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ABSTRACT  
 
Globally, the world population living in cities is increasing and then the 
sustainability and liveability of urban spaces are rising the attention of the 
scientific community mainly in term of warming increase and health risk. In this 
work, the microclimate of outdoor spaces is investigated considering the 
different outdoor air temperatures registered by various weather stations in the 
city of Turin (Italy) and its surroundings with 12 municipalities. The air 
temperature variations are correlated with the built urban morphology, the solar 
exposure of urban spaces, the albedo coefficients of outdoor surfaces and other 
variables as the percentage of vegetation and water, the distance from the town 
centre and the Land Surface Temperature. With a multiple linear regression 
analysis the air temperatures have been correlated with the urban variables to 
obtain a simple model for the prediction of the average monthly air temperature 
in the Metropolitan City of Turin. This model can be used to understand the 
different microclimates within Turin and between the urban and the rural areas, 
and to evaluate the most influential variables on the air temperature variations. 
The resulted models could help urban planners to predict the microclimate in 
new districts, but also in the existent ones, as a function of the urban form and 
of the outdoor materials chosen to mitigate the UHI phenomenon. 
 
KEYWORDS  
 

UHI, microclimate, linear regression model, LST, albedo, NDVI, satellite 
images, sustainable urban planning.  

 
1. INTRODUCTION  

The consequences of global warming are now evident in our cities where 
concrete, asphalt, air pollution and anthropic activities cause temperatures up to 
10°C higher than those in the surroundings or rural areas. This phenomenon in 
Climatology is named Urban Heat Island, referring to a urban area warmer than 
the surrounding suburbs [1]. Continued urbanization estimates that in 2050 the 
European population living in the city will be just over 80% resulting in increased 
risk for pollution, comfort, people health and consumption of fossil energy 
resources [2]. The UHI is also characterized by space-time variations within a 
city causing thermal discomfort and an increase of energy demand in 
summertime [3, 4].  

The development of new megalopolis and the expansion of existing cities 
will increase the UHI phenomenon especially if this development is combined 
with the construction of new tall buildings, without the appropriate ventilation in 
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urban canyons and the with the use of waterproof materials with high absorption 
of solar irradiation [5]. Then, the control of the microclimate in urban 
environment becomes very important as it can contribute to a better liveability of 
the outdoor and indoor spaces [6, 7].  

The analysis conducted in this work starts from previous researches about 
the influence of different materials used for outdoor urban spaces [8, 9], urban 
morphology [10] and Urban Heat Island [11], on air temperature variations in the 
urban environments. The results of these researches show clearly that in the 
city of Turin, the anthropic activities cause a typical UHI but with lower air 
temperatures near the parks and the rivers sides and higher temperatures in the 
high-density and industrial zones [12].  

In this work, the above results were analysed on a larger territory around 
the city of Turin. More weather stations, different satellite images and additional 
indicators were investigated to implement the model for the prediction of air 
temperature variations (i.e. urban variables, solar exposure, albedo, the 
presence of vegetation and water and the distance from the town centre).  

In the first part of this work, the state of art and literature review are treated. 
The second part is dedicated to the presentation of the case study and the 
evaluation of various factors influencing the air temperature gradients in the 
urban context. Then the in the last parts, the linear regression models are 
presented with a discussion on the results. 

The main objective of this work was to find a compensative method with a 
simplified tool based on a multiple linear regression for a sustainable urban 
planning.  
  
2. LITERATURE REVIEW  

 
First studies and publications on UHI date back to the early 1990s and the 

UHI is a phenomenon that is recognized and studied globally. Currently 
urbanization, anthropic activities and the use of outdoor materials are the major-
influence factors of climate change, although urban areas are a small portion of 
the Earth's surface [13]. The most notable consequence is the UHI, closely 
related to the air quality, overheating and population health problems. The 
magnitude or intensity of the UHI is related to the size of the city, but the UHI 
does not appear only in the big cities. The homogeneity of the development of 
the UHI is the result of an increasingly concentrated urban structure and its 
connections with suburban areas [14, 15, 16]. The highest temperatures are 
generally in the centre of a heat island often corresponding to downtown [14]. 
By classifying the warmer and the main emissive source in a city, primarily there 
is the most densely built area, followed by commercial and industrial spaces; 
while, lower temperatures can be registered in the agricultural, hilly and forest 
land [12].  

Different types of UHI, also known as AUHI Atmospheric Urban Heat Island, 
can be find in literature (in Figure 1). Indeed, the UHI can be further classified in 
BLUHI (Boundary Layer Urban Heat Island) and CLUHI (Canopy Layer Urban 
Heat Island) depending on the height considered; the BLUHI and the CLUHI 
consider respectively the layer above and below the average height of the 
buildings. The CLUHI considers the layer below the average height of the 
buildings, where heat stagnates due to urban morphology and where people 
discomfort can be perceived [17].  
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In recent years, the UHI have been monitored, also at territorial scale with 
satellites and aerial platforms by the remote sensing. The main feature of 
remote sensing is the multi-spectrality with the possibility of simultaneously 
taking different images (of the same portion of territory) in different bands of the 
electromagnetic spectrum. Usually, the visible (VNIR) and the thermal infrared 
(TIR) portion of the spectrum are recorded by remote sensing; TIR represents 
the thermal energy emitted by the ground and then corresponds to its 
emissivity.  

 

 
Figure 1. Types of UHI. 

