υ = Z
+ then the dynamical system is discrete. When

Υ = R or Υ = Z then the inverse mapping (ψt)−1 = ψ−t may exist. Such systems

are known as invertible dynamical systems. If the dynamical system is not invertible

then ψ−t(A) means the pre-image of A with respect to ψt, for any arbitrary set

A ⊂ P and arbitrary t > 0, i.e., ψ−t(A) = {x ∈ P : ψt(x) ∈ A}.

If the mapping ψt : P → P is continuous or m times continuously differentiable

for t ∈ Υ i.e., P ⊂ R
n, then the system is called continuous or a Cm − smooth

dynamical system, respectively.
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For any arbitrary initial point x ∈ P, t ∈ Υ, the mapping t 7→ ψt(x), defines a

motion of the dynamical system starting from x at time t = 0. The image γ(x) of

a motion starting at x is called the orbit (or called trajectory) through x, namely

γ(x) = {ψt(x)}t∈Υ. In the similar fashion, the positive semi-orbit through x is

defined by γ+(x) = {ψt(x)}t≥0, and if Υ 6= R
+ or Υ 6= Z

+, then the negative

semi-orbit through x is defined by the notion γ−(x) = {ψt(x)}t≤0.

If γ(x) = {x}, then the orbit γ(x) is called steady state also known as stationary

or equilibrium point. If there exist a T ∈ Υ, T > 0 such that ψt+T (x) = ψt(x),

∀ t ∈ Υ, then it is called T-periodic. If T ∈ Υ is the smallest positive number with

this property, T is called period.

In the following discussion, we will discuss discrete-, and continuous-time dy-

namical systems in detail and enlighten some attributes of these systems.

2.1.1 Continuous-time dynamical systems

Let P ⊂ R
n, n ∈ N, x = (x1, x2, · · · , xn) ∈ P and t ∈ R, then

F : P → P ,
dx

dt
= F(x(t)) = F(x) , (2.1)

is called vector field. It can be written as a system of n first order, autonomous (i.e.,

not explicitly time-dependent), ordinary differential equations





dx1

dt
= F1(x1, x2, · · · , xn),

dx2

dt
= F2(x1, x2, · · · , xn),

...

dxn

dt
= Fn(x1, x2, · · · , xn) .

(2.2)

If there exist a solution of Eq. (2.1), with the initial condition x0, then

x(t) = ψt(x0), (2.3)

is called the flow of vector field. Here ψt is the transformation that we have encoun-

tered in Definition 2.1.1.
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2.1.2 Discrete-time dynamical systems

Let P ⊂ R
n, n ∈ N, xt ∈ P, t ∈ Z

+, then the difference equation

B : P → P, xt+1 = B(xt), (2.4)

is called discrete-time map. The map xt+1 = B(xt) is also known as equation of

motion of the dynamical system. The initial condition x0 determines the outcomes

of t discrete time steps in the following form

x1 = B(x0) = B1(x0),

x2 = B(x1) = B1(B(x0)) = B2(x0),

⇒ Bm(x0) := B ◦ B ◦ · · · B(x0). (2.5)

In other words, for maps the situation is formally simpler than for differential equa-

tions: there is a unique solution to the equations of motion in form of xt = B(xt−1) =

· · · = Bt(x0). It represents the counterpart of the flow for continuous-time dynamical

system.

Example 2.1.1 (Invertible map). Consider the two-dimensional dynamical sys-

tem on P = R
2

xt+1 = yt + 1 − cx2
t , yt+1 = d xt, for t ∈ Z, (2.6)

with the free parameter c > 0 and d 6= 0. It is called Hénon mapping. The mapping

B : R2 → R
2 corresponding to Eq. (2.6) is defined by B(x, y) = (1 + y − cx2, dx). It

is infinitely often differentiable and invertible.

Example 2.1.2 (Non-invertible map). Consider the dynamical system with the

time evolution xt+1 = B(x), where

B : [−2, 2] → [−2, 2],

B(x) = b− x2
t , t ∈ N. (2.7)

It is called the logistic equation, with phase space P = [−2, 2]. Surely, B is in-

finitely many times differentiable, but not invertible. Thus one can conclude that
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Eq. (2.7) defines a non-invertible dynamical system. This concept is more elaborated

in Sec. (2.2.1).

Definition 2.1.2 (Invariant measure). Let {ψt}t∈Υ be a dynamical system on

P ⊂ R
n. Suppose A is the σ-algebra of Borel sets on P and let µ : A → [0,+∞] be

a measure on A. Every mapping ψt is supposed to be µ−measurable. The measure

µ is called invariant measure under {ψt}t∈Υ if µ(ψ−t(A)) = µ(A) holds for all A ∈ A
and t ∈ Υ.

Definition 2.1.3 (Classical dynamical system). Let B : X → X be a mapping of

a metric space X. A probability measure µ is B−invariant when µ (B−1(A)) = µ(A)

for all A ∈ A for which µ(X) = 1. In this case the triplet (X,µ,B) is called classical

dynamical system.

Definition 2.1.4 (Time-reversal invariant). The dynamics B on a phase space

P is said to be time-reversal invariant if there exist an involution i : P → P, such

that iB(x) = B−1i(x) for all x ∈ P.

An involution is a function i : P → P, that is equal to its inverse, i.e., which

gives the identity when applied to itself.

2.2 Examples of discrete-time dynamical systems

2.2.1 Logistic map

In this section we elaborate more on non-invertible map in the sense of singularity,

cobweb structure and representation of discrete time logistic map both geometrically

and algebraically, which is defined in former example (2.1.2).

A continuous differentiable non-invertible 1-dimensional map has at least one

point where its derivative vanishes. The simplest such maps are quadratic polyno-

mials, which can always be brought to the form f(x) = b − x2
n under a suitable



2.2. Examples of discrete-time dynamical systems 13

Figure 2.1: Illustration of logistic map represented in Eq. (2.8) with parameter

b = 2. (Plot generated by Desmos Graphing Calculator).

change of variables. For the sake of simplicity we consider the 1-dimensional map1

xn+1 = b− x2
n , (2.8)

which depend on a single parameter b. As seen in Fig. 2.1 the one-dimensional

map displaying the singularity, one can also observe the singularity located at the

critical point x = 0, which means that for every value in the range of map xn+1 has

exactly two pre-images one is ranging on −2 ≤ xn < 0 and other 0 < xn ≤ 2, this

behaviour is a fundamental ingredient to generate chaos in one-dimensional maps.

These maps are known as unimodal, if they have single critical point. Unimodal

maps are fascinating for both physical and mathematical reasons. They produce a

complicated chaos inspite of their simplicity in structure. With the varying degrees

1Another common variant of the logistic map is xn+1 = µxn(1 − xn), with control parameter

µ. This dynamics is equivalent for µ = 2b.
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Figure 2.2: Graphical representation of iterating logistic map Eq. (2.8) with pa-

rameter b = 2. For the initial point x0 = −0.8 we also show the cobweb structure

along the diagonal xn+1 = xn and pre-images. (Plot generated by Desmos Graphing

Calculator).

of success they have been used to model everything from insect populations to the on

set of turbulence (see also [54]). As is frequently the case in dynamical frameworks

theory, the evolution of the logistic map can be represented not only algebraically,

as in Eq. (2.8), but also geometrically. Given a starting point xn, the graph of the

logistic map gives xn+1 = f(xn). To use xn+1 as the starting point of the next

iteration, we must find the corresponding location in the x space. This is done

simply by drawing the line from the point [xn, f(xn)] to the diagonal. This simple

construction is then repeated ad libitum, as illustrated in Fig. 2.2. What makes

the study of the logistic map so important is not only that the organization in

parameter space of these periodic and chaotic regimes can be completely understood

with simple tools, but that, despite its simplicity, it displays the most important
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features of low-dimensional chaotic behaviour. This map have that feature; first,

it does not preserve the memory and second, if two trajectories start from their

neighbourhood, after some point they differ.

2.2.2 Baker map

In Fig. 2.3 we geometrically define the well known baker map [45, 49], as a paradig-

matic case of a two-dimensional area preserving chaotic dynamical system. The

phase space is a unit square M = [0, 1] × [0, 1] in (x, y) plane. For (x, y) ∈ M . Let

(x, y) → (x′, y′) = B(x, y), be

(x′, y′) = B(x, y) =





(
2x,

y

2

)
, for 0 ≤ x < 1

2
,

(
2x− 1,

y + 1

2

)
, for 1 ≥ x ≥ 1

2
.

(2.9)

The Baker map is measure preserving transformation that expands in the direction

2

Figure 2.3: Baker’s map transformation.

of x by factor 2, while it contracts in y direction by factor 1/2. The areas are

arranged in such a way that the unit square is mapped onto itself at each unit of

time (see figure 2.3).

The transformation consist of two steps: First the unit square is contracted in

y-direction and stretched in the x−direction by a factor 2. This does not change

the volume of any initial region. The unit square becomes a rectangle occupying the

region 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1/2. Next the rectangle is cut in the middle and the
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right half is put on the top of the left half to recover a square. This does not change

volume either. This transformation is reversible except on the lines where the area

was chopped and glued back.

The Baker’s map is invertible, thus the inverse of Baker’s map (x, y) → (x′, y′) =

B−1(x, y) depends on whether transformation y < 1/2 or y ≥ 1/2, thus we have:

(x′, y′) = B−1(x, y) =





(
x

2
, 2y

)
, for y < 1

2
,

(
x+ 1

2
, 2y − 1

)
, for y ≥ 1

2
.

(2.10)

The Baker map B(x, y) is mixing and ergodic [23]. It is worth mentioning that, due

to the discontinuity in the map, the baker transformation is not a diffeomorphism.

That is, it is not an example of continuously differentiable map with a continuous

and continuously differentiable inverse. Still the discontinuity of the Baker’s map

poses no problems in many applications (see [18, 19, 62, 59, 41] Refs. are therein).

2.3 Deterministic normal and anomalous diffusion

in one dimensional maps

In this section we review piecewise-linear maps for normal and anomalous diffusion.

First we elaborate the concept of normal diffusion in section 2.3.1 by giving the

well-known example of a drunken sailor [38], which is a random model. Then we

explain how the same behaviour can be modeled a deterministic dynamics, called

box map. Finally for anomalous diffusion, we study the Pomeau-Manneville map in

section 2.3.2.

2.3.1 Normal diffusion

We start with revisiting the well-known example of a sailor who wants to go home,

but is actually drunk so that he lost all control on his single steps. For sake of

simplicity let us imagine that he moves in one dimension. He starts at a position

x = 0 and then makes steps of a certain step length s to the left and to the right.

Since he is completely drunk he looses all memory between any single steps, that is,
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all steps are completely uncorrelated (pp. 20 of [38]). It resembles flipping a coin, to

choose whether to go to one side or to the other at the next step. Now we look for

the probability to find the sailor after t number of steps at position x i.e., a distance

|x| away from the starting point.

For the sake of interest let us include a short historial note from literature: This

“problem of considerable interest” was first formulated by Karl Pearson in a letter

to the journal Nature in 1905. He asked for a solution, which was provided by Lord

Rayleigh referring to older work by himself. Pearson concluded: “The lesson of

Lord Rayleigh’s solution is that in open country the most probable place to find a

drunken man, who is at all capable of keeping on his feet, is somewhere near his

starting point”. This refers to the Gaussian probability distributions for the sailor’s

positions, which are obtained in a suitable scaling limit from a Gedankenexperiment

with an “ensemble of sailor’s” starting from their initial point. The mathematical

reason behind the increasing Gaussianity of the probability distribution is the central

limit theorem (pp. 21 of [38]).

Now let us quantify the speed by which a “droplet of sailors” starting at the

initial point spreads out. This can be done by calculating the diffusion coefficient of

this system, by which we can also extract the information of transport properties.

Thus by Einstein formula (1905), the diffusion coefficient of 1-dimensional dynamics

can be defined as [38]:

D := lim
t→∞

1

2t
〈x2(t)〉, (2.11)

where

〈x2(t)〉 :=
∫

dx x2ρt(x), (2.12)

is the second moment of the probability distribution ρt(x) at each time step t, also

known as mean-square displacement of the particles.

The spreading of the distribution of sailors is then quantified by the growth

of the mean-square displacement in time. If this quantity grows linearly in time,

which may not necessarily be the case but holds true in case our example [37], the

magnitude of the diffusion coefficient D tells us how quickly our ensemble of sailors

disperses. Of course, much more could be said about a statistical physics description
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of diffusion, see [50] for further details.

In contrast to this well-known picture of diffusion as a stochastic random walk,

the theory of dynamical systems makes it possible to treat diffusion as a deterministic

dynamical process. Let us replace the sailor by a point particle. The orbit of such a

particle starting at initial condition x0 may then be generated by a chaotic dynamical

system Eq. (2.4). Note that defining the one-dimensional map B(x) together with

this equation yields the full microscopic equations of motion of the system. We may

think of these equations as a caricature of Newton’s equations of motion modeling

the diffusion of a single particle (pp. 22 of [38]). Most importantly, in contrast

to the drunken sailor with his memory loss after any time step here the complete

memory of a particle is taken into account, that is, all steps are fully correlated. The

decisive new fact that distinguishes this dynamical process from the one of a simple

uncorrelated random walk is hence that xt+1 is uniquely determined by xt, rather

than having a random distribution of xt+1 for a given xt. If the resulting dynamics

of an ensemble of particles for given equations of motion has the property that

a diffusion coefficient D > 0, Eq. (2.11), exists we speak of normal deterministic

diffusion [18, 23, 36, 37]. When diffusion coefficient D is either zero or infinite

we speak of anomalous diffusion. In Fig. 2.4 (right panel) we represent a simple

piecewise-linear map of deterministic diffusion that we shall study, it depicts a chain

of boxes of unit width, which continues periodically in both directions to infinity,

and the orbit of a moving point particle. In each box the dynamics evolves according

to the box map Bα [38]:

Bα : (0, 1) →
[
1 − α

2
,
α

2

)
,

Bα(x) =





αx, for 0 ≤ x < 1
2
,

αx+ 1 − α, for 1
2

≤ x < 1.

(2.13)

that is defined here on the unit interval. The slope α ≥ 2 defines a control parameter.

For α = 2 we recover the familiar Bernoulli shift, whereas for α > 2 the map defines

an open system. That is, whenever points are mapped into the escape region of

width ∆ these points are moved to a neighbouring unit interval. We may thus
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periodically continue this box map onto the whole real line by defining

Bα(x+ 1) = Bα(x) + 1 . (2.14)

In physical terms, this means that Bα(x) continued onto the real line is translational

(a) The box map. (Plotted on Inkscape). (b) The extended box map. (Fig. adapted

from [38]).

Figure 2.4: (a) The box map Bα(x), defined in Eq. (2.13). The slope α defines the

control parameter while ∆ denotes the width of escape region. This is a generaliza-

tion of the Bernoulli shift, defined as a parameter dependent map Bα(x) modeling

an open system. (b) A simple model for deterministic diffusion. The dashed line

depicts the orbit of a diffusing particle in form of a cobweb plot. The slope α serves

as a control parameter for the periodically continued piece-wise linear map Bα(x).

invariant with respect to integers. Note furthermore that we have chosen a box map

whose graph is point symmetric with respect to the center of the box at (x, y) =(
1

2
,
1

2

)
(pp. 23 of [38]). This implies that the graph of the full map Bα(x) is anti-
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symmetric with respect to x = 0, i.e.,

Bα(x) = −Bα(−x), (2.15)

so that there is no drift2 in this chain of boxes [38]. Therefore this study generate

unbiased random walk. Hence on the discrete level where we consider the integer

part of ⌊x⌋ Fig. 2.4b, it is equivalent to the binary random walk.

2.3.2 Anomalous diffusion

We now study anomalous diffusion by considering a variant of the piecewise-linear

model. Pomeau-Manneville, introduced in 1980 [48], the following model

Pα,z : [0, 1] → [0, 1], Pα,z(x) := x+ αxz mod 1, (2.16)

where again the dynamics is defined by xn+1 = Pα,z(xn). The map has two control

parameters, α ≥ 1 and the exponent of nonlinear behaviour z ≥ 1. For α = z = 1

the map reduces to the Bernoulli shift. However for z > 1 it provides a nontrivial

nonlinear generalization: in this case the stability of the fixed point at x = 0 becomes

marginal, P ′
a,z(0) = 1. Since the map is smooth around x = 0, the dynamics

resulting from the left lap of the map is largely determined by the stability of this

fixed point, whereas the right lap is just of Bernoulli shift-type yielding ordinary

chaotic dynamics [38].

Analogous to the discussion in Sec. 2.3.1 it is quite simple to define the spatially

extended version of the Pomeau-Manneville map. For this we just continue

Pα,z(x) = x+ αxz, 0 ≤ x <
1

2
, (2.17)

onto the real line by the translation

Pα,z(x+ 1) = Pα,z(x) + 1 , (2.18)

under the symmetry Pα,z(−x) = −Pα,z(x), (cf. Eqs. (2.14), (2.15)) and (2.16). The

resulting dynamics is shown in Fig. 2.5. Analytical as well as numerical computation

2In general, when there is a higher probability to go one side the map is asymmetric. As a

result the particles move in this direction on the average. This what we call drift.
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Figure 2.5: The extended Pomeau-Manneville map. (Plot generated by Desmos

Graphing Calculator).

of the mean-square displacement for this map leads to subdiffusive behaviour, for

z > 2

〈x2(n)〉 = Knγ , γ < 1, n → ∞, (2.19)

where K is the generalized diffusion coefficient. This implies that the diffusion

coefficient D defined in Eq. (2.11) vanishes, despite the fact that particles can go

anywhere on the real line as suggested by Fig. 2.5. Thus we encounter novel type

of diffusion. The exponent γ < 1, in the mean square displacement Eq. (2.19) of an

ensemble of particles, one says that there is sub-diffusion.

For sub-diffusive Pomeau-Manneville map Fig. 2.5 one can prove that

γ =





1, for 1 ≤ z ≤ 2 ,

1

z − 1
< 1, for z > 2 .

(2.20)

This finding can be obtained from stochastic continuous time random walk theory,
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which yields a generalization of the drunken sailor’s model, Fig. 2.4 to anomalous

diffusion processes. For further discussion on this delicate topic we refer to the

reader on Ref. [2].

2.4 Stochastic pathway

In this section we introduce Lévy walks and Lévy flights in the framework of

continuous-time random walks (CTRW) [34, 27, 43, 55, 61].

Before going to the discussion we give definition of Lévy stable processes. We

denote random variables by X,X1, X2, · · · and by Ln = X1 +X2 + · · ·+Xn mutually

independent random variables with a common distribution F and their sum [20].

Definition 2.4.1 (Lévy stable processes). The distribution F , not concentrated

at one point, is known as stable of for all n ∈ N there exists constants kn > 0 and

κn ∈ R, such that

Ln
d
= knX + κn , (2.21)

where
d
= we mean that the random variables on the two side of the equality have

the same distribution. If κn = 0 the distribution is called strictly stable.

Let P (x, t) be the probability distribution of being at position x at time t, and

let Φ(x, t) be the probability distribution of making a step of length x in the time

interval t to t+ dt. The total transition probability in this time interval is given by

Φ(t) =
∑

x

Φ(x, t) = Φ(j = 0, t), (2.22)

where Φ(j, t) is the Fourier transform x → j of Φ(x, t). If we denote by ν(x, t) the

probability density of just arriving at x in the time interval t to t+dt, then [27, 43, 61]

ν(x, t) =
∑

x̄

t∫

0

dτ ν(x̄, τ) Φ(x− x̄, t− τ) + δ(t)δx,0. (2.23)

Here we assumed the initial condition of starting time at t = 0 from position x. The

relation between P (x, t) and ν(x, t) is given through

P (x, t) =

t∫

0

dτ̄ ν(x, t− τ̄) ̺(τ̄ ), (2.24)



2.4. Stochastic pathway 23

where

̺(t) = 1 −
t∫

0

dτ Φ(τ), (2.25)

is the probability of not having left the original site up to time t. The Laplace

transform of ̺(t) yields

̺(u) = (1 − Φ(u)) /u. (2.26)

using Eq. (2.24) and changing the order of integration allows us to write Eq. (2.23)

as an integral equation for P (x, t) with Kernel Φ(x, t),

P (x, t) =
∑

x̄

t∫

0

dτ P (x̄, τ) Φ(x− x̄, t− τ) + ̺(t) δx,0 . (2.27)

Reverting to the Fourier-Laplace space, we have

P (j, u) = P (j, u) Φ(j, u) + ̺(u), (2.28)

with the solution

P (j, u) =
1 − Φ(u)

u

1

1 − Φ(j, u)
, (2.29)

this quantity is the key determination of P (x, t) through Fourier-Laplace inversion.

