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Introduction

In a freeze-drying process it is mandatory to guarantee product quality.

To this purpose, product temperature has to be maintained below a 
maximum value, corresponding to the eutectic point in case of solutes that 
crystallize (in order to avoid the formation of a liquid phase), or to the glass 
transition temperature in case of solutes (e.g. proteins) that remain 
amorphous (in order to avoid the collapse of the cake structure).

Residual humidity and batch uniformity are very important
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Introduction – PAT Guideline US-FDS 2004

The scientific, risk-based framework outlined in this Guidance, is 
intended to support innovation and efficiency in 
pharmaceutical development, manufacturing, and quality 
assurance.

Manufacturers are encouraged to use the latest scientific 
advances in pharmaceutical manufacturing and technology.

PAT is a system for designing, analyzing, and controlling 
manufacturing through timely measurements of critical quality 
and performance attributes of raw and in-process materials and 
processes, with the goal of ensuring final product quality. 

Quality cannot be tested into products; it should be built-in or 
should be by design .

Page � 3



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

Introduction

To get these results we need:

- an efficient monitoring system to measure product temperature and the 
residual water content (to establish the end of the primary drying);

- to understand both process and equipment , to be able to evaluate the 
effect of modifications in process conditions and equipment characteristics on 
final product properties;

- possibly an efficient control system that 

- optimizes the drying process,

- takes into account the constraints on the product quality, 

- takes into account the characteristics of the equipment (heating/cooling rates),

- manages the process if something goes wrong.

Both the monitoring and the control system have to take into account batch 
heterogeneity . 
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The model based approach

 

Mathematical 
modeling  

Apparatus 
design 

Process 
monitoring 

Process 
control  

A model-based approach can be the solution!:

Model Based PAT tools 
based on measurement of:

• product T ( soft-sensors)

• chamber pressure
(Pressure Rise Tests)

• sublimation flux
(TDLAS, valvless monitoring,.)

see Section 3
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The model based approach

Goals:
�Off-line optimization
�To control a production cycle

� Minimization of the duration of the primary drying

� Preservation of the product quality

� Disturbance rejection: self-adaptive control system to 
compensate changes in the operating conditions

� Batch unevenness evaluation

�Finding the optimal heating strategy in a single 
test (“cycle development”)

�Process transfer and scale up
�Optimized equipment design
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Outline

� 1. Mathematical modeling

� 2. Quality by Design: 
� Design space for primary drying and secondary drying; 

� effect of uncertainty; estimation of consequences of process failure

� 3. Process monitoring for primary and secondary dry ing 
� Use of model based monitoring devices and soft-sensors (DPE+, PDT, 

valvless monitoring systems, SD monitoring)

� 4. Process control
� Model based control systems (LyoDriver, MPC, soft-sensor ideal control, 

hybrid control system)

� 5. Process design: cycle development and optimizati on

� 6. Process understanding and process transfer

� 7. Equipment design and optimization
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� A suitable model has to be selected, taking into account the 
complexity of the process, as well as the parameters that must be 
determined.

� The “quality” of the prediction can depend more on the uncertainty of 
the parameters, than on the complexity of the model. 

� The level of detail must be chosen according to the final use.

� The time required for process simulation should be short, in particular 
when the model is used for an in-line optimization.

The best material model of a cat is another, or preferably the 

same, cat (Wiener & Rosenblueth)

A theory has only the alternative of being right or wrong. A 

model has a third possibility: it may be right, but irrelevant 

(Egan)

1. Mathematical modeling
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– Low-Impact Models

– Medium-Impact Models

– High-Impact Models

They are typically used to support product and/or 
process development. 

They can be useful in assuring quality of the product but 
are not the sole indicators of product quality. 

Their prediction is a significant indicator of quality of the 
product.

- 1. Mathematical modeling
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1. Mathematical modeling

� 1D model generally reliable for primary drying
(taking into account wall contribution)
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1. Mathematical modeling

� Semplified models required for monitoring and control pur poses

Velardi & Barresi, CERD 86 (2008)
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1. Mathematical modeling. Examples 1D

Modeling of freezing step: prediction of cake porosity

Arsiccio et al, EuroDrying 2017
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1. Mathematical modeling: 2D, 3D, multiscale

� 2 and 3 D modeling of vials (using COMSOL) to highligth r ole of radiation
(and convection in the freezing step)

� Multiscale modeling of equipment

� Other modeling approaches (CFD, QMoM and Monte Carlo at  very
low pressure, ....)

 

Dried Layer 

I  

Frozen Layer 

II 

Dryer shelf 

wJ
0z =

z L=

( )z H t=

V1 Nitrogen

V2

Condenser

Vacuum 

pump
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1. Mathematical modeling.
Example: estimation of influence of cake resistence

Vacuum Induced modified

Shelf r
amp fre

ezin
g

Multistep procedure used for the 
estimation of the resistance to vapour 
flow through the lyophilised product

Pisano et al., EuroDrying 2015; DT, in press (online 2016)
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Workflow to estimate the properties and the freeze- drying 
behavior of packed-beds of uniform and non-uniform micro-
particles within a vial

1. Mathematical modeling
Example: FD of granules

Capozzi et al., IDS 2016
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Ballistic Physics is 
used to simulate 

random packings of 
spheres

Particle-size distribution 
is chosen

Computational 
Fluid Dynamics is 
used to calculate 

porosity, tortuosity, 
and permeability of 

the packed bed

Ballistic physics and CFD at the pore-scale

1. Mathematical modeling
Example: FD of granules
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CFD for packed bed simulation
Navier-Stokes equation

Stokes regime (Re < 0.1)
Steady-state conditions

� Simulations were carried out over a portion of the packed bed as extracted 
from the central part (porosity fluctuations at the edge of the container were 
neglected)

� Mesh refining close to particle surface
� A given pressure drop was imposed over the computational domain

1. Mathematical modeling
Example: FD of granules
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1. Mathematical modeling: freeze-drying process of granule s
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Knudsen diffusion Molecular diffusion Viscous flow

� Dusty Gas Model: porous medium is a pseudo-component

ordinary

diffusion

Knudsen

diffusion

viscous flow

1. Mathematical modeling: mass transfer
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Effect of particle diameter (a) and bed porosity (b) on drying time in case of 
monodisperse particles.

