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Influence of in-plane and out-of-plane stiffness on the stability of free-edge1

gridshells: a parametric analysis2

Fiammetta Venutia,∗, Luca Brunoa
3

aPolitecnico di Torino, Department of Architecture and Design,4

Viale Mattioli 39, I-10125, Torino, Italy5

Abstract6

Gridshells are form-resistant structures, which are suitable for covering large spans, especially when lightness and
transparency are respectively relevant architectural and functional requirements. The majority of built gridshells
are characterised by one ore more free-edges, which derive from trimming the gridshell reference surface in order
to provide building access or to integrate the gridshell within existing structures. Up to now, only few scientific
systematic studies have been devoted to the effects of elastic boundary structures on the stability of gridshells. This
study aims at filling some gaps about this issue. To do so, an ideal free-edge bending-inactive hybrid single-layer
gridshell is analysed. The gridshell sensitivity to the flexural stiffness of the boundary arch and to the shear stiffness of
the gridshell are investigated through an extensive parametric analysis, which was performed by means of numerical
experiments. Results are first discussed in terms of the well-established load factor and buckling shape. Then a
complementary mechanical reading is provided by introducing ad-hoc conceived local metrics of the in-plane and
out-of-plane deformations at collapse. Three different mechanical regimes at collapse are outlined. In conclusion, a
range-finding chart within the design parameter space is proposed to orient the structural analyst in the choice of the
preferred regime.

Keywords: hybrid single-layer gridshell, instability, free-edge, boundary stiffness, numerical experiments7

Nomenclature8

GMNA Geometrically and Materially Nonlinear Analysis
LBA Linear Buckling Analysis
LF Load Factor
CG Complete Gridshell
PG Partial Gridshell
E modulus of elasticity
L dome span length
f dome rise length
l characteristic length of quadrilateral face
p subscript of the generic structural node
P number of structural nodes
x horizontal space coordinate
y horizontal space coordinate
z vertical space coordinate
K discrete gaussian curvature
Ke elastic stiffness matrix
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Kg geometric stiffness matrix
Ib moment of inertia of the boundary structure
Ie moment of inertia of the grid elements
Ir ratio of the boundary to grid moments of inertia
S r non-dimentional ratio between design parameters
Q nodal resultant load
q uniform load
s uniform live (snow) load
g dead load
A quadrilateral surface
Ae cross section area of grid elements
Ac cross section area of diagonal cables
fy yield strength
∆K out-of-plane nodal deformation
γxy,γyx components of the in-plane nodal deformation
Γ in-plane nodal deformation
ν nodal direction
µ load multiplier
σ0 cable initial prestressing
σ stress field
φ buckling mode shape
ϕ generic buckling shape
λ eigenvalue
δ nodal displacement
δu ultimate nodal displacement
κ cotangent of the nodal angle

1. Introduction9

Gridshells are form-resistant structures, which are designed to ideally bear the loads by means of in-plane internal10

forces. Their geometry is generally defined, at least in steel gridshells, by approximating a reference continuous11

surface through a discrete pattern of line-like structural members, which are mainly subjected to axial forces.12

Gridshells find their natural application in large-span buildings, such as stadia, courtyards and expo pavilions,13

where transparency and lightness might be relevant program requirements. Not surprisingly, the first known pioneer-14

ing application of a doubly-curved gridshell, which dates back to the late 19th century and was designed by engineer15

Vladimir Shukov, refers to the roof of a large-span Plate Rolling Workshop in Russia [1]. The geodesic dome of16

the Zeiss-Planetarium in Germany, designed by Walther Bauersfeld and completed in 1926, is another example of17

this kind. Throughout the second half of the 20th century, the milestone achievements of Buckminster Fuller [2],18

Frei Otto [3] and Schlaich Bergermann und Partner [4, 5] helped defining the current technology and strategies for19

gridshell design: on the one hand, the work of Frei Otto gave birth to what is currently known as a bending-active, or20

post-formed, timber gridshell [6, 7]; on the other hand, Jörg Schlaich and Hans Schober focused on bending-inactive,21

or pre-formed, steel/glass gridshells, most of which were derived from surfaces of translation and were based on the22

use of quad patterns [8]. Since these pioneering structures, the gridshell structural concept has been widely applied to23

a variety of buildings all over the world, both in traditional materials [5, 9] and innovative ones [10, 11, 12].24

Gridshells are optimised and highly efficient structures, but this efficiency makes them highly prone to buckling25

phenomena, which can lead to catastrophic collapse. Since the collapse of the Bucharest Exhibition Hall dome in26

1963, a lot of research has been devoted to buckling and post-buckling behaviour of reticulated shells [13, 14, 15,27

16, 17, 18, 19, 20]. The first approach to the problem was based on the continuum analogy, that is, the behaviour28

of the gridshell is compared to the one of a shell, characterised by the same geometry of the gridshell and by an29

equivalent thikness [21, 22, 23, 24]. The aim of this approach was to extend to gridshells the analytical expressions of30

the buckling load that were available for continuous shells. This method, even though it can be useful in a preliminary31
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design phase, presents some drawbacks [13]: analytical solutions are available only for a class of continuous shells,32

characterised by specific shape and boundary conditions; the continuum analogy does not allow to account for some33

types of buckling that are peculiar of gridshell structures, such as nodal buckling and member buckling; the influence34

of joint deformation cannot be taken into account. For all these reasons, the buckling behaviour of gridshells is usually35

studied by means of non-linear numerical analyses of Finite Element Models of the whole structure.36

The main factors, which influence the buckling behaviour of gridshells and that have been studied in the literature,37

are the following: [13, 25]: i. the Gaussian curvature of the gridshell underlying surface [e.g. 13, 26, 16, 19];38

ii. the grid topology and spacing [e.g. 27, 24, 20, 25]; iii. the geometrical and mechanical imperfections [e.g.39

28, 29, 26, 30, 31, 32]; iv. the joint stiffness [e.g. 33, 29, 16, 34, 35]; v. the boundary conditions.40