Before embarking on the discussion of Eq. (2.29), let us note that Eq. (2.27) is

formally equivalent to generalized master equation [35]

∂

∂t
P (x, t) =

∑

x̄

t∫

0

dτ K(x− x̄, t− τ)P (x̄, τ) , (2.30)

when one takes in Fourier-Laplace space

K(j, u) =
Φ(j, u) − Φ(u)

1 − Φ(u)
u . (2.31)

The equivalence is immediate when transforming Eq. (2.30) to (j, u) space and

comparing to Eq. (2.31). Note that Eq. (2.30) is an integro-differential equation.

Now let us consider two different cases. First, when we take a distribution Φ(x, t)

in which x and t are decoupled [13, 39], we have

Φ(x, t) = λ(x)Φ(t) . (2.32)
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From Eq. (2.29), we then get

P (j, u) =
1 − Φ(u)

u

1

1 − λ(j) Φ(j, u)
. (2.33)

Then assume Φ(t) = δ(t− t0) and let λ(x) of Lévy stable form, with α ∈ (0, 2). The

resulting process in Markovian, but with diverging variance. The Fourier image of

the associated probability density function is obtain from Eq. (2.33),

P (j, t) = e−Dα|j|α t, (2.34)

where Dα is diffusion constant. Comparing this with Eq. (5.1) Chp. 5 of Ref. [39],

we observe a characteristic function of a symmetric Lévy stable probability density

function with the index of stability α. This type of random process is called Lévy

flight.

As another example we consider a coupled form of Φ(x, t). A suitable function

is of the form

Φ(x, t) = A|x|ηδ(|x| − tς), (2.35)

where, through the δ−function, x and t are coupled. These processes are called

Lévy-walks. Eq. (2.35) allows steps of arbitrary length as for Lévy flights, but long

steps are penalized by the requiring longer time to be performed. Or, in other words,

in a given time window only a finite shell of points may be reached: hierarchically

nearer points are no more accessible and farther points are not yet accessible.

2.5 Auto-correlation functions

Correlations measure the relationship between two quantities, that are connected

to each other. It allow us to determine the statistical relationship between them.

Let us consider a dynamical system {ψt}t∈Υ on the phase space P with ergodic3

invariant measure µ. Let the mapping H : P → R, be an arbitrary continuous

function, {ψt}t≥0 be an arbitrary semi orbit and let the space average
∫

P H dµ, 4 be

3Ergodicity entails that for almost all trajectories, the ensemble average and the time average

produce the same result.
4Where H is integrable function H ∈ L1 (P , A, µ) and

∫
P

H dµ for µ-a.e. points x ∈ P .
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replaced by the time average Ĥ, i.e.,

lim
T →∞

1

T

∫ T

0
H(ψt(x)) dt , and lim

n→∞

1

n

n−1∑

i=0

H(ψi(x)) , (2.36)

for continuous and discrete time systems respectively. With respect to H the auto-

correlation function along with the semi orbit to a time point τ ≥ 0, is defined for

flow as follows

CH(τ) := lim
T →∞

1

T

∫ T

0
H(ψt+τ (x)) H(ψt(x)) dt− Ĥ2 , (2.37a)

and for a discreet system by

CH(τ) := lim
n→∞

1

n

n−1∑

i=0

H(ψi+τ (x)) H(ψi(x)) − Ĥ2 . (2.37b)

2.6 Summary

We revisited the notion of dynamical system and presented some definitions and

examples for continuous and discrete-time dynamical system. We revisited deter-

ministic dynamics based on the examples of the logistic and the baker’s map. Further

we discussed a piece-wise linear map showing deterministic standard diffusion and

a piece-wise nonlinear map that generates sub-diffusion. Under this discussion we

will base some on our studies on deterministic maps in forthcoming chapters. Fi-

nally we briefly overview the continuous-time random-walk framework, with aim to

investigate stochastic process. This general framework will be the base of our study

of LLg model in forthcoming chapter.



Chapter 3

Moments and correlations in the

Slicer Map

“Mathematics is the language with which GOD wrote the universe.”

— Galileo Galilei

In this chapter, we consider a simple non-chaotic and deterministic map, which we

call Slicer Map. Its dynamics exhibits a wide spectrum of diffusive behaviours i.e.,

sub-, super- and normal under variation of a single parameter. Such analytically

tractable deterministic maps are rare in the literature of anomalous transport but

Salari et al. [53] introduced this map and calculated its moments of displacement.

Here we compute moments of displacement in an alternate fashion and we go one step

further in the characterization, computing the position auto-correlation function in

a scaling form. We also compute the moments of velocity and the velocity auto-

correlation function.

3.1 Definition of the SM

To define the SM we introduce the fundamental space unit M := [0, 1], consisting

of the interval of positions. Replicating M in a one dimensional lattice, we produce

the infinite configuration space: M̂ := M × Z. Each of its cells is identified by an

26
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index m ∈ Z: M̂m := [0, 1] × {m}. Every cell M̂m contains two “slicers”,

{ℓm} × {m} , and {1 − ℓm} × {m} ,

with 0 < ℓm < 1/2. The slicers split each half of M̂m into two parts. Salari et al.

[53] parameterised the value of ℓm by a positive number α as follows:

ℓm(α) =
1

(|m| + 21/α)
α , with m ∈ Z , α > 0 . (3.1)

The SM, Sα : M̂ → M̂ , is then defined on the configuration space M̂ := [0, 1] × Z

as follows:

Sα(x,m) =





(x,m− 1) , for 0 ≤ x ≤ ℓm or 1
2
< x ≤ 1 − ℓm,

(x,m+ 1) , for ℓm < x ≤ 1
2

or 1 − ℓm < x ≤ 1.

(3.2)

The map is neither injective nor surjective. It is nevertheless possible to define the

inverse map when restricting to trajectories with initial conditions in cell M̂0 [53].

The space M̂ can be enowed with a density of points that evolves under the

action of Sα. In particular, we consider the initial density µ̂ := λ× δ0 on M̂ , where

λ is the Lebesgue measure on M and δ0 is the Dirac measure on the integer 0. Then,

Sα can be interpreted as describing the transport of non-interacting particles in a

one-dimensional space.1

Let π[0,1] and πZ be the projections of M̂ on its first and second factors, respec-

tively. Taking x ∈ [0, 1] and m ∈ Z, we denote by x̂ = (x,m) a point in M̂ , so that

π[0,1]x̂ = x and πZx̂ = m. Following [53] we restrict our considerations to the initial

distribution µ̂. We view M̂ as subdivided in two halves that are invariant for the

SM:

M̂+ := ([1/2, 1] × {0}) ∪ ([0, 1] × Z
+),

and

M̂− := ([0, 1/2) × {0}) ∪ ([0, 1] × Z
−).

1The “particles” are the points moved by Sα. Analogously to the particles of systems such as

the extended box map defined in Fig. 2.4b they do not interact with each other, since there is no

coupling term connecting various particles in their equations of motion.



28 3. Moments and correlations in the Slicer Map

The dynamics in the two intervals are the mirror images of each other. Indeed,

since at m = 0 the two slicers coincide with the single ℓ0 = 1/2, cf. Eq. (3.1).

The points that lie initially in [1/2, 1] never reach negative m, and those initially in

[0, 1/2) never reach positive m. Therefore, without loss of generality we restrict the

following analysis to the positive part of the chain, M̂+. The sequence of integers

πZ(Sj(x̂)), j ∈ N, will be called the coarse-grained trajectory of x̂. A crucial aspect

Figure 3.1: Dynamics of the SM illustrated by a space-time plot where m’s and n’s

denote space and time respectively. The colors guide the eye, identifying the motion

of points with different position x ∈ [0, 1].

of the dynamics Sα is, analogous to polygonal billiards and its Lyapunov exponents

vanish. Different trajectories in M̂ neither converge nor diverge from each other

in time, except when they are separated by a slicer. In that case their distance

jumps discontinuously. However, the set of separation points is discrete, it has zero

µ̂-measure. Hence the Lyapunov exponent vanishes.
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3.2 Dynamics of the SM

To illustrate some fundamental properties of the slicer dynamics, let us introduce

the symbols

ℓ+
m(α) := 1 − ℓm(α) = 1 − 1

(m+ 21/α)α
, with m ∈ N ∪ {0} . (3.3)

They obey

1

2
= ℓ+

0 (α) < ℓ+
1 (α) < · · · < ℓ+

k (α) < ℓ+
k+1(α) < · · · < 1, and lim

k→∞
ℓ+

k (α) = 1 .

(3.4)

Hence, there is a unique natural number m = mα(x) > 0 for any x ∈ [1/2, 1) such

that

ℓ+
m−1(α) < x ≤ ℓ+

m(α) . (3.5)

In other words:

mα(x) = min{m ∈ N : ℓ+
m(α) ≥ x}, for x ∈ [1/2, 1) . (3.6)

Inspection of Eq. (3.2) and the definition (3.3) reveals that mα(x) is the maximum

travelled distance for trajectories starting in the interval, Eq. (3.5):

Lemma 3.2.1.: Given x ∈ [1/2, 1), let m(x) be the integer that satisfies Eq. (3.5).

Then,

Sα(x,mα(x)) = (x,mα(x) − 1), Sα(x,mα(x) − 1) = (x,mα(x)). (3.7)

Proof. This is a straightforward consequence of Eqs. (3.2) and (3.5).

This means that all trajectories become periodic with period 2 after the a number

mα(x) of steps. The description of the trajectory

{Sj
α(x̂)}∞

j=0,

with initial condition x̂ ∈ M̂0 is completed by the following Proposition.
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Proposition 3.2.2.: For x ∈ [1/2, 1), let x̂0 = (x, 0) ∈ M̂0 and mα(x) as defined

by Eq. (3.6). Then the iterations of the trajectory starting at x̂0 obey:

Sk
α(x, 0) =





(x, k) , for 0 ≤ k < mα(x) ,

(x, m̃α,k(x)) , for mα(x) ≤ k ,
(3.8a)

where

m̃α,k(x) =





mα(x) , for (k −mα(x)) is even ,

mα(x) − 1 , for (k −mα(x)) is odd .
(3.8b)

Proof. This is a consequence of Lemma 3.2.1 and Eq. (3.2). As long as k < mα(x),

the forthcoming iteration with Sα increases the cell index by one. For k ≥ mα(x)

the trajectory alternates between the cells mα(x) and mα(x) − 1 .

Remark 3.2.3. Lemma 3.2.1 and Proposition 3.2.2 imply that every trajectory

starting at x̂ with π[0,1](x̂) ∈ [1/2, 1) is ballistic for a finite time. Eventually, it

gets localised, turning periodic of period 2.

Remark 3.2.4. The trajectories starting at x̂ with π[0,1](x̂) = 1/2 or π[0,1](x̂) = 1

do not satisfy Eq. (3.5). Hence, they are forever ballistic, but they constitute a set

of zero measure.

To investigate the transport properties of the SM, we observe that the function

mα(x) : (1/2, 1) → N, (3.9)

is a step function with unitary jumps at the points ℓ+
m(α), such that

x ∈ (ℓ+
k−1(α), ℓ+

k (α)] 7→ mα(x) = k . (3.10)

Then, the following properties are satisfied:

1. mα(x) is not decreasing: x1 < x2 implies mα(x1) ≤ mα(x2),

2. mα(x) is left continuous: limh→0− mα(ℓ+
k (α) + h) = mα(ℓ+

k (α)) = k,

3. limx→1/2+ mα(x) = 1, limx→1− mα(x) = ∞,
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4. α1 < α2 implies mα1(x) ≥ mα2(x), since ℓ+
j (α1) > ℓ+

j (α2) for j > 0.

The points belonging to a strip (ℓ+
k−1(α), ℓ+

k (α)] = m−1
α (k) share the same fate.

Hence, the transport properties of the SM depend on the rate at which such strips

shrink with growing k.

Indeed, an ensemble of initial conditions

Ê0 ⊂ (1/2, x0) × {0} ⊂ M̂0, with x0 < 1,

represents a coarse-grained version of the Dirac δ initial distribution, as commonly

considered in diffusion theory. This ensemble reaches localisation: the set

{πZ(Sj
α(Ê0)), j ∈ N0},

is bounded. After all, the travelled distance does not exceed mα(x0), which is

finite. Consequently, non-trivial transport properties necessarily require the initial

ensemble Ê0 to obey the condition:

sup
x∈π[0,1](Ê0)

mα(x) = ∞, (3.11a)

or, equivalently, to accumulate at x = 1:

sup(π[0,1](Ê0)) = 1 . (3.11b)

The condition (3.11a) (or (3.11b)) is not sufficient for non-trivial behaviour. To

understand this fact, take an ensemble of uniformly distributed initial conditions

in Ê0 ⊂ (1/2, 1) × {0} —analogous to the setting in [10]—and characterise the

transport properties of the SM by computing the corresponding ensemble averages.

Then, mα(x) is the distance travelled by the point x̂ ∈ Ê0, with π[0,1](x̂) = x.

Consequently, the mean maximum displacement and the mean maximum square

displacement are given by

〈∆x̂〉 =
1

λ(π[0,1](Ê0))

∫

π[0,1](Ê0)

mα(x) dx, (3.12)

and

〈∆x̂2〉 =
1

λ(π[0,1](Ê0))

∫

π[0,1](Ê0)

m2
α(x) dx, (3.13)
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respectively, where λ(π[0,1](Ê0)) ≤ 1/2 is the Lebesgue measure of the projection of

Ê0 on [0, 1].

These averages do not depend on time. However, they indicate what can be

expected for the time evolution of the average travelled distance and mean-square

distance. To understand this point, we observe that in each interval (ℓ+
k−1(α), ℓ+

k (α)],

k ∈ N the function mα(x) takes the constant value k. We denote the length of these

intervals by:

∆k(α) := ℓ+
k (α) − ℓ+

k−1(α) . (3.14a)

By construction their length adds up to 1/2,

∞∑

k=1

∆k(α) =
1

2
, (3.14b)

and to leading order in k, we have:

∆k(α) =
α

kα+1

(
1 − c̃(α)

k
+ O(k−2)

)
, (3.14c)

with

c̃(α) = (1 + α)
(

21/α − 1

2

)
.

Then, for Ê0 = (1/2, 1) × {0}, one finds

〈∆x̂〉 = 2
∫ 1

1/2
mα(x) dx = 2

∞∑

k=1

k∆k(α) = 2
∞∑

k=1

α

kα

(
1 + O(k−1)

)
, (3.15a)

where Eqs. (3.10) and (3.14c) have been used. Thus, 〈∆x̂〉 converges for α > 1, and

it diverges otherwise. Analogously, the mean maximum square displacement is

〈∆x̂2〉 = 2
∫ 1

1/2
m2

α(x) dx = 2
∞∑

k=1

k2∆k(α) = 2
∞∑

k=1

α

kα−1

(
1 + O(k−1)

)
. (3.15b)

For α > 2 the square displacement, 〈∆x̂2〉, is finite. This corresponds to the locali-

sation phenomenon described in Remark 6 of [53]. It arises from the fact that ℓ+
k (α)

tends to 1 faster, and the transport of the SM is slower, for larger α. On the other

hand, for 0 < α < 2 the mean maximum square displacement diverges, and it is of

interest to explore the rate at which this divergence takes place, i.e. to determine

the transport exponent γ.
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3.3 Time evolution of the displacement moments

Under the SM each particle moves by exactly one step in each time step. Hence,

trajectories reach at most site n in n time steps, and the distance ∆x̂n travelled by

x̂ = (x, 0) at time n is given by

min{m̃α,n(x), n} , (3.16)

cf. Eq. (3.8). Moreover, for even and odd times n the displacement ∆x̂n also takes

even and odd values, respectively. The corresponding (time-dependent) mean-square

displacement can be written as:

〈∆x̂2
n〉 = 2

∫ 1

1/2
min{m̃α,n(x), n}2 dx,

=





2
(n/2)−1∑

i=1

(2i)2 (∆2i(α) + ∆2i+1(α)) + 2n2
∞∑

k=n

∆k(α) , for n even ,

2
(n−1)/2∑

i=1

(2i− 1)2 (∆2i−1(α) + ∆2i(α)) + 2n2
∞∑

k=n

∆k(α) , for n odd .

(3.17a)

The sums involving terms k ≥ n collect the particles that make n steps to the right

and never turned back. Salari et al. [53] denoted this as the travelling area. It is

the same in both cases. The other sum accounts for particles that turn back at least

once. Consequently, the particles get localised within n time steps. This represents

sub-travelling area in [53]. To leading order this contribution to the mean-square

displacement takes the same for odd and even n. Hence, we write:

〈∆x̂2
n〉 = 2

∫ 1

1/2
min{m̃α,n(x), n}2 dx,

= 2
n−1∑

k=1

k2∆k(α)
(
1 + O(k−1)

)
+ 2n2

∞∑

k=n

∆k(α) . (3.17b)

The asymptotic behaviour of the first sum is:2

2
n−1∑

k=1

k2∆k(α) = 2
n−1∑

k=1

α

kα−1

(
1 + O(k−1)

)
,

∼





2 α
2−α

n2−α , for 0 < α < 2 ,

4 lnn , for α = 2 ,

const , for α > 2 .

(3.18a)

2By f1(n) ∼ f2(n) we mean f1(n)/f2(n) → 1 as n → ∞.
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The form of this scaling can be guessed by interpreting the sum as a Riemann-

sum approximation of the integral
∫ n

1 x
1−α dx. A formal derivation is given in Ap-

pendix A. The second sum can be evaluated based on the definition of ∆k(α),

2n2
∞∑

k=n

∆k(α) = 2n2 ℓn−1(α) = 2n2 n−α

(
1 − α 21/α

n
+ O(n−2)

)
∼ 2n2−α .

(3.18b)

Remark 3.3.1. According to Eqs. (3.18a) and (3.18b) the travelling and the sub-

travelling areas have the same asymptotic scaling.

Altogether, we find that the mean-square displacement scales like

〈∆x̂2
n〉 ∼





4
2−α

n2−α , for 0 < α < 2 ,

4 ln n , for α = 2 ,

const , for α > 2 .

(3.19)

The computation of other moments 〈|∆x̂n|p〉, with p > α, can be obtained in the

same way, based on the same integral representation:

〈|∆x̂n|p〉 = 2
∫ 1

1/2
min{m̃α,n(x), n}p dx,

∼ 2
n−1∑

k=1

kp∆k(α)
(
1 + O(k−1)

)
+ 2np

∞∑

k=n

∆k(α),

∼





2 p
p−α

np−α , for 0 < α < p ,

2 p lnn , for α = p ,

const , for α > p ,

(3.20)

because

n−1∑

k=1

kp∆k(α) = 2
n−1∑

k=1

α

kα−p+1

(
1 + O(k−1)

)
∼





2 α
p−α

np−α , for 0 < α < p ,

2 p lnn , for α = p ,

const , for α > p .

(3.21)

We hence reproduced central results of [53] in a formalism that is suitable to compute

correlation functions. These findings are summarised by the following theorem.
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Theorem 3.3.2. : Given α ≥ 0, the transport coefficient of the Slicer Dynamics

with uniformly distributed initial condition in M̂0 takes the value γ = 2 −α, and the

the dynamics is:

1. ballistic if α = 0,

2. super-diffusive if 0 < α < 1,

3. diffusive if α = 1,

4. sub-diffusive if 1 < α < 2,

5. with logarithmic growth of the mean-square displacement, 〈∆x̂2
n〉 ∼ ln n, for

α = 2,

6. with localisation in mean-square displacement, 〈∆x̂2
n〉 ∼ const(α), if α > 2.

Furthermore, for p > α the moments satisfy 〈|∆x̂n|p〉 ∼ np−α.

Remark 3.3.3. : The behaviour described above for a given α is not universal. It

depends on the initial distribution.