Random Random Random Random packingspackingspackingspackings
DDDDpppp=20 =20 =20 =20 µµµµmmmm

random

rhomboedric

tetragonal

orthogonal

cubic

Effect of particle diameter and bed porosity

1. Mathematical modeling
Example: FD of granules
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� Two-scale model: on-line and off-line 
coupling. Different approaches to detailed 
prediction of the product behaviour or the 
equipment

Rasetto et al., Pharm. Technol. 2010)

 

1-D model of a  vial  

Temperature profile  in the vial and time evolution 
of the system in the time interval ( t, t+∆∆∆∆t)  
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1. Mathematical modeling
Example: two-scale model
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The use of a dual scale model can be very useful to understand the effect of different 
pieces of equipment on the product, addressing the scale up problems.

ref. Barresi A.A., Fissore D. and Marchisio D.L., 2010, Process Analytical
Technology in industrial freeze-drying, in: "Freeze-Drying/Lyophilization of
Pharmaceuticals and Biological Products, 3rd rev. Edition" (L. Rey and J. 
May, Eds.), Chap. 20. Informa Healthcare, New York, pp. 463-496.

(a) absolute pressure, Pa,
(b) interface temperature, K
and sublimating flux in case of :

- constant shelf T (c) 
- variable shelf T (d)

The local distribution of the properties is evaluated
modelling the source [ice sublimation] in the CFD code; 
the approach can be used to evaluate and qualify
“in silico” the equipment.

1. Mathematical modeling
Example: two-scale model
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The use of a dual scale model can be very useful to predict the batch characteristics 
in different pieces of equipments and estimate the variances.

Ref. Rasetto V., Marchisio D.L., Fissore D. and Barresi 
A.A., 2010, On the use of a dual-scale model to 
improve understanding of a pharmaceutical freeze-
drying process. J. Pharm. Sci. 99 (1), 4337-4350

Drying time and maximum
product temperature 
distribution in pilot and 
industrial scale apparatus.

A different approach: 
various classes of vials are modelled in 
detail, using correlations for hydrodynamics
obtained by CFD simulations.

1. Mathematical modeling
Example: two-scale model
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� CFD modeling of the whole apparatus: drying chamber, duct (valve 
included) and the condenser

� Development of a variance optimization tool in order to evaluate the 
expected batch unevenness for certain design conditions and calculate the 
required value of a design parameter for a maximum desired variance

� Dynamic Parameters Estimation in case of co-solvents and with 
strong radiation heat flux

� Smart vials (for parameter estimations, for non-uniform batch 
monitoring, ..): wireless or with sputtered thermocopules

� Model Predictive Control to manipulate both the shelf temperature 
and the chamber pressure

� Valvless monitoring systems

Recents developments and work in progress…
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2. Quality by Design

�Design space for primary drying 

�Effect of uncertainty

�Design space for secondary drying

�Estimation of consequences of process failure
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2. Quality by Design: 
Design Space for primary drying
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� A design space can be 
constructed with few 
experiments   ( to 
determine R p and K v)

� But modeling might be 
useful also to predict 
these parameters (or to 
transfer data from 
different pieces of 
equipment)

� Using a soft-sensor 
parameter can be 
estimated and DS built 
in-line (see part 5)
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2. Quality by Design: 
Design Space for primary drying

Giordano et al, JPS 100 (2011)
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2. Quality by Design: 
Design Space for primary drying



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

Taking into account Rp variation with drying progress

Design space of the selected product calculated at various values of dried layer thickness: (aaaa) 
Ldried/L =12%; (bbbb) Ldried/L =34%; (cccc) Ldried/L =66% and (dddd) Ldried/L =99%. () B type; (�) C type; (�) D 
and (�) E type.

2. Quality by Design: 
Calculation of the design space (advanced)

Fissore et al, JPS 100 (2011)
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2. Quality by Design: 
Design Space for secondary drying

Pisano et al, Drying Technol. 30 (2012)
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2. Quality by Design: 
Some tools to avoid drier failure

� Using the mathematical model of the process, it is possible to simulate the 
evolution of the batch when something goes wrong (pressure increase, 
anomalous shelf temperature,...), taking into account the control policy 
and, thus, pointing out if the batch can be “saved” or not;

� It is possible to monitor equipment performance and, up to a certain 
extent, to understand the reasons of anomalous behaviour (fault 
diagnosis);

� Data reconciliation from model-based monitoring system reduces the risk 
connected to wrong measurements

� Check of actual heating and cooling rates (process identification) to avoid 
failures due to actual thermal transients different from expected

� Autodiagnosis of the sensors to assure system efficiency.
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3. Process monitoring

Monitoring the whole batch

�Use of model based monitoring devices for primary 
drying ( based on process identification by introducing 
disturbances whose response is interpreted)
- DPE, DPE+, DPE++ (Dynamic Parameters Estimation)

- PDT (Pressure Decrease Test)

- VMS (Valvless Monitoring System)

�Secondary drying monitoring

Monitoring the single vials (batvh variability)

� soft-sensors (observer): the “smart vial”
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3. Process monitoring :  Primary drying
the Dynamic Parameters Estimation (DPE) algorithm

Soft-sensors

DPE features:

1. Non-intrusive method useful for 
estimating the average state of the 
whole batch

2. Uses an unsteady mathematical model
to interpret the pressure rise curve 
experimentally acquired

3. Supplies a full-state estimation of the 
system:

• Moving front temperature and position
• Temperature profile over the frozen layer 

thickness
• Mass and heat transfer coefficients

1.0

0.8

0.6

0.4

0.2

0.0

241 242 243

Ti0

bottom

interface

Temperature, K

Ic
e 

th
ic

kn
es

s z
/L

fr
oz

en

0 1 2 3 4
0

10

15

20

25

30

35
P

re
ss

ur
e,

 P
a

Time, s

Barresi et al., CEP 48 (200); Velardi et al., IECR 47 (2008)



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

Page � 34

3. Process monitoring :   DPE algorithm
estimation of the process parameters

Soft-sensors

Example of DPE estimations obtained 
in two cycles run with vials of different 
dimensions. 

L.h.s.: type A vials, placed on a 
medium size rectangular tray and not 
shielded (PC=10 Pa, Tshelf=263 K; total 
primary drying time 16h 35’). 

R.h.s.: type B vials, placed on a 
smaller circular tray and shielded by 
empty vials (PC=10 Pa, Tshelf=253 K; 
total primary drying time 17h 17’). 

(●) moving front temperature
(▲) global mass transfer resistance 
(■) ice thickness estimated by the  

DPE solver
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3. Process monitoring: DPE algorithm 

Soft-sensors

DPE characteristics and advantages:

� based on the unsteady-state modeling of the process

� It computes consistent results almost up to the end of the 
primary drying

� It computes the product temperature profile (from the 
interface to the bottom) [instead of the lumped one] at 
the beginning and during the pressure rise test (dynamic)

� It can take into account the composition of the gas (water 
vapor, inert)

�Extendible to water-TBA mixtures solvent
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3. Process monitoring : DPE algorithm

Soft-sensors

DPE vs. other PRT methods

-40

-30

-20

-10

0

10

20

 

 

 

T
em

pe
ra

tu
re

, °
C

0 5 10 15 20

-40

-38

-36

-34

-32

 

 Time, h

 

T
B
, °

C

0.8
1.0
1.2
1.4
1.6
1.8

 P
B

aratron /P
P

irani

 

 

 
Monitoring of the freeze-drying cycle of a 
10%  by weight sucrose solution (Nvials=175, 
dv,i=14.4x10-3 m, Lfroz=7.2x10-3 m, PC=10 Pa).