While the effects of the first four factors have been widely studied in the recent past, the last factor has been less41

explored. Stability studies on gridshell domes are usually carried out by referring to a horizontal spring-plane and42

rigid supports [29, 26, 15, 27, 36, 18, 37, 24, 38, 20, 39]. The effects of different rigid supports (pinned, roller or fixed)43

have been comparatively studied in a few papers [40, 41, 13, 19]. Analogously, the gridshell barrel vaults studied in44

the literature are usually delimited by a horizontal spring-plan and gable vertical plans, which are orthogonal to their45

axes [26, 19, 39] and rigidly constrained at the spring-lines. To the authors’ knowledge, the effects of different rigid46

supports (fixed or pinned) along the spring-lines of a gridshell barrel vault have been discussed in [19] and [42] only.47

Even fewer scientific systematic studies have been devoted up to now to the effects of elastic boundary structures48

along the delimitation edges on the stability of gridshells, as recently highlighted in [42]: “This kind of elastic bound-49

ary has not been extensively investigated, and studies are needed in each design to know how and if the supports50

improve the buckling resistance.”. This is even more surprising knowing that a horizontal spring line and/or infinitely51

stiff perfect constraints only seldom occur in built gridshells. Usually and more and more frequently, gridshells are52

trimmed by vertical or inclined planes (e.g. the Shukov gridshell in Vyksa [1]), or by curved surfaces (e.g. the Hippo53

House at the Berlin Zoo [43]). As a consequence, they are constrained by elastic boundary structures along the de-54

limitation edges. Master builders were certainly aware of the influence of elastic boundaries, as demonstrated by the55

above cited built structures. However, to the authors’ best knowledge, systematic studies applied to double curvature56

single-layer gridshells are not available, and only a few number of studies analysed the effects of the stiffness of gable57

boundary structures in barrel vault gridshells. Bulenda and Knippers [26] compared the barrel vault stability with58

no stiffening boundary arches with the same structure stiffened by a boundary arch having 40 times the stiffness of59

a IPE 360 profile. As expected, the differences in terms of mechanical behaviour are striking: the unstiffened vault60

buckles analogously to a plane arch, while a spatial behaviour at collapse takes place in the stiffened vault, even if the61

stiffening arch still shows not negligible ultimate displacements. Cai et al. [19] stiffen the vault with pre-tensioned62

spoked wheels transverse diaphragms, analogously to the stiffening system adopted for the roof of the Museum of63

Hamburg History courtyard [4]. In this case, the arch acts as a perfectly rigid support in its vertical plane.64

This issue seems to be disregarded also in the case of continuous shells. A number of remarkable free-edge65

concrete shells were conceived by master builders such as Heinz Isler [44] and Felix Candela [45]. In thiri works66

several solutions were put in place at the shell free boundaries, ranging from unstiffened edge, to creases introducing67

form stiffness, to edge beams providening inertial stiffness. However, once again “the stability of shells with free68

edges is a rather unexplored field” [46]. In fact, even though single curvature cylindrical shells with flexible bottom69

have been widely systematically studied over the past fifty years, and their buckling behaviour is well known [47, 48,70

49, 50, 51], analytical solutions for double curvature shells with elastic boundaries are not available in literature.71

In summary, a scatter exists between the design practice and the scientific literature in this field. In this framework,72

the paper focuses on the delimitation of gridshells, and aims to fill in some of the gaps, which are currently evident in73

the topic literature review. In terms of paper outline, Section 2 defines, classifies and reviews some relevant examples74

of free-edge gridshells, both from the geometrical and mechanical points of view. The term Partial Gridshells (PG) will75

be introduced here to denote free-edge gridshells as opposed to Complete Gridshells (CG). A new parametric study is76

described in Section 3, in terms of geometrical setup, structural setup and design parameter space. Section 4 briefly77

recalls gridshell structural modelling and computational approaches. The observables selected for post processing78

are described in Section 5. Results and findings of the parametric analyses are described and discussed in Section 6,79

in parallel with a resulting range-finding chart, developed in the design parameter space. Section 7 summarises the80

conclusions and future works.81
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2. Partial Gridshells: definition and classification82

Distinction between Complete Gridshells (CG) and Partial Gridshells (PG) is proposed in this paper. Complete83

Gridshell (CG) refers to gridshells whose shape results from trimming a reference gridshell geometry by a single84

surface, usually a horizontal or inclined plane. The structure spring lines, along which the gridshell is rigidly con-85

strained, are given by the intersection between the reference geometry and the trimming surface (Figure 1a, red curve).86

By exclusion, Partial Gridshell (PG) denotes gridshell forms which are obtained through two or more geometrical87

cuts. PGs can be cut by vertical or inclined planes (Figure 1b) or curved surfaces (Figure 1c). PGs spring lines are88

given by the intersection between the reference geometry and one of the trimming surfaces - usually the one that lies89

horizontally. The intersection between the reference surface and the other trimming surfaces determines a number of90

PG free edges (blue dash-dot curves), which are not rigidly constrained.

(a) (b) (c)

Figure 1: Reference and trimming surfaces of (a) a CG (after the Essen gridshell), (b) a PG cut by vertical planes (after the Downland gridshell)
and (c) a PG cut by a curved surface (after the Hippo House)

91

CGs represent a minority and are mainly applicable when the structure spring lines are raised from the ground92

level or from extremely stiff substructures. To our knowledge, the only built projects of CG whose spring line lays on93

the ground level are two research pavilions: the timber bending-active Essen gridshell designed by Frei Otto in 196294

[3] (Figure 2a) and the experimental GFRP bending-active gridshell built at ENPC [52]. However, these prototypes95

did not have to deal with functionality issues and program requirements. Otherwise, other stiff structural elements96

are required and introduced to provide building access. The National Maritime Museum in Amsterdam, the Dresden97

Castle gridshell [53], the Neckarsulm dome [4], the Orangery gridshell at Chiddingstone Castle (Figure 2b), and the98

roof of the Great Court of the British Museum [54] are outstanding examples of this kind.99