For instance, suppose that the x-component of the initial conditions has got

density ρ with respect to the uniform measure dx in the interval (1/2, 1). Then, we

have

〈∆x̂2
n〉ρ = 2

∫ 1

1/2
min{m̃α,n(x), n}2 ρ(x) dx, (3.22)

in place of Eq. (3.17). If the support of ρ does not contain a (left) neighbourhood

of 1, then 〈∆x̂2
n〉 → const as n → ∞ even for α < 1. Moreover, different asymptotic

behaviours arise from different distributions supported in a neighbourhood of 1. For

instance, take ρ(x) = O((1 − x)r) as x → 1− with r > −1. Then, different values of

r produce different kinds of diffusion, even at fixed α.

To see this we work out the specific example

ρ(x) =





r 2r−1
(

1
2

− x
)r−1

, for 0 ≤ x ≤ 1
2
,

r 2r−1 (1 − x)r−1 , for 1
2
< x ≤ 1 .

(3.23)
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Analogously to the treatment of Eq. (3.17) the expression Eq. (3.22) can be split

into the sums

〈∆x̂2
n〉ρ = 2

1∫

1/2

min{m̃α,n(x), n}2 ρ(x) dx ∼ 2
n∑

k=1

k2

xk∫

xk−1

ρ(x) dx+ 2n2

1∫

xn

ρ(x) dx ,

(3.24)

because m̃α,k(x) = k+O(1) in the interval (xk−1, xk] ≡ (ℓ+
k−1(α), ℓ+

k (α)]. Previously,

we found that

∆k(α) =
∫ xk

xk−1

dx.

For the power-law form of ρ(x) this result changes to

2r−1 ∆k(α; r) =
∫ xk

xk−1

ρ(x) dx,

with

∆k(α; r) := (k − 1 + 21/α)−αr − (k + 21/α)−αr.

Since ∆k(α ; r) ∼ ∆k(r α), the evaluation of Eq. (3.22) is analogous to the one of

Eq. (3.17). Equation (3.22) can therefore be worked out along the same lines as

Eq. (3.17), after substituting ∆k(α) by 2r−1 ∆k(r α). One thus finds that

〈∆x̂2
n〉ρ ∼





2r+1

2−rα
n2−rα , for 0 < r α < 2 ,

2r+1 lnn , for r α = 2 ,

const , for r α > 2 .

(3.25)

The transport exponent γ = 2 − r α depends continuously on r, and only for

r = 1 (the case of the uniform distribution treated so far) does Eq. (3.25) re-

duce to Eq. (3.19). In general, different initial distributions lead the SM to different

transport properties, as already observed in other frameworks, such as those of Lévy

walks [10]. However, the dynamical mechanisms underlying these two evolutions are

rather different. Indeed, the properties of the moments suffice to draw the following

conclusions.

Remark 3.3.4.: The anomalous behaviour of the SM with α 6= 1 is related to the

presence of memory: the initial state is not forgotten, and correlations persist in

time. This is in line with the common observation that rapid correlation decay is
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associated with normal diffusion, while memory effects lead to persistent correlations

and anomalous transport. Interestingly, the SM enjoys normal diffusion also for

α = 1, despite having memory as in the cases with α 6= 1. (This observation will

further be supported by the discussion of correlations in Subsection 3.4.)

Remark 3.3.5.: In agreement with the observations of [58], the SM illustrates how

equality of moments (even of all moments) of a given random variable does not

guarantee full equivalence of the processes that share such moments. Diffusion in

the SM arises from dynamical mechanisms that substantially differ even from those

of simple deterministic or stochastic particle systems, such as the Lorentz gas with

finite horizon or random walks on a line.

In the following, we explore whether correlations might help to distinguish the

SM from the LLg. To this end we analytically compute various scaling limits of the

position-position correlations generated by the SM. In Sec. 4.3 we compare them

with numerically computed correlations of the LLg with the same exponent γ.

3.4 Position auto-correlations function

In this section we investigate the properties of various versions of the position-

position correlation functions, for the dynamics of the SM. This requires knowledge

of the relative motion of two points, x̂ = (x, 0) and ŷ = (y, 0) in M̂ . There are

two possible cases: either there exists an interval (ℓ+
j−1(α), ℓ+

j (α)] such that x, y ∈
(ℓ+

j−1(α), ℓ+
j (α)], or such interval that does not exist.

a. When the interval exist the coarse-grained trajectories of x̂ and ŷ, x(n) :=

πZ(Sn
α(x̂)) and y(n) := πZ(Sn

α(ŷ)), coincide for all times n: the particles have

the maximum degree of correlation.

b. In the second case, suppose that x < y. Hence, we have

x ∈ (ℓ+
mα(x)−1(α), ℓ+

mα(x)(α)] , and y ∈ (ℓ+
mα(y)−1(α), ℓ+

mα(y)(α)] ,

with

(ℓ+
mα(x)−1(α), ℓ+

mα(x)(α)]∩(ℓ+
mα(y)−1(α) , ℓ+

mα(y)(α)] = ∅, and mα(x) < mα(y) .
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This means that the two points have the same coarse grained trajectory up

to time mα(x), when x̂ enters its periodic orbit, while ŷ continues its ballistic

motion up to time mα(y). At times larger than mα(y), the distance between

the two particles will either be mα(y) −mα(x) or mα(y) −mα(x) ± 1. For all

the points with (x, y) ∈ (0, 1), the distance become periodic after a finite time;

after an initial transient.

The larger the difference mα(y) −mα(x) the smaller is the correlation between the

particle positions at the different times. In any case, the difference mα(y) −mα(x)

should say something about the strength of the correlation between the two particles.

Considering 1 negligible with respect to mα(y) −mα(x), we can classify the pair of

initial conditions according to this distance.

Let us introduce the notation

Ij(α) := (ℓ+
j−1(α), ℓ+

j (α)] , and R := (1/2, 1) × (1/2, 1) . (3.26)

Then we can write:

R = ∪i,jRi,j(α) , with Ri,j(α) := Ii(α) × Ij(α) . (3.27)

The pairs (x, y) belonging to the diagonal elements Ri,i(α) have the same trajectory,

whose length grows with i, while Ri,i(α) gets closer to the corner (1, 1) of R when i

grows. Moving away from the diagonal, |mα(y)−mα(x)| gets larger and larger. Nev-

ertheless, memory persists and there is no sensitive dependence on initial conditions,

consistently with the absence of a positive Lyapunov exponent, cf. Sec. 3.1.

Let us introduce the position-position auto-correlation function as:

φ(n,m) := 〈πZ(Sn(x̂)) πZ(Sm(x̂))〉 := 〈∆x̂n ∆x̂m〉 (3.28a)

= 2
∫ 1

1/2
min{m̃α,m(x), m} min{m̃α,n(x), n} dx, with m ≤ n. (3.28b)

The integration interval I := (1/2, 1] can be subdivided in three parts,

I = E<
m ∪Em,n ∪ E>

n ,
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defined by




E<
m = {x ∈ I : m̃α,m(x) ≤ m},

Em,n = {x ∈ I : m < m̃α,n(x) ≤ n},

E>
n = {x ∈ I : n < m̃α,n(x)}.

(3.29a)

Thus each sub-interval corresponds to following quantity

⇒





min{m̃α,m(x), m} min{m̃α,n(x), n} = m̃α,m(x) m̃α,n(x) ,

min{m̃α,m(x), m} min{m̃α,n(x), n} = m m̃α,n(x) ,

min{m̃α,m(x), m} min{m̃α,n(x), n} = mn ,

(3.29b)

respectively. Rewriting the resulting integrals in terms of sums over the intervals

where mα(x) takes the constant value k (cf. Eq. (3.17)), for m ≤ n one has:

φ(n,m) = 2
∫

E<
m

m̃α,n(x) m̃α,m(x) dx+ 2m
∫

Em,n

m̃α,n(x) dx+ 2mn
∫

E>
n

dx, (3.30a)

∼ 2
m∑

k=1

k2 ∆k(α) + 2m
n∑

k=m+1

k∆k(α) + 2mn
∞∑

k=n+1

∆k(α) . (3.30b)

The first and the third sum have been evaluated in Eqs. (3.18a) and (3.18b), re-

spectively. The asymptotic behaviour of the second term depends on the value of

α and on the relation between m and n. In the following, we discuss the following

examples:

1. n → ∞ with m fixed,

2. n,m → ∞ with fixed h = n −m,

3. n,m → ∞ with n = m+ ℓmq, where ℓ, q are positive constants.

3.4.1 Scaling of φ(n,m) for n → ∞ with m fixed

In order to evaluate the second sum in Eq. (3.30b) we observe that

2m
n∑

k=m+1

k∆k(α) = 2m
n∑

k=0

k∆k(α) − 2m
m∑

k=0

k∆k(α) . (3.31)
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For fixed m, the latter sum takes a constant value, and for n → ∞ the former sum

scales as (cf. Eq. (3.21) or the formal derivation provided in Appendix A)

2m
n∑

k=0

k∆k(α) ∼





2 α m
1−α

n1−α , for 0 < α < 1 ,

2m lnn , for α = 1 ,

const , for α > 1 .

(3.32)

The leading-order scaling of the three sums in Eq. (3.30b) is summarised in the

following lemma:

Lemma 3.4.1. : For n → ∞ with fixed m the auto-correlation function, φ(n,m),

defined in Eq. (A.17a), asymptotically scales as:

φ(n,m) ∼





2 m
1−α

n1−α , for 0 < α < 1 ,

2m lnn , for α = 1 ,

const , for α > 1 .

(3.33)

Proof. The first sum in (3.30b) has a finite number of terms that all take finite

positive values. Hence, it adds to a finite positive number. For 0 < α < 1 the

leading-order contributions of the second and the third sum have the same scaling,

n1−α, which diverges for n → ∞. From Eqs. (3.32) and (3.18b) we have

φ(n,m) ∼ 2m
(

α

1 − α
+ 1

)
n1−α =

2m

1 − α
n1−α for 0 < α < 1 .

For α = 1 the exponent 1 −α = 0 such that the third term also takes a finite value.

In that case the leading-order scaling is provided by the second sum, Eq. (3.32).

Finally, for α > 1 all sums contributing to Eq. (A.17a) take constant values.

The dashed lines in Figure 3.2a show the asymptotic behaviour, Eq. (3.33), for

α = 1/2 and different fixed values of m. They provide an excellent description of the

asymptotic behaviour of the numerical evaluation of the definition, Eq. (A.17a) (solid

lines). The lower panel of the figure demonstrates that the ratio of the correlation

function and the prediction of its asymptotic behaviour approaches one for a vast

range of different values of m.
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3.4.2 Scaling of φ(m+ h,m) for m → ∞ with h > 0 fixed

In this case, the second sum in Eq. (3.30a) involves a finite number of positive terms.

The sum can be bounded from above by

2m
m+h∑

k=m+1

k∆k(α) = 2αm
m+h∑

k=m+1

k−α

(
1 − c̃(α)

k
+ O(k−2)

)
,

< 2αhm1−α

(
1 − c̃(α)

m+ h
+ O(m−2)

)
,

<





2αh (m+ h)1−α , for 0 < α < 1 ,

2αh , for 1 ≤ α .

and from below by

2m
m+h∑

k=m+1

k∆k(α) > 2αhm (m+ h)−α
(
1 + O(m−1)

)
,

>





2αhm1−α , for 0 < α < 1 ,

0 , for 1 ≤ α .

Noting that constant h implies (m + h)1−α = m1−α (1 + h/m)1−α ∼ m1−α we find

that the second sum scales as

2m
m+h∑

k=m+1

k∆k(α) ∼





2αhm1−α , for 0 < α < 1 ,

O(1) , for 1 ≤ α .

(3.34)

Hence, the leading-order scaling of the auto-correlation function takes the form:

Lemma 3.4.2. : For m → ∞ with fixed n − m = h = const the auto-correlation

function, φ(m+ h,m), asymptotically scales as:

φ(m+ h,m) ∼





4
2−α

m2−α , for 0 < α < 2 ,

4 ln(m) , for α = 2 ,

const , for α > 2 .

(3.35)

Proof. For 0 < α < 2 the leading-order contributions of the first and third term

in Eq. (3.30b) have the same scaling, m2−α. These terms dominate the scaling of
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(a) Correlations for fixed time m.
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(b) Correlations for fixed time lag h = n − m.

Figure 3.2: Comparison of the auto-correlation function, φ(n,m), and expressions

for its asymptotic scaling, for α = 1/2 in two different cases. The functions φ(n,m)

obtained from the sums of Eq. (3.30b) are plotted as solid lines. The respective

asymptotic expressions are indicated by dashed lines. (a) The limit of large n for a

for fixed value of m. The values of m are provided in the figure legend in the order

of the lines from top to bottom. The asymptotic scaling is provided by Eq. (3.33).

(b) The large-m limit for a fixed time lag h = n−m. The values of h are provided

in the figure legend in the order of the lines from top to bottom. The asymptotic

scaling is provided by Eq. (3.35). In the lower panels we show the ratio of the auto-

correlation function and the respective asymptotic expressions. (Figures adapted

from Ref. [25]).

the second sum, Eq. (3.34). In this range one hence recovers the scaling of the

mean-square displacement in Eq. (3.19).

For α = 2 the second and third terms in Eq. (3.30b) take constant values, while

the first one diverges logarithmically according to Eq. (3.18a). Finally, for α > 2 all

sums contributing to Eq. (3.30b) take constant values.

The dashed lines in Figure 3.2b show the asymptotic behaviour, Eq. (3.35), for α =

1/2, and different time lags h = n−m. They provide an excellent description of the

asymptotics of the numerical evaluation of the definition, Eq. (A.17a) (solid lines).

The lower panel of the figure demonstrates that the ratio of the auto-correlation
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function and the prediction of its asymptotic behaviour approaches 1 for a vast

range of values of h.

3.4.3 Scaling of φ(m+ ℓmq, m) for m → ∞ with ℓ > 0

For q < 1, q = 1, and q > 1 the auto-correlation function shows different scalings.

Scaling for q < 1. In this case bounds for the second sum in Eq. (3.30b) can

be provided by a calculation fully analogous to the derivation of Eq. (3.34). This

provides the scaling

2m
m+h∑

k=m+1

k∆k(α) ∼





2α ℓm1−q−α , for 0 < α < 1 ,

O(1) , for 1 ≤ α .

This scaling is always sub-dominant with respect to those of the other two sums

in Eq. (3.30b). As far as the asymptotic scaling is concerned we have the same

situation as for fixed n − m = h, and the auto-correlation function has the same

scaling in these two limits.

Lemma 3.4.3. : For q < 1, ℓ > 0, and m → ∞ the auto-correlation function,

φ(m+ℓmq, m) follows the same asymptotic scaling, Eq. (3.35), as for the case where

the time difference between the arguments is constant,

φ(m+ ℓmq, m) ∼ φ(m+ h,m) , for ℓ, h > 0 and q < 1 . (3.36)

Scaling for q = 1. In this case we have n = m + ℓmq = (1 + ℓ)m, i.e. n is

proportional to m. In order to find the scaling for large m, we start from Eq. (3.31).

For α 6= 1 the two sums on the right-hand side scale like a power law with exponent

1 − α and a constant offset that is relevant when α > 1. The constant drops out

when taking the difference, so that we obtain

2m
n∑

k=m+1

k∆k(α) ∼ 2mα

1 − α

(
n1−α −m1−α

)
, (3.37a)

=
2α

1 − α

(
(ℓ+ 1)1−α − 1

)
m2−α for α 6= 1 . (3.37b)
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Moreover, for α = 1 the sum diverges logarithmically:

2m
n∑

k=m+1

k∆k(α) ∼ 2mα ln
n

m
= 2m ln(1 + ℓ), for α = 1 . (3.37c)

Hence, the leading-order scaling of the auto-correlation function is given by:

Lemma 3.4.4. : For any ℓ > 0 the auto-correlation function, φ((1 + ℓ)m,m),

asymptotically scales as:

φ((1 + ℓ)m,m) ∼





2
1−α

(
(1 + ℓ)1−α − α

2−α

)
m2−α , for 0 < α < 2, α 6= 1 ,

(4 + 2 ln(1 + ℓ)) m, for α = 1 ,

4 ln(m) , for α = 2 ,

const , for α > 2 .

(3.38)

Proof. The cases α ≥ 2 are obtained as in Lemma 3.4.1. For 0 < α < 2 the leading-

order contributions to all three sums in Eq. (3.30a) scale like m2−α. The case α = 1

is special, however, because the second sum takes a different prefactor, Eq. (3.37c),

rather the one obtained in Eq. (3.37b). For 0 < α < 2 and α 6= 1 we have

φ((1 + ℓ)m,m) ∼
(

2α

2 − α
+

2α

1 − α

(
(1 + ℓ)1−α − 1

)
+ 2 (1 + ℓ)1−α

)
m2−α ,

while for α = 1 we have

φ((1 + ℓ)m,m) ∼ (2 + 2 ln(1 + ℓ) + 2) m.

The result indicated in Eq. (3.38) is obtained after collecting terms.

Scaling for q > 1. In this case Eq. (3.37a) still applies, but n1−α is the

dominating term in the bracket for α > 1, while m1−α is the dominating term in the

bracket for α < 1. Moreover, the logarithm in the scaling provided in Eq. (3.37c)

now scales as ln(n/m) = ln(1 + ℓmq−1) ∼ (q − 1) ln(m). When we further observe

that n ∼ ℓmq, this implies

2m
n∑

k=m+1

k∆k(α) ∼





2 ℓ α
1−α

m1+q (1−α) , for 0 < α < 1 ,

2 (q − 1)m ln(m) , for α = 1 ,

2 α
α−1

m2−α , for α > 1 .

(3.39)
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Figure 3.3: Comparison of auto-correlation function φ(n,m) represented by solid

line with their respective asymptotic scaling in Eq. (3.40). The large-m limit for

φ(m+ ℓmq) with α = 0.5 and fixed q = 1.4.

Hence, the leading-order scaling of the auto-correlation function obeys the following:

Lemma 3.4.5. : For q > 1, ℓ > 0, and m → ∞ the auto-correlation function,

φ(m+ ℓmq, m) asymptotically scales as:

φ(m+ ℓmq, m) ∼





2
1−α

ℓ1−α m1+q (1−α) , for 0 < α < 1 ,

2 (q − 1)m ln(m) , for α = 1 ,

2 α
(2−α) (α−1)

m2−α , for 1 < α < 2 ,

4 ln(m) , for α = 2 ,

const , for α > 2 .

(3.40)

Proof. The cases α ≥ 2 are obtained as in Lemma 3.4.1. For 1 < α < 2 the leading-

order contributions scale like m2−α. They appear in the first and in the second
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sum on the right-hand-side of Eq. (3.30b). Collecting the corresponding terms in

Eqs. (3.18a) and (3.39) we obtain

φ(m+ ℓmq, m) ∼
(

2α

2 − α
+

2α

α − 1

)
m2−α =

2α

(2 − α) (α− 1)
m2−α .

For α = 1 the leading-order scaling contribution to the auto-correlation function

is provided in Eq. (3.39).

For 0 < α < 1 the leading-order contributions scale like mn1−α ∼ ℓ1−α m1+q (1−α).

Collecting these terms in Eqs. (3.18b) and (3.39) provides

φ(m+ ℓmq, m) ∼
(

2α

1 − α
+ 2

)
ℓ1−α m1+q (1−α) =

2

1 − α
ℓ1−α m1+q (1−α) .

3.5 Moments of velocity

The velocity of any point of the SM is either +1 or −1 and moments of the velocity

can be determined by evaluating

〈vp(n)〉 = 2
n∑

k=1

vp
k(n)∆k(α) + 2

∞∑

k=n+1

vp
k(n)∆k(α) , (3.41)

where vk(n) is the velocity at time n of particle with x ∈ [ℓ+
k−1, ℓ

+
k ). The velocity of

the particle is given by

vk(n) = I{n<k} − (−1)n−kI{n≥k}, (3.42)

where IA is the indicator of the event A. Then by using Eq. (3.42) in (3.41), one

finds

〈vp(n)〉 = 2(−1)p(n+1)
n∑

k=1

(−1)pk∆k(α) + 2
∞∑

k=n+1

∆k(α) , (3.43)

In the following we give the separate expression(s) for the even and odd moments

of velocity.

