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Hierarchical structures with constituents over multiple length scales are found in various natural mate-
rials like bones, shells, spider silk and others, all of which display enhanced quasistatic mechanical
properties, such as high specific strength, stiffness, and toughness. At the same time, the role of hier-
archy on the dynamic behavior of metamaterials remains largely unexplored. This study numerically and
experimentally assesses the effect of bioinspired hierarchical organization as well as of viscoelasticity
on the wave attenuation properties of continuous elastic metamaterials. We consider single-phase meta-
materials formed by self-similar unit cells with different hierarchical levels and types of hierarchy. Two
types of structures are considered: a hub-spoke geometry with thin connecting elements and nested hier-
archical organization, and a crosslike porous geometry with external hierarchical organization. In the first,
hierarchical elements occur at similar size scales, while in the second they differ by one order of magni-
tude. Results highlight a number of advantages through the introduction of structural hierarchy. Band gaps
relative to the corresponding nonhierarchical structures are mostly preserved in both types of structures,
but additional hierarchically-induced band gaps also appear, and the hierarchical configuration allows the
tuning of band-gap frequencies to lower frequencies in the crosslike porous geometry, with a simultane-
ous significant reduction of the global structural weight. We show that even small viscoelastic effects are
essential in determining the overall attenuation behavior, including between band gaps. Finally, we verify
the numerically-predicted multifrequency band gaps by experimental characterization of the transmission
properties of crosslike structures. The approach we propose allows the incorporation of hierarchical orga-
nization in existing metamaterial configurations, with the corresponding improvement of wave-damping
properties, thus extending application possibilities for elastic metamaterials to multiple frequency scales.

DOI: 10.1103/PhysRevApplied.10.024012

I. INTRODUCTION

Biological structural materials are renowned for their
exceptional mechanical characteristics, often surpassing
synthetic high-performance materials [1]. Spider silk,
bone, enamel, limpet teeth are examples of materials that
combine high specific strength and stiffness with outstand-
ing toughness and flaw resistance [2–4]. Many studies
have shown hierarchical structure to be responsible for
these properties, e.g., providing many energy dissipation
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and crack deflection mechanisms over various size scales
to contribute to high toughness [5]. However, studies in
biomechanics linking material structure to function have
mainly been limited to the quasistatic regime while the
dynamic properties of these materials have been somewhat
less investigated although notable examples of impact tol-
erance (e.g., the bombardier beetle’s explosion chamber
[6]) or vibration damping (e.g., the woodpecker skull [7])
have been observed.

A systematic study of the dynamic properties of com-
posite structures such as those found in biomaterials can
exploit analysis tools and methods widely applied in
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the field of elastic metamaterials. These are periodically
arranged composite structures with advanced dynamic
functionalities, e.g., the ability to generate band gaps (BGs,
i.e., frequency ranges where the wave propagation is inhib-
ited), wave focusing or collimation, negative refraction,
and defect states [8]. These features make elastic metama-
terials attractive for various applications, including seismic
wave shielding [9–11], noise abatement [12,13], vibration
isolation [14], acoustic cloaking [15], nondestructive eval-
uation [16], subwavelength imaging [17], and even thermal
management [18]. In the past two decades, the mecha-
nism of BG nucleation (Bragg scattering [19] and/or local
resonance [20]) has been widely studied at various spa-
tial and frequency scales. Conventional configurations are
mostly based on elementary unit cells comprising single
inclusions or cavities, which results in limited BG fre-
quency ranges [8,21–24]. Optimized design of the unit
cells has allowed the size of a single BG or even several
BGs to be maximized, e.g., by using topology optimiza-
tion or multiobjective optimization methods [25–27]. More
sophisticated metamaterial architectures with compliant
elements, exploiting thermally coupled dissipation mech-
anisms, have also been proposed but have demonstrated
limited attenuation performance at broadband frequencies
due to the strong dependence on the structural thickness
that prevents the design of stiff, lightweight configura-
tions suitable for engineering applications [28]. Therefore,
lightweight, practically oriented metamaterial structures
with multiscale wave attenuation abilities remain an open
field of research.

One way to potentially overcome this limitation is to
exploit fractal-like and bioinspired structural hierarchy.
The latter is here understood in the sense that a rep-
resentative unit cell comprises multiple arrangements of
inhomogeneities at various size scales. If the same arrange-
ment occurs at every size scale, the pattern is self-similar.
If a unit cell as a whole is geometrically equivalent to its
parts at any hierarchical level, the structure is fractal-like
[29].