Upper graph: comparison of bottom product 
temperature estimated by DPE (∆) with the 
values measured by thermocouples in close 
contact with the bottom of the vial (dotted line). 
The heating fluid temperature (solid line) and 
the Pirani to Baratron pressure ratio (dashed 
line) are also shown.

Lower graph: comparison between the 
predictions of the temperature at the bottom of 
the vial obtained using various algorithms 
(�: MTM, O: PRA, ∆: DPE).

�: MTM
O: PRA
∆: DPE

Fissore et al, Drying Technol. 29 (2011)
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3. Process monitoring: 
DPE algorithm improvements

DPE+: improved robustness and estimation of the operati ng limits

� Process identification by PRT: an ill-conditioned proble m:
- reduction of the dimensionality of the problem and optimal selection of test time

DPE++: taking into account strong radiation heating (fo r food
technology) and sensor dynamics

Fissore et al, Drying 
Technol. 29 (2011)

Pisano et al, Drying Technol. 29 (2011); I2MTC 2017
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3. Process monitoring: DPE+

� DPE + 

comparison
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� DPE+

� DPE

� MTM
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3. Process monitoring: DPE++

� DPE ++
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X  DPE+

� DPE

___ model

validation with model prediction: it is
evident the deviation without
correction at high radiation fluxes

Process monitoring
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3. Process monitoring: DPE with water-solvent
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Fissore et al, US 9,170,049 B2 Patent (2015)

� in this case an additional devices is required to acquire t he water 
partial pressure (for example a laser) to obtain the solv ent partial
pressure from total pressure signal
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3. Process monitoring: other approaches
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Different disturbances can be used to identify the proces s and to
monitor product temperature (and eventually sublimati on flux )

� Pressure decrease stopping the inert flow rate

� closing the connection to vacuum pump and monitoring
the pressure in the condenser or in the chamber

� eventually monitoring the inert flow rate without any
disturbance (“valvless monitoring”)

Fissore et al, US 9,170,049 B2 Patent (2015)



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

3. Process monitoring: PDT

� the Pressure Decrease Test method (suitable with Control led
Leackage P control) avoids T disturbances on thermolab ile products
and has been validated also with water –TBA mixtures

Pisano et al, JPS. 103 (2014)
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3. Process monitoring: VMS

� the Valvless Monitoring System has been validated for wat er and 
water-TBA mixtures. It allows monitoring the sublimatio n flux from P 
measurement in chamber and condenser and inlet inert flo w 
measurement

Pisano et al, IEC Res. 55 (2016)
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T can be estimated if
Kv is known; or Kv
can nbe estimated if
T is measured

� VMS

 DPE
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3. Process monitoring : secondary drying

�estimation of the residual water content
�estimation of the ending point of the 

secondary drying according to the specified 
target (residual water content and/or 
desorption rate of water)

mathematical model of 
secondary drying

[cfr. Liapis & Bruttini, 1995]

determination of desorption 
rate from PRT

[cfr. Oetjen, 2001]
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prod p prod v v fluid prod prod d d

S
d d S
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V c K A T T V r H
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dC
r k C
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3. Process monitoring : Secondary drying modeling

� based on the measurement of rd through the Pressure Rise Test 
(It is not required to extract any samples from the  chamber).

Kinetic model
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Fissore et al, JPS 100 (2011)
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3. Process monitoring :
secondary drying parameters estimation
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3. Process monitoring : secondary drying
comparison of POLITO’s and  Oetjen’s method

Examples of the results: end-point prediction
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3. Process monitoring : secondary drying

Examples of the results: residual moisture estimation

Comparison between the experimental values (symbols) and those predicted by the proposed 
algorithm (solid line) of the desorption rate (left hand graph) and of the residual water content 
(right hand graph). The time evolution of the shelf temperature is also shown (dotted line). 
Time is set equal to zero at the beginning of the secondary drying.
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3. Monitoring of the secondary drying

Fissore et al, EP2148158 B1 Patent (2011)

Main advantages:

� it is not required to extract any samples from the drying 
chamber and to measure the residual water content at 
the beginning of the operation

� a reliable estimation of the ending point of the secondary 
drying is obtained

�model parameters (e.g. kinetic constants) are estimated 
in-line
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3. Process monitoring:
Monitoring in pilot and production scale

Many devices can be employed in process development, but only a few 
are suitable for production plants:

- balances are suitable only in lab or pilot scale, for process development

- wired Smart Vial can be employed for equipment qualification and in pilot 
scale, but is incompatible with automatic loading

- NIR can eventually be used in the freeze drying chamber, but only for 
residual moisture, or end of primary drying

- Cold Plasma sensor and TDLAS can be employed in industrial scale but 
only for monitoring and have limitations (calibration, difficult retrofitting) 

- MTM methods can be employed  both in pilot scale and in production, 
but due to valve movement are limited to small/medium scale

- wireless soft sensors (active smart vial) can in principle be used also in 
industrial plants with automatic loading
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3. Process monitoring : The “smart vial”

� A vial equipped with a
thermocouple (inserted, 
external, or even a TC array 
sputtered outside) and an 
algorithm becomes a 

smart vial

� able to estimate temperature 
profile, position of interface an 
sublimation rate

� Observer based on Kalman
filter

� Posssibility to monitori a non-
homogeneous batch ( Ti and 
Lfrozen vs. time)

 freeze-dryer chamber 

wireless 
communication 

system 

temperature 
measurement 

system 

vi
al

 

vi
al

 

thermocouples 

door of the 
freeze-dryer 

Processing 
module 

- temperature profile 
inside the vials 
- position of the 
sublimating interface 

heating/cooling plate 

(A)  

(B) 
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Bosca & Fissore, Chem. 
Eng. Sci. 66 (2011); Bosca et 
al, Int. J. pharm. 451 (2013)
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• Soft-sensor (observer)

• It requires a thermocouple, to measure product 

temperature, and an algorithm (Kalman filter) to 

calculate the gain K.