The even moments of velocity are

〈vp(n)〉 = 2
n∑

k=1

∆k(α) + 2
∞∑

k=n+1

∆k(α) , even p ≥ 2 . (3.44)

In order to compute expression of odd moments, first we split the sum in Eq. (3.43)

into two cases and simplify, in following proposition
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Proposition 3.5.1. For α > 0 and odd p ≥ 1, the following result holds

2(−1)p(n+1)
n∑

k=1

(−1)pk∆k(α) =





−1 − 4
n/2∑
k=1

∆2k(α) + 2ℓ+
n (α) , for even n ,

1 + 4
(n−1)/2∑

k=1
∆2k(α) − 2ℓ+

n (α) , for odd n ,

(3.45)

where ℓ+
0 (α) = 1/2 and ∆2k(α) expressed in Eq. (A.16).

Proof. See appendix A.3.

Substituting Eq. (3.45) in to (3.43), the odd p ≥ 1 moments of velocity are

〈vp(n)〉 =





−1 + 2ℓ+
n (α) − 4

n/2∑
k=1

∆2k(α) + 2
∞∑

k=n+1
∆k(α) , for even n ,

1 − 2ℓ+
n (α) + 4

(n−1)/2∑
k=1

∆2k(α) + 2
∞∑

k=n+1
∆k(α) , for odd n .

(3.46)

3.5.1 Asymptotic scaling

The asymptotic scaling for the even moments of velocity is found as a straightforward

consequence of the definition of ∆k(α), cf. Eq. (3.14b), such that the sum

2
∞∑

k=n+1

∆k(α) = 2 ℓn−1 = 2n−α

(
1 − α21/α

n
+O(n−2)

)
∼ 2n−α, n → ∞. (3.47)

converges for α > 0.

Therefore the even moments of velocity scale asymptotically like

〈vp(n)〉 ∼ 1, even p ≥ 2, n → ∞ . (3.48)

Theorem 3.5.2. For α > 0 and n → ∞, the odd p ≥ 1 moments of velocity 〈vp(n)〉
scales asymptotically as:

〈vp(n)〉 ∼





3 − 4 ln(2) , for even n, α = 1,

−3 + 4 ln(2) , for odd n, α = 1,

1 − 4L(α) , for even n, 0 < α < 2,

−1 + 4L(α) , for odd n, 0 < α < 2 ,

(3.49)

where

L(α) =
∞∑

k=1

∆2k(α).
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Proof. The asymptotic behaviour of the series in Eq. (3.46) can be evaluated by

recalling the definition of ∆k(α) (cf. Eq. (3.14c)). The asymptotic scaling of the

sum
∑∞

k=n+1 ∆k(α) is computed in Eq. (3.47).

We now find the scaling for α = 1.

Scaling for α = 1. In this case the first sum in Eq. (3.46), recalling definition

of ∆2k (cf. Eq. (A.16)) can be written as

4
n/2∑

k=1

∆2k(α) := 4
n/2∑

k=1

(
1

(2k − 1 + 21/α)α
− 1

(2k + 21/α)α

)
= 4

n/2∑

k=1

(
1

2k + 1
− 1

2k + 2

)
.

(3.50)

Lemma 3.5.3. For α = 1, the series in Eq. (3.50) has the following representation

n/2∑

k=1

1

(2k + 1)(2k + 2)
=

1

2

(
Hn+1

2
−Hn

2
+1 − 1 + ln(4)

)
, (3.51)

for n = 2, 4, 6, · · · , where Hn =
∑n

k=1 k
−1 is the nth harmonic number.

Proof. See appendix A.2.

The n-th harmonic number Hn, is as large as the natural logarithm of n, because

the sum
∑n

k=1 k
−1 is approximated by the integral

∫ n
1 1/x dx = ln n. As n → ∞

the sequence (Hn − ln n) decreases monotonically towards the limit:

lim
n→∞

(Hn − ln n) = γ ,

where γ is the Euler-Mascheroni constant, which has the value γ ≡ 0.57722. The

asymptotic expansion for n → ∞ is

Hn = ln n + γ +
1

2n

∞∑

k=1

B2k

2kn2k
= ln n+ γ +

1

2n
− 1

12n2
+

1

120n4
− · · · , (3.52)

where Bk are the Bernoulli numbers (see for instance [29]).

Hence we can write

Hn+1
2

−Hn
2

+1 ∼ ln
(
n + 1

2

)
− ln

(
n

2
+ 1

)
∼ − 1

n
. (3.53)
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Therefore the sum reported in Eq. (3.50), asymptotically scales as

4
n/2∑

k=1

∆2k(α) ∼ 4 ln 2 − 2 − 2

n
. (3.54)

It turns to ∼ 4 ln 2 − 2, as n → ∞. The results indicated in Eq. (3.49) for α = 1,

are obtained after collecting terms from Eqs. (3.47) and (3.54).

Scaling for 0 < α < 2. Recalling ∆2k (cf. Eq. (A.16)), the sum in Eq. (3.46)

can be written as

n/2∑

k=1

∆2k(α) =
n/2∑

k=1

α

(2k)α+1
(1 − fα(k)) , and fα(k) :=

c̃(α)

2k
+ O

(
k−2

)
. (3.55)

Thus the sums

L(α) :=
n/2∑

k=1

∆2k(α) +
∞∑

k=n/2+1

∆2k(α) . (3.56a)

will converge for α > 0, and they can be estimated as

n/2∑

k=1

∆2k(α) ∼ L(α) − O
(
n−α

)
, (3.56b)

where L(α) is the sum all the way to infinity.

The results of Eq. (3.49) for 0 < α < 2 are obtained after collecting terms from

Eqs. (3.47) and (3.56b).

3.6 1-time velocity auto-correlation 〈v(0)v(n)〉

The velocity of any point of the SM is either +1 or −1 and its auto-correlation is

defined by

〈v(0)v(n)〉 = 2
n∑

k=1

v(0)vk(n)∆k(α) + 2
∞∑

k=n+1

v(0)vk(n)∆k(α) , (3.57)

where vk(n) is the velocity at time n of a particle with x ∈ [ℓ+
k−1, ℓ

+
k ) and v(0) = 1.

Then by using Eq. (3.42) in (3.57), one finds:

〈v(0)v(n)〉 = 2
n∑

k=1

{
−(−1)n−kI{n≥k}

}
∆k(α) + 2

∞∑

k=n+1

{
I{n<k}

}
∆k(α). (3.58)
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Figure 3.4: Representation of Eq. (3.60) for even time n with different values of

α. All curves converge to finite value. In particular, the dashed line mark the

asymptotic behaviour computed in Eq. (3.49) for α = 1.

Therefore the VACF can be expressed as follows

〈v(0)v(n)〉 = 2(−1)n+1
n∑

k=1

(−1)k∆k(α) + 2
∞∑

k=n+1

∆k(α). (3.59)

The first sum of this expression has same contribution as in proposition 3.5.1 with

p = 1. Then substituting Eq. (3.45) in to (3.59), we find the (time dependent)

VACF of the SM

〈v(0)v(n)〉 =





−1 + 2ℓ+
n (α) − 4

n/2∑
k=1

∆2k(α) + 2
∞∑

k=n+1
∆k(α) , for even n ,

1 − 2ℓ+
n (α) + 4

(n−1)/2∑
k=1

∆2k(α) + 2
∞∑

k=n+1
∆k(α) , for odd n .

(3.60)

Remark 3.6.1. For α > 0, the 1-time velocity auto-correlation functions behave
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like the odd p ≥ 1 moments of the velocity i.e., 〈v(0)v(n)〉 = 〈vp(n)〉, cf. Eqs. (3.60)

and (3.46).

Lemma 3.6.2. For α > 0 and n → ∞, the 1-time velocity auto-correlation function

〈v(0)v(n)〉 has the same asymptotic scaling, Eq. (3.49), as for the odd moments of

the velocity 〈vp(n)〉 i.e.,

〈v(0)v(n)〉 ∼ 〈vp(n)〉, for odd p ≥ 1. (3.61)

3.7 2-times velocity auto-correlation 〈v(m)v(n)〉

In this section, we look for the expression of the VACF of the SM for times m and

n. Adopting m ≤ n, and recalling Eq. (3.42) we have:

vk(n)vk(m) = (−1)m−k(−1)n−kI{n≥k}I{m≥k} − (−1)n−kI{n≥k}I{m<k} + I{n<k}I{m<k}.

(3.62)

Multiplying by ∆k(α) and summing over k, yields

〈v(n)v(m)〉 = 2
m∑

k=1

(−1)n−k(−1)m−k∆k(α) − 2
n∑

k=m+1

(−1)n−k∆k(α) + 2
∞∑

k=n+1

∆k(α) ,

= 2(−1)n+m
m∑

k=1

∆k(α) − 2(−1)n
n∑

k=m+1

(−1)k∆k(α) + 2
∞∑

k=n+1

∆k(α) .

(3.63)

We evaluate this for the following cases

(i) m and n are even,

(ii) m and n are odd ,

(iii) m even and n odd,

(iv) m odd and n even .

Here we consider the simplest case, when n −m = h = const.
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Case 1. m and n both either even or odd. According to the definition of

velocity vk(n), presented in Eq. (3.42), the VACF in Eq. (3.63) has the following

contribution: The first sum represents those trajectories that start oscillating be-

tween +1 and −1 because k < m < n, so when m and n, are even-even or odd-odd,

the velocity vk(m)vk(n) will remain +1. The second sum refers to trajectories which

got stuck between +1 and −1 for m < k < n (i.e., vk(n)), while it is still travelling

with velocity +1. In the third sum thee trajectories are flying with velocity +1 at

both times m < n < k. We called this the travelling area. In the case a and b,

Eq. (3.63) turns to:

〈v(n)v(m)〉 = 2
m∑

k=1

∆k(α) − 2(−1)n
n∑

k=m+1

(−1)k∆k(α) + 2
∞∑

k=n+1

∆k(α) . (3.64)

Case 2. m even and n odd or vice versa.

〈v(n)v(m)〉 = −2
m∑

k=1

∆k(α) − (−1)n
n∑

k=m+1

(−1)k∆k(α) + 2
∞∑

k=n+1

∆k(α) . (3.65)

Lemma 3.7.1. Given α ≥ 0, the velocity auto-correlation function of the Slicer

dynamics for uniformly distributed initial condition in M̂0 has the following expres-

sions

〈v(m)v(n)〉 =




−2ℓ+
m(α) + 2ℓ+

n (α) + 2
m∑

k=1
∆k(α) − 4

n/2∑
k=m+1

∆2k(α) + 2
∞∑

k=n+1
∆k(α), for m,n even,

2ℓ+
m(α) − 2ℓ+

n (α) + 2
m∑

k=1
∆k(α) + 4

(n−1)/2∑
k=m+1

∆2k(α) + 2
∞∑

k=n+1
∆k(α), for m,n odd,

1 − 4ℓ+
m(α) + 2ℓ+

n (α) − 4
n/2∑

k=m+1
∆2k(α) + 2

∞∑
k=n+1

∆k(α), for m odd, n even,

1 − 2ℓ+
n (α) + 4

(n−1)/2∑
k=m+1

∆2k(α) + 2
∞∑

k=n+1
∆k(α), for m even, n odd.

(3.66)

Proposition 3.7.2. For m → ∞ with n = m + h, h > 0 finite, the velocity auto-

correlation function, 〈v(m)v(n)〉, defined in Eq. (3.66), scales asymptotically as:

〈v(m)v(n)〉 ∼





1, for m, n; even or odd,

−1, for m, n; even-odd, or odd-even.

(3.67)
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Figure 3.5: Illustration of VACF, Eq. (3.66), for n − m = h = 103, along with

their respective asymptotic behaviour coumputed in Eq. (3.67). Irrespective of α all

curves eventually converges to +1 or −1 with different convergence rate.

Proof. We start by Eq. (3.66). Recalling Eq. (3.14b), we have

m∑

k=1

∆k(α) =
1

2
, as m → ∞ . (3.68)

While the sum
∑n=m+h

k=m+1 ∆2k(α), in Eq. (3.66), can be evaluated as follows

n∑

k=m+1

∆2k(α) =
n∑

k=m+1

α

(2k)α+1
− αc̃(α)

2α+2

n∑

k=m+1

1

kα+2
+

n∑

k=m+1

O
(

1

kα+3

)
, (3.69)

and c̃(α) represented in Eq. (A.1b).

Thus the bound of the first sum of the previous expression is

h

(m+ h)p
≤

m+h∑

k=m+1

1

kp
≤ h

mp
, (3.70)
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similar bounds of remaining terms can be written as

n=m+h∑

k=m+1

α

kα+1
∼ αhm−(α+1) ,

n=m+h∑

k=m+1

α

kα+2
= O

(
m−(α+2)

)
,

n=m+h∑

k=m+1

O
(

α

kα+3

)
= O

(
m−(α+3)

)
. (3.71)

Hence
n=m+h∑

k=m+1

∆2k(α) ∼ α hm−(α+1) , h > 0, α > 0 , m → ∞ . (3.72)

The results shown in Eq. (3.67) are obtained after collecting the terms.

Remark 3.7.3. For m = 0 the 2-times velocity auto-correlation functions presented

in Eq. (3.66) reduces to the 1-time velocity auto-correlation, Eq. (3.60).

3.8 Summary

Dynamical systems that exhibit all possible diffusion regimes in the field of anoma-

lous transport are rare in literature, although in the realm of deterministic dynamics

several authors [30, 31, 32] investigated anomalous diffusion. In [53] the SM mo-

ments of displacement were computed analytically. In this chapter (see also [25])

we performed a more daring task the computation of the position auto-correlation

functions. In [53] it has also been proven that the SM and the LLg are asymp-

totically indistinguishable at the level of moments. This gives rise to the more

challenging task to establish the equivalence also for the correlation functions. In

chapter 4 we will show the statistical equivalence of the moments and the position

auto-correlation functions of the SM and the LLg.



Chapter 4

Equivalence of position

correlations: SM and LLg

“If you’re going to Limit you dreams lim
x→∞

f(x) = ∞,

at least tend them to infinity.”

— Plato Poster

In this chapter we establish the equivalence of the position auto-correlation func-

tions of the Slicer Map [53] (deterministic process) and the Lévy-Lorentz gas [10]

(stochastic process). We start with a brief introduction of the LLg and its analytical

derivation for the moments of displacement. First we compare the analytical results

of moments with numerically computed moments. Then, we compare the SM posi-

tion auto-correlation functions which we have computed analytically in chapter 3,

with the LLg position auto-correlation functions which are determined numerically.

We will find that the position auto-correlations of the SM and to the LLg agree, at

least in the low scatterers density of the LLg.

4.1 Lévy walks in quenched disordered media

The Lévy-Lorentz gas deals with the motion of a point particle in a one-dimensional

random environment [4]. It moves ballistically (with velocity ±v) between static

point scatterers arranged on a line from which it is either transmitted or reflected

55
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with probability 1/2. The distances r between two consecutive scatterers are random

variables drawn independently from a Lévy distribution with density:

λ(r) ≡ βrβ
0

1

rβ+1
, r ∈ [r0,+∞). (4.1)

Here β > 0 and r0 is a cutoff fixing the characteristic length scale of the system.

The setup is sketched in Fig. 4.1.

A subtle effect of quenched disorder is the dependence of the observables on the

choice of the walker starting site. In particular, on in-homogeneous structures, the

averages over different starting points can provide different results with respect to

the corresponding local quantities [9, 11]. Thus there is an intricate dependence

on initial condition. In what follows my computation refers to the non-equilibrium

initial condition, where all particles start on the same scatterrer (i.e., δ-function

localized on a scatter.)

Under the hypothesis of single long jumps, Burioni et al. [10] derive an analytical

expression for asymptotic behaviour of the characteristics scale length ℓ(t) of prob-

ability distribution P (r, t) for the mean-square displacement 〈r2(t)〉, when averaged

over the scattering points. For large t it scales as follows

ℓ(t) ∼





t1/(1+β) , for 0 < β < 1 ,

t1/2 , for β ≥ 1 .

(4.2)

First we define the most general scaling hypothesis for P (r, t) in a one dimensional

system:

P (r, t) = ℓ−1(t)f

(
r

ℓ(t)

)
+ g(r, t) , (4.3)

where ℓ−1(t)f(r/ℓ(t)) is the leading and g(r, t) is subleading contribution. For con-

vergence in probability for the leading term it is assumed that

lim
t→∞

∫ vt

0
dr

∣∣∣∣∣P (r, t) − ℓ−1(t)f

(
r

ℓ(t)

)∣∣∣∣∣ = 0 , (4.4)

while for convergence in probability of the subleading contribution they require

lim
t→∞

∫ vt

0
dr |g(r, t)| = 0 . (4.5)
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Figure 4.1: The one dimensional Lévy-Lorentz lattice gas model is equivalent elec-

tric problem (see [5]). Scatterers are placed randomly at positions 0, Y1, Y2, · · · .

The spacing |Yi+1 − Yi| between scatterers are Lévy distributed according to the

probability density Eq. (4.1).

The integration cut off is provided by the fact that the walker (a point particle)

covers at most the distance vt in time t where v = ±1 is the velocity of the walker.

The leading term ℓ−1(t)f(r/ℓ(t)) is significantly different from zero for r . ℓ(t).

The subleading term with the condition Eq. (4.5) leads to ℓ(t) ≪ r < t. Hence,

it describes the behaviour at large distances. Since g(r, t) is a subleading term,

even it can give an essential contribution to the mean-square displacement 〈r2(t)〉
if it does not vanish rapidly. The explicit analytical expression of the mean-square

displacement now reads:

〈r2(t)〉 =
∫ vt

0
dr ℓ−1(t)f

(
r

ℓ(t)

)
r2 +

∫ vt

0
dr g(r, t)r2. (4.6)

Anomalies for the standard behaviour 〈r2(t)〉 ∼ ℓ2(t), can be present for two signifi-

cant reasons. Firstly, the second term in Eq. (4.6) can be dominant with respect to

the first one (this happen e.g., while averaging over any initial site [3]). Secondly,

a more subtle anomaly shows up if the scaling function f(x) decays gradually for

x → ∞, as observed in the annealed model described in [24, 56, 64]. Depending on

the choice of β the process presents both behaviours [10].
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Since the anomalies are determined by the regime where r ≫ ℓ(t), we expect

that the mean-square displacement is dominated by a single long jump of length r.

Expectations over starting sites the probability of “long jump” is considerably higher

at the initial step. Thus the single long range events appears at t = 0. On the other

hand, it can happen, with equal probability, at any scattering site. Specifically,

neglecting the multiple “long jumps”. We eventually get, for r ≫ ℓ(t)

P (r, t) ∼ N(t)

r1+β
≪ 1 , (4.7)

where N(t) is the number of scattering events visited by the particle at time t, and

1/r1+β is the probability for a scatterer to be followed by the jump of length r.

Discarding the single long jump, the distance crossed by the walker in time t is

of order ℓ(t). According to Ref. [5], the number of scattering sites visited in this

time is the resistance of a segment of length ℓ(t), i.e., ℓ(t)β for β < 1, and ℓ(t) for

β > 1. This implies that N(t) ∼ tβ/(1+β) for β < 1 and N(t) ∼ t1/2 for β ≥ 1. Now

summarize our assumptions, we estimate P (r, t) for β < 1 and r ≫ ℓ(t) as

P (r, t) ∼ tβ/(β+1) 1

rβ+1
∼ 1

ℓ(t)

(
r

ℓ(t)

)−(β+1)

. (4.8)

The scaling function f(x) features a long tail for large x decaying as x−(β+1).

We note that the contribution to 〈r2(t)〉 of lengths r . ℓ(t) is always of order ℓ(t)2,

while at larger distances, the dominant contribution is provided by previously stated

probability distributions Eq. (4.8). The contribution coming from these tails are,

for β < 1 ∫ vt

ℓ(t)
dr tβ/(1+β) r2

r1+β
∼ t(2+2β−β2)/(1+β) . (4.9)

On the other hand we also estimate P (r, t) for β ≥ 1 and r ≫ ℓ(t), we have

P (r, t) ∼ t1/2 1

rβ+1
∼ 1

t(β−1)/2ℓ(t)

(
r

ℓ(t)

)−(β+1)

∼ g(r, t) . (4.10)

We discussed previously that g(r, t) contributes a subleading term and converges

in probability as defined by Eq. (4.5). Thus for β > 1, the dominant contribution

provided by Eq. (4.10) to 〈r2(t)〉 is:

∫ vt

ℓ(t)
dr t1/2 r2

r1+β
∼ t5/2−β . (4.11)
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The contribution Eq. (4.9) for large times is always greater than ℓ2(t), while Eq. (4.11)

is dominant with respect ℓ2(t) only for β < 3/2.