Several recent studies have reported hierarchical and
fractal-like metamaterials with superior wave attenua-
tion in broadband frequency ranges due to their struc-
tural organization [29–34]. It has been shown that hier-
archical lattice-type metamaterials are characterized by
multiple BGs with advanced load-carrying capabilities
[32], improved thermal resistance [30], and a hybrid
type of BG generation mechanism [29]. Similarly, con-
tinuous heterogeneous hierarchical metamaterials have
demonstrated broadband vibration mitigation capabili-
ties combined with improved mechanical performance
[35]. In these studies, the total structural weight is pre-
served when introducing each new hierarchical level.
Although some advantages of incorporating structural
hierarchy in metamaterials have been highlighted for lat-
tice and heterogeneous configurations, the introduction

of hierarchy in single-phase continuous metamaterials
remains to be investigated. These hierarchical designs are
mostly inspired by biological materials, e.g., the well-
known brick and mortar microstructure [35], nacre and
bone microstructures [33,36], the biocalcite architecture
[31], etc. A great variety of further hierarchical patterns
can be found in natural structures, such as in butterfly
wings, wood, leafs, macaw feathers, grass stems, kelp,
corals, cotton, human bone, cuttlefish bone, diatoms and
sponges [37,38]. All these patterns are characterized by a
porous structure and can thus be exploited for bioinspi-
ration, providing an alternative approach to that adopted
so far, which has implied the conservation of the struc-
tural mass when introducing additional hierarchical levels.
Porous hierarchical structures, on the other hand, allow
the advantages of hierarchical organization to be fully
exploited for the design of lightweight and robust continu-
ous metamaterials.

In this work, we therefore propose to introduce hierar-
chy in continuous single-phase metastructures with cavi-
ties by reducing the structural weight—an approach that
has not been analyzed so far—when introducing an addi-
tional hierarchical level. The key idea is to incorporate
hierarchically organized sets of cavities into regular meta-
materials with the design goal of efficiently extending
their BGs to multiple frequency ranges [39]. The result-
ing porouslike structures are more lightweight than the
regular case. This way of introducing hierarchy can be
easily applied to new or existing metastructures with cav-
ities, making it advantageous for practical applications.
As regular configurations, we consider two metamaterial
geometries, defined as hub-spoke or crosslike cavities,
which are known for their ability to generate wide BGs
[40,41]. For each geometry, we study a different type
of hierarchical organization, namely a so-called nested
hierarchy, when hierarchical structures of a subsequent
level are located inside the previous level, and an exter-
nal hierarchy, when hierarchical structures are located
externally to those of the previous level. Additionally,
we provide a detailed analysis of the possibilities pro-
vided by hierarchical organization as a function of the
spatial ratio of hierarchical levels, and explicitly evalu-
ate the critical effect of material viscosity. As in previous
works [30–33,35,36], here the hierarchical metamaterial
design follows a bioinspired approach, meaning that with-
out necessarily emulating the dynamic properties of any
specific biological system, we draw inspiration from the
structures found in porous hierarchical materials and use
their organizational principles to create novel metamaterial
models.

II. MODELS AND METHODS

Biological hierarchically structured materials occur in
a great variety of microstructural patterns [37]. In many
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cases, the structures are heterogeneous, typically with
reinforcing (stiffer) elements such as fibers, platelets, or
crystals embedded in a softer, often amorphous matrix
[1]. In other cases (such as in bone), voids, cavities, or
canals are also included, contributing to reduced mass
density, but also potentially to effects on elastic wave
propagation or damping [7]. Hierarchical Levels (HL)
often span various length scales, from nanometers to cen-
timeters [1]. In other cases, hierarchical structures occur
on similar size scales, as in the case of wood, leafs,
grass stems, corals, or sponges [37,38]. Despite the great
variety of hierarchical structures occurring in nature, dis-
tinctive features can be observed and extracted in order
to drive and inspire the design of elastic metamaterials
with enhanced dynamic properties. Representative struc-
tures can be found, e.g., in diatom cell walls or frustules
(Fig. 1). Two typical hierarchical configurations are a
nested arrangement of smaller scale objects inside a larger
scale frame [Fig. 1(a)] or, in contrast, the distribution of
smaller cavities around larger ones [Fig. 1(b)]. Addition-
ally, many biological microstructures contain high-aspect-
ratio (slender) constitutive elements [such as in Fig. 1(a)],
which can play a key role in altering their vibrational
characteristics.

Based on these patterns, we study metamaterial
configurations with (i) thin connecting elements and
a nested hierarchical organization, defined here as a
hub-spoke geometry [Fig. 1(a)] and (ii) crosslike cavi-
ties with external hierarchical organization, referred to
as crosslike porous structures [Fig. 1(b)]. The crosslike
geometry of the cavities in case (ii) is chosen due to its
proven efficiency in inducing larger BGs compared to other
geometries of the same cavity volume [40,42]. In both
cases, the hierarchical organization is achieved introduc-
ing (or repeating) one (or several) self-similar structures
obtained by scaling the starting geometry by a hierarchical
factor (HF). Notice that this type of structure provides an
advantage with respect to other hierarchical structures con-
sidered in the literature, such as in [33], since samples
can be easily fabricated through a recursive procedure,
whereby successive hierarchical levels can be introduced
incrementally by adding nested cavities internally or exter-
nally with respect to the existing structure.