• It can be used:

– to estimate the residual amount of ice

– to evaluate Kv and Rp

– to monitor product dynamics in the various vials of the batch

( ) ( )( )

( )

ˆ ˆ ˆ,

ˆ ˆ,

x f x u K t y y

y h x u

 = + − =

ɺ ( ) ( )( )

( )

ˆ ˆ ˆ,

ˆ ˆ,

x f x u K t y y

y h x u

 = + − =

ɺ ( )i p vT R K=x

3. Process monitoring: the S 3 sensor
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3. Process monitoring : The “smart vial”
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3. Process monitoring : The “smart vial”

• Observer + 

mathematical 

model to extend 

the range of 

application in the 

last part of 

primary drying

group 4

group 3

Page � 54

Bosca et al, EJPB 85 (2013)
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3. Process monitoring : The “smart vial”

• Observer + 

mathematical

• Kv estimations
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Bosca et al, PDT 19 (2014)
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�The observer can be made more robust
estimating the cake porosity (and thus
Kv) in the freezing step
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Bosca et al, Drying Technol 33 (2015)

3. Process monitoring: The the robust soft sensor
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3. Process monitoring : The “smart vial”
T monitoring and determination of Kv

� Wireless sensors can be used to measure product tem perature in the vials, 
in particular in large-scale equipment.

system without batteries
developed by POLITO, uses
a radio-frequency link to
supply energy and transfer 
the data

Hot plug&play architecture

ref: Vallan A., Corbellini S. and Parvis M., 2005. A 
Plug&Play architecture for low-power  measurement 
systems. Proceedings of Instrumentation and 
Measurement Technology Conference - IMTC 2005, 
Ottawa, Canada, Volume 1, 565–569.
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A system is composed by a transmitter that works inside the 
chamber, and a receiver placed outside the chamber and connected
to a PC through a USB interface. The transmitter contains a battery 
and set of thermocouples (3 in this version) . Several transmitters can 
work simultaneously thus making the system suitable to map 
temperatures inside large freeze dryers. 

� A miniaturized version has been arranged to be 
contained inside the vials.

ref: Corbellini S., Parvis M. and Vallan A., 2009, A low-invasive 
system for local temperature mapping in large freeze dryers. 
Proceedings of International Instrumentation and Measurement 
Technology Conference - I2MTC, Singapore, Republic of Singapore.

ref: Corbellini S., Parvis M. and Vallan A., 2010, In-Process 
Temperature Mapping System for Industrial Freeze Dryers, IEEE 
Transactions on Instrumentation and Measurement 59, 1134-1140.

3. Process monitoring : The “smart vial”
T monitoring and determination of Kv
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Miniaturized system with batteries CR2032 
Lithium
battery

CR2032 
Lithium
batteryMicrocontroller and 

2.4 GHz Radio
CR2032 Lithium 
battery

Printed Antenna

3. Process monitoring : The “smart vial”
T monitoring and determination of Kv
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3. Process monitoring: sputtered thermocouples

� it is possible to substitute the 
thermocuple wire with a thin sputtered
thermocouple on the vial wall (internal or 
external) or even a thermocouple array

Page � 60

Grassini et al., IEEE Trans. Instrum. Measur.
62 (2013); Parvis et al, I2MTC 2014; Oddone
et al, Drying Technol 33 (2015)
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4. Process control

�Model-based controllers based on set-point 
tracking, manipulating only the shelf temperature 
(for primary and secondary drying)

�Multi-variables controller and Model 
Predictive Control manipulating both shelf 
temperature and chamber pressure

�Model-based control using distributed soft 
sensors to take into account batch nonuniformity
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Batch failure : 
change of product loading or occurrence of disturbances

One typical case of occurrence of batch failure is when freeze drying is 
carried out with a loading different from usual, or in a “similar” equipment.

This happens because the “recipe” is just a sequence of set points in the 
freeze-drier operating parameters. The state of the product is not taken 
into account, and due to different heat fluxes, or for the effect of a different 
hydrodynamics and pressure distribution in the chamber, failure in some 
cases can occur.

The other frequent cause is some unexpected variation of the parameters 
set point (e.g. pressure), that can damage, or at least endanger, the 
quality of the product. 

In both cases failure occurs if the recipe is not “robust enough”, that is if 
the design space is not wide enough that the system remain inside it. 

The solution to the problem is  a good control syst em that can 
compensate for disturbances and changes in the set up.

-
Page � 62
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4. Control of the primary drying

All the proposed model-based algorithms require that the model perfectly 
describes the dynamics of the process and that all the parameters and all the 
variables of the process are known. 

The inadequacy of the model, a different value of some parameters, or an 
unexpected change in the general operating conditions will results in a more or 
less serious failure

Process measurements must be inserted in the contro l loop

Commercially available systems use the PRT approach :

- Thermodynamic Lyophilisation Control (uses BTM)

- SMARTTM Freeze-Dryer (uses MTM)

- LyoDriver (uses DPE)
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4. Control of the primary drying: LyoDriver
from process monitoring to process control

DPE outcomes
Interface 
temperature
Moving front position
Mass and heat 
transfer coefficients

Process  variables

LyoDriver controller:

1. LD estimates, using an unsteady-state 
mathematical model, the time varying 
product temperature

2. LD plans an initial heating at the 
maximum rate

3. LD computes a sequence of set-point 
fluid temperature

Velardi & Barresi, US 8,800,162 B2 Patent; Pisano et al., JPS 99 (2010)

LyoDriver is able to control a production cycle and, of course, it
can be used for cycle development
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Development of mathematical models..... 
.....suited for the purposes

�A simplified model is required to design the controller :
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� Pseudo-steady state conditions 

� Vial sidewall is not accounted for

� Radiation is neglected 

� An effective heat transfer 
coefficient Kv must be adopted

validation of the reduced model

similarly a reduced model is used 
for the soft-sensors
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Control of the primary drying: LyoDriver

from process monitoring to process control

Process

PRT

DPE

Controller

Tfluid, sp Batch
parameters
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4. Control of the primary drying: LyoDriver
comparison of different control logics

Feedback controller:

� The optimal fluid temperature is calculated as a function of the difference 
between the simulated product temperature and its maximum value

� The tuning parameters of the controller have been selected according to 
the criterion of the minimization of two possible cost functions: ISE and 
ISE/time

� Experimental results show that a simple proportional controller is enough 
in order to optimize the cycle
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4. Control of the primary drying: LyoDriver
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4. Control of the primary drying: LyoDriver
comparison of different control logics

Model-based controller:

� The optimal sequence of shelf temperature set-points throughout all the 
horizon time is calculated as a piecewise-linear function in such a way 
that the bottom product temperature is equal to the target value

� Pros : simpler mathematical formulation, lower computational time, no
need to solve additional optimization problems
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Control of the primary drying: LyoDriver
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4. Control of the primary drying: LyoDriver

� In both approaches after each PRT the parameters of the model (e.g. the 
overall heat transfer coefficient between the shelf and the product, Kv, the 
water diffusivity in the dried layer,k1, the product temperature) are updated

� Pros

• unsteady-state modeling of the primary drying

• based on an advanced predictive control algorithm

• takes into account the real dynamic response of the heating system 
to change the fluid temperature set-point

• predicts potentially damaging temperature overshoot and 
anticipates the control action accordingly

• automatically select the best fluid temperature in such a way that 
the maximum allowable product temperature is never overcome, 
even during the PRT
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4. Control of the primary drying: LyoDriver

Comparison between Feedback and Model-based controller in case of erroneous initial 
system state (a 25% error has been introduced on Kv).
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4. Control of the primary drying: LyoDriver

examples of process control in industrial prototype

Example of a freeze-drying cycle
applied to 713 vials 
(dv,i= 14.25 mm) filled with 1 mL of 
a 10% by weight sucrose solution 
(Tg=-32 °C).