 
Table 1. State of art synthesis. 
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[13] 2004 Indianapolis ●     ●      ●   

[18] 2007 Singapore ●     ●      ●  ● 

[15] 2009 Greece ● ●   ●        ●  

[16] 2010 World ●          ●    

[3] 2011 Europe   ●  ●       ●   

[30] 2011 Budapest ●    ●       ● ●  

[14] 2013 Shanghai ●     ●       ● ● 

[19] 2014 Phoenix         ● ●   ● ● 

[24] 2014 India ● ●         ●  ●  

[2] 2015 Rotterdam ●       ●     ●  

[26] 2015 China ●    ● ● ●     ● ●  

[5] 2015 Saudi Arabia ●       ●   ●  ●  

[9] 2015 Chicago ●       ●     ●  

[8] 2015 Turin ●        ● ●    ● 

[6] 2015 World ● ●      ●     ●  

[4] 2015 Singapore ●         ● ●  ●  

[10] 2015 Italy ●    ●   ● ● ● ● ● ● ● 

[11] 2015 Italy ●    ●   ● ● ● ● ● ● ● 

[7] 2016 Italy ●       ● ● ● ●  ●  

[12] 2016 Italy ●       ● ● ● ●  ●  

[23] 2016 Vienna ●       ● ● ● ●  ●  

[1] 2016 Chile          ●    ● 

[27] 2016 Dhaka           ●    

[17] 2017 Beijing ● ●         ●  ● ● 

[20] 2017 South America ●       ●     ● ● 

[21] 2017 Perugia ●       ●     ●  

[31] 2017 Hangzhou, China ●  ●  ●   ●    ● ●  

Legend: 

UHI = Urban Heat Island 
UHII = Urban Heat Island Intensity 
SUHI = Surface Urban Heat Island  
MUHI = Micro Urban Heat Island 

LST = Land Surface Temperature 
LULC = Land Use Land Cover 
NDVI = Normalized Difference Vegetation Index  
NDWI = Normalize Difference Water Index 

A = Albedo  
BD = Building Density 
BF = Building Form 

H/W = Height/Width or Buildings Aspect Ratio 
S = Satellite data 
W = Weather data 

UHI

AUHI

Atmospheric UHI

BLUHI

Boundary Layer 
UHI

CLUHI

Canopy Layer 
UHI

SUHI 

Surface UHI

SSHUI 

SubSurface UHI

MUHI 

Micro UHI

UHS 

Urban Heat Sink
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The Albedo is one of the indicators that can be calculated by the remote 
sensing images. Albedo is the percentage of solar incident irradiation reflected 
by a surface, and is an intrinsic characteristic of the materials; in fact, a material 
such as asphalt, with very-low albedo values, tends to store and absorb more 
the incident solar irradiation, reaching high surface temperatures. Also, the 
presence of vegetation with the Normalized Difference Vegetation Index (NDVI) 
can be measured by remote sensing images with the difference between NIR 
(which vegetation reflects) and RED light (which vegetation absorbs). 

With a GIS tool (Geographic Information Systems) it is possible to create 
and process the remote sensing images to study and to map the UHI taking into 
account all characteristics of the built environment ([1], [8], [14], [17], [18], [19], 
[20]). The classic indicator for describing an UHI is the difference between 
urban and rural temperatures and its intensity can be evaluated by minimum, 
average and maximum air temperatures [21]. To measure the intensity of the 
heat island, satellite data were also used to analyze temporal changes such as 
the Land Surface Temperature (LST) considering the development of the built-
up areas and the decrease of the green zones. The results of this analysis may 
guide and plan the optimization of the land use and the choice of the most 
favourable land coverage.  

Table 1 shows a synthesis of the state of art on UHI  reporting  the year and 
the area of the analysis, the variables involved, type of data (satellite or 
weather) and if the study used a GIS tool.  The literature analysed concerned 
mainly studies on UHI (85%), considering the LST (26%), the A (44%) and the 
H/W (41%) with weather data (74%); only the 33% of the analysed literature 
used a GIS tool. 

 
2.1. Study area: the case study of Turin 
 

Turin is the fourth Italian city for population with almost one million 
inhabitants in the urban area and two million including the metropolitan area 
with a population density of about 6,800 inh/km2. It is located in north-west part 
of Italy with a continental humid temperate climate but, since the nineties 
onwards, its weather has undergone a progressive warming with an increase of 
human health risks [22].  

In this study, the territory of Turin was divided in 8 districts and in census 
sections corresponding to blocks of buildings dimensions. This analysis was 
extended to the following municipalities near Turin in which weather data were 
available: Brandizzo, Candiolo, Caselle, Chieri, Grugliasco, Moncalieri, 
Nichelino, Pecetto, Pino Torinese, Rivoli and Venaria Reale.  

To evaluate the UHI phenomenon, air temperatures variations between the 
high-density urban context and the peripheries were analysed through 
temperature series of the past decade. A GIS-based method was used to 
calculate the various parameters influencing the air temperature variation.  

In Figure 2 the weather stations considered in this study were represented 
and in Table 2 their main characteristics are reported with the distinction in 
urban and rural weather stations. Table 2 shows that, in the urban context, 4 
weather stations (Giardini Reali, Politecnico, Università di Torino and via della 
Consolata) are near the centre of Turin; the other 5 weather stations are in the 
in the periphery of Turin. The rural weather stations have a variable distance 
from the centre of Turin from 5 to 17 km and two weather stations have higher 
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altitudes (Bric della Croce and Pino Torinese) and this can influence the UHI 
effects. 