Barkai et al. [4] calculated bounds for the mean-square displacement for equi-

librium and non-equilibrium initial conditions. Subsequently, Burioni et al. [10]

adopted some simplifying assumptions expand this argument in order to find the

asymptotic form for non-equilibrium conditions of all moments 〈|r(t)|p〉 with p > 0

〈|r(t)|p〉 ∼





t
p

1+β , for β < 1, p < β ,

t
p(1+β)−β2

1+β , for β < 1, p > β ,

t
p
2 , for β > 1, p < 2β − 1 ,

t
1
2

+p−β , for β > 1, p > 2β − 1 .

(4.12)

4.2 Comparison of the SM and the LLg

The similarities and differences between the LLg and the SM have been enlightened

in [53]. The LLg shares basic similarities with the SM in that both systems deal

with non-interacting particles and the initial condition plays an important role. On

the other hand, the differences are evident: the LLg is a continuous-time stochastic

system, while the SM is discrete-time and deterministic. In particular, the LLg

dependence on the initial condition is much more intricate than in the SM: the

LLg transport properties depend on whether a walker starts anywhere on the line,

which means typically between two scatterers, called equilibrium initial condition, or

exactly at a scatterer, called non-equilibrium initial condition [4, 10]. In the following

we always consider non-equilibrium initial condition. In Ref. [4], the bounds for

the mean-square displaccement have been calculated in both cases, while in [10],

simplifying assumptions led to analytic expressions Eq. (4.12) for non-equilibrium

conditions.
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4.2.1 Moments of the displacement

For the mean-square displacement, p = 2, Eq. (4.12) implies

〈r(t)2〉 ∼ tγ , with γ =





2 − β2

(1+β)
, for β < 1 ,

5
2

− β , for 1 ≤ β < 3/2 ,

1 , for 3/2 ≤ β .

(4.13)

Unlike the SM case, that enjoys sub-diffusive transport for α > 1, non-equilibrium

initial conditions for the LLg only lead to super-diffusive (0 < β < 3/2) or diffusive

(β ≥ 3/2) regimes: sub-diffusion is not expected.

Salari et al. [53] observed that the moments of the SM in its super-diffusive

regime (0 < α < 1) can be mapped to those of the LLg. They proved that all

moments of the SM, Eq. (3.20), scale like those conjectured and numerically vali-

dated for the LLg, Eq. (4.12), once the second moments do. This is the case if the

following holds, cf. Eqs. (3.19) and (4.13):

α =





β2

(1+β)
, for 0 < β ≤ 1 ,

β − 1
2
, for 1 < β ≤ 3

2
,

1 , for 3
2
< β .

(4.14)

When adopting this mapping also all other moments of the SM agree with those of

the LLg, Eq. (4.12). The (α, β) correspondence is represented in the inset of Fig. 4.3.

Adopting the relation Eq. (4.14) makes the SM and the LLg asymptotically indis-

tinguishable from the viewpoint of moments, provided the assumptions of [10] hold.

This equivalence is by no means trivial. In particular, the relation takes different

functional forms in different parameters ranges, because the LLg has different scal-

ing regimes for super-diffusive transport, while the SM has only one regime for all

kinds of transport. The moments carry only partial information on the properties of

the (anomalous) transport, and this information is not sufficient to distinguish the

substantially different dynamics of the SM and the LLg. We now explore whether

the position auto-correlations of the two dynamics differ. The correlations were cal-

culated analytically for the SM in Sec. 3.4. This prediction will now be compared
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to numerical data for the LLg. For correlations in the LLg there are no analytic

results such as those of [10] for the moments.

4.2.2 Numerical implementation of the LLg

The non-equilibrium initial conditions for the LLg are implemented by starting each

particle in the origin x0 = 0, where a scatterer is assumed to be present in all

realisations of the scatterers distribution. Moreover, trajectories that return to the

origin provide a minor contribution to the moments for super-diffusive transport.

For numerical efficiency we slightly modify the original dynamics of the LLg, placing

a reflecting barrier at x = 0 and giving an initial positive velocity to each LLg walker.

The resulting system, that evolves in R
+
0 , will be denoted LLg+.

More precisely, let (L0, L1, L2, . . .) be a sequence of i.i.d. random variables with

density Eq. (4.1), and let Yi+1 = Yi + Li, i = 0, 1, 2, . . ., with Y0 ≡ 0. Denote by

Y a given realisation of the sequence (Y0 ≡ 0, Y1, Y2, . . .), that represents one set of

random scatterers distribution in R
+
0 . We introduce the discrete-time process that

represents the LLg+at the scattering events. Let ω = (ω0, ω1, ω2, . . .) be a random

walk on Z
+
0 with the conditions that ω0 ≡ 0 and ωn − ωn−1, n = 1, 2, . . . are i.i.d.

dicotomic variables with P (ωn−ωn−1 = +1 |ωn−1 6= 0) = P (ωn−ωn−1 = −1 |ωn−1 6=
0) = 1/2, and P (ωn − ωn−1 = +1 |ωn−1 = 0) = 1. These conditions mean that the

walk starts at 0 and whenever it returns there, it is reflected to the right. Away

from 0, each walker follows a simple symmetric random walk. Then, the process that

represents the position of the moving particle at the scattering events will be given

by W = (Yω0, Yω1, Yω2, . . .). From knowledge of W, the continuous-time position r(t)

of the corresponding moving particle of LLg+can be unambiguously reconstructed,

because the velocity between any two scattering events is constant. This procedure

has been implemented in a FORTRAN code by introducing a truncation in the

sequence of scattering events ω̄ = (ω0, ω1, ω2, . . . , ωN) that corresponds to a time

T = T (ω̄, Y) at which the process r(t) stops. The stopping time T (ω̄, Y) is random,

1Best fit to data estimated from the simple linear regression algorithm by using curve fitting

tool box of MATLAB.
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Figure 4.2: Data of the mean-square displacement of the LLg+ are presented by

symbols as a function of time t for different values of β. The thin (red) lines provide

the best fit to the data1. In Fig. 4.3 and Tab. 4.1 we compare the fit results to the

theoretical predictions.

and typically large if the scatterers are placed at large distances from one another,

i.e., for small β. In contrast, for large β, the distances are on average approximately

equal r0.2 Therefore, one expects typically smaller and smaller T (ω̄, Y) for larger

and larger β, with the risk of under-sampling the large-time behaviour of LLg+in

numerical estimates of statistical properties. We took care that this problem does

not arise in the data shown here.

The process r(t) is affected by two sources of stochasticity: the environment Y

and the scattering ω. Hence, averages can be taken in two different fashions. Let

us denote by Eω the average w.r.t. the process ω, i.e., the average over particles

2More precisely, if L is distributed according to Eq. (4.1), then E[L] = +∞ if β ≤ 1 and

E[L] = βr0

β−1 if β > 1. Moreover the variance is
β r2

0

(β−2)(β−1)2 for β > 2 and +∞ for β ≤ 2. For β ≫ 1

the expected distance is therefore E[L] ≃ r0 with relative deviations of the order of β−1.
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Figure 4.3: Theoretical values of the exponent γ in Eq. (4.13) compared with the

fitted values as a function of β with their confidence bounds. The inset shows the

(α, β) functional relationship, represented by Eq. (4.14).

that can be identified with their scattering sequences in a given realisation of the

environment. Analogously, let EY denote the average over the random scatterers

realisations. Then, the average of r2(t) at fixed scatterers configuration Y, is denoted

by Eω(r2(t)|Y). This is a random quantity because Y is random. Averaging this

quantity over the ensemble of scatterers yields the mean-square displacement of the

LLg+:

〈r2(t)〉β = EY [Eω(r2(t)|Y)] . (4.15)

The subscript β indicates that the distribution of scatterers, Eq. (4.1), depends on

β. Our choice of r0 and v in the numerical simulations of the LLg+ follows [10]. We

set the characteristic length r0 to 0.1, and the velocity v of the ballistic motion is

always 1. The number of simulated scattering events is N = 2.5 ·106. We tested the

3The 95% confidence intervals are computed by simple linear regression model, which are pre-

sented in fourth column of Tab. 4.1, as the 0.975 quantile of data t-distribution with 18 degrees
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β γ

Eq. (4.13) fit to data C.I.3 95%

0.1 1.99 1.99 ±0.01

0.3 1.93 1.93 ±0.02

0.5 1.83 1.82 ±0.03

0.6 1.77 1.73 ±0.03

0.8 1.64 1.63 ±0.07

1.0 1.50 1.51 ±0.1

1.3 1.20 1.18 ±0.1

2.0 1.00 0.95 ±0.1

Table 4.1: Comparison of numerical values for the scaling exponent γ of the mean-

square displacement in the LLg+(third column) vs. the prediction of Eq. (4.13)

(second column). The numerical estimate of γ agrees with the expressions derived

and tested in [10], while confidence interval of fit data are presented in fourth column.

code by calculating the mean-square displacement of the LLg+, in order to verify

the power-law behaviour, Eq. (4.13). Table 4.1 and Fig. 4.3 show that our numeri-

cal results for the mean-square displacement for the LLg+accurately reproduce the

exponent given in Eq. (4.13) for the LLg, at least for not too large values of β.

We attribute the slightly decreasing accuracy for increasing β to poorer statistics of

the numerical estimates, as suggested above. Therefore, in the following we mainly

focus on the cases with β . 1.

of freedom is t∗
18 = 2.101.



4.3. Comparison of correlations of the LLg+and SM 65

4.3 Comparison of correlations of the LLg+and

SM

For t, s ≥ 0, we define the position-position correlation function for the LLg+as

follows:

ϕ(t, s) = 〈r(t) r(s)〉β = EY [Eω(r(t)r(s)|Y)]. (4.16)

We aim at comparing the asymptotic behaviour of ϕ(t, s) with that of the SM cor-

relation function φ(n,m), Eq. (A.17a). Following the scaling adopted in Sec. 3.4.1,

3.4.2, and 3.4.3 for the SM we consider three cases:

1. ϕ(t, s) for t → ∞ at a fixed value of s.

2. ϕ(t+ τ, t) for t → ∞ at a fixed value of τ .

3. ϕ(t+ ℓ tq, t) for t → ∞ at fixed q and ℓ > 0.

Note that there is no free fit parameter in this comparison of the exponents, when

one assumes the relation Eq. (4.14) between α and β.

We test the asymptotic scaling form of the mean-square displacement of the

SM and the LLg+when α and β obey Eq. (4.14). Here, we now verify with some

scaling form of position auto-correlation function that α and β obey same relation

Eq. (4.14).

4.3.1 Correlation 〈r(t) r(s)〉β with s > 0 constant

In Sec. 3.4.1, we provided the scaling of the auto-correlation function for the SM,

Eq. (3.33), when one of its times is fixed. For 0 < α < 1 we have:

〈∆xn ∆xm〉α ∼ 2m

1 − α
n1−α, as n → ∞. (4.17)

Here and in the following we denote by 〈·〉α the ensemble average of the trajectories

of the SM with parameter α. In analogy to the scaling, Eq. (4.17), we propose the

following
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Conjecture 4.3.1. a: The auto-correlation function of the LLg+asymptotically

scales as the one of the SM. When the time s is fixed, the correlation function

〈r(t) r(s)〉β obeys:

lim
t→∞

〈r(t) r(s)〉β
2 s
w1
tw1

= C1 6= 0 , (4.18a)

with w1 = 1 − α(β) = γ(β) − 1 . (4.18b)
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Figure 4.4: Log-log plot of the correlation 〈r(t) r(s)〉β as a function of time t, for

different values of β and fixed s. The respective values for β are specified in the

figure legend. In this figure we also specify the values for the exponents w1 that

provide the best fit to the data. The approach of the data towards the solid line

in the bottom panel demonstrates that Eq. (4.18a) provides a faithful asymptotic

scaling, with C1 = 0.4. (Figure adapted from Ref. [25]).

Numerical Evidence. The LLg+correlations 〈r(t)r(s)〉β have been computed for

several values of s. Numerical results for fixed s = 2000 and different values of β
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Figure 4.5: Log-log plot of the correlation 〈r(t) r(s)〉β as a function of time t, for

different values of s with fixed β, the respective values are mentioned in legend

of figure. The approach of the data towards the solid line in the bottom panel

demonstrates that Eq. (4.18a) provides a faithful asymptotic scaling, with C1 = 0.4.

(Figure adapted from Ref. [25]).

between 0.1 and 0.8 are shown in the upper panel of Figure 4.4. Moreover, in the

upper panel of Figure 4.5 we show data for β = 0.1 and six values of s in the range

between 500 and 5000.

The respective lower panels show the time dependence of the ratio of Eq. (4.18a),

in order to test its asymptotic convergence. For small β and different s this ratio

provides a perfect data collapse (Figure 4.5). For larger β the data collapse is still

fair in view of the numerical accuracy of our data (Figure 4.4). Moreover, the scaling

exponents w1 adopted to achieve the collapse depend on β and they are independent

of s. The β-dependence agrees with the values w1 = 1 − α(β) = γ(β) − 1 suggested

by the SM (cf. the values for γ(β) provided in Table 4.1). Consequently, the SM
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provides a faithful description of the LLg+auto-correlation function, both as far as

the exponents and the the parameter-dependence of the prefactor is concerned.

4.3.2 Correlation 〈r(t+ τ) r(t)〉β with τ > 0 constant

In Sec. 3.4.2, we provided the scaling of the auto-correlation function for the SM,

Eq. (3.35),when the difference h between the times is fixed. For 0 < α < 2 and fixed

h, one has

〈∆xm+h ∆xm〉α ∼ 4

2 − α
m2−α, as m → ∞ . (4.19)

In analogy to this scaling we propose the following conjecture

Conjecture 4.3.1. b: The auto-correlation function of the LLg+asymptotically

scales like the one of the SM. When the time lag h is fixed, the correlation function

〈r(t) r(t+ τ)〉β obeys:

lim
t→∞

〈r(t+ τ) r(t)〉β
4

w2
tw2

= C2 6= 0 , (4.20a)

with w2 = 2 − α(β) = γ(β) . (4.20b)

Numerical Evidence. In Figure 4.6 we show numerical data for a fixed value τ = 500

and β in the range between 0.1 and 0.8, and Figure 4.7 represents a fixed value

β = 0.1 and τ in the range between 100 and 8000. The lower panels show the

ratio of the numerical data and the theoretical prediction, Eq. (4.20a). The curves

are not globally linear in the log-log plot. However, they approach a power law for

sufficiently large values of t, and in that range they nicely follow the asymptotic

scaling, Eq. (4.20a), with C2 = 0.45. The coefficient and the exponent of the

asymptotic law are independent of τ and the dependence of w2 faithfully agrees

with the expected value 2 − α(β) = γ(β), as provided in Table 4.1.

4.3.3 Correlation 〈r(t + ℓ tq) r(t)〉β with ℓ = 1 and 0 < q < 1

constant

In Sec. 3.4.3, we derived the auto-correlation for the SM, Eq. (3.33). For 0 < q < 1
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Figure 4.6: Log-log plots of the correlation 〈r(t+τ) r(t)〉β as a function of time t for

various values of β and any fixed τ . The respective values for β and τ are specified

in the figure legends. This figure also specifies the values for the exponents w2 that

provide the best fit to the data. The approach of the data towards the solid line

in the bottom panel demonstrates that Eq. (4.20a) provides a faithful asymptotic

scaling, with C2 = 0.45. (Figure adapted from Ref. [25]).

and 0 < α < 1, one has:

〈∆xm+mq ∆xm〉α ∼ 4

2 − α
m2−α, as m → ∞ . (4.21)

In analogy to this scaling, we propose the following

Conjecture 4.3.1. c: The auto-correlation function of the LLg+asymptotically

scales like the SM. For the time time lag ℓtq with 0 < q < 1 between its two
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Figure 4.7: Log-log plots of the correlation 〈r(t+ τ) r(t)〉β as a function of time t

for various values of tau and fixed β. The respective values for β and τ are specified

in the figure legends. This figure also represent for different choice of τ values all

curves converge to the same line. The approach of the data towards the solid line

in the bottom panel demonstrates that Eq. (4.20a) provides a faithful asymptotic

scaling, with C2 = 0.45. (Figure adapted from Ref. [25]).

times, the auto-correlation function 〈r(t) r(t+ ℓ tq)〉β obeys:

lim
t→∞

〈r(t+ ℓ tq) r(t)〉β
4

w3
tw3

= C3 6= 0 , (4.22a)

with w3 = 2 − α(β) = γ(β) . (4.22b)

Numerical Evidence. In Figure 4.8, we show numerical data for a fixed value q = 0.7

and β in the range between 0.1 and 0.8, and Figure 4.9 represents a fixed value

β = 0.1 and q in the range between 0.1 and 0.9. The lower panels show the ratio of

the numerical data and expected scaling, Eq. (4.22a). Also in this case there is an

excellent agreement between the data and the proposed asymptotic scaling.
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Figure 4.8: Log-log plot of the correlation 〈r(t)r(t+ tq)〉β as a function of time t for

various values of β and of h. The respective values for β and fixed q are specified

in the figure legends. This figure also specifies the values for the exponents w3 that

provide the best fit to the data. Also in this case the dependence of w3 agrees faith-

fully with the expected value γ(β) that has been provided in Table 4.1. Further, the

approach of the data towards the solid line in the bottom panel demonstrates again

that Eq. (4.22a) provides a faithful asymptotic scaling, with C3 = 0.45. (Figure

adapted from Ref. [25]).
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4.4 Quantitative comparison of the LLg+and SM

correlations function

In the previous section we explicitly compared the position auto-correlation function

of the SM and the LLg+. Now we shed some light on linear representation and the

detailed quantitative analysis of correlation functions. The asymptotic exponents

mapping of the correlations provides a faithful agreement between the SM and the

LLg+. We also provide numbers in brackets (·) that are error4 in the trailing digits

of the exponents which strengthen our argument with the SM exponents.

Different cases of correlations are considered for asymptotic scaling to gain insight

in the properties of SM and LLg+.

Correlation 〈r(t)r(h)〉β with h > 0 constant

The correlation for the SM is, see Sec. 3.4.1,

〈x(n)x(h)〉α ∼ 2h

1 − α
n1−α, n → ∞. (4.23)

The LLg+correlations 〈r(t)r(h)〉β have been computed for several values of h and

the asymptotic form

〈r(t)r(h)〉β ∼ d(h) tw(h) , (4.24)

has been fitted to the data. The results, for h = 103, 104 and several values of β are

reported in Tab. 4.2. The exponents are quite close, at least β . 1. To corroborate

this result, in Figs. 4.10 we report the log-log plot of 〈r(t)r(h)〉β vs t for some β’s and

varying h. The lines are parallel, indicating that w(h) is independent of h, as in the

case of SM. In Tab. 4.3, for h ranging from 500 up to 5000, with β = 0.1, that agrees

with exponent Eq. (4.23). The pre-factors d(h) in Eq. (4.24) and c(h) = 2h/(1−α) in

Eq. (4.23) are computed. Again, the correlations 〈x(n)x(h)〉α of the SM reproduce

quite well the asymptotic behaviour of the corresponding correlation function in

LLg+. In Figs. 4.10(d-f), the correlations 〈r(t)r(h)〉β for the same values of h,

4We compute errors while fitting data by simple linear regression model on curve fitting tool

(cftool) of MATLAB. These are with 95% confidence bounds.
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β 1 − α w(h) w(h)

Eq. (4.23) h = 103 h = 104

0.1 0.991 0.994(3) 0.996(3)

0.3 0.93 0.93(2) 0.93(2)

0.5 0.83 0.80(4) 0.84(5)

0.6 0.77 0.73(6) 0.78(6)

0.8 0.64 0.65(8) 0.64(9)

1.3 0.2 0.28(9) 0.22(15)

Table 4.2: The 3rd and 4th column provides the exponent w(h) of the asymptotic

relation (4.24) for the LLg+, as β is varied (1st column). We provide data for h = 103

and h = 104, where the numbers in brackets provide the error in the trailing digits

of the exponents. These values should be compared to the prediction of 1 − α,

Eq. (4.23), that are given in the second column.

h 1 − α w(h) log10(c(h)) log10(d(h))

500 0.991 0.991(3) 3.00 2.62(1)

1000 0.991 0.994(3) 3.31 2.92(1)

1500 0.991 0.995(3) 3.48 3.08(1)

2000 0.991 0.993(3) 3.61 3.21(1)

2500 0.991 0.993(3) 3.70 3.31(1)

5000 0.991 0.993(4) 4.00 3.60(1)

Table 4.3: The exponent w(h) (3rd column) provide the asymptotic estimate of

Eq. (4.24) is compared with the corresponding exponent 1−α of the SM, Eq. (4.23),

for various values of h with β = 0.1. The logarithm of the pre-factors in Eqs. (4.23)

and (4.24) are also shown. The number in brackets (·) are the error in the trailing

digits.
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Figure 4.10: Log-log plot of the correlation 〈r(t)r(h)〉β as a function of time t with

different fixed h for varying β’s in sub-figures. The parallel lines show the strong

dependence on finite h, while the parallelization is gradually lost as β increases.
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but with β = 0.6, 0.8, 1.3, are reported. The difference with the cases β ≤ 0.3, are

striking since the behaviour of correlations is not uniform over the time interval of

our simulations and, in particular, non-linear (in the log-log plot). For the largest

times, say t > 105, the parallel linear behaviour already observed in Fig. 4.10a, seems

to be restored. Unfortunately, we do not have enough statistics for large times to

give further support to this observation.