The freezing phase has been run 
at 323 K for about 5 hours, while 
the sublimation step has been run 
at 10 Pa using LyoDriver controller 
to manipulate the heating fluid 
temperature.
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special Lyobeta-25 prototype 
(Telstar, Terrassa).
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4. Control of the primary drying: LyoDriver
examples of process control in industrial prototype
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Example of a freeze-drying 
cycle applied to 636 vials 
(dv,i= 14.05 mm) filled with 1 
mL of a 10% by weight 
sucrose solution (Tg=-32 °C). 

The freezing phase has been 
run at 323 K for about 5 
hours, while the sublimation 
step has been run at 10 Pa 
using LyoDriver controller to 
manipulate the heating fluid 
temperature.

constrain: no T increase after Tshelf

started to be reduced
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4. Control of the primary drying: LyoDriver
examples of process control in industrial prototype: pressure switch

Example of results obtained during a FD 
cycle run using LyoDriver to monitor and 
control the main drying step. 

The batch is composed of 155 medium-
sized glass vials on tray (Dv,i= 20.85 
mm) filled with 3 mL of a 10% by weight 
sucrose solution (Tg=241 K). 

After freezing, the chamber pressure 
has been set at 20 Pa and lowered to 
5 Pa after 5 hours.
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the system can efficiently control
the process following a change
in pressure
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4. Control of the primary drying: LyoDriver
examples of process control: transition to mass transfer control

Example of optimal freeze-drying cycles obtained using LD controller to set the optimal fluid 
temperature for the primary drying stage of a complex formulation (4% mannitol, 1% sucrose, 
plus excipients). Data supplied by Telstar .
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FD cycle applied to a 10% by weight sucrose solution. 
(PC=10 Pa, Nvials=235, dv,i=20.85×10−3 m, Lfroz=7.2×10−3 m, batch shielded).

A new criterion has been established and tested using :
- the estimation of the solvent flux evolution (from PRT) and its time evolution
- a reduced mathematical model of the vial that allows estimating the end-point 
time and distinguishes between the end and the start-up of the cycle, when the 
drying kinetics is very low

4. Process monitoring: detection of the primary dry ing 
end-poin: the stop criterion in LyoDriver

from sublimation rate
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4. Control of the primary drying : pressure manipulation

�The constant process pressure can be selected (and 
optimized)

� In case of mass transfer control, LyoDriver tries to 
minimize the drying time heating the product at its target, 
but  in this case the shelf temperature approaches the 
product temperature, and the control action is not very 
effective (even if the product integrity is assured).

�A new value of pressure can be selected by an algorithm

�but a novel control tool that manipulates both the shelf 
temperature and the chamber pressure can be designed.
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4. Control of the primary drying : MPC

Model Predictive Control is efficient tool to solve this problem; it 
utilizes a process model for two central tasks:

• Prediction of future plant behavior
• Computation of appropriate corrective control action required to

drive the predicted output as close as possible to the desired 
target value

� An example of the MPC software developed by POLITO will be showm
in section 5 for automatic cycle development
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4. Control of the primary drying: use of soft sensors

� The same control logics previously described can be used coupled with 
other monitoring devices, e.g. the soft-sensors . This novel tools can 
also be exploited to evaluate the batch unevenness and, thus, calculate 
the best heating policy for the most critic vials.

An observer, or software sensor, 
allows to monitor immeasurable 
interesting process variables like 
product temperature and interface 
position, just measuring one or 
more temperatures.

Bosca et al, Drying Technol 31 (2013)
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4. Control of the primary drying: soft-sensors

Pros and Cons
� It can estimate the whole temperature profile

� It is a non-invasive method

� It gives just information concerning the monitored vial

� It can be used to evaluate batch heterogeneity

The soft-sensor can be particularly useful to control a process in case the 
batch is highly heterogeneous : various observers can track the dynamics in 
some vials placed in different position in the drying chamber and the higher 
product temperature can be used by the controller to manipulate the shelf 
temperature. 
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4. Control of the primary drying: soft-sensors

an hybrid control system

Synergic action of DPE and of the Kalman observer (smart vial) based on the measure of the 
external temperature of the vial (dotted line). Black symbols: temperatures identified by DPE 
method; continuous line: observer estimation; dashed line: true interface temperature.
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Barresi et al, Int J Refrig. 32 (2009)
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4. Control of the primary drying: new perspectives

�Effective process control (industrial production)

• Eliminating the effect of disturbances

• Reducing product variability

• Estimating the batch unevenness and choosing a proper control 
action to meet the 6-sigma goal

�Scouting (Lab scale)

• Development of the optimal recipe for a specific 
product in only one run without resorting to empirical 
rules (examples shown in section 5)
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5. Process design

Cycle development and optimisation

�off-line optimisation
-use of design space (built by modelling)

�in-line optimisation
- by using a control system
- by using the soft sensors to build and refine
in-line the design space
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5. Process design: off line optimisation

The goal is the determination of an optimal heating shelf control strategy for the 
primary drying stage in order to minimize the drying time without impairing the 
integrity of the material.

A mathematical model of the process can be used to calculate off-line the 
optimal operating conditions (i.e. the shelf temperature and the chamber 
pressure) for the primary drying.
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A very simple approach consists of carrying 
out the process using constant values for 
the chamber pressure and for the 
temperature of the heating shelf:
Effect of the chamber pressure and of the heating shelf 
temperature on the primary drying time in case of constant 
shelf temperature. The locus corresponding to the minimum of 
the primary drying time for the various shelf temperatures is 
also shown (dotted line). The dashed line corresponds to the 
values of chamber pressure and of shelf temperature that allow 
to satisfy the constraint on the maximum product temperature.
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At a given chamber pressure it is possible to determine 

the maximum temperature (Tshelf,max) of the heating shelf 

that maintain product temperature below the limit value.

Design space for the freeze-drying of 

a 5% by weight aqueous solution of 

sucrose.