 
Figure  2. Relative location of the weather stations in Turin and near Turin.  

 
Table 2. Weather Stations characteristics. 

NAME ARPA ID MUNICIPALITY LAT. N LONG. E Dst CS Altasl [m] D [Km] Working from 

URBAN WEATHERS STATIONS 

CSI  Torino 45,038331 7,651130 2 2166 270 3.814 2015 

Giardini Reali 446 Torino 45,071702 7,691890 1 66 239 0.123 2004 

INRIM  Torino 45,014047 7,639484 2 3096 242 6.069 2009 

Reiss Romoli S3869 Torino 45,112508 7,670910 5 3542 270 4.454 2003 

Politecnico  Torino 45,064435 7,662004 1 797 233 1.316 2010 

Torino Alenia S4294 Torino 45,079646 7,610725 4 2414 320 5.173 2005 

Università  Torino 45,050272 7,680429 8 868 254 1.737 2004 

Vallere Smat 249 Torino 45,016980 7,673897 8 2295 239 4.096 2001 

Via della Consolata S3447 Torino 45,075930 7,678352 1 14 290 0.484 2003 

RURAL WEATHER STATIONS 

Brandizzo Malone 373 Brandizzo 45,182019 7,851905  90 192 17.525 2005 

Bric della Croce 16061 Pecetto Torinese 45,033850 7,732461  0 710 5.170 1954 

Candiolo  Candiolo 44,956527 7,557674  17 245 15.222 2000 

Caselle S2896 Caselle Torinese 45,185429 7,650859  56 300 12.150 2003 

Chieri  Chieri 45,017589 7,788666  177 357 9.047 2000 

Grugliasco 144 Grugliasco 45,058599 7,588589  275 290 6.829 1987 

Moncalieri 126 Moncalieri 45,012172 7,671533  216 290 5.565 2000 

Moncalieri Bauducchi 273 Moncalieri 44,960107 7,708579  205 226 11.206 1993 

Osservatorio  Moncalieri 44,999904 7,684481  2 287 6.925 - 

Pianezza  Pianezza 45,132651 7,542330  28 319 11.026 1987 

Pino Torinese 120 Pino Torinese 45,041336 7,765158  8 619 6.720 1988 

Rivoli La Perosa S3948 Rivoli 45,079869 7,498911  265 362 12.843 2004 

Venaria La Mandria S4587 Druento 45,174956 7,559208  26 337 13.465 2006 

Venaria Ceronda 256 Venaria 45,134220 7,631300  2 253 7.881 1997 

Venaria 130 Caselle Torinese 45,169695 7,613889  60 260 11.167 1987 

Legend:  Dst = District of Turin                                                                                                 
Altasl = Altitude above sea level  

CS = Census Section  
D [Km] = distance in kilometres from the town center. 
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3. MATERIAL AND METHODS 
 
The methodology proposed in this study can be explained through the 

following steps: 
1. Climate data collection of public and private weather stations in urban and 

suburban areas for a long time-period with the definition of a typical year. 
2. Data collection from national, regional and municipal databases to describe 

the case-study territory with the definition of geographic coordinates for a 
spatial data distribution and representation of the built environment. 

3. Definition and numerical evaluation of the environmental variables that 
influence microclimate variations (with the support of satellite images). 

4. Evaluation of a simple model to describe the influence of environmental 
variables on air temperature variation with a multiple linear regression. 
 
In step 3, the most influential variables on the air temperatures were 

evaluated considering the higher correlation factors. For example, since BCR 
and MOS were among the most influential, it was decided to exclude BD, BH 
and BO related to them, but less influential. 

Then, in step 4, the linear regression models of the monthly air temperature 
were performed considering the most influential available variables on the 
whole territory. In this model the air temperature is the dependent variable, Tair, 
that can be evaluated as a linear function of the “n” other independent variables 
X [7, 12]: 

𝑇𝑎𝑖𝑟 = 𝐼 + 𝛼1 ∙ 𝑋1 + 𝛼2 ∙ 𝑋2 + ⋯ + 𝛼𝑛 ∙ 𝑋𝑛 + 𝜀    (1) 
where:  
I  is the intercept; 
α1- αn are coefficients that can estimate the influence of a variable on the air 

temperature; α has a negative sign when the air temperature decreases 
if its variable increases and a positive sign when the air temperature 
increases when its variable increases. 

X  are the independent variables. 
ε  is the error associated to the model. 
 
Four different types of variables were used to define the model [21, 23]: 

 real data or with normalized data; normalized variables have an average 
value equal to 0.5 so that all variables have the same average value and 
don’t have different units of measure; then the α coefficients are the 
weight with which the variable influences Tair; 

 real classes or normalized classes; the following variables were 
subdivided in classes depending from the: distance from the city centre 
(from 0 <2 km; 1 <6 km; 2 <10 km; to 3), presence of vegetation (from 0 
to 1 without or with vegetation) and altitude (1 with +1-20 m, 2 with +20-
50 m and 3 with +50-100); normalized classes have an average value 
equal to 0.5. 

In this work, the more interesting models with normalized variables are 
reported. 

Mainly, the morphology of the built environment was evaluated through 
geometrical variables evaluated with a GIS tool, while the features of the 
materials characterizing the territory were elaborated through georeferenced 
satellite images.  
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The results of the linear regression model of air temperature were also 
compared with the Land Surface Temperature (LST) registered by satellite 
images. All analyses consider a territorial unit equal to block of buildings area. 