Correlation 〈r(t)r(t+ h)〉β with h > 0 constant

In this case the SM has the following asymptotic behaviour, see Sec. 3.4.2

〈x(n)x(n + h)〉α ∼ 4

2 − α
n2−α, as n → ∞, (4.25)

which will again be compared with

〈r(t)r(t+ h)〉β ∼ d(h) tw(h). (4.26)

We remark that the coefficient and the exponent of the asymptotic law of the SM

are independent of h. The log-log plots of 〈r(t)r(t + h)〉β vs t for several values

of h with some β ranging 0.1 to 1.3 are given in Fig. 4.11. We observe that the

curves are not globally linear in the log-log plot. They are linear for sufficiently

large values of t, and for such t’s, the curves with different h superimpose quite

well. This indicates that the LLg+ exponents w(h) and the factor d(h) are in fact

independent of h, as in the case of the SM. The crossover between pre-asymptotic

(non power-law) and asymptotic (power-law) behaviours can be roughly placed at h.

The dashed line in all subplots of Fig. 4.11, represents the fit of the largest t’s. For

β = 0.1 the fit gives w(h) ≈ 1.9905, while 2 − α ≈ 1.9909; the figures suggest that

the asymptotic behaviour Eq. (4.26) is reached with d(h) and w(h) independent of

h, as in Eq. (4.25). More details are given in Tab. 4.4, which shows that the SM

exponent 2 − α constitutes a good approximation of w(h) up to moderately large

values of β.
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Figure 4.11: Log-log plot of the correlation 〈r(t)r(t+h)〉β as a function of time t for

some finite values of h with different β. The vertical arrow heads at log10 h identify

the crossover between the pre-asymptotic and asymptotic behaviours. The dashed

lines represent the best fit of the largest values of t.
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β 2 − α w(h) w(h)

Eq. (4.25) h = 100 h = 500

0.1 1.991 1.993(2) 1.986(5)

0.3 1.931 1.93(3) 1.93(3)

0.5 1.833 1.81(3) 1.79(4)

0.6 1.775 1.76(14) 1.76(14)

0.8 1.644 1.63(24) 1.63(34)

1.3 1.2 1.04(9) 1.03(12)

Table 4.4: The 3rd and 4th column provide the exponent w(h) in the asymptotic

estimate (4.26) for h = 100, 500. The numbers in brackets state the errors in trailing

digits of the exponents. These values are compared with the prediction 2 − α,

Eq. (4.25) in 2nd column.

Correlation 〈r(t)r(t+ ℓ tq)〉β with ℓ > 0 and 0 < q < 2 constant

In Sec. 3.4.3, it has been noted for the SM that this correlation function depends

on q. We consider separately the two case: 0 < q < 1 and 1 < q < 2.

• Case 1 : For 0 < q < 1 and 0 < α < 2, we have:

〈x(m+ ℓmq)x(m)〉α ∼ 4

2 − α
m2−α, as m → ∞. (4.27)

This will be compared with the expected power-law behaviour of the corresponding

LLg+correlation:

〈r(t)r(t+ ℓ tq)〉β ∼ d(ℓ, q)tw(ℓ,q). (4.28)

Figure 4.12 represents the correlation Eq. (4.28) for some β and q. The result shows

a weak dependence (on the scale of the plot) on q for small values, say q ≤ 0.9, and

a quite good power-law behaviour, as in the SM case, Eq. (4.27). We report the

data concerning this case in Tab. 4.5. The slopes of the lines in Fig. 4.12, i.e., the

estimated exponents w(ℓ, q), can be found in this table. For β fixed, w(ℓ, q) provides

an approximation of the SM exponent 2 − α that seems to depend weakly on q (at

least for small values of β). Again, we have a better agreement between the SM and
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β 2 − α w(ℓ, q) w(ℓ, q) w(ℓ, q) w(ℓ, q)

Eq. (4.27) q = 0.1 q = 0.3 q = 0.7 q = 0.9

0.1 1.99 1.991(2) 1.992(2) 1.990(1) 1.971(2)

0.3 1.93 1.931(7) 1.93(1) 1.92(2) 1.92(17)

0.5 1.83 1.80(3) 1.80(3) 1.80(2) 1.79(3)

0.6 1.77 1.76(14) 1.78(7) 1.77(7) 1.77(14)

0.8 1.64 1.64(33) 1.65(12) 1.63(34) 1.64(26)

1.3 1.2 1.02(12) 1.12(7) 1.02(12)

Table 4.5: The columns 3−6 provide the exponent w(ℓ, q) of the asymptotic estimate

(4.28) for q = 0.1, 0.3, 0.7, ℓ = 1 with varying β. The numbers in brackets (·) provide

the error in the trailing digits of the exponents. These values are compared with

the SM exponent 2 − α, Eq. (4.27) in 2nd column.

the LLg+at small and moderate values of β. Indeed, the latter case is problematic

as can be seen in Figs. 4.12(e-f) where, besides the weak dependence on small q, two

different linear behaviours (in log-log plot) can be appreciated. These behaviours

may represent two different pre-asymptotic and asymptotic regimes. Similarly we

can see that as the parameter β and the exponent q increase, we gradually loose the

good agreement with the SM correlation function. These less convincing results are

appearing due to the fact that poor statistics in our numerical simulations.

• Case 2 : For 1 < q < 2 the 〈x(m+ ℓmq)x(m)〉α correlation with 1 < q < 2 also

depends on the choice of α:

〈x(m+ ℓmq)x(m)〉α ∼





2 ℓ1−α

1−α
m1+q (1−α) , for 0 < α < 1 ,

2 α
(2−α) (α−1)

m2−α , for 1 < α < 2 .

(4.29)

They are compared with the corresponding LLg+ correlation function Eq. (4.28).
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Figure 4.12: Log-log plot of the correlation 〈r(t)r(t+ ℓ tq)〉β as a function of time t

with ℓ = 1, of some values of q, for given β. The dashed line in the plots represent

the best fit in the asymptotic regime.
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Figure 4.13: Log-log plot for correlation function 〈r(t)r(t+ ℓtq)〉β as a function of

time t for given β, ℓ = 1 with some fixed q’s. The dashed lines represent different

pre-asymptotic and asymptotic behaviours.

Figure 4.13 represents the correlation Eq. (4.28) for β = 0.1, 0.3, 0.5, 0.6, 0.8,with

ℓ = 1 and fixed q = 1.1, 1.3, 1.5. The dashed lines in Figs. 4.13, are least square fit

to the data. The angular coefficients of the asymptotic (dashed) lines in the figures,
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β ζ w(ℓ, q) ζ w(ℓ, q) ζ w(ℓ, q)

q = 1.1 q = 1.1 q = 1.3 q = 1.3 q = 1.5 q = 1.5

Eq. (4.29) Eq. (4.29) Eq. (4.29)

0.1 2.09 2.059(2) 2.29 2.271(7) 2.49 2.49(1)

0.3 2.02 1.99(1) 2.21 2.16(1) 2.40 2.36(3)

0.5 1.92 1.85(1) 2.08 1.95(1) 2.25 2.06(1)

0.6 1.85 1.82(5) 2.01 1.99(3) 2.16 2.2(2)

0.8 1.71 1.7(1) 1.84 1.8(1) 1.97 1.9(3)

Table 4.6: The columns 3, 5 and 7 provide the exponent w(ℓ, q) of the asymptotic

estimate Eq. (4.28) for q = 1.1, 1.3, 1.5, ℓ = 1 with varying β. The numbers in

brackets (·) provide the error in the trailing digits of the exponents. These values

are compared with the SM exponent ζ = 1 + q(1 − α), Eq. (4.29), in 2nd, 4th and

6th columns respectively.

i.e., the estimated exponents w(ℓ, q), can be found in Tab. 4.6. Again we have

pretty nice agreement between the SM and the LLg+ at least for moderate values

of β. Although we have reported our results up to β = 0.8 (that means α = 0.3556,

according to the functional relationship shown in Eq. (4.14)). In Figs. 4.13(a-c) we

observed power law behaviour, also for short times. While the forthcoming cases

the agreement for larger β’s is problematic, as can be seen in Figs. 4.13(d-e). Here

we also see two different linear regimes on log-log scale. These two behaviours

distinguish pre-asymptotic and asymptotic regimes.

4.5 Summary

In this chapter we established the equivalence of the position auto-correlation func-

tion of the SM and the LLg. We started by revisiting the notion of moments of

displacement for the one dimensional LLg both analytically and numerically and

then extended it to correlation functions. It holds based on the relation, Eq. (4.14)
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between the parameter α and β of the SM and the LLg, respectively. Since there

are no analytical expression for the position auto-correlation functions of the LLg.

We explored in how far those of the SM provide a faithful description. In chapter 3

we explicitly calculated the position auto-correlation function of the SM in different

scaling forms by considering the functional relationship between two times, whereas

in the LLg the same time relation have been considered for numerical computation

of position auto-correlation functions.

We hence established statistical equivalence of the moments of displacement as

well as the position auto-correlation functions up to low scatterers density (cf. Eq. (4.1)).

At larger density the equivalence seems to be gradually lost. This could have been

possible due to poor statistics.



Chapter 5

Universality class in anomalous

diffusion

“Nothing happens until something moves”

— Albert Einstein

In this chapter, we present a generic dynamics, which we develop in search of a uni-

versality class, called Fly-and-Die dynamics. The dynamics is analytically tractable,

and upon tuning a single parameter, it gives rise to different types of anomalous dif-

fusion. Trajectories of the system are never periodic, first they fly ballistically from

an initial position. Then, when they reach a certain pre-determined position they

never move again (they die). The moments and the time-auto-correlation function

are computed explicitly. They have the same asymptotic scaling as those of the SM.

Moreover this dynamics can be mapped to other anomalous transport process by

matching the exponent of the mean-square displacement and the prefactor according

to the power-law tails. Subsequently the dynamics provides the dependence of all

other moments and of the same correlation functions. We also compute the veloc-

ity auto-correlation function of the FnD, which can be used to distinguish different

dynamics in the class.

84
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5.1 The Fly-and-Die dynamics

We label trajectories by their initial position, x0. Until time tc(x0), the trajectory

moves along the positive x axis with unit velocity. At time tc(x0) it stops and

remains at position x0 + tc(x0) for all later times. Accordingly, we call this a FnD

dynamics. Its position at time t is given by

x(x0, t) =





x0 + t , for t ≤ tc(x0) ,

x0 + tc(x0) , for t ≥ tc(x0).

(5.1a)

Super-diffusive motion is expected to emerge when the distribution of the times for

the flights, tc(x0), has a power-law tail. To be concrete, we consider here the case

tc(x0) =

(
b

x0

)1/ξ

, (5.1b)

with initial conditions x0 uniformly distributed in the interval [0, 1] and control

parameter ξ. In the following we explore the moments for the displacement, the

position-position and the velocity-velocity auto-correlation function of this ensemble

of trajectories.

5.1.1 Moments of displacement

The probability P (> t) to perform a flight longer than t amounts to the fraction of

initial conditions x0 with tc(x0) > t. It is given by

P (> t) = x0(t) =
b

tξ
. (5.2)

Consequently, for p 6= ξ the pth moment of the displacement takes the form

〈|∆x(t)|p〉 = 〈|x(x0, t) − x0|p〉 ,

=
∫ 1

0
dx0 |x(x0, t) − x0|p ,

=
∫ P (>t)

0
dx0 t

p +
∫ 1

P (>t)
dx0 (tc(x0))p ,

= b tp−ξ +
ξ bp/ξ

ξ − p

(
1 − b1−p/ξ tp−ξ

)
,

=
p b

p− ξ
tp−ξ +

ξ

ξ − p
bp/ξ , for p 6= ξ , (5.3a)
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and an analogous calculation yields

〈|∆x(t)|p〉 =
∫ P (>t)

0
dx0 t

p +
∫ 1

P (>t)
dx0 x

−1
0 ,

= b tp−ξ − b ξ lnP (> t) ,

= b+ b ln
tξ

b
for p = ξ . (5.3b)

In the limit of long times, t ≫ b1/ξ, we hence find the scaling

〈|∆x(t)|p〉 ∼





ξ
ξ−p

bp/ξ , for p < ξ ,

b ln tξ

b
, for p = ξ ,

p b
p−ξ

tp−ξ , for p > ξ .

(5.4)

In particular the mean-square displacement, 〈|∆x|2〉, approaches a constant value

for ξ > 2. It grows logarithmically for ξ = 2, and according to a power-law with an

exponent γ = 2 − ξ for 0 < ξ < 2. In the part 0 < ξ < 1 of the latter regime the

dynamics is super-diffusive with exponent γ = 2 − ξ > 1. For ξ = 1 we find normal

diffusion, and for 1 < ξ < 2 the FnD dynamics exhibits sub-diffusion. The FnD

dynamics, Eq. (5.1), can therefore give rise to behaviour reflecting all scenarios for

the anomalous diffusion. In the following we focus on the regime of super-diffusive

behaviour, 0 < ξ < 1. In this range we have (cf. Eq. (5.3a))

〈|∆x(t)|2〉 =
2b

γ

(
tγ − 2 − γ

2
bγ/(2−γ)

)
. (5.5)

We will come back to this dependence when discussing the asymptotics of the posi-

tion auto-correlation function.

5.1.2 Position auto-correlation function

The position auto-correlation function for the FnD dynamics is defined as

φ(t1, t2) = 〈∆x(t1) ∆x(t2)〉 ,

= 〈(x(x0, t1) − x0) (x(x0, t2) − x0)〉 ,

=
∫ 1

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) . (5.6)
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In order to evaluate the integral we follow the convention that t2 is always larger or

equal to t1. Accordingly we split the integration range into three intervals

0 < x0 < P (> t2) The trajectory is still flying at time t2 such that ∆x(t1) = t1 and

∆x(t2) = t2.

P (> t2) < x0 < P (> t1) The trajectory is still flying at time t1 but it has died by

the time t2. Consequently, ∆x(t1) = t1 and ∆x(t2) = tc(x0).

P (> t1) < x0 < 1 The trajectory died before t1. Consequently, ∆x(t1) = ∆x(t2) =

tc(x0).

Splitting the integral and performing a calculation analogous to the derivation of

Eq. (5.3), one finds 1

φ(t1, t2) =





b t1 tγ−1
2

γ−1
− (2−γ) b tγ

1

γ (γ−1)
− (2−γ) b2/(2−γ)

γ
, γ 6= 1 ,

b t1 ln t2

t1
+ 2b t1 − b2 , γ = 1 .

(5.7)

For t1 = t2 this reduces to the mean-square displacement, Eq. (5.5).

In the literature one commonly normalizes the correlation function (5.7) by the

variance calculated at either of the two times, or by the geometric mean of the

variance, [〈|∆x(t1)|2〉 〈|∆x(t2)|2〉]1/2
. The normalized variance is a function of t2/t1

in that case and it approaches one for t2/t1 → 1, because φ(t1, t2) may tend to

〈|∆x(t1)|2〉 plus terms that become negligible in that limit.

For the representation of the asymptotics on double logarithmic scale this is not

convenient. We rather normalize therefore by the time difference h = t2 − t1. For

γ 6= 1 this provides

(γ/b) φ(t1, t2)

hγ
≃ γ

γ − 1

t1
h

(
t1
h

+ 1
)γ−1

− 2 − γ

γ − 1

(
t1
h

)γ

,

≃ γ

γ − 1

(
t1
h

)γ


(

1 +
h

t1

)γ−1

− 2 − γ

γ


 , (5.8a)

1In appendix. B.1 we give the full derivation.
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which gives rise to the asymptotic scaling

(γ/b) φ(t1, t2)

hγ
∼





2
(

t1

h

)γ
, for t1 ≫ h ,

γ
γ−1

t1

h
, for t1 ≪ h , γ 6= 1 ,

t1

h
ln h

t1
, for t1 ≪ h , γ = 1 .

(5.8b)

Therefore Eq. (5.8), establishes a scaling form: when normalizing by hγ , the corre-

lation function φ(t1, t2) is a function of a single argument t1/h.

We hence predict a data collapse when plotting the left hand side of Eq. (5.8)

as function of t1/h. The asymptotics for large t1/h amounts to the mean-square

displacement, where h = 0. In this regime we see a scaling with the exponents, γ,

characterizing the anomalous growth of the mean-square displacement. The asymp-

totics for small t1/h amounts to situations where t1 and t2 are very far separated

in time (i.e., t2 ≫ t1). When both times are large one commonly observes that the

correlation function decays with h like 1/h, in accordance with the prediction of

Eq. (5.8b).

5.1.3 3-point position auto-correlation function

The 3-point position auto-correlation function for the FnD dynamics is defined as

φ(t1, t2, t3) = 〈∆x(t1) ∆x(t2) ∆x(t3)〉

= 〈(x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0)〉

=
∫ 1

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0) , (5.9)

where it is assumed that t1 < t2 < t3. Accordingly, we split the integration range

into four intervals

0 < x0 < P (> t3) : The trajectories are still flying at time t3 such that ∆x(t1) =

t1, ∆x(t2) = t2, ∆x(t3) = t3.

P (> t3) < x0 < P (> t2) : The trajectories are still flying until time t2 but it has died

by the time t3. Consequently, ∆x(t1) = t1, ∆x(t2) = t2, and ∆x(t3) = tc(x0).
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P (> t2) < x0 < P (> t1) : The trajectories are still flying until time t1 but it has

died by the time t2. One have, ∆x(t1) = t1, ∆x(t2) = ∆x(t3) = tc(x0).

P (> t1) < x0 < 1 : The trajectories died before t1. Consequently, ∆x(t1) = ∆x(t2) =

∆x(t3) = tc(x0).

Splitting the integral, and working out the respective integrals2 for γ 6= 1,

φ(t1, t2, t3) =
b

γ − 1
t1 t2 t

γ−1
3 − b (2 − γ)

γ(γ − 1)
t1 t

γ
2 − b (2 − γ)

γ(γ + 1)
tγ+1
1 − b3/(2−γ) (2 − γ)

γ + 1
.

(5.10)

Assume the following relationship between three different times, we get

1. t2 = t1 + h1, as t1 → ∞, and h1 > 0 finite.

2. t3 = t2 + h2, as t2 = t1 + h1, where t1 → ∞, and h2 > 0 finite.

Provided that h1 = h2, and t1 → ∞, one can write expression for γ 6= 1 as

(γ/b) φ(t1, t2, t3)

hγ+1

≃ γ

γ − 1

(
t1
h

)γ+1


(

1 +
h

t1

)(
1 +

2 h

t1

)γ−1

− 2 − γ

γ

(
1 +

h

t1

)γ

− (2 − γ)(γ − 1)

γ(γ + 1)


 ,

(5.11a)

which has the following asymptotic scaling

(γ/b) φ(t1, t2, t3)

hγ+1
∼





3 γ
γ+1

(
t1

h

)γ+1
, for t1 ≫ h,

t1

h
, for t1 ≪ h.