T
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el
f,m

ax
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5. Process design: design space



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

� The design space of the process is defined by the set of 
operating conditions (shelf temperature, chamber 
pressure, duration of the drying step) that allow to fulfill 
product quality requirements, i.e. to maintain product 
temperature below the maximum allowed value

�The design space can then be used to identify the "best" 
operating conditions, i.e. to minimize the duration of the 
primary drying.

�Mathematical modeling (reduced or detailed) can be used to 
“build" the design space, starting from few experiments 
planned for characterizing the system, thus reducing the 
experimental effort.
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5. Process design: design space
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Fissore et al. JPS 100 ( 2011); 
Pisano et al., PDT 18 (2013)

5. Process design: design space
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�Safety margin can be introduced also in the 
Design space

Fissore et al., Drying Technol. 30 (2012)
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5. Process design: design space
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5. Process design: model based control

� in-line optimization , using available measurements 
of temperature or pressure (PRT: Pressure Rise Test) 
and a (reduced) mathematical model

Process identification 
using PRT

Soft-sensors using 
temperature 

measurements
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� Automatic control can allow recipe 
development in one step.

Process
Input variables

Tfluid & Pc

Output variables

T & Lfrozen

Monitoring

system

Control

system
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5. Process design: cycle development
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� Traditionally, biotechnology processes are operated  with fixed controls. 

� A dynamic control strategy is used to operate the p rocess:

- a PAT is used to monitor the state of the product

- a mathematical model can be exploited to calculate the suitable control 
actions.

� A Model Predictive Control (MPC) algorithm calculat es a sequence of 
control actions, one for each sampling interval, so lving an optimization 
problem:

( ) ( )
( ) ( ) ( )( ) 2

ref
1 1

ˆmin
p

c

k h

u k u k h j k

y j y j e k
+

+ − = +

 − + ∑
…

Manipulated
variables

Controlled variables

Target value for the controlled variables

Modeling errorPage � 92

5. Process design: In-line recipe design
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� The manipulated variables in a freeze-drying proces s are Tfluid
and Pc. Two different cases can be considered: 

� Both Tfluid and Pc are manipulated

The controller will minimize the difference between the

sublimation flux and the target value 

� Only Tfluid is manipulated

The controller will minimize the difference between

maximum product temperature and the limit value

MPC - 2

MPC - 1
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5. Process design : In-line recipe design by MPC
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Freeze-drying cycles carried out using a 5% sucrose solution , and the MPC 
algorithm to manipulate only Tfluid and both Tfluid and Pc. 

22 h 15 h

recipe calculated
from the Design 
Space: 27 h
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5. Process design : In-line recipe design by MPC
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� The design space provides a lot of information about the effect of 
the operating conditions on the process (product temperature and
process duration), but …

� recipe optimization can be less effective than that achieved using 
the model predictive control algorithm.

� The design space allows to easily manage the non-uniformity of the 
batch.
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5. Process design: In-line recipe design : final remark
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� When using the model predictive control system it is possible to get 
the optimal cycle in just one run, and potential disturbances 
affecting the dynamics of the process can be rejected.

� By contrast, a similar situation can be successfully managed by the 
off-line optimization only introducing a large “safety margin”, thus 
resulting in a longer drying time.

� Both approaches can be used both in small-scale and in large-scale 
freeze-dryers for recipe design, thus avoiding to scale-up the cycle. 

Disturbance rejection

Recipe scale-up
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� To provide an effective in-line optimization, the freeze-dryer has to 
be equipped by a proper monitoring device that, mainly in a 
manufacturing plant, is not always available, and...

� it can be difficult to take into account the non-uniformity of the batch.

5. Process design: In-line recipe design : final remark
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5. Process design : secondary drying step
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Evolution of the design space 

estimated by the observer (●) as 

a function of the dried product 

thickness in comparison with 

the optimal one (▬). 

Tshelf,max vs. cake thickness 

can be determined using 

ad hoc experiments, or it 

can be determined in-line 

using the proposed soft-

sensor.
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5. Process design : 
In-line recipe design using soft sensors

Bosca et al. Drying Technol. 34 ( 2016)
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Comparison between 

the results obtained in 

a freeze-drying 

process (5% by weight 

aqueous solution of 

sucrose, pc = 10 Pa) 

carried out with a 

constant value of the 

shelf temperature (●) 

and with a cycle 

calculated using the 

observer (●).
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5. Process design : 
In-line recipe design using soft sensors
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Process transfer and scale up

� Problem statement: 

- the importance of an optimized and robust recipe
- robustness and design space
- process understanding at the base of a successful scale up
- different approaches to scale-up 

- use of automatic control systems
- use of design space concept

- equipment characterization and modeling

6. Process understanding and process transfer
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6. Batch failure: process transfer

One typical problem is the process transfer, from pilot to industrial scale, 
or from one plant to another. If failure occurs, an expensive procedure has 
to be undertaken to adapt the “recipe” to new conditions.

The monitoring of the process helps solving the problem: it is sufficient to 
think in terms of “recipe for the product” and not “recipe for the equipment”

Possible approaches:

- to develop “robust correlations” to transfer process from one equipment 
to another one. For scale up purposes it is possible to have a “magic 
couple” freeze drier, that is an industrial one, a pilot scale (and the know 
how for the process transfer, that has to be realized for that equipment)

- to ask the control system to do the job for you: just tell him which is the 
“product recipe” you want. If the large scale equipment is not equipped 
with  the control system, this can be done virtually, using a simulation tool 
(after a proper equipment characterization)
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� The reasons at the basis of the scale-up/process tr ansfer problem are 
numerous:

- Environmental conditions in the processing area can affect the 
nucleation of the ice crystals and, thus, the resistance of the dried layer to 
vapor flow in the primary drying step.

- Shelf surface temperature can be different in different pieces of 
equipment even when the heat transfer fluid temperature set point is the 
same.

- Radiation from chamber walls and from the shelf affects the heat 
transfer to the product.

- Local value of chamber pressure and the composition of the gas are a 
function of the geometrical characteristics of the equipment and of the 
operating conditions.

6. Process understanding and process transfer
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6.  Process understanding

Scale up
Example of the difference in the pressure distribut ion in a small pilot and in 
an industrial scale apparatus 

Results obtained by CFD calculations at Politecnico di Torino
[courtesy by Telstar Industrial, Terrassa, Spain]

ref. Barresi A.A., Pisano R., Rasetto V., Fissore D. and Marchisio D.L., 2010, Model-based monitoring and 
control of industrial freeze-drying processes: effect of batch nonuniformity. Drying Technol. 28 (5), 577-590 
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Process transfer
Example of differences in the 
pressure distribution over different 
shelves of the same equipment, for 
different shelf-to-shelf distances.