  
3.1. Climate data evaluation and definition of the typical year 

 
Climate data were obtained by public authorities and private companies 

through online portals or direct requests. In Piedmont Region, most of weather 
databases are managed by ARPA (Regional Agency for the Protection of the 
Environment) and by the RAM (Agro-Meteorological Network) [24]. To estimate 
the UHI phenomenon, the hourly and monthly air temperatures of the last 
decade (2005-2016) have been collected and represented using an Excel 
spreadsheet to evaluate their trends and to find their monthly typical trend on 
this period of time [18, 25].   

 
Figure 3.First step to evaluate the air temperature trends and the typical 

year.   
 

In the territory near Turin and for these 12 years from 2005 to 2016, the 
average air temperature was about 13.98°C; then the year 2012 was chosen as 
a typical one with an average air temperature of 13.97 °C. In urban context, 
from these data can also be observed that in 12 years, the on average air 
temperatures increase of +3.4 °C in February and of +2.0 °C in August. 

 
Table 3. Typical Meteorological Year 2012. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tavg 

Vallere Smat 1.80 -0.40 11.30 12.00 17.20 22.60 23.90 24.60 18.30 13.40 8.30 1.80 12.90 

Reiss Romoli 3.50 2.10 13.10 12.10 17.90 23.10 24.50 25.00 19.40 14.40 9.30 2.90 13.94 

Via Consolata 4.40 2.70 13.60 12.60 18.50 23.70 25.30 25.90 19.90 15.00 10.00 3.90 14.63 

Giardini Reali 2.80 1.70 12.20 12.10 17.70 22.80 24.40 25.10 18.80 13.80 8.80 2.30 13.54 

Torino Alenia 3.60 1.60 12.90 11.90 17.60 22.90 24.20 24.90 19.10 14.20 9.20 3.20 13.78 

Inrim 1.90 1.31 11.95 12.25 17.70 23.06 24.53 25.12 19.15 13.77 8.62 2.32 13.47 

Politecnico 4.54 2.81 13.95 12.99 18.70 23.94 25.53 26.31 19.56 15.53 10.56 4.60 14.92 

Università 3.75 2.80 13.40 12.80 18.50 23.60 25.10 25.60 19.90 15.20 10.30 4.20 14.60 

CSI 4.45 2.73 13.74 12.73 18.69 23.95 25.56 26.17 20.11 15.16 10.10 3.94 14.78 

Moncalieri Baudu. 0.80 -2.10 10.70 12.00 17.60 22.70 23.90 24.00 18.10 13.10 - 1.10 12.90 

Moncalieri Osser. 3.06 0.71 13.09 12.88 19.04 24.58 26.35 26.83 19.98 14.82 9.18 2.75 14.44 

Brandizzo Malone 1.20 -0.30 11.10 11.70 17.10 22.40 23.60 24.00 18.10 13.20 7.90 0.90 12.58 

Caselle 2.20 0.70 11.80 11.50 17.20 22.60 24.10 24.90 18.80 13.80 8.30 1.60 13.13 

Pino Torinese 4.50 1.80 11.90 9.80 16.00 21.10 22.80 23.60 17.60 13.00 8.30 3.30 12.81 

Venaria Ceronda 1.40 -0.40 10.90 11.50 16.80 22.20 23.40 24.00 18.00 13.10 7.80 - 13.52 

Venaria lMandria 1.40 -0.50 10.60 10.90 16.20 21.70 - 23.50 17.60 12.70 7.30 0.90 11.12 

Bric della Croce 3.13 5.81 11.16 9.37 15.08 19.44 21.44 22.79 17.71 11.91 7.58 3.35 12.40 

Rivoli la Perosa 2.90 0.40 12.00 11.60 17.30 23.20 24.50 25.20 18.80 13.50 8.60 2.50 13.38 

Candiolo 1.09 -2.39 11.13 11.99 17.42 23.06 24.13 24.78 18.37 13.21 7.75 1.08 12.63 

Chieri 3.41 1.29 12.28 11.54 16.90 22.19 22.48 23.03 17.68 13.41 8.95 3.13 13.02 

Grugliasco 3.40 1.73 12.78 12.21 17.84 23.34 24.79 25.55 19.57 14.16 9.02 2.89 13.93 

Moncalieri 1.38 -0.93 10.96 12.06 17.30 22.75 23.97 24.52 18.36 13.43 8.03 1.33 12.76 

Pianezza 2.40 0.21 11.29 11.22 16.35 21.75 22.68 23.48 18.07 13.17 8.14 1.72 12.53 

Venaria 2.90 1.06 12.28 11.85 17.30 22.69 23.83 24.61 18.82 13.99 8.72 2.36 13.36 

Tavg mth 2.56 0.90 11.52 11.29 16.63 21.72 23.02 23.64 17.90 13.16 8.29 2.35  

TGavg 0.07 0.00 0.47 0.46 0.69 0.92 0.97 1.00 0.75 0.54 0.32 0.06  

 

Analyze the 
average monthly 

temperatures for the 
decade 2005-2016

Calculate the 
average of the 

annual 
temperatures

Define the Typical 
Meteorological 

Year
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In Table 3 were collected the monthly temperatures registered in the 2012 
by all the active weather stations. This analysis shows differences between the 
air temperatures of the urban and suburban contexts. In the last rows, the 
lowest average monthly temperature is highlighted in blue (February) and the 
highest one in red (August). Between the urban weather stations, the one with 
the lower annual air temperature is Vallere Smat with 12.90°C because of its 
green environment with also the presence of Po river; within the rural weather 
stations, the coldest are Venaria La Mandria in a big park and Bric della Croce 
in the hillside at 710 m of altitude. With regard to the maximum annual average 
temperature, the warmest air temperature is recorded by Politecnico with 
14.92°C in a high-density zone with about +2°C compared to the suburb areas.  