PGs include the majority of the built gridshells. In most cases the gridshell form needs to be trimmed due to100

functional or architectural requirements. When the gridshell spring lines lie on the ground level, the most common101

issue is to provide openings for building access, as in the Multihalle in Mannheim [55] (Figure 2c), the “Future of us”102

gridshell pavilion in Singapore [56] (Figure 2d) or the “Ephemeral cathedral” in Paris [10]. When the main gridshell103

function is to provide shelter, cuts might be necessary for other reasons: for instance, to array the base gridshell104

geometry, such as in the roof of the production hall in Vyksa [1] (Figure 2e) or in the West entrance of the Hannover105

Fair [57] (Figure 2f). In both cases, the roof is made of a modular repetition of the same base gridshell, which is106

trimmed by four vertical planes and, hence, bounded by as many parabolic arches. In other cases, the cuts are made107

to integrate the gridshell within existing buildings. Typical examples are gridshell roofs over courtyards, streets or108

squares: two outstanding examples are the Schlüterhof Roof at the German Historical Museum in Berlin (Figure109

2g) and the Cabot Circus in Bristol [58] (Figure 2h). Besides functional needs, cuts can also identify architectural110

gestures, such as in the Hippo House at the Berlin Zoo [43] (Figure 2j) or in the Yas Island Marina Hotel in Abu111

Dhabi, UAE [59] (Figure 2k). Note that contemporary PGs are delimited by increasingly complex surfaces: vertical112

single-curvature concave ones (Figure 2j), combinations of planes and surfaces (Figure 2h), double-curvature surfaces113

(Figure 2k).114

The CG mechanical behaviour under uniform loads mainly involves membrane stiffness. The same is expected not115

to hold for PGs. The structural design of PGs raises further issues with respect to CGs. Specifically, the mechanical116

behaviour of PGs is expected to be highly dependent on:117
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(j) (k)

CGs

PGs

Figure 2: Survey of built CGs and PGs: (a) Essen gridshell [3], (b) Orangery gridshell, (c) Mannheim Multihalle [55], (d) “Future of us” Pavilion
[56] (e) Vyksa gridshell [1], (f) Hannover Fair, West entrance [57], (g) Schlüterhof Roof (h) Cabot Circus [58] (j) Hippo House [43], (k) Yas Island
Marina Hotel [59]

• Geometrical factors: the kind (either planar or curved) of the trimming surface, its orientation with respect to118

the grid direction, and the ratio between the gridshell and free-edge span (i.e. the location of the trimming119

surface);120

• Mechanical factors: the stiffness of the boundaries and the in-plane shear stiffness of the gridshell.121

This study focuses on the mechanical factors, while the influence of geometrical factors will be investigated in a122

subsequent work. The stiffness of the boundaries depends on the cross section of the boundary structure, its length123

and its constraints. A conceptual categorisation corresponding to increasing degree of stiffening can be outlined:124

• the PG edges are not stiffened, that is, the boundaries are free and made of structural elements with the same125
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cross section as the grid elements. Examples of this kind are the Toledo I gridshell [60], a pavilion for the126

Naples School of Architecture courtyard, and the Waitomo Caves Visitor Centre [61];127

• the PG edges are stiffened by a boundary structure, whose axis coincides with the edge curve, and whose128

flexural stiffness is greater than the flexural stiffness of the grid elements (e.g., boundary arches). The Mannheim129

Multihalle [55] and Downland Museum [62] are examples of this kind;130

• the PG boundary structures are further supported by vertical elements, such as columns, which reduce the length131

of the free edge. The Hippo House [43] and the Savill Garden gridshell [63] are representative of this category.132

The in-plane shear stiffness of the gridshell is mainly related to the kind of adopted mesh pattern. Generally133

speaking, quad meshes have lower in-plane shear stiffness than triangular meshes. For this reason, quad meshes are134

often stiffened by bracing cables [4], which have the effect of triangularizing the quad mesh. In this scenario, the135

cross section of the diagonal elements is the structural parameter that mostly affects the in-plane shear stiffness of the136

gridshell.137

Here, a rough attempt is made to indirectly estimate some reference values of the boundary stiffness and grid-138

shell in-plane shear stiffness of built PGs. Due to the lack of published data, the direct estimation of the stiffness139

is not affordable in this study. Information about the section geometrical and material properties of the main struc-140

tural elements can be found more easily in the literature. Figure 3 collects the section properties of the boundary141

and diagonal elements for a small ensemble of built PGs, whose data were available. The survey includes differ-142

ent gridshell layouts: unbraced and braced quad meshes, triangular meshes, bending-active and inactive, single and143

double-layer. The selected section properties are the moment of inertia Ib of the boundary elements and the area Ac of144

the diagonal elements, since they significantly contribute to the boundary stiffness and in-plane shear stiffness of the145

gridshell, respectively. Both properties are expressed in dimensionless form, by scaling their value with respect to the146

corresponding quantity of the grid element section:147

Ir = n Ib/Ie,

Ar = n Ac/Ae (1)

where Ie and Ae are the moment of inertia and area of the grid elements, respectively, and n is the homogenization148

coefficient given by the ratio between the moduli of elasticity of the boundary/diagonal element material and the grid149

element material, if materials differ.150

Overall, Ir varies in the range [1, 500], where the unit value refers to unstiffened boundary , and Ar in the range151

[0, 0.5], where Ar = 0 refers to the unbraced case. In particular, hybrid bending-inactive single-layer steel gridshells152

lie in a smaller interval of parameter values i.e. 0 < Ar < 0.1, and 80 < Ir < 300. Bending-active timber double-153

layer gridshells have larger Ar values, i.e. 0.3 < Ar < 0.5, since they are usually characterised by diagonal elements154

inbetween the two laths, with the same cross section as the main grid elements in each lath. The Mannheim Multihalle155

gridshell (Ar ≈ 0.3) shows some differences among the collected cases, because the steel bracing cables spans over156

about six gridshell quadrangles made of wood elements.157

3. Parametric analysis set-up158

The effects of the boundary stiffness and gridshell in-plane shear stiffness on the gridshell stability are investigated159

through a parametric analysis by computational simulations.160

A complete bending-inactive hybrid single-layer gridshell by Schlaich and Schober [4] is used as a reference161

to derive the studied PG. This gridshell type is chosen because it permits to derive two limit cases: a quadrilateral162

gridshell, where bracing cables are missing, and a triangular gridshell, in which the cables are replaced by trusses that163

share the same cross section of the grid elements.164

The features of the case study are detailed below.165
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single-layer / quad mesh

double-layer / triangular mesh

double-layer / quad mesh

(1) (2) (3)