Results obtained by CFD calculations at Politecnico di Torino
[courtesy by Telstar Industrial, Terrassa, Spain]

14 shelves, LyoMega 400

17 shelves, LyoMega 400

6. Process understanding
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Do I really need to scale-up a 
recipe?

Would it be possible to 

directly obtain the 

recipe suitable for the 

industrial scale 

apparatus?

How to 

introduce/evaluate 

robustness?

Why do not take full 

advantage of modeling? 

and how to do it?

Which PAT tools 

are available to 

make scale-up 

fast and easy?

How many 

experimental tests 

are really needed 

for scale-up?
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The problem of recipe scale-up can be solved:

� offoffoffoff----linelinelineline, calculating the new recipe in the large-scale freeze-
dryer in such a way that the “history" of the product is equal to
that obtained in the small-scale freeze-dryer

�it may be necessary to limit the similarities to a selected
fraction of the lot

�in case the design space approach is used, it is sufficient
to remain within the design space of the large scale 
equipment

� inininin----linelinelineline, using an "advanced" control system (by this way we do 
not perform a true scale-up of the recipe, but we identify in-line
the best oeprating conditions for the product) 

6. Recipe scale-up: off line vs in line approach
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6. Process transfer:  the design space

Mathematical modeling can be used to build the desi gn space (in case 
model parameters are known) and, thus, it is possib le to evaluate if the 
recipe can be used without modification or not.

process
transfer 
required

suitable
recipe
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6. Process transfer and scale up

The problem of the scale-up (or process transfer) o f a freeze-drying recipe 
obtained in an equipment “1” to a different equipmen t “2” consists of 
determining the operating conditions in the equipme nt “2” so that the dynamics 
of the product (i.e. the values of temperature and residual amount  of ice vs. time) 
is the same in the two pieces of equipment.

 

process transfer 
(scale-up) 

equipment 1 equipment 2 

Barresi & Fissore, Drying Technol. 29 ( 2011)

Page � 108



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

Radial gradients of temperature and composition are neglected.

Heat flux to the product

Sublimation flux of the solvent ( ), ,

1
w w i w c

p

J P P
R

= −

( )Sq v BJ K T T= −

 

dried 
layer 

moving 
interface 

frozen 
layer 

heating shelf 

heat flux, Jq 

sublimation flux, Jw 

TS 

TB 

Pw,i 

Pw,c 

A mono-dimensional model constituted 
by the energy balance for the frozen 

product and the mass balance for the 
water vapor in the dried product (both 
taken in pseudo-stationary conditions 
because of the slow dynamics of the 
process) can be used to simulate the 

primary drying. 

6. Process transfer and scale up: 1 D model

Page � 109



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

� Heat transfer (from the shelf to the product in the  vial)

� Mass transfer (from the interface of sublimation to  the drying chamber)

( )= −q v s BJ K T T

⋅= +
+ ⋅1

c
v

c

B P
K A

C P

( )= −, ,

1
w w i w c

p

J P P
R

⋅= +
+ ⋅

1
,0

21
d

p p

d

P L
R R

P L

6. Process transfer and scale up: 1 D model

Page � 110



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

1. Gravimetric test in equipment “1” to determine the h eat transfer 
coefficient Kv in each vial of the batch.

2. Identification of the groups of vials in equipment “1”.

3. At least other two gravimetric tests in equipment “ 1” at different 
pressures in order to the determine the coefficient s A, B, & C.

4. One gravimetric test in equipment “2” to determine t he heat transfer 
coefficient Kv in each vial of the batch.

5. Identification of the groups of vials in equipment “2”.

6. Determination of the parameter A for the various gr oups of vials in 
equipment “2”.

7. Determination of the curve Rp vs. Ldried , i.e. the parameters Rp,0, P1 and P2
in equipment “1”. It is possible to use the balance  during the gravimetric 
tests, or to carry out a cycle and using the Pressu re Rise Test or the 
TDLAS sensor.

8. Model validation in equipment “1” (optional).

9. Determination of the curve Rp vs. Ldried in equipment “2”, or check if the 
curve determined in equipment “1” is suitable.

6. Scale-up (process transfer) procedure
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6. Process transfer and scale up

Which is the target?

1. The dynamics of the product (temperature and residual
amount of ice vs. time) has to be the same in the two
pieces of equipment

It is possible only in case Rp is the same

2. Only the evolution of the temperature of the product (or  
of the sublimation flux) has to be the same in the two
pieces of equipment

in case Rp is significantly different
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Let us consider the case where Rp,1 = Rp,2, i.e. the resistance of the dried
layer to vapor flow is not different in the two pieces of e quipment (this
hypothesis is not unrealistic in case the same cooling ra te is used).

The following equation holds, that correlates the t emperature of the 
heating shelf ( TS), the temperature of the product at the interface of 
sublimation ( Ti), the temperature of the product at the bottom of the  vial 
(TB) and the thickness of the frozen layer ( Lfrozen):

( )
1

1 1 frozen
B shelf shelf i

v v frozen

L
T T T T

K K k

−
 

= − + −  
 

6. Process transfer and scale up
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Previous equation can be written as:

Mathematical modeling

1

1
1

frozen
v B i

v frozen

shelf

frozen
v

v frozen

L
K T T

K k
T

L
K

K k

 
+ +  

 =
 

+ −  
 

Lfrozen, Ti and TB in 
equipment “1” have 
to be known

Kv is used to 
characterize 
equipment “2”

Experiments

New recipe

1

1
1

frozen
v B i

v frozen

shelf

frozen
v

v frozen

L
K T T

K k
T

L
K

K k

 
+ +  

 =
 

+ −  
 

Lfrozen, Ti and TB in 
equipment “1” have 
to be known

Kv is used to 
characterize 
equipment “2”

Experiments

New recipe

6. Process transfer and scale up

Page � 114



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

[…] 

10. Given the values of the operating conditions ( TS and Pc vs. time) and of 
model parameters ( Kv and Rp) in the equipment “1” it is possible to 
calculate the evolution of the product during prima ry drying:

( )

( ) ( )

( )

ρ ρ
−

−

 = − − −

 
 + − = ∆ −   

 

 
= − + − 

 

,

1

,

1

1 1

1 1

1 1

frozen
w i i c

frozen dried p

frozen
S i s w i i c

v frozen p

frozen
B S S i

v v frozen

dL
P T P

dt R

L
T T H P T P

K k R

L
T T T T

K K k

6. Scale-up (process transfer) procedure
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11. For each time instant t, given the values of Ti, TB and Lfrozen and the 
different value of the heat transfer coefficient in  equipment “2” ( Kv*) it is 
possible to calculate the value of the shelf temper ature in equipment 
“2”, at that time instant, in such a way that the s tate of the product ( Ti, 
TB and Lfrozen) is the same:

 
+ + 

 =
 

+ − 
 

*
*

*

*
*

1

1
1

frozen
v B i

v frozen
S

frozen
v

v frozen

L
K T T

K k
T

L
K

K k

6. Scale-up (process transfer) procedure
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6. Process transfer and scale up
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6. Process transfer and scale up
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In case of non-uniform batch we need:

1. To identify the target dynamics that has to be scaled-up
(i.e. the evolution of the vials in the central positio n of
the shelf, or that of the vials at the edges of the shel f);

2. To identify which group of vials in equipment “2” has to
follow the target dynamics previously selected;

3. To calculate the evolution of the vials of the various
groups in equipment “2” using the scaled-up recipe in 
order to check if all the vials of the batch remains below
the limit temperature, and to determine the drying time .