From the average monthly temperatures Tavg,mth, the average Thermal 
Gradient (TGavg) was obtained: 
𝑻𝑮𝒂𝒗𝒈 = (𝑇𝑎𝑣𝑔,𝑚𝑡ℎ − 𝑇𝑚𝑖𝑛)/(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛).                                                 (2) 

This variable, varying from 0 to 1, can be used in a model to evaluate 
monthly variations in a typical year (in the last row of Table 3). 

 
3.2 Data collection of territory characteristics 

 
To analyse the urban and rural morphology and to calculate the 

environmental variables, different databases and geospatial datasets have been 
acquired; in particular: the Technical Map of the Metropolitan City of Turin 
(CTP), the Municipal Technical Map for the City of Turin (CTC), and the BDTRE 
2016 file-package from Piedmont Region geoportal). Other information about 
socio-economic data were obtained from the ISTAT 2011 census database. 

To evaluate the type of material of the territory in urban and rural areas, 
satellite images have been used. Two different sources have been compared: 
the Landsat 8 images with an extension of 180 x 180 km (low resolution) and 
the ASTER images with an extension of 60 x 60 km (higher resolution). The 
satellite LANDSAT-8 OLI images have been acquired from the Earth Explorer 
website while the Aster images have been provided from CSI (Consortium for 
the Information System) of Piedmont Region. Aster images date back to 22nd 
July 2004 at 10.33 am because in the years later the SWIR sensor broke down. 
Then, the Landsat images for the comparison were chosen in days with similar 
air temperatures and with clear sky conditions (same and low cloud cover 
percentage); in this work, Landsat images refer to July 23rd 2013 at 10.19 am. 
 
3.3. Urban parameters that influence the microclimate 
 

As observed in literature, the microclimate variations are strongly influenced 
by the environmental context as the urban morphology, the solar exposition, the 
type of materials used in the outdoor spaces and the presence of vegetation 
and water [26, 27]. In this work, these characteristics have been evaluated with 
a GIS tool considering the block of building as a territorial unit for the urban 
context (with an area of 33.7 ha) and a larger area for the rural context (of about 
340.3 ha: 583x583 m2).  

The following environmental variables, that influence the air temperature 
variations, were calculated with a GIS tool for each territorial unit:  
• BCR - building coverage ratio [m2/m2], ratio between built area and the 

territorial unit area. 
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• H/W - aspect ratio or height to distance ratio [m/m], ratio between the height 
of buildings and their distance. 

• H/Havg - relative height of a building [m/m], ratio between the height of a 
building and the average height of the surrounding buildings. 

• BD - building density [m3/m2], ratio between the buildings volume and the 
territorial unit area. 

• BH - buildings height [m], average height of buildings within the territorial 
unit. 

• MOS - main orientation of the streets [-], prevalent orientation of streets and 
even consequently of buildings (BO); this value varies from 0.8 with 
orientation South-North to 1.3 East-West. 

• Altasl – altitude above sea level [m]: the air temperature decreases with 
higher altitudes. 

• D - distance from the city centre (the Roman quadrilateral area in Turin) 
[km] to consider the typical effect of the UHI: usually, with the increase of 
the distance from the city centre, a decrease in air temperature is observed. 

• H2O - the presence or the absence of water (respectively 1 or 0).  
To evaluate the outdoor materials used in the outdoor spaces 

(characterized by the albedo coefficient) and the presence of vegetation (with 
the NDVI index varying from -1 to +1; low values correspond to arid areas of 
rock, sand, or snow while high values indicate tropical rainforests), satellite data 
derived from the Landsat-8 and the Aster images were utilized. These images 
were also used to evaluate the LST and all the satellite data were 
georeferenced with a GIS tool (Figure 4). 

 

 
Figure 4. Parameters influencing the air temperature and the UHI. 

 
Compared to Landsat 7, Landsat 8 installs also optional land imager (OLI) 

and thermal infrared (TIRS) sensors. Thanks to these sensors, the number of 
recording spectrum bands increases from 9 to 11 with the addition of an ultra-
blue band at 0.43-0.45 μm and band 9 useful to evaluate the cloud cover at 
1.36-1-38 μm. In addition, the TIR field is separated by band 10 called TIR1 at 
10.60-11.19 μm, and band 11 called TIR2 at 11.50-12.51 μm. The goal of this 
satellite sensors is to be able to deliver higher resolution images both in visible 
and infrared compared to Landsat 7 with 16 instead of 8-bit.  

Tair and UHI

Albedo LST
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Solar 
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To derive the albedo coefficients A, NDVI and LST, the algorithms of Liang 
([28], [29]) have been used for Aster and Landsat-7 ETM+, considering the 
different fields of wavelength for Landsat-7 and Landsat-8 reported in Table 4. 