(4)

(1)

(2) (3)

(4)

0 0.1 0.2 0.3 0.4 0.5

A
r

100

101

102

103

I
r

(5)

(6)

(7)

(8)

(9)

bending-activebending-inactive

Figure 3: Survey of Ir-Ar values: (1) Waitomo Caves visitor centre [61], (2) Schubert Club Band Shell [64], (3) Downland Museum [62], (4)
Toledo I gridshell (photocredit Gianluca Jodice) [60], (5) Cabot Circus [58], (6) courtyard roof at the Engineering Faculty at the University of Pisa
[65], (7) Hippo House [43], (8) Mannheim Multihalle [55], (9) Toledo II gridshell [66] .

3.1. Geometrical set-up166

The geometry of the investigated partial single-layer gridshell is shown in Figure 4. The analytical form of the167

reference continuous dome (Fig. 4a) belongs to the translational surface type, having a parabola as both the directrix168

and generatrix, i.e. it is a paraboloid. The considered partial dome is obtained by sectioning the complete dome with169

a vertical plane corresponding to the x− z plane. The obtained half dome is, therefore, bounded by a vertical parabolic170

arch, whose geometrical parameters are: span length L = 30 m, span to rise ratio L/ f = 8 (Fig. 4d).171

The discrete gridshell geometry results from the point wise sampling of the dome surface in P structural nodes172

(p = 1, P) along the directions of the directrix and generatrix having coordinates X(p) =
{
xp, yp, zp

}
. The nodes are173

connected along the directions of the directrix and generatrix by straight segments resulting in elemental planar quads174

[57], having a characteristic length l ≈ 1.5 m (Fig. 4b). Each quad is braced by two diagonal cables, as shown in175

Figure 4c.176

3.2. Structural set-up177

The grid of quads is composed of steel beams. These are diagonally braced by prestressed cables. The structures178

are covered with glass panels, which do not contribute structurally but are taken into account as dead loads.179

The structure is modelled by means of finite element software ANSYS R© v17.2. Both the grid elements and the180

boundary arch are modelled in ANSYS using the BEAM188 finite element. The grid beam cross section mimics the181

one usually adopted by [4, 26]: a solid quadrilateral cross section with area Ae = 2.5e − 3 m2 and moment of inertia182

Ie = 5.2e − 7 m4 is chosen. The 3D beam elements are based on Timoshenko’s beam theory and adopts a cubic shape183

function. The cables are modelled by 3D tension-only trusses with circular cross section (LINK180 finite element in184

ANSYS).185

The whole structure is assumed to be hinged at the boundaries, while the joints between steel bars are modelled186

as rigid, as usually done in the literature [26, 37, 27].187

The constitutive model of the steel is linear elastic - perfect plastic, with a yield strength equal to fy = 355 MPa,188

Young’s modulus E = 2.1e + 5 MPa and Poisson’s ratio ν = 0.3. The diagonal cable prestressing is equal to σ0 = 100189
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Figure 4: Set-up geometry: reference continuous surface (a), discrete gridshell surface (b, shown without cables), close-up view of a part of the
dome including diagonal cables (c), section along the meridian vertical plane (d)

MPa, while steel bars are not subject to initial bending. The dead load g of structural steel members and of 20 mm-190

thick glass glazing is set equal to 0.5 KN/m2. As for the live load s, a uniform snow load s = 0.75 kN/m2 is applied on191

the structure. A uniform load case q = 1.3g + 1.5s is applied to the structure. The resultant p-th nodal load is defined192

as Qp =
∫

A qda ≈ 4000 N, being A the quad surface.193

3.3. Parametric analysis plan194

For the adopted and fixed geometrical and structural set-ups, the boundary arch stiffness and the gridshell in-plane195

shear stiffness only depend on two design parameters, namely Ir and Ar, defined according to Eq.s (1). Ib is set equal196

for both the local axes of the arch cross section. Hence, it affects both the in-plane and out-of-plane flexural stiffness197

of the boundary arch. Ac affects the axial stiffness of the cables and therefore provides additional in-plane shear198

stiffness to the gridshell faces, with respect to the unbraced case. As a preliminary remark, it is worth noting that the199

out-of-plane behaviour of the boundary arch not only depends on its flexural stiffness, but also on the in-plane shear200

stiffness of the gridshell. This holds also when Ib tends to infinity and the arch behaves as a rigid body, being the arch201

hinged at its external boundaries. We also point out that the parameter Ib is expected to locally affect the stiffness of202

the gridshell boundary, while Ac uniformly affects the stiffness of the whole gridshell.203

Ir varies in the range [1, 106], where the lower and upper values correspond to unstiffened and infinitely stiffened204

boundary structure, respectively. Ar varies in the range [0, 1]. The lower bound corresponds to the limit case of205

unbraced quad gridshell, while the upper bound corresponds to the limit case where the cable cross section equals206

the grid element one. The boundary regions of the parametric analysis plan are not necessarily of practical interest207

in the real world design practice. Nevertheless, the computational testing allows to explore also uncommon, or even208

unphysical, scenarios to shed some light on the trend of the structural behaviour towards limit conditions.209

Figure 5 illustrates the resulting Ir − Ar parameter plan. Besides the limit values above, the values of both param-210

eters are selected in the light of the survey made in Section 2 (Figure 3) for bending-inactive hybrid gridshells. In211

particular, the parameter space is more densely sampled in the Ir range [1, 103] and in the Ar range [0, 0.1], which is212

the one of design interest for bending-inactive single-layer quad mesh gridshells. In total, 38 values of Ir and 7 values213

of Ar are explored, resulting in 266 simulations for each kind of structural analysis described in the following Section.214