6. Process transfer and scale up
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6. Process transfer and scale up
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By this way, including variance and uncertainty, it is possible:

� To evaluate the distribution of product temperature, drying time, and 
residual water in your batch as a function of equipment design and 
operating conditions

� To select the operating conditions that guarantee the required 
percentage of success for the product in hand

6. Process transfer and scale up: Evaluation of distributions

Page � 121
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non-uniform batch

lines show the behaviour in the original apparatus, 
symbols in the scaled up one

6. Process transfer and scale up : effect of parameters uncertainty
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7. Equipment design and optimization

�A process is well understood if all critical sources of variability 
are identified and explained: accurate and reliable predictions 
reflect process understanding.

� Causes of heterogeneity:

- Radiation

- Fluid dynamics of water vapour in the chamber

- Inert distribution

- Non-uniform shelf temperature

- ...



Multiphase Systems and Chemical Engineering group
Department of Applies Science and Technology LYO LA

B

Research Team
LYO LA

B

Research Team

Page � 124

7. Study of the process using CFD

APPARATUS

Drying Chamber : where the product lays on shelves and where the process 
takes place typically under low pressure and low temperature conditions. 
Radiation and Fluid-dynamics can affect the homogeneity of the batch.

Duct and valve : Chocked flow can occur (Mach number = 1)
Condenser : where the sublimated water vapor, flowing from the chamber, 
condenses. Limited capacity of water vapor solidification can occur.

Drying Chamber

Door

Duct

Condenser

Vacuum 
pump

Drying Chamber

Door

Duct

Condenser

Vacuum 
pump
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7. Study of the process using CFD
The drying chamber

LyoBeta (labscale)
LyoMega (production scale)

• Effect of the duct position

Flow field

• Effect of the shelf-shelf clearance

Batch Heterogeneity 
(Pressure Gradient) 

• Effect of the shelf-shelf clearance

Batch Heterogeneity

SCALE-UP 
EFFECTS
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7. Study of the process using CFD

Drying chamber

Parameters of interest:

1. position of the duct

2. free space between the 
product and the upper shelf

3. Scale of the apparatus

r

3 positions

2 scales

Small scale apparatus 
( Vc= 0.2 m3)

Large scale apparatus 
( Vc= 10.3 m3)
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7. Study of the process using CFD

Flow field in the drying chamber – duct position 

Bottom Rear wall – centre Rear wall – side 

x

y

z
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7. Study of the process using CFD

Flow field in the drying chamber – duct position 

z
x
y

Bottom Rear wall – centre Rear wall – side 

16.4

0.0

12.3

8.2

4.1

z
x
yz

x
y

Operating conditions:

Pressure: 15 Pa;   Shelves temperature: 258 K (-15.15°C)  

Product temperature: 239 K (-34.15°C);   Mass flow rate: 1kg/m2h   
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7. Study of the process using CFD

Pressure in the chamber – Clearance between shelves 
 

a 

Operating conditions:

Pressure: 10 Pa;   Shelves temperature: 258 K (-15.15°C)  

Product temperature: 239 K (-34.15°C);   Mass flow rate: 1kg/m2h   

N° shelves    Clearance, cm

Configuration 1          14+1                     6.7

Configuration 2 15+1                     5.7            

Configuration 3          16+1                     5.0

Configuration 4          17+1                     4.37

large scale apparatus cases shown in the following
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7. Study of the process using CFD

   

14.10 

14.85 

15.60 

16.35 

17.10  

14.5 

14.4 

14.6 

L2 S1 
z 

x 

y z 

x 

y 

Global 3D representation of pressure contour plots computed for all the 
plates in the small scale apparatus (S) and in the large scale apparatus (L) 
when the clearance between the plates is 100 mm. The operating pressure 
set in the CFD code is 10 Pa and the mass flux is  1 kg m-2 h-1. 

Pressure in the chamber – Small vs. Large  apparatus
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7. Study of the process using CFD

 

a b c 

18.4 

19.1 

16.9 

15.4 

16.1 

17.6 

16.1 

15.7 

15.3 

14.8 

14.3 

13.8 

a b c 
Absolute Pressure, Pa. Contour plot on 1st(a), 11th(b) and 14th (c) plate. 

Absolute Pressure, Pa. Contour plot on 1st(a), 13th(b) and 17th (c) plate. 

Large scale apparatus, 
configuration 1 (14+1)

Large scale apparatus, 
configuration 4 (17+1)

Effect of the clearance
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Time evolution of the mean value of the interface temperature (solid line) and of the 
standard deviation (s, symbols) for the vials on the 1st (LHS) and on the 12th (RHS) 
tray. Dashed lines identify the upper and lower bounds of the interface temperatures in 
the various vials.

Shelf 1 – bottom of the chamber Shelf 12 – close the duct 

7. Study of the process: Multi-scale modelling
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7. Design tool: the Variance Optimisation tool

�A variance optimisation tool can be
realised that:

�evaluates the expected variance in the 
batch for certain design conditions

�calculates the required value of a design 
parameter for a maximum desired variance
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7. Study of the process using CFD

Vapour flow field in the drying chamber – duct posit ion 

DATA

Case L3: 16 + 1 shelves

Operating pressure: 10 Pa

T shelf: 258 K

T source: 239 K

Vapour path way from 
shelves: 1th, 8th, 12th
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7. Study of the process using CFD
Inert distribution

Inert 1 Inert 2 Inert 3

Inert 4 Inert 5

Inert mass fraction

Case Inert mass fraction 
in chamber, %  

Inert1 0.015 
Inert2 0.11 
Inert3 0.49 
Inert4 2.9 
Inert5 34 
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7. Study of the process using CFD: valves

CFD to estimate chocked flow 
conditions in valves

absolute pressure (Pa)

Mach number
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7. Study of the process using CFD: condensers

CFD to optimize condenser geometry: 
difficulty in the ice deposition modeling

Petitti et al, Sadhana 38 (2013)
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