 
Table 4. Spectral bands and spatial resolution comparison between Landsat-7 

and Landsat-8 satellite images. 
Landsat-7 ETM+ Landsat-8 with OLI and TIRS Bands 

Band Spatial resolution Wavelenght (μm)  Band Spatial resolution Wavelenght (μm)  
 1 30 m Coastal/Aerosol 0.435-0.451 

1 30 m Blue                 0.441-0.514 2 30 m Blue                 0.452-0.512 

2 30 m Green              0.519-0.601 3 30 m Green              0.533-0.590 

3 30 m Red                 0.631-0.692 4 30 m Red                 0.636-0.673 

4 30 m NIR                  0.772-0.898 5 30 m NIR                  0.851-0.879 

5 30 m SWIR-1           1.547-1.749 6 30 m SWIR-1           1.566-1.651 

6 60 m TIR                  10.31-12.36 10 100 m TIR-1             10.60-11.19 

11 100 m TIR-2             11.50-12.51 

7 30 m SWIR-2        2.064-2.345 7 30 m SWIR-2            2.107-2.294 

8 15 m Pan           0.515-0.896 8 15 m Pan                  0.503-0.676 

 9 30 m Cirrus               1.363-1.384 

 
4. RESULTS 

 
In Table 5 the main variables have been calculated for the areas of the 

selected weather stations. In the high-density centre of Turin, it is possible to 
observe: in Figure 5 the high values of BCR, in Figure 6 the low values of 
albedo, in Figure 7 the low values of NDVI (absence of vegetation) and in 
Figure 8 the high values of LST. Vice versa in the suburb zones. 

 
Table 5. Main urban variables in the weather stations’ zones. 

Weather Station 
BCR 

[m2/m2] 
H/W 

[m/m] 
H/H 

[m/m] 
MOS       

[-] 

Anir 
Landsat  

[-] 

Anir 

Aster 
[-] 

D  
[Km] 

NDVI 
Landsat 

[-] 

NDVI 
Aster 

[-] 

H2O 
[-] 

Vallere Smat 0.14 0.34 0.81 1.01 0.21 0.27 4.096 0.56 0.43 1 

Reiss Romoli 0.38 0.37 1.50 0.94 0.21 0.30 4.454 0.23 0.23 0 

via Consolata 0.43 0.38 1.04 0.97 0.14 0.22 0.484 0.1 0.11 0 

Giardini Reali 0.01 0.38 0.83 1.03 0.21 0.28 0.123 0.24 0.47 0 

Alenia 0.36 0.59 1.89 1.03 0.20 0.26 5.173 0.22 0.22 0 

Inrim 0.08 0.34 1.19 1.05 0.24 0.31 6.069 0.47 0.47 0 

Politecnico 0.39 0.48 1.50 1.02 0.17 0.26 1.316 0.3 0.22 0 

Università 0.47 0.22 1.14 0.99 0.16 0.23 1.737 0.16 0.24 0 

Csi 0.17 0.83 2.14 1.04 0.20 0.28 3.814 0.33 0.33 0 

Bauducchi 0.01 0.10 0.68 0.90 0.27 0.33 11.206 0.58 0.60 1 

Osservatorio 0.65 0.27 1.76 0.93 0.20 0.28 6.925 0.25 0.25 0 

Brandizzo 0.01 0.14 1.17 1.05 0.25 0.33 17.525 0.53 0.53 1 

Caselle 0.29 0.12 0.83 0.94 0.29 0.36 12.150 0.6 0.60 1 

Pino Torinese 0.12 0.20 1.09 0.98 0.26 0.33 6.720 0.58 0.60 0 

Ceronda 0.13 0.24 1.41 0.87 0.19 0.25 7.881 0.32 0.32 1 

Mandria 0.00 0.13 1.17 1.12 0.28 - 13.465 0.66 - 1 

Bric Croce 0.09 0.22 1.23 0.97 0.29 0.33 5.170 0.7 0.70 1 

Rivoli Perosa 0.01 0.16 1.02 1.07 0.27 - 12.843 0.6 - 1 

Candiolo 0.01 0.09 1.34 0.97 0.29 0.34 15.222 0.51 0.51 1 

Chieri 0.02 0.15 0.91 1.01 0.29 0.36 9.047 0.54 0.54 1 

Grugliasco 0.17 0.10 0.81 0.70 0.25 0.33 6.829 0.4 0.40 0 

Moncalieri 0.01 0.19 0.92 0.96 0.26 0.33 5.565 0.56 0.56 1 

Pianezza 0.02 0.17 1.00 0.92 0.30 - 11.026 0.56 - 1 

Venaria Caselle 0.02 0.23 1.15 0.97 0.29 0.35 11.167 0.63 0.63 1 
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Figure 5. Map of the average BCR [m2m2] values for census section. 
 

 
Figure 6. Map of the average Landsat Albedo (near-IR values). 
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Figure 7. Map of the average Aster NDVI values for census section. 

 

 
Figure 8. Map of the average Landsat LST (July 23rd 2013 at 10.19 am). 
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The main urban variables characterizing the surrounding environments, 
reported in Table 5, were normalized (with an average value of 0.5) and used to 
calculate the monthly air temperature with a linear regression model: 

𝑻𝒂𝒊𝒓 = 𝐼 + (𝛼1 · 𝐵𝐶𝑅) + (𝛼2 ·
𝐻

𝑊
) + (𝛼3 ·

𝐻

𝐻𝑎𝑣𝑔
) + (𝛼4 ∙ 𝑀𝑂𝑆) + (𝛼5 ∙ 𝑇𝐺𝑎𝑣𝑔) +

(𝛼6 ∙ 𝐴) + (𝛼7 ∙ 𝐷) + (𝛼8 ∙ 𝑁𝐷𝑉𝐼) + (𝛼9 ∙ 𝐻2𝑂) + (𝛼10 ∙ 𝐴𝑙𝑡𝑎𝑠𝑙) +  .    (3) 
 
Reducing the relative error between the calculated and measured air 

temperatures, multiple linear regression models have been evaluated. Starting 
from the results of past research [7, 12], in the multiple regression models were 
added more variables from A to Altasl in equation 3, determining the coefficients 
α reported in Table 6 (the intercept “I” was equal to zero). 