215

4. Structural modelling216

Two kinds of structural analysis are performed and briefly recalled below.217

Linear Buckling Analysis (LBA)218

LBA solves the eigenvalue problem:219 [
Ke + λKg (σ)

]
Φ = 0, (2)
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Figure 5: Discretisation of the Ir−Ar parameter plan. The grey area focuses on the values adopted in design practice of bending-inactive single-layer
gridshells

where λ is the vector of load factors andΦ is the matrix of the associated buckling mode shapes. The geometric220

stiffness Kg (σ) is a function of the stress field σ. Kg is evaluated through a static analysis that solves the221

equation222 [
Ke + Kg (σ0)

]
δ = Q (3)

where Ke is the elastic stiffness, Kg (σ0) accounts for the initial prestress σ0, if any, and Q is the applied load.223

Geometrically and Materially Nonlinear Analysis (GMNA)224 [
Ke (δ) + Kg (δ)

]
δ = µQ (4)

where the geometric stiffness Kg (δ) is a function of the displacement field δ(σ) and µ is the load multiplier225

that increases along the simulation. In the study, the steel nonlinear stress-strain relation is modelled by a bi-226

linear law (elastic-perfect plastic). Due to the progressive yielding of members under monotonically increasing227

load, the overall structural behaviour is described by a tangent stiffness matrix Ke which softens for increasing228

displacement field δ(σ).229

Buckling instability of SLGS is highly sensitive to imperfections, that should be taken into account in the structural230

design of gridshells. Despite this, in the present study both LBA and GMNA are performed on the perfect structure,231

i.e. neglecting the effects of equivalent nodal imperfections. This choice is due to four reasons: i. the choice of the232

imperfection shape to adopt in the design is still an object of debate in the civil engineering community [26, 38]; ii.233

the most popular imperfection models, e.g. [67], assume that the imperfection shape is equal to the first buckling234

mode shape, that depends in turn on the same parameters of the sensitivity study, i.e. Ir and Ar; iii. the effects of235

the imperfection cumulate with, and are expected to prevail on, the parameter primary mechanical effects. It follows236

that the latter ones are noised and hidden by the former ones; iv. the computational testing, unlike testing on physical237

models, offers the opportunity to fully control or exclude some parameters and related effects (i.e. nodal imperfections238

in current case), to focus on the parameters of interest only, to isolate their effects, and finally to discuss results in a239

clearer and mechanically sound way.240

The structural analysis is performed by means of the finite-element code ANSYS R© v17.2. The Load Control241

procedure is applied within GMNA, where the iterative convergence is accomplished at each step by means of the242

standard Newton Raphson method [68].243
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5. Definition of the observables244

To provide a synthetic description of the mechanical behaviour of the PG versus the selected design parameters,245

one bulk parameter and two nodal observables are adopted. They are defined in the following with reference to a PG246

with P structural nodes having coordinates X(p) =
{
xp, yp, zp

}
(p = 1, P).247

5.1. Load Factor (LF)248

The load factor is the most relevant parameter usually considered at the Buckling Limit State. Its definition is249

herein recalled:250

Qu = LF Q (5)

where Qu is the ultimate buckling load and Q is the load condition as defined in Section 3.2. Within LBA, LF= λ1,251

i.e. the lowest eigenvalue, which corresponds to the buckling mode shape φ1. Within GMNA, LF= µu, being µu the252

load multiplier that induces the collapse (dQ/dδ = 0 in a selected reference node), i.e. reaching a limit point, and δu253

the corresponding displacement field.254

5.2. Out-of-plane nodal deformation ∆K255

In order to locally evaluate the out-of-plane nodal deformation of the gridshell, the following nodal quantity is256

defined:257

∆K(p) = K(p) − K0(p), (6)

where K(p) and K0(p) are the discrete gaussian curvatures in the deformed and undeformed shapes, respectively.258

The discrete gaussian curvature K(p) mimics at each node p the Gaussian curvature in the continuous analogy. With259

reference to Figure 6, it is defined as [69, 70]:260

K(p) = 2π − E p̂N −N p̂W−W p̂S − S p̂E (7)

E

N

p

S

W

E Np

S Ep

N Wp

W Sp

^^

^^

Figure 6: Definition of the discrete gaussian curvature K(p)

261

In the following, ∆K = Ku − K0 is adopted to mimic in discrete form the variation of the Gaussian curvature of a262

continuous shell between the undeformed geometry and the collapse deformed shape.263

5.3. In-plane nodal deformation Γ264

To locally evaluate the in-plane deformation of each quadrilateral face, a nodal quantity equivalent to the shear265

deformation in continuum mechanics is defined in the following:266

Γ(p) = γxy(pN) + γyx(pE), (8)

where267

γxy(pN) =
|δx,N − δx,p|

lpN
, γyx(pE) =

|δy,E − δy,p|

lpE
(9)

9



𝒩

𝒩

𝓔
𝓔

𝓔

𝒩

y

x

Figure 7: Definition of the equivalent shear deformation Γ(p)

and the displacement δ, the side of the quadrilateral face l and the node nomenclature are graphically defined in Figure268

7 for the sake of clarity and conciseness.269

In the following, Γ = Γu refers to the collapse deformed shape, i.e. the displacements δ in Eq. 9 are the ultimate270

nodal displacements δu.271

6. Results272

This Section illustrates the results of the parametric analysis on the benchmark PG. First, the effects of the design273

parameters Ar − Ir on Load Factor and buckling shapes are commented in 6.1. Then, the mechanical behaviour is274

rephrased in 6.2 by introducing a single synthetic design parameter and by referring to nodal observables. Different275

mechanical regimes are identified. Finally, a range-finding chart within the design parameter plan is presented in 6.3.276

6.1. LF and buckling shapes versus design variables277

Figures 8(a) and (b) show the LF versus Ir for each Ar obtained by LBA and GMNA, respectively.
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Figure 8: LF versus Ir for different values of Ar with LBA (a) and GMNA (b)