The representative unit cells of the structures are shown
in Fig. 1 with the geometric parameters given in Table I.
In both cases, two HLs of self-similar patterns are con-
sidered. The hub-spoke geometry is used to investigate
hierarchical elements having similar size scales, i.e., com-
parable dimensions of the unit cells: a1 = 0.4a2 [Fig. 1(a)].
The crosslike porous geometry is used to investigate hier-
archical elements having an order of magnitude difference
in spatial scale: a1 = 0.05a2 [Fig. 1(b)]. These designs can
naturally be extended to n levels of hierarchy.

Hierarchical metamaterials are composed by infinitely
duplicating the unit cells in Fig. 1 in a periodic 2D array.

FIG. 1. Hierarchical porous structures found in natural materi-
als at different spatial scales (in this example in diatom cell walls
[58,59]) and the corresponding bioinspired hierarchical meta-
material unit cells: (a) structures with thin connecting elements
and nested hierarchical organization (hub-spoke geometry) and
(b) crosslike cavities and external hierarchical organization
(crosslike porous metamaterial).

The out-of-plane dimension of the unit cells is assumed
to be much larger compared to the lateral ones, allowing
a 2D plane strain approximation to be adopted [43,44].
A typical polymeric material such as those used in 3D
printing is considered for the structures. Specifically, we
use the mechanical properties of the thermoplastic polymer
acrylonitrile butadiene styrene (ABS), assuming isotropic
linear elasticity: bulk modulus K = 3.34 GPa, shear mod-
ulus G = 0.714 GPa, and mass density ρ = 1050 kg/m3

[45]. Viscoelastic dissipation is also taken into account,
by assuming attenuation linearly proportional to frequency,
typical for many polymeric materials [46]. For monochro-
matic waves, complex-valued elastic constants can then be

TABLE I. Case studies and geometrical parameters used in
the simulations. HF is a hierarchical factor indicating the ratio
between hierarchical levels n and n + 1, i.e., HF = an/an+1.

Parameters (m)

Case study HF an bn cn dn

Hubspoke 0.4 4×10−4 0.45an 0.35an 0.05an
Crosslike porous 0.05 1×10−3 0.45an 0.15an –
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written using a Kelvin-Voigt viscoelastic model [47]:

Kve = K + iωθloss, Gve = G + iωηloss, (1)

where the subscript ve indicates the viscoelastic case, ω

is the angular frequency, and θ loss, ηloss are the viscosity
levels.

Contrary to previous approaches in the literature [29,
34], here the introduction of additional HLs implies an
equivalent density reduction, since the aim is to realize
lightweight structures with optimized attenuating proper-
ties compared to their heavier nonhierarchical counter-
parts. For the hub-spoke structure, the density reduction
is less than 5% compared to the nonhierarchical struc-
ture, while for the crosslike porous metamaterial, it reaches
45%.

The description of the formalism adopted to model wave
propagation in the considered periodic structures, both in
the elastic and viscoelastic cases, is presented in the Sup-
plemental Material [48], as well as its implementation in
finite-element (FE) simulations to derive dispersion and
transmission spectra [19,45–48].

III. LINEAR ELASTIC HIERARCHICAL
METAMATERIAL

A. Hierarchical organization at similar spatial scales

Figure 2 shows dispersion diagrams for the hub-spoke
metamaterial [Fig. 1(a)] with both regular (nonhierarchi-
cal) and hierarchical organization. The size of the two
representative unit cells a2 is maintained constant, in order
to analyze the effects of hierarchy on the wave disper-
sion in the same frequency range. Unit-cell optimization
is discussed in the Supplemental Material for the regu-
lar and hierarchical structures [48]. Direct comparison of
the diagrams [Figs. 2(a) and 2(b)] reveals two important
advantages of hierarchical organization: (i) partial conser-
vation of the BGs originating from the regular geometry
and (ii) nucleation of new BGs in the midfrequency range.

The BGs are said to be partially preserved because the
introduction of hierarchy has a twofold effect: it alters
some of the pre-existing dispersion curves and it induces
new pass bands, resulting in a possible modification of the
original BGs. Physically, this happens because the intro-
duction of the hierarchical architecture alters the stiffness-
mass ratio and introduces additional degrees of freedom
(at each iteration, a new matrix, a new resonator, and
new connectors linking the two are added to the system).
As a result, new vibration modes appear [e.g., see Figs.
2(c)–2(f)].

The additional bands introduced due to the hierarchical
organization can exhibit nonlocalized or localized behav-
ior. In the first case, the flat portions of the curves corre-
sponding to localized motions (either at the internal HL1
resonator level [Fig. 2(c)] or at the ring-like resonator level

[Figs. 2(d) and 2(e)]). In the second case, portions of the
curves appear with positive or negative slope, involving
the combined vibration of both structures occurring in the
hierarchical geometry [Fig. 