 

Table 6. The coefficients α and the relative error  for the multiple linear 
regression models. 

 
 Eq. α1(BCR) α2 (H/W) α3 (MOS) α4 (H/Hav) α5 (TGav) α6 (A) α7 (D) α8 (NDVI) α9 (H20) α10 (Alt)  % 

Landsat (4) 0.86 1.38 0.34 -0.95 24.08 0 - - -  7.3 

(5) 0.79 1.34 0.03 -0.48 24.22 -0.24 0 - -  7.1 

(6) 0.69 1.21 1.99 -1.26 24.03 0 -0.99 - -  6.9 

(7) 0.62 0.82 1.52 -0.53 24.16 0 0 -0.52 -0.45  6.7 

(8) 0.70 0.68 2.92 0.58 23.88 0 0 0.08 -0.47 1.51 6.4 

Aster (9) 0.97 1.44 0.33 -0.94 24.11 0 - - - - 7.2 

(10) 0.90 1.31 0.23 -0.57 24.15 0 -0.10 - - - 6.9 

(11) 0.74 1.18 1.77 -0.99 24.17 0 0 -1.05 - - 6.7 

(12) 0.68 0.64 1.68 -0.49 24.17 0 0 -0.43 -0.49 - 6.5 

(13) 0.78 0.68 2.88 0.55 23.99 0 0 0.07 -0.48 1.53 6.2 

 
The best results, with the lower error between measured and calculated air 

temperature, were provided by equations 8 and 13 including all variables. This 
was predictable and it is realistic because it is well known that the altitude 
affects the air temperature and the urban heat island effect, as well as the 
distance from the centre of the main city and the presence of green and water. 
The relative error of the models was lower than 14% considering the 12 months; 
since the winter 2012 was quite cold with average monthly temperatures of 
about 0 °C, in the evaluation of the relative errors, the months of December, 
January and February were excluded, with maximum relative errors < 7%. 

In Figures 9 and 10 the results about the spatial distribution of air 
temperatures calculated with equation 13 for the months of February and 
August is represented.  

In order to verify the results and the consistency of the model, with the 
equations that gave the lower error (eq. 8 and 13), the air temperature 
computed by the model was also compared with the Land Surface Temperature 
(LST) [30]. LST influences indirectly the air temperature because the materials 
and outdoor surfaces absorb heat and solar irradiation and then exchange heat 
by convection with the air that that flows over them. The measure of LST can be 
obtained from satellite images and depends on the time in which the satellite 
image is captured. For ASTER, LST is calculated on July 22nd 2004 at 10.33 
am, while for LANDSAT-8 on July 23rd 2013 at 10.19 am. To shift from the 
hourly to the daily LST, the time temperature distribution factor F(t) of Italian 
Standard UNI/TR 10349-2:2016 was applied to describe the hourly distribution 
of the air temperature between a minimum and a maximum in July. 



 
 

14 
 

 

 
Figure 9. The air temperature calculated with equation 13 in February 2012.  

 

 
Figure 10. The air temperature calculated with equation 13 in August 2012.  
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With the daily LST, it was possible to determine a temperature gradient 
given by the difference between the daily LST and air temperature. The same 
procedure has been applied in urban and suburban contexts to map the 
differences between air temperature and LST and to highlight the urban heat 
island effect in the Metropolitan City of Turin.  

 
The UHI effects was evaluated by temperature differences between urban and 

rural contexts through three indicators [31]: 

1. The UHI-driven indicator “magnitude” (Q1) equal to the maximum 

temperature minus the average temperature; 

2. The UHI-driven indicator “range” (Q2) equal to the difference between 

the maximum and the minimum daily temperature; 

3. The land cover-driven indicator “urban-rural” (Q3) describes the 

difference between the daily temperature at urban (high-density area) 

and rural (low-density area) weather stations. 

In this work, these three indicators were calculated over the period 2010-
2016 for 12 weather stations with the daily average, maximum and minimum air 
temperatures; the results are reported in Table 7 considering the population 
density calculated through a buffer with a radius of 2.5 km around the weather 
stations.  

For the urban weather stations, Q1 and Q2 are lower than the average 
value (in winter: 5.95-11.42 °C; in summer: 5.26-9.56 °C) because the average 
temperature in the urban context is higher.  

The cover-driven indicator “urban-rural” Q3 was calculated with the 
difference of the average temperature in urban and rural context with 1.07 °C in 
summertime and 1.53 °C in wintertime. Considering the average minimum 
temperatures, these difference between urban and rural context increase up to 
2.60 °C and 2.46 °C respectively in summertime and wintertime. 

In Table 7 also the heatwave and the cold-wave on the years 2010-2016 
have been evaluated; the heatwaves as events with the average and the 
maximum temperature over the 97.5th percentile and cold-waves as events with 
the average and the minimum temperature under the 2.5th percentile [25]. 
 

Table 7. The UHI effects. 
 