278

A general trend can be recognised for both kinds of analysis. LF increases for increasing stiffness of the boundary279

arch along two main branches: a first steeper branch and a second constant or slightly increasing one. However, the280
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value of Ir at which and the way in which the transition between the two branches occurs differ in the two models281

and for different values of Ar. In LBA the switch between branches is clearly recognisable, and regularly occurs for282

decreasing values of Ir as Ar increases. GMNA retains the same trend, and also almost the same LF values, only for283

the unbraced gridshell (Ar,0). Conversely, for the other values of Ar, a third branch can be observed in between the first284

twos. In such a further branch, the LF trend versus Ir is still increasing for Ar,1, almost constant for Ar,2, and locally285

decreasing for Ar,3 to Ar,5. Furthermore, the third branch occurs at decreasing values of Ir up to Ar,2 and at increasing286

values of Ir from Ar,3. For Ar,6 the LF is nearly constant versus Ir.287

For low to moderate values of Ar ≤ Ar,4, the LF values predicted by LBA in the first steeper branch are lower than288

the ones obtained by GMNA, contrarily to what might be expected [42]. At the upper limit of the second constant289

or slightly increasing branch the two models predict comparable LF values. For high values of Ar ≥ Ar,5, the LFs290

predicted by GMNA are higher than the ones obtained by LBA whichever the value of Ir. The obtained results show291

that LF is more sensitive to Ar than to Ir, and suggest that the non linear effects due to bracing cables in hybrid292

gridshells play a major role, which is necessarily underestimated by LBA.293

We can expect that the above differences in LF reflect different simulated modes of instability. Hence the trends294

of LF can be better commented on by looking at the buckling shapes obtained via LBA and GMNA for some rep-295

resentative values of Ir and Ar (Figure 9). As regards Ar, three values are selected: Ar,2 is representative of built296

bending-inactive single-layer steel gridshells (see Figure 3, Ar,2 = 0.064 as for the Hippo House); lower and upper297

limit cases (Ar,0 = 0, Ar,5 = 0.5) consider the unbraced cell and a very in-plane-rigid gridshell, respectively. The298

buckling shapes corresponding to Ar,6 are not plotted because the extreme stiffness of the gridshell involves almost299

constant values of LF versus Ir in GMNA, and it does not allow a sound kinematic reading of the buckling shapes.300

As regards Ir, six values are selected: besides the limit values Ir = 1 and 106, four other values belong to the above301

described branches. An overall view of the buckling shapes allows to qualitatively identify some peculiar instability302

modes:303

• the buckling shapes above the red dashed line are characterised by global instability mainly driven by the304

buckling of the boundary arch:305

– the buckling mode predicted by LBA is asymmetric in most cases, while GMNA always provides sym-306

metric buckling shapes due to the perfect geometry and symmetrical setup. This usually results in an even307

number n of antinodes in LBA arch buckling shape, and in n + 1 antinodes in GMNA;308

– LBA predicts a symmetric arch buckling shape for some pairs of Ir −Ar values (highlighted in grey in Fig.309

9). It can be argued this is a consequence of the symmetric elastic constraint that cell bracing provides to310

the boundary arch. Such a constraint always holds for Ar > 0, but its effect depends on the ratio between311

the free edge bending stiffness and the cable axial stiffness;312

– the stiffening effect of the braced cells on the arch is higher in geometric non linear analysis than in linear313

analysis, because of the updated overall geometry of the braced cells;314

– in the light of the comments above, the higher LF values by GMNA look mainly due to the additional315

bracing stiffness accounted for by nonlinear analysis, while the switch from asymmetric to symmetric316

buckling shapes due to the GMNA symmetric setup seems to play a minor role, as testified by e.g. the317

minimal scatter of LF from LBA to GMNA for the unbraced PG, Ar,0;318

• the buckling shapes below the blue dash-dot line are still characterised by global instability, but here the buckling319

mainly occurs on the gridshell, while the arch is almost undeformed. However, the two structural models320

provide different kinds of instability modes for the braced gridshells:321

– the shell-like buckling mode predicted by LBA involves the majority of nodes with a shorter wavelength322

than the cases above;323

– GMNA predicts a snap-through buckling of the gridshell portions with the lowest curvature, which are324

located near the spring line (”line or ring instability” according to the nomenclature in [13]);325

• the buckling shapes in between the red and blue lines are characterized by a combined global instability, in326

which both the arch and the gridshell buckle. This combined instability is more evident for Ar values of design327
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interest (Ar,2) than for limit values. The pairs of Ir − Ar in this region generally fall in the third intermediate328

branch recognized for GMNA in the LF(Ir) curves (Fig. 8).329

Some further comments cross the three instability modes outlined above for limit values of Ar. For Ar,0 the kind330

of instability predicted by both LBA and GMNA is almost the same for every Ir, except for the asymmetric and331

symmetric shapes, respectively, induced by the adopted model. This reflects in the close trend of the LF(Ir) curves332

(Fig 8). For Ar ≥ Ar,5 the bracing stiffening accounted for by GMNA progressively prevails on the flexural stiffness of333

the boundary arch for every value of Ir. This is the reason why LF(Ir) is slightly varying for Ar,5 and nearly constant334

for Ar,6 in GMNA (Fig 8).335

The effect of the cable stiffness on the LF is further investigated in Figure 10 for the limit case Ir = 106, i.e.336

extremely stiffen boundary arch (empty triangles). The LF(Ar) trend by LBA (Fig. 10a) and GMNA (Fig. 10b) is337

qualitatively the same for Ar ≤ Ar,4, i.e. LF increases for increasing Ar. Conversely, for Ar ≥ Ar,5 the bracing stiff-338

ening accounted for by GMNA keep the monotonic increasing trend of LF(Ar), while in LBA the shell-like buckling339

progressively localises, and the LF trend becomes decreasing in turn.340

In the case Ir = 106 the behavior of the PG can be directly compared to the one of the corresponding Complete341