(5.11b)

We predict a data collapse also for the 3-point correlation function when plotting

the l.h.s of Eq. (5.11b) as a function of t1/h. For t1/h > 0, the correlation function

φ(t1, t2, t3) asymptotically scales as a γ + 1 power law, as the third moment does

with t1.

The case when t1, t2 are fixed and t3 → ∞, one find the asymptotic scaling as

(γ/b) φ(t1, t2, t3)

hγ+1
2

∼ γ

γ − 1

(
1 +

h1

t1

)(
t1
h2

)2

, t2 > t1, h2 ≫ t1, (5.11c)

where h2 = t3 − t2. This reduces to the (γ/b) φ(t1, t2, t3)/h
γ+1 ∼ γ

γ−1
(t1/h)2, if

t1 = t2 are fixed and h = t3 − t1.

2See appendix. B.2 for the detailed derivation.
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Remark 5.1.1. For ξ > 0, γ = 2 − ξ and t1 = t2 = t3, Eq. (5.10) reduces to the

third moment of displacement, Eq. (5.4) with p = 3.

5.1.4 n-point position auto-correlation function

The n-point position auto-correlation function for the FnD dynamics is defined as

φ(t1, t2, · · · tn) = 〈∆x(t1) ∆x(t2) · · · ∆x(tn)〉 ,

= 〈(x(x0, t1) − x0) (x(x0, t2) − x0) · · · (x(x0, tn) − x0)〉 ,

=
∫ 1

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) · · · (x(x0, tn) − x0) ,

where it is assumed that t1 ≤ t2 ≤ · · · ≤ tn. Accordingly, we split the integration

range into n intervals

0 < x0 < P (> tn) The trajectories are still flying at time tn such that ∆x(t1) =

t1, ∆x(t2) = t2, · · · ,∆x(tn−1) = tn−1, ∆x(tn) = tn.

P (> tn) < x0 < P (> tn−1) The trajectories are still flying until time tn−1 but it has

died by the time tn. Consequently, ∆x(t1) = t1, ∆x(t2) = t2, · · · ,∆x(tn−1) =

tn−1 and ∆x(tn) = tc(x0).
...

P (> t1) < x0 < 1 The trajectories died before t1. Consequently, ∆x(t1) = ∆x(t2) =

· · · = ∆x(tn) = tc(x0).

Splitting the integral and performing a calculation, one finds

φ(t1, t2, · · · tn) =
∫ P (>tn)

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) · · · (x(x0, tn) − x0)

+
∫ P (>tn−1)

P (>tn)
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) · · · (x(x0, tn) − x0)

...

+
∫ 1

P (>t1)
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) · · · (x(x0, tn) − x0) .

(5.12a)
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thus, recalling Eq. (5.1b), we have

φ(t1, t2, · · · tn)

= (t1 t2 · · · tn)
∫ b/tξ

n

0
dx0 + (t1 t2 · · · tn−1)

∫ b/tξ
n−1

b/tξ
n

dx0

(
b

x0

)1/ξ

+ (t1 t2 · · · tn−2)×

∫ b/tξ
n−2

b/tξ
n−1

dx0

(
b

x0

)2/ξ

+ · · · + t1

∫ b/tξ
1

b/tξ
2

dx0

(
b

x0

)(n−1)/ξ

+
∫ 1

b/tξ
1

dx0

(
b

x0

)n/ξ

.

(5.12b)

This provides us with a general expression on the n-point position auto-correlation

function

φ(t1, t2, · · · tn) =
n∑

j=0






n−j∏

k=1

tk



∫ b/tξ

n−j

b/tξ
n−j+1

dx0

(
b

x0

)j/ξ

 , (5.13)

where formally tn+1 = ∞ and t0 = b1/ξ.

Provided that γ = 2 − ξ, n = 2 and some integral manipulation, the previous

expression turns to Eq. (5.7).

Lemma 5.1.2. The n-point position auto-correlation function provide the following

scaling expression for the times t1 ≤ t2 ≤ t2 ≤ · · · < tn, with h = tj − tj−1= const.

for j ∈ {2, 3, · · · , n},

(γ/b) φ(t1, t2, · · · tn)

hn−(2−γ)
∼





n γ
n−(2−γ)

(
t1

h

)n−(2−γ)
, for t1 ≫ h,

t1

h
, for t1 ≪ h,

where γ = 2 − ξ.

Proof. See appendix B.3.

5.1.5 Velocity auto-correlation function

The trajectories fly with the velocity v = 1, till they stop, v = 0. Therefore only

those trajectories contribute to the VACF with t1 ≤ t2, that are still flying at time
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t2. Thus denoting the VACF by φv(t1, t2), we obtain

φv(t1, t2) =
∫ 1

0
dx0 ∆v(x0, t1) ∆v(x0, t2) ,

=
∫ 1

0
dx0 (v(x0, t1) − v0) (v(x0, t2) − v0) ,

=
∫ P (>t2)

0
dx0 (v(x0, t1) − v0) (v(x0, t2) − v0) . (5.14)

Using Eq. (5.2) and assuming ξ = 2 − γ, we have

φv(t1, t2) =
∫ b/t2−γ

2

0
dx0. (5.15)

Hence the VACF scales asymptotically as

φv(t1, t2) ∼ b tγ−2
1 , 0 < γ < 2, (5.16)

where h = t2 − t1, h > 0 and t1 → ∞.

This behaviour is not shared by 2-times VACF of SM cf. Eq. (3.67). Hence it

can be used to distinguish the FnD from the SM.

5.2 Testing the scaling of 2-point position corre-

lations

In this section, we test the scaling form of the position auto-correlation function

(cf. Eq. (5.8)) of the FnD dynamics with the SM and the LLg position correlations.

We start by recalling the moments of displacement of SM (cf. Eq. (3.20)). They

exhibit the same scaling as the FnD dynamics in Eq. (5.4) if b ≡ 2 and α ≡ ξ = 2−γ,

except for p < α, which requires a more detailed analysis [53]. In Sec. 3.4 we provided

expression with different scaling forms. For the position auto-correlation function of

the SM: we derived a single scaling expression of auto-correlation function. Recalling

Eq. (3.30b) and rearrange terms, introducing n − m = h, in analogy to the notion

adopted in Eq. (5.8), we find

(γ/2) φ(m,n)

hγ
≃ γ

γ − 1

(
m

h

)γ


(

1 +
h

m

)γ−1

− 2 − γ

γ


 . (5.17)
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This expression agrees with Eq. (5.8) when one identifies b ≡ 2. Therefore the

FnD dynamics faithfully captures the parameter dependence of the moments of the

displacement and the position auto-correlation function of the SM. Both processes

belong to the same class of transport processes.

5.2.1 Data analysis

Now we compare the prediction Eqs. (5.8) and (5.17) of the SM and FnD dynamics

with numerical data of the LLg position correlation functions. In Chp. 4 we estab-

lished a large set of numerical data of LLg correlations where we varied t2 at fixed

t1, t1 and t2 for a fixed time difference h = t2 − t1, and t1 while fixing t2 to a values

t1 + tq1 for different fixed values of q. In these different settings we observed that

the position auto-correlation function of the SM followed the dependence Eq. (3.30)

when one measures r in units of r0, time in units of r0/v, and adopting the mapping

of parameters provided by requesting γ = 2 − α and Eq. (4.13).

We also performed simulations with another characteristic scale length r0 = 1.

Formally, this change can be accounted for by measuring all length scales in multiples

of r0 and times in multiples of r0/v. This give rise to an additional factor rγ−2
0 /vγ

on the l.h.s of Eqs. (5.8) and (5.17).

In Fig. 5.1 we show the data of Sec. 4.3 in the scaling form suggested by Eq. (5.8).

The prediction provides an excellent data collapse of all data, irrespective of the

choice of the characteristic length scale r0 and the particular choice for the relation of

t1 and t2. Moreover, there also is excellent agreement with the theoretical prediction

of the FnD dynamics Eqs. (5.8), that is shown by the dashed (black) lines. We have

augmented them here by data where we also vary r0 and we also checked that this

correlation function does not change when all trajectories start to the right from

an ideally reflecting impurity (In Chp. 4 we denote this as the LLg+dynamics). In

the inset of panels we show the relative deviation of the numerical data and the

theoretical prediction. For t1 < h the numerical data tend to systematically fall

below the theoretical prediction. The effect is small, only about 5% for β = 0.1, but

it grows for increasing β — reaching a factor of 5 for β = 0.6. Even in the latter
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Figure 5.1: The position auto-correlation functions φ(t1, t2) of the LLg for some β’s.

We obtain a data collapse for a vast data set of combinations of t1 and t2 by plotting

the left-hand side of Eqs. (5.8) as function of t1/h. The different symbols denote

data for r0 = 0.1 and r0 = 1 where we varied t2 at fixed time difference h = t2 − t1,

time t1 and where we varied t1 while setting t2 = t1 + tq1 (cf. legend). The dashed

lines show the parameter dependence Eq. (5.8) predicted by the FnD dynamics.

The inset shows the relative deviation of the numerical data and the theoretical

prediction (i.e., the difference divided by the predicted value). We observe, that

the data collapse gradually gets worse as β is getting larger presumably due to poor

statistics of numerical data (cf. Fig. 5.1d).
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case we consider the agreement to be excellent, however, because even for t1 < h

our data cover 5 orders of magnitude on both axes and a factor of five is not a large

error on those scales. Moreover, the agreement for t1 > h is sufficiently perfect at

least for small β. In this case the relative deviation of the data from the prediction

are (cf. insets of Fig. 5.1):

X̄ ± σ =





−0.004 ± 0.006, for β = 0.1,

−0.006 ± 0.026, for β = 0.3,

−0.01 ± 0.04, for β = 0.6,

0.032 ± 0.21, for β = 1.3.

The data shown in Fig. 5.1 suggest that the exponent of the power-law is perfectly

matched. The relative deviation characterizes in how far the FnD dynamics also

captures the prefactor of the dynamics. However, Fig. 5.1d, suggests that we need

much more statistics in numerical simulation for larger β. Although the FnD theo-

retical prediction agrees with numerical data even for larger β, the results are not

uniform as they should be.

In Fig. 5.2 we show the numerical estimates for different data sets of the correla-

tions functions and for the mean-square displacement. These estimates are acquired

by averaging the logarithm of the ratio of the numerical data of the LLg and the-

oretical predictions, (inset in Fig. 5.1) for positive t1/h. Different symbols refer to

different data sets that are indicated in the legends. This data shows that the mean-

square displacement and the position auto-correlation function match perfectly —

also for different characteristic scale lengths r0 = 0.1 and 1. When β approaches

1 the scatter in the data increases substantially because substantially more data

are needed to provide an accurate estimate of the expectation values defining the

correlation functions and the displacement. However, in all cases there is excellent

agreement between the prediction of the FnD dynamics and our numerical findings

on the LLg.
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Figure 5.2: For different sets of data, that are indicated in the legend, we show an

average (points) and the standard deviation (error bars) of the logarithm of the ratio

of the LLg data and the theoretical prediction of the SM, as shown in the insets of

Fig. 5.1. Data for the mean-square displacement and the position auto-correlation

function for different choices of the relation t1 and t2 lie on the same line.

5.3 Testing the scaling of 3-point position corre-

lations

In this section we explore the equivalence of the 3-point position auto-correlation

function of the FnD, SM and the LLg. Since in section 5.2, the 2-point position

auto-correlation function provides the faithful description of these systems, we try

here to extend this equivalence to 3-point correlations. We start by recalling the

scaling form of 3-point correlation of FnD dynamics represented in Eq. (5.11) and
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see how far it captures the 3-point position correlation3 scaling of the SM. In this

regard, we recall Eq. (A.19), perform simple computation and take α = 2 − γ, that

allow us to write 3-point position correlation φ(o, n,m) scaling of the SM in the

following form

φ(o, n,m) ∼ 2

γ − 1
mnoγ−1 − 2(2 − γ)

γ(γ − 1)
mnγ − 2(2 − γ)

γ(γ + 1)
mγ , m ≤ n ≤ o. (5.18)

For m = n = o, this reduces to third moment of displacement, Eq. (3.20) with p = 3.

Reconsider Eq. (5.18), rearrange some terms and introduce

1. n = m+ h1, as m → ∞, and h1 > 0 finite.

2. o = n+ h2, as n = m+ h1, where m → ∞, and h2 > 0 finite ,

provided that h1 = h2, one can write the scaling form of 3-point position auto-

correlation as:

(γ/2) φ(m,n, o)

hγ+1

∼ γ

γ − 1

(
m

h

)γ+1


(

1 +
h

m

)(
1 +

2 h

m

)γ−1

− 2 − γ

γ

(
1 +

h

m

)γ

− (2 − γ)(γ − 1)

γ(γ + 1)


 .

(5.19)

This expression agrees with Eq. (5.11) when b ≡ 2. Therefore the FnD dynamics

faithfully describes also the third moment of the displacement and the 3-point po-

sition auto-correlation function of the SM. These transport processes belong to a

universality class when trajectories with very long initial ballistic flights dominate

the long-time scaling of displacement and position auto-correlation function.

5.3.1 Data analysis

In this section we compare the prediction of the FnD dynamics and the SM with

numerical data of the LLg. We amply data for different relationships between the

three times. The different settings between times are: (a) varying t1, t2 and t3 for

a fixed time difference h = t2 − t1 = t3 − t2; (b) varying t1 setting t2 = t1 + tq1

3The scaling form of the 3-point position auto-correlation function is provided in appendix A.4.
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Figure 5.3: The 3-point position auto-correlation function φ(t1, t2, t3) of the LLg are

plotted for β = 0.1 (left panel) and β = 0.6 (right panel) as a function of t1/h. We

obtain a nice data collapse for different LLg data and a significant agreement with

the theoretical prediction of the FnD dynamics represented by dashed line (cf. r.h.s

Eq. (5.11b) for t1 > h and Eq. (5.11c) for h > t1). For t1 > h we choose different

relationship between times by setting t1 → ∞ and fixed composition of times i.e.,

h = t2 − t1 = t3 − t2 = 100; the relation t2 = t1 + t0.3
1 , t3 = t1 + 2 t0.3

1 and two choices

for t1, t2 fixed either t2 > t1 or t1 = t2.

and t3 = t1 + 2tq1 for some fixed value of q < 1; (c) fixing t1 ≤ t2 = fixed and

varying t3. In all these functional relationship between the times we find that the

position auto-correlation function of the SM followed the dependence Eq. (A.19),

when one measure r in units of r0, time in units of r0/v, and adopting the mapping

of parameters α and β provided by the requesting γ+1 = 3−α. For t1 > h it scales

like third moment of displacement Eq. (3.20) for p = 3.

This is demonstrated in Figure 5.3, for the data collapse for one parameter depen-

dent 3-point position auto-correlation function with different functional relationship

between three times. For t1 > h, we observe an excellent match between the LLg

data and quantitative prediction of the FnD dynamics in Eq. (5.11). For t1 > h

this correlation scales as the third moment of displacement of the FnD dynamics

Eq. (5.4) with p = 3 and requesting ξ = 2 − γ. For t1 < h, there is a different

scaling and the agreement becomes gradually worse as β increases. The three times
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t1, t2 and t3 are far separated for the asymptotic scaling of small t1/h. We conclude

that to the very least for small β, —3-point correlation function of the FnD dynam-

ics can capture the main features of correlation function for non-trivial anomalous

transport processes.

5.4 Summary

We introduced the FnD dynamics with the aim to establish a minimalistic model

for anomalous diffusion. It reproduces the asymptotic scaling of the SM for vari-

able characterizing the displacement. Moreover the FnD and the SM capture some

ingredients of a more realistic model, the LLg. In particular we presented a one

parameter dependent expression for position auto-correlation function of the FnD

and the SM that has excellent agreement with the numerically computed position

auto-correlation functions of the LLg. For super-diffusive transport the moments

of displacement and the position auto-correlation functions of the FnD, SM and

the LLg are dominated by ballistic trajectories. It is conjecture that the moments

and the auto-correlation function apply for a wide class of such systems. Even for

entirely different microscopic dynamics the models agree as far as characteristics of

the displacement are concerned. On the other hand, the moments and correlations

of the velocities may differ.



Chapter 6

Conclusions and future

perspectives

In this chapter, we conclude this thesis by presenting the

• conclusions of the research work on transport properties and a conjecture on

universality class obtained in this thesis

• an outline of some future aspects of work.

Before going to conclusions let us briefly summarize our main results.

Chapters 1 and 2 gave the vital foundation to this thesis. They provided the

recent developments in literature and reviewed the general framework of the diffusion

processes. Although this can not capture the whole story, the references provided

in the bibliography can be a pivotal point for further illustration.

The core part of the thesis is divided into two parts. In Chapter 3 we explicitly

computed the SM position auto-correlation functions and demonstrated their sta-

tistical equivalence with LLg correlations in chapter 4. In Chapter 5 we propose a

universality class of anomalous transport in the super-diffusive regime.

100
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6.1 Conclusion

The conclusions are drawn for similarities and dis-similarities for the transport prop-

erties of dynamical systems. During the discussion we unfold some issues arising in

microscopic dynamics.

Equivalence of position auto-correlation function in the SM and the LLg

The investigation of the relation between the SM and the LLg started in [53] with

the demonstration of the equivalence of the scalings of the time-dependent moments

of the displacement. Because it is well known that moments do not sufficiently

characterise transport processes [58], while the position auto-correlations could, we

have extended that study here to position auto-correlation functions. We analyt-

ically computed the position auto-correlation function of the SM, and we derived

the asymptotic behaviour of this function in several cases corresponding to differ-

ent relations between the two times. Then, we numerically estimated the position

auto-correlation function of the LLg, in order to estimate its asymptotic behaviour.

Unlike the case of moments [10] there are no analytical results available for the

time dependent auto-correlation function of the LLg. In general time correlations

in anomalous transport of even moderately complex models constitute by and large

an open problem.

Our numerical results indicate that there is an equivalence of the asymptotic

scalings of the position auto-correlation functions of the SM and the LLg. As es-

tablished in [53] for the equivalence of moments, the agreement is based on the

matching of the transport exponent, γ. Hence, the parameters α and β obey the re-

lation Eq. (4.14). No further parameters are adjusted to also achieve the matching of

the auto-correlation function.1 As the diffusion parameter of the LLg increases, the

agreement between the numerical data and the proposed expressions for the asymp-

1Actually, we did not take the parameters suggested by the relation (4.14) for the equivalence

of the moments, in order to find the data collapse for the correlations. On the contrary, we looked

for the parameters that provide the best data collapse for the correlations, and we found that their

values are indeed with good accuracy those given by Eq. (4.14).
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totic scaling of the auto-correlation function becomes less convincing. Presently, it

is not clear whether the correspondence only holds for small values of diffusion pa-

rameter, or whether the emerging discrepancies are due to the increasing difficulty

of obtaining good statistics with growing β.

We emphasise that the agreement of the moments and the time-dependent auto-

correlation for the displacement hold in spite of the fact that the SM and the LLg

exhibit entirely different dynamics. Intuition on the properties of the SM and of the

LLg can be obtained by observing the relative motion of two points. Consequently,

any function of any finite number of points, evaluated along a trajectory of the SM,

turns periodic in a finite time. This situation is totally different from that of the

LLg. Its nature renders the distance between any two particles stochastic, and this

holds for any function of a finite number of points.

We conclude that even the position auto-correlations do not suffice, in general,

to distinguish different dynamics at the level of transport properties. This might

be seen as a negative result, but it was used here to indirectly investigate some of

the elusive properties of the LLg. This approach may look puzzling at first glance.

However, it is quite natural within the framework of statistical mechanics, and of

transport processes in particular. Indeed, the details of the microscopic dynamics

of large systems usually do not strongly affect the behaviour of physically relevant

macroscopic quantities. The latter can thus agree even for systems with vastly dif-

ferent microscopic dynamics. This observation lies at the heart of the success of

highly idealized models in describing complex phenomena; even simple models may

indeed capture the essential ingredients determining the behaviour of a selected and

limited number of observables. Theoretical models for critical phenomena and uni-

versality constitute examples of this fact [14, 22, 33, 57]. The present work raises the

question whether the transport exponents and the corresponding two-points auto-

correlation functions might be a kind of counterpart of critical exponents, suitable

for the characterisation of transport phenomena: they afford an analogously coarse

but analogously useful description of the systems at hand.
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Universal class in anomalous transport

The moments of the displacement and the position auto-correlation functions of

many systems that show super-diffusive transport are commonly dominated by bal-

listic trajectories. In this dissertation, we argue that the moments and the displace-

ment have a universal shape. It only depends on the exponent η characterizing the

mean-square displacement and the prefactor of that asymptotic power law. We in-

troduced the FnD dynamics as the simplest representative in this class of systems.