Weather station 
 

Spring/summer months [°C]   Autumn/winter months [°C]   Heatwave °C Cold wave °C 

 
Inh/km2 Tm Tmax Tmin Q1 Q2 Tm Tmax Tmin Q1 Q2 Tavg Tmax Tavg Tmin 

URBAN WEATHER STATIONS 

Via della Consolata 86,410 21.15 26.20 16.62 5.04 9.58 8.14 12.33 4.70 4.19 7.63 28.00 33.7 1.4 -1.3 
Politecnico 86,272 21.41 25.88 19.31 4.42 8.57 8.52 12.42 5.17 3.90 7.25 28.35 33.2 1.6 -1.3 
Reiss Romoli 17,218 20.47 25.87 15.45 5.40 10.42 7.41 12.12 3.42 4.70 8.70 27.20 33.1 0.5 -3.0 
Alenia 16,181 20.28 25.75 15.32 5.47 10.43 7.34 11.82 3.52 4.48 8.30 27.10 33.2 0.5 -2.9 
INRIM 15,659 20.38 25.88 14.98 5.51 10.90 6.49 11.35 2.30 4.86 9.05 26.11 33.5 0.1 -4.1 

RURAL WEATHER STATIONS 

Vallere 13,701 19.95 26.32 14.42 6.36 11.88 6.32 11.79 2.12 5.47 9.67 26.60 33.8 -0.6 -4.2 
Rivoli La Perosa 6,616 20.08 26.45 14.36 6.37 12.09 6.61 12.20 1.83 5.59 10.37 27.00 34.1 -0.2 -5.1 
Caselle 2,669 19.95 26.01 14.08 6.08 11.94 6.40 12.11 1.59 5.70 10.49 26.70 33.3 -0.5 -5.4 
Brandizzo 3,125 19.63 25.82 13.98 6.18 11.84 5.97 11.44 1.51 5.48 9.92 26.20 33.1 -0.7 -5.1 
Bauducchi 667 19.81 27.15 13.18 7.34 13.98 5.74 11.97 1.03 6.23 10.94 26.30 34.6 -1.1 -5.5 
Venaria La Mandria 685 18.91 25.99 12.63 7.03 13.36 5.45 11.97 0.38 6.52 11.60 25.70 33.5 -1.4 -6.5 
Venaria Ceronda 8,555 19.33 25.56 13.50 6.22 12.07 5.84 11.86 1.09 6.02 10.77 25.90 32.8 -0.9 -5.7 
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6. DISCUSSION 
 

The best results, with lower percentages of relative error between 
measured and calculated air temperatures, were provided with equations 8 and 
13 including all the variables (even if the errors are very similar). Not always, it 
is possible to have the data of all the environmental variables for each portion of 
the territory and therefore it is sometimes necessary to use alternative models 
with relative errors however low. In addition, the correctness of the databases is 
fundamental to identify a model, especially on such a large scale. 

With equations 8 and 13, the most influential variables were BCR, MOS, 
and H2O with both Landsat and the Aster satellite data (see Figure 11). The 
influence of the different variables is highlighted, so it is the built environment 
that most influences air temperature variations. A good urban planning can help 
in mitigating the global warming and the UHI effects. A more accurate 
knowledge of urban areas with a detailed map of urban variables can allow the 
optimization of interventions using these models with a compensative approach.

 

 
 

Figure 11. The range of variability of the different variables multiplied by the 
coefficients α (on the air temperature) with equations 8 and 13. 

 
The average relative difference between the LST and the air temperature is 

3% with Aster satellite data. In the suburban context, due to the presence of 
vegetation, the difference between these temperatures could be of 1%, while in 
the urban context the percentage rises up to 8% for the presence of high 
emissivity materials and for the presence of the UHI. Higher values can be 
found with Landsat images that have a lower resolution but the results were 
acceptable. 

The UHI effects are influenced by the built density (i.e. BCR in Figure 9) 
and then by the people density, as also reported in Table 7. From this analysis, 
the land-cover-driven indicator Q3 seems to better explain the UHI effects then 
the UHI-driven indicators Q1 and Q2, which were influenced by the higher 
average temperature in the urban contexts.  

The results of this analysis can be improved with the hourly data instead the 
daily average, maximum and minimum weather data. 

 
7. CONCLUSIONS  

 
A simple linear regression could evaluate with a good accuracy the effect of 

territorial variables on the microclimate variations and the UHI effect. At the 
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same time, a simple model like this one can be used to plan and design a more 
sustainable built environment as a function of the urban and territorial variables. 
The presence of vegetation and water, for example, can reduce the air 
temperatures up to -0.5 °C on the average daily temperature (see Figure 11). 

Better results can be obtained from the most accurate models that describe 
the environment with a greater number of variables and the support of a GIS 
tool can certainly optimize this representation. In this work, all the linear 
regression models have a relative error lower that 10 %.  

With this methodology, also the UHI effect can be evaluated and, for the 
Metropolitan City of Turin, it was quantified with the land cover-driven indicator 
“urban-rural” Q3 measured with the difference of the daily air temperature 
between urban and rural areas. The results are of 1-1.5 °C with the average air 
temperatures respectively in summertime and wintertime; and of 2.6-2.46 °C 
with the minimum air temperatures respectively in summertime and wintertime. 
Also, the UHI-driven indicators Q1 and Q2 can be used to evaluate the UHI 
intensity even if, with the daily temperatures, they are influenced by the higher 
urban temperatures. In this analysis, the effect of the UHI are more evident in 
wintertime as also demonstrated with the heatwaves and cold-waves data. 

Future researches with hourly weather data could improve these models. 
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