Gridshell. CG develops along the whole reference dome surface shown in Figure 4(a), it has the same cross section342

properties, the same internal and external constraints and it is loaded by the same uniform distributed load as the PG.343

The LF(Ar) for both PG and CG are plotted in Figure 10 by empty and filled triangles, respectively, while buckling344

shapes of the CG for some selected values of Ar are included in Figure 9, last row. For all values of Ar, the bending345

stiffness of the boundary arch in its vertical plane is so high that it approximatively behaves as a rigid body, and vertical346

deflection at collapse are negligible. However, out-of-plane horizontal displacement of the free edge can result from347

the rigid rotation of the arch around the hinges at its footings, under the orthogonal horizontal thrust applied by the348

half-arches of the PG. The higher Ar, the higher the shear stiffness of the PG, the lower the amplitude of the boundary349

arch rigid body rotation outside its plan, the lower the resulting horizontal displacement at collapse. In the lower350

limit case of the unbraced structure (Ar,0), nil vertical displacements of the PG boundary involve LFs slightly higher351

than the ones of CG, whose buckling shape involves significant deflections along the central arch (See Fig. 9, first352

two columns, last two rows.) For low to moderate values of Ar, the not negligible shear deformability of the partial353

gridshell allows the arch to rigidly rotate out of its plane. It follows the LF of PG is always lower than the LF of354

CG. PG and CG LFs tend to the same value only for Ar upper limit value, where the extremely high shear stiffness355

of the PG does not allow significant rigid rotation of the boundary arch out of its plane. In other terms, free-edge356

displacements are almost nil both in the vertical and horizontal directions, and the same mode of instability occur for357

both PG and CG.
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In the next Section we propose a complementary, deeper insight of the results obtained by GMNA models. The359

analysis is focused on the PG with the values of Ar that are more relevant and recurrent in the design of bending-360

inactive hybrid single-layer free-edge gridshells (Ar,1, Ar,2, Ar,3, Ar,4). Therefore, the limit cases Ar,0, Ar,5 and Ar,6 are361

no longer considered.362

6.2. Mechanical rephrasing363

To comprehensively analyse the relative influence of the two design variables, the dimensionless ratio S r is intro-364

duced:365

S r =
Ir

Ar
. (10)

In words, such derived variable synthetically weights the flexural stiffness of the boundary arch to the shear stiffness366

of the braced gridshell. Figure 11 plots the LF versus S r. This representation allows to recognise some common367

trends among the curves and related subranges of S r, which were not clearly visible in Figure 8b. Specifically, three368

branches can be identified:369

- for S r < 100 the LF steeply increases for increasing S r;370

- for about 100 < S r < 400 the LF trend changes with Ar, i.e. LF increases, remains constant or decreases for371

increasing value of Ar;372

- for S r > 400 the LF moderately increases for increasing S r. Moreover, for S r > 1000 the curves have a373

common asymptotic trend.374
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Figure 11: LF versus S r for different values of Ar

A deeper insight into the PG mechanical behaviour corresponding to the above identified S r ranges is provided in375

Figures 12-13. They plot in plan, for representative values of S r (see filled markers in Figure 11), the nodal observables376

at collapse ∆K and Γ introduced in Section 5, scaled with respect to their maximum values ∆̂K and Γ̂, respectively.377

The visualisation of these normalised nodal quantities allows to discuss the topology of the buckling shapes more378

precisely and clearly than classic magnified axonometric deformed shapes do, e.g. in Figure 9. In particular, both379

Figures highlight three recurrent instability modes that are common to all Ar values. For the sake of clarity and by380

way of example, recognised node patterns are qualitatively clustered by dashed contours in the Ar,2 rows:381
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I. around low values of S r (see first column), the highest deformations are concentrated along the boundary arch382

and adjacent nodes, and progressively diminish towards the spring line (red dashed contour);383

II. as S r increases (see second column), the highest deformations involve the nodes adjacent to both the boundary384

arch and the outer ring;385

III. for high values of S r (see third to fifth columns), the highest deformations are located in the nodes near the386

spring line (blue dashed contour), with a progressive involvement of a higher number of internal nodes as S r387

increases.388

In other words, when the boundary arch is relatively flexible, the collapse is free-edge-driven (I), i.e., it is mainly389

triggered by the buckling of the boundary arch. Conversely, when the boundary arch is relatively stiff, the collapse is390

gridshell-driven (III), that is, it is mainly initiated by the snap-through ring instability. In between, a transition mode391

(II) occurs, where both kind of instabilities are combined in the PG as a whole.392

The spatial patterns briefly discussed above oriented us towards the heuristic definition of a further observable to393

identify more precisely the ranges of S r in which the described instability modes take place:394

Γr =

∑NΩ1
i=1 Γi

NΩ1

·
NΩ2∑NΩ2
j=1 Γ j

, (11)

where NΩ1 and NΩ2 are the number of nodes falling into the Ω1 and Ω2 regions, respectively (see scheme in Figure395

14 on the right). In words, the defined observable is the ratio between the average in-plane nodal deformation in396

two regions selected a priori on the basis of the spatial patterns in Figures 12-13. This observable is intended to397

provide a bulk quantitative metric that synthetically describes the in-plane deformation patterns discussed above (Fig.398

13). On the basis of the above equation, values of Γr > 1 describe the case where the in-plane deformations are399

mainly concentrated in the Ω1 region (free-edge-driven deformation), while for Γr < 1 the deformations are mainly400

gridshell-driven. Figure 14 illustrates Γr versus S r for the considered four values of Ar. The expected behaviour is401

generally confirmed and three main regimes corresponding to the above instability modes can now be clearly defined.402

Specifically:403

- regime I corresponds to values of Γr > 1 for all three curves. Its upper bound S r = S r,I−II � 50 is given by the404

intersection between the Γr = 1 line and the Ar,2 curve;405

- regime III corresponds to values of Γr < 1 for all three curves. Its lower bound S r = S r,II−III � 120 is given by406

the intersection between the Γr = 1 line and the Ar,3 curve;407

- in between, a transition regime II is characterised by a sudden drop of Γr versus S r. In this regime, different408

deformation patterns occur for different Ar values. In particular, in Ar,1 free-edge and shell-driven deformations409

are well balanced, in Ar,3 and Ar,4 the free-edge-driven deformation is more evident, while in Ar,2 the gridshell-410

driven behaviour prevails (compare Figure 13, second column). In other terms, the upper and lower bounds of411

regime II seem to depend on other parameters than S r.412

Moreover, regime III can be further divided into three sub-regimes on the basis of some common trends of the413