For this dynamics it is straightforward to analytically calculate the functional de-

pendencies, and we verified that they faithfully agree with findings for the SM and

the LLg. Based on the analytical solution of the FnD dynamics we established a

scaling relation that allows to represent the correlation function in a scaling form

where it only depends on the ratio of times. The excellent agreement between the

numerical data of LLg and the prediction obtained by the FnD dynamics (symbols

and dashed lines in Fig. 5.1) establishes a new way to analyze correlations in anoma-

lous transport and it suggests that the FnD dynamics indeed can take the role of

a protopypical system that provides novel insight into universal features of system

showing anomalous transport.

It is conjectured that some deterministic dynamics, such as Lorentz gas with

infinite horizon [16, 44] and polygonal channel with closed horizon, with asymptotic

transport are also dominated by the ballistic trajectories. Numerical investigation of

these billiard system confirm the original assumption on the SM and the polygonal

channels. Such billiard lie in the same class as the SM, FnD and LLg dynamics.

6.2 Future perspective

In future work, we will explore more properties of the SM, FnD and the LLg dy-

namics to examine the strong equivalence in the deterministic of the SM and the

FnD systems with the stochastic LLg dynamics. To gain more insight, it may be

helpful to fully characterise the statistical equivalence of multiple and n-points posi-

tion auto-correlation functions and to also investigate entirely different microscopic
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dynamics.

A space-independent Slicer dynamics is under construction that features a time-

reversible, exactly solvable dynamics featuring all possible transport phenomena.

So far we observed only ballistic transport. However this work can not be complete

until we also find anomalous transport.



Appendix A

Details of calculations for the

Slicer Map correlation functions

A.1 Derivation for the position correlation func-

tion of the SM

In this appendix we compute the asymptotics of the sums defined in Eqs. (3.18a)

and (3.32). We have

∆k(α) = ℓ+
k (α) − ℓ+

k−1(α) =
1

(k − 1 + 21/α)α
− 1

(k + 21/α)α
,

=
1

kα



(

1 +
21/α − 1

k

)−α

−
(

1 +
21/α

k

)−α

 ,

and by Taylor expansion

∆k(α) =
α

kα+1

(
1 − c̃(α)

1

k
+O

(
1

k2

))
, (A.1a)

where

c̃(α) = (1 + α)
(

2
1
α − 1

2

)
> 0, with α > 0 . (A.1b)

Then, the sum in Eq. (3.18a) can be written as:

n−1∑

k=1

k2 ∆k(α) =
n−1∑

k=1

α

kα−1
(1 − f(k)) , (A.2a)
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where

f(k) := c̃(α)
1

k
+O

(
1

k2

)
. (A.2b)

The previous equation implies the existence of an integer n0 such that:

1

2
c̃(α) k−1 < f(k) <

3

2
c̃(α) k−1 , for k > n0 . (A.3)

Then, for m > n0 we have:

n−1∑

k=1

k2∆k(α) =
n−1∑

k=1

α

kα−1
−

n0∑

k=1

α f(k)

kα−1
−

n−1∑

k=n0

α f(k)

kα−1
, (A.4a)

where
1

2
c̃(α)

n−1∑

k=n0

1

kα
≤

n−1∑

k=n0

f(k)

kα−1
≤ 3

2
c̃(α)

n−1∑

k=n0

1

kα
. (A.4b)

Therefore, the last sum in Eq. (A.4a) is of the order of
∑n−1

k=n0
k−α, for m → ∞.

We evaluate the scaling of the two other terms of Eq. (A.4a) based on the Euler-

Maclaurin sum formula:

Lemma A.1.1. (Euler-Maclaurin sum formula) For a smooth function g(x),

the full asymptotic behaviour of

G(n) =
n∑

k=0

g(k) , (A.5)

is given by

G(n) ∼ 1

2
g(n)+

n∫

0

g(t) dt+C+
∞∑

j=1

(−1)j+1 Bj+1

(j + 1)!
g(j)(n) , as n → ∞ . (A.6)

Here C is a constant depending on g, and Bj are the Bernoulli numbers, thus

C = lim
m→∞




m∑

j=1

(−1)jBj+1

(j + 1)!
f (j)(0) +

1

2
f(0) +

(−1)m

(m+ 1)!

∞∫

0

Bm+1(t− [t])f (m+1)(t) dt


 ,

(A.7)

where [t] is the largest integer less than t.

Specifically, for g(k) = kp and p 6= −1 one has

m∑

k=0

kp ∼ mp+1

p+ 1
+

1

2
mp +C +

∞∑

j=1

(−1)j+1 Bj+1

(j + 1)!

j−1∏

ℓ=0

(p− ℓ)mp−j , as m → ∞ ,

(A.8a)

while p = −1 entails:

m∑

k=1

k−1 ∼ lnm+ C +
1

2m
− B2

2m2
− B4

4m4
− · · · , as m → ∞ . (A.8b)
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Proof. See for instance [6]. �

For α > 2 Eq. (A.8a) entails that the sum Eq. (A.2a) converges to a finite value, as

reported in Eq. (3.18a).

For α = 2 Eq. (A.8b) provides

n−1∑

k=1

k2 ∆k(α) ∼ 2α lnn , for α = 2 , (A.9a)

i.e.,̃the logarithmic scaling reported in Eq. (3.18a).

For 0 < α < 2 we have that the two sums depending on m in Eq. (A.4a) diverge:

m∑

k=1

α

kα−1
∼ α

2 − α
m2−α ,

m∑

k=m0

αf(k)

kα−1
= O(m1−α) , as m → ∞ ,

where the second sum is estimated using Eq. (A.4b). From Eq. (A.4a), we then

obtain
n−1∑

k=1

k2∆k(α) ∼ α

2 − α
n2−α , for 0 < α < 2 . (A.9b)

This concludes the derivation of Eq. (3.18a).

Equation (3.32) can be obtained by the same line of argumentation. Using

Eq. (A.1a), the sum in Eq. (3.32) yields:

n∑

k=1

k ∆k(α) =
α

1 + α

n∑

k=1

1 + α

kα
(1 − f(k)) . (A.10)

This is essentially the same expression as Eq. (A.2a). Consequently, according to

Eq. (A.8a) the sum takes a finite value for α > 1. Moreover, introducing the

substitutions into Eq. (A.9b) yields

n∑

k=1

k ∆k(α) ∼ α

1 + α

1 + α

1 − α
n1−α =

α

1 − α
n1−α , for 0 < α < 1 , (A.11)

which is the the non-trivial scaling reported in Eq. (3.32). Analogously, the loga-

rithmic scaling in Eq. (3.32) is obtained from Eq. (A.9a), where the right-hand-side

must be evaluated for α = 1 due to the substitution. This concludes the derivation

of Eq. (3.32).
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A.2 Proof of lemma 3.5.3

We start the proof with the integral representation for the Harmonic numbers

Hx =
∫ 1

0

1 − tx

1 − t
. (A.12)

Let

S =
n/2∑

k=1

1

(2k + 1)(2k + 2)
=

n/2∑

k=1

(
1

2k + 1
− 1

2k + 2

)
.

and note that

∫ 1

0
dxx2k =

1

2k + 1
, and

∫ 1

0
dxx2k+1 =

1

2k + 2
.

The sum S can be written as

S =
n/2∑

k=1

∫ 1

0
dx

(
x2k − x2k+1

)
=
∫ 1

0
dx (1 − x)

n/2∑

k=1

x2k .

As the finite sum appearing here is geometric, it can be summed as following

n/2∑

k=1

x2k =
x2(1 − xn)

1 − x2
.

Thus one has

S =
∫ 1

0
dx

x2(1 − xn)

1 + x
=
∫ 1

0
dx

[
x2

1 + x
− xn+2

1 + x

]
= I1 − I2 .

The first integral I1 is trivial, one has

I1 =
∫ 1

0
dx

x2

1 + x
=
∫ 1

0
dx

(
x− 1 +

1

1 + x

)
=

[
x2

2
− x+ ln(1 + x)

]1

0

= −1

2
+ ln(2) .

To evaluate integral I2,

I2 =
∫ 1

0
dx

xn+2

1 + x
· 1 − x

1 − x
=
∫ 1

0
dx

(1 − x)xn+2

1 − x2
.

We introduce x 7→ √
x

I2 =
1

2

∫ 1

0
dx

x(n+1)/2 − xn/2+1

1 − x
,

=
1

2

∫ 1

0
dx

(1 − xn/2+1) − (1 − x(n+1)/2)

1 − x
,

=
1

2

∫ 1

0
dx

1 − xn/2+1

1 − x
− 1

2

∫ 1

0
dx

1 − x(n+1)/2

1 − x
,

=
1

2

(
Hn

2
+1 −Hn+1

2

)
,
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where Eq. (A.12) is used in the previous expression.

Thus

n/2∑

k=1

1

(2k + 1)(2k + 2)
=

1

2

(
Hn+1

2
−Hn

2
+1 − 1 + ln(4)

)
. (A.13)

which proves Lemma 3.5.3.

A.3 Proof of proposition 3.5.1

Proof. We start with even n. We have

2(−1)n+1
n∑

k=1

(−1)k∆k(α)

= 2 (∆1(α) − ∆2(α) + ∆3(α) − ∆4(α) + ∆5(α) · · · − ∆n(α)) . (A.14)

Recalling ∆k(α) = ℓ+
k (α) − ℓ+

k−1(α) we have:

2(−1)n+1
n∑

k=1

(−1)k∆k(α)

= 2
(
−ℓ+

0 (α) + 2
(
ℓ+

1 (α) − ℓ+
2 (α) + ℓ+

3 (α) − ℓ+
4 (α) + · · · + ℓ+

n−1(α) − ℓ+
n (α)

)
+ ℓ+

n (α)
)
,

= −1 − 4 (∆2(α) + ∆4(α) + ∆6(α) + · · · + ∆n(α)) + 2 ℓ+
n (α),

= −1 − 4
n/2∑

k=1

∆2k(α) + 2 ℓ+
n (α) , (A.15)

where ℓ+
0 (α) = 1/2 and

∆2k(α) := ℓ+
2k(α) − ℓ+

2k−1(α) =
(
2k − 1 + 21/α

)−α −
(
2k + 21/α

)−α
,

=
α

(2k)α+1

(
1 − c̃(α)

2k
+ O

(
k−2

))
, (A.16)

with c̃(α) presented in Eq. (A.1b).

An analogous derivation for odd n, completes the proof of proposition 3.5.1.
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A.4 3-point position auto-correlation function of

the SM

We introduce the 3-point position auto-correlation function (cf. Sec. 3.4) as

φ(o, n,m) := 〈πZ(So(x̂)) πZ(Sn(x̂)) πZ(Sm(x̂))〉 := 〈∆x̂o ∆x̂n ∆x̂m〉 (A.17a)

= 2

1∫

1/2

min{m̃α,m(x), m} min{m̃α,n(x), n} min{m̃α,o(x), o} dx , m ≤ n ≤ o .

(A.17b)

The integration interval I := (1/2, 1] can be subdivided in four parts, I = E<
m ∪

Em,n ∪ En,o ∪E>
o , defined by





E<
m = {x ∈ I : m̃α,m(x) ≤ m} ,

Em,n = {x ∈ I : m < m̃α,n(x) ≤ n} ,

En,o = {x ∈ I : n < m̃α,o(x) ≤ o} ,

E>
o = {x ∈ I : o < m̃α,o(x)} .

(A.18a)

In each sub-interval the integrand in Eq. (A.17b) corresponds to

⇒





min{m̃α,m(x), m} min{m̃α,n(x), n} min{m̃α,o(x), o} = m̃α,m(x) m̃α,n(x) m̃α,o(x) ,

min{m̃α,m(x), m} min{m̃α,n(x), n} min{m̃α,o(x), o} = m m̃α,n(x) m̃α,o(x) ,

min{m̃α,m(x), m} min{m̃α,n(x), n} min{m̃α,o(x), o} = mn m̃α,o(x) ,

min{m̃α,m(x), m} min{m̃α,n(x), n} min{m̃α,o(x), o} = mno .

(A.18b)
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Rewriting the resulting integrals in terms of sums over the intervals where mα(x)

takes the constant value k (cf. Eq. (3.17)), one has:

φ(o, n,m) = 2
∫

E<
m

m̃α,o(x) m̃α,n(x) m̃α,m(x) dx+ 2m
∫

Em,n

m̃α,o(x) m̃α,n(x) dx

+ 2mn
∫

En,o

m̃α,o(x) dx+ 2mno
∫

E>
n

dx ,

∼ 2
m∑

k=1

k3 ∆k(α) + 2m
n∑

k=m+1

k2 ∆k(α) + 2mn
o∑

k=n+1

k∆k(α)

+ 2mno
∞∑

k=o+1

∆k(α) , m ≤ n ≤ o . (A.19)



Appendix B

Supporting derivations of the

correlation functions

This appendix presents the explicit derivation of position auto-correlation functions

of the FnD dynamics defined in Eqs. (5.7), (5.8), (5.10) and (5.11), and the proof of

lemma 5.1.2.

B.1 Derivation of the universal scaling for the

FnD dynamics

According to the flight of the trajectory, the integral in Eq. (5.6) splits into three

intervals:

φ(t1, t2) =
∫ P (>t2)

0
dxo (x(xo, t1) − xo) (x(xo, t2) − xo)

+
∫ P (>t1)

P (>t2)
dxo (x(xo, t1) − xo) (x(xo, t2) − xo)

+
∫ 1

P (>t1)
dxo (x(xo, t1) − xo) (x(xo, t2) − xo) . (B.1)
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From Eq. (5.2), one finds

φ(t1, t2) =
∫ b/tξ

2

0
dxo t1 t2 +

∫ b/tξ
1

b/tξ
2

dxo t1

(
b

xo

)1/ξ

+
∫ 1

b/tξ
1

dxo

(
b

xo

)2/ξ

= b t1t
1−ξ
2 +

b1/ξξ

ξ − 1

(
b(ξ−1)/ξ

tξ−1
1

− b(ξ−1)/ξ

tξ−1
2

)
t1 +

b2/ξξ

ξ − 2

(
1 − b(ξ−2)/ξ

tξ−2
1

)
.

Since ξ = 2 − γ, the correlation function takes the form

φ(t1, t2) = b t1 t
γ−1
2 +

b (2 − γ)

1 − γ
tγ1 − b (2 − γ)

1 − γ
t1t

γ−1
2 +

b (2 − γ)

γ
tγ1 − (2 − γ) b2/(2−γ)

γ
.

This allow us to write the correlation function as

φ(t1, t2) =
b

γ − 1
t1 t

γ−1
2 − b (2 − γ)

γ(γ − 1)
tγ1 − (2 − γ) b2/(2−γ)

γ
, γ 6= 1 . (B.2)

By introducing the difference h = t2 − t1, we rewrite Eq. (B.2) for γ 6= 1:

φ(t1, t2) =
b

γ

(
γ

γ − 1
t1(t1 + h)γ−1 − 2 − γ

γ − 1
tγ1 − (2 − γ) bγ/(2−γ)

)
,

= hγ b

γ

(
γ

γ − 1

t1
h

(
t1
h

+ 1
)γ−1

− 2 − γ

γ − 1

(
t1
h

)γ

− (2 − γ) bγ/(2−γ)

hγ

)
,

and normalize by the γ-power of the time difference h

(γ/b)φ(t1, t2)

hγ
≃ γ

γ − 1

(
t1
h

)γ


(

1 +
h

t1

)γ−1

− 2 − γ

γ


 , γ 6= 1 . (B.3)

This expression for the correlations of the FnD dynamics allows us to collapse all

numerical simulation data of the LLg on the same curve.
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B.2 Scaling form of the 3-point position correla-

tion for the FnD dynamics

To derive the 3-point position auto-correlation function. We recall Eq. (5.9) and

split the integral into four domains

φ(t1, t2, t3) =
∫ P (>t3)

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0)

+
∫ P (>t2)

P (>t3)
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0)

+
∫ P (>t1)

P (>t2)
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0)

+
∫ 1

P (>t1)
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) (x(x0, t3) − x0) .(B.4)

Introducing Eq. (5.2), yields

φ(t1, t2, t3) =

t1 t2 t3

b/tξ
3∫

0

dx0 + t1 t2

b/tξ
2∫

b/tξ
3

dx0

(
b

x0

)1/ξ

+ t1

b/tξ
1∫

b/tξ
2

dx0

(
b

x0

)2/ξ

+

1∫

b/tξ
1

dx0

(
b

x0

)3/ξ

.

Therefore

φ(t1, t2, t3) =
b

1 − ξ
t1 t2 t

1−ξ
3 +

b ξ

(1 − ξ)(ξ − 2)
t1 t

2−ξ
2 +

b ξ

(2 − ξ)(ξ − 3)
t3−ξ
1 +

b3/ξ ξ

ξ − 3
.

Since γ = 2 − ξ, thus we find for γ 6= 1

φ(t1, t2, t3) =
b

γ − 1
t1 t2 t

γ−1
3 − b (2 − γ)

γ(γ − 1)
t1 t

γ
2 − b (2 − γ)

γ(γ + 1)
tγ+1
1 − b3/(2−γ) (2 − γ)

γ + 1
.

(B.5)

Introducing the (time) difference h = t3 − t2 = t2 − t1, and normalize by hγ+1, this

reduces to

(γ/b) φ(t1, t2, t3)

hγ+1
≃

γ

γ − 1

(
t1
h

)γ+1


(

1 +
h

t1

)(
1 +

2 h

t1

)γ−1

− 2 − γ

γ

(
1 +

h

t1

)γ

− (2 − γ)(γ − 1)

γ(γ + 1)


 .

(B.6)
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Surprisingly this expression for the 3-point position correlation of the FnD dynamics

also allows us to collapse all numerical simulation data of the LLg on the same curve.

B.3 Proof of lemma 5.1.2

We start by recalling Eq. (5.12b). Integration amounts to

φ(t1, t2, · · · , tn) =
b

1 − ξ

(
t1t2 · · · t1−ξ

n

)
+

b ξ

(1 − ξ)(ξ − 2)

(
t1t2 · · · t2−ξ

n−1

)
+ · · ·

+
b ξ

(n− ξ − 1)(ξ − n)
tn−ξ
1 +

bn/ξ ξ

ξ − n
, ξ 6= 1. (B.7)

In what follows we assume ξ = 2 − γ and normalize by the n− (2 − γ) power of the

time difference h = tj − tj−1= const. for j ∈ {2, 3, · · · , n}. Thus we find

(γ/b)φ(t1, t2, · · · , tn)

hn−(2−γ)

≃ γ

γ − 1

(
t1
h

)n−(2−γ)




(

1 +
h

t1

)
· · ·

(
1 +

(n − 1) h

t1

)γ−1

 − 2 − γ

γ

((
1 +

h

t1

)
· · ·

×
(

1 +
(n− 2) h

t1

)γ)
− · · · − (2 − γ) (γ − 1)

(n + γ − 3) (n+ γ − 2)

]
. (B.8)

Asymptotic scaling for t1 ≫ h, leads to

(γ/b)φ(t1, t2, · · · , tn)

hn−(2−γ)
≃ γ

γ − 1

(
t1
h

)n−(2−γ)
[
1 −

n∑

k=2

(2 − γ) (γ − 1)

(k + γ − 3)(k + γ − 2)

]
.(B.9)

The sum in Eq. (B.9) has telescopic structure. This allows us to rewrite it as

n∑

k=2

1

(k + γ − 3) (k + γ − 2)
=

n∑

k=2

(
1

(k + γ − 3)
− 1

(k + γ − 2)

)
=

n− 1

(γ − 1) (n+ γ − 2)
.

(B.10)

Substituting Eq. (B.10) in to (B.9), we find the scaling for the n−point correlation

function

(γ/b)φ(t1, t2, · · · , tn)

hn−(2−γ)
∼ n γ

n− (2 − γ)

(
t1
h

)n−(2−γ)

, t1 ≫ h. (B.11)

Analogous asymptotic scaling for t1 ≪ h, completes the proof of lemma 5.1.2.
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