Γr − S r curves. In IIIa Γr varies non monotonically. Then, in IIIb, a monotonic decreasing trend can be recognised.414

Finally, in IIIc the three curves almost coincide and share a monotonic slightly increasing trend: in fact, as the415

arch stiffness tends to infinity, the collapse involves its out-of-plane rigid body rotation, which is retained by the416

gridshell in-plane shear stiffness. Therefore, an increasingly higher number of nodes in the Ω1 region is involved in417

the deformation (see Fig. 13, third to fifth columns and related comments).418

It can be observed that the general trend of Γr(S r) in Figure 14 and the features of the recognised regimes recall419

other transitional physical phenomena, such as the evolution of the mean drag aerodynamic coefficient with Reynolds420

number for a circular cylinder (compare [71], Fig. 4.5.2, and [72], Fig. 7.28).421
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6.3. Range-finding chart422

On the basis of the analysis illustrated in the previous sub-Sections, a range-finding chart within the design pa-423

rameter space is proposed in the following. The aim of the chart is to orient the structural analyst in identifying the424

preferred regime and, hence, possible ranges of the design parameters Ir and Ar.425

The chart in Figure 15 plots the Ir − Ar couples, which satisfy the following expression, obtained by substitution426

of Eq.s (1) in Eq. (10):427

Ir = S r Ar. (12)

The straight lines delimiting the regime boundaries are obtained by substituting in Eq. (12) the values of S r corre-428

sponding to the regime boundaries (see Fig. 14). In the chart, the design parameter space is limited to low values429

of both Ir and Ar in order to focus on the values of practical interest for bending-inactive hybrid single-layer steel430

gridshells. The Ir − Ar couples of the built gridshells collected in Figure 3 are included for reference (black squares).431

It can be observed that the latter ones lie in Regime IIIb: this seems to prove that skilled designers size both grid432

and boundary structural elements such as to avoid boundary-driven instability (regimes I and II) and, in general, the433

regimes characterised by the high variability of LF.434

Note that the chart in Figure 15 has been determined for the specific PG analysed in this study and can not therefore435

be considered as generally valid from a quantitative point of view. Nevertheless, the qualitative trend reported in the436

chart is expected to hold also for different gridshell set-ups.437

7. Conclusions438

The present study was conducted to define, classify and analyse, from a mechanical point of view, a specific439

kind of gridshell structures, here named “Partial Gridshell” as opposed to “Complete Gridshells”. PGs are gridshells440

whose form is delimited by two or more geometrical cuts. The intersections between the gridshell and the delimitation441

surfaces give rise to a spring line - along which the PG is rigidly constrained - and one or more curved free-edges.442

Despite the prevailing occurrence of this gridshell type in the building practice, the studies that systematically discuss443

the stability of gridshell domes always adopt CGs with horizontal spring lines as benchmarks.444

An ideal hybrid PG is adopted as a benchmark to investigate its local and global stability. In particular, its445

sensitivity to the flexural stiffness of the boundary structure and to the shear stiffness of the gridshell are investigated446

through an extensive parametric analysis by numerical experiments. The adopted parameters are the ratio of the447

boundary arch and grid element moment of inertia Ir, and the ratio of the bracing cable and grid element cross section448
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area Ar. The load factor and the collapse deformed shape under a uniform loading scenario are determined through449

geometrically and materially non-linear analysis.450

The analysis of the results have highlighted the existence of three different mechanical regimes, depending on the451

value of the dimensionless parameter S r. The latter was defined to evaluate the relative influence of the two design452

parameters Ir and Ar on the stability of the PG. Specifically:453

• regime I (S r ≈< 50) is characterised by a free-edge-driven collapse, i.e., in-plane and out-of-plane deformations454

mainly involve the boundary arch and adjacent gridshell nodes;455

• regime II (50 ≈< S r ≈< 120) shows a combined behaviour, where both free-edge-driven and gridshell-driven456

instabilities occur;457

• regime III (S r ≈> 120) is characterised by a shell-driven collapse, where the main in-plane and out-of-plane458

deformations mostly involve the gridshell nodes in the outer ring adjacent to the spring line.459

Finally, a range-finding chart in the design parameter plan is proposed as a qualitative tool for designers to identify460

the preferred regime and associated values of the design parameters. Remarkably, the built bending-inactive hybrid461

single-layer steel gridshells reviewed in the present survey lie in Regime IIIb: this seems to prove that skilled designers462

size both grid and boundary structural elements such as to avoid free-edge-driven instability (regimes I and II).463

These results, despite relative to a specific geometrical and structural set-up, contribute to shed some light on464

the behaviour of bending-inactive free-edge gridshell structures. Although gridshell geometry, free-edge geometry465

and their stiffness greatly vary in design practice, the overall results of this study are likely to be general at least466

in a qualitative sense. In other words, the mechanical interaction between out-of-plane boundary stiffness and in-467

plane gridshell stiffness is expected to take place as a rule, and regimes I and III are likely to occur in general.468

Conversely, the watershed values of S r at which transition between regimes occurs and the transition mode (including469

their combination in regime II) are expected to strongly depend on the specific features of each structure. For instance,470

subsequent studies could be devoted to the effect of geometrical factors, i.e. the kind and orientation of the trimming471

surface with respect to the grid direction, the ratio between the gridshell and free-edge span, and to the joint effects of472

imperfections. The generalisation of the study to bending-active gridshells is not straightforward and requires further473

investigations, in the wake of the few comparative studies between bending-active and inactive gridshells (e.g. [73]),474

and the preliminary evaluation of the free-edge role in the stability of bending-active gridshells [74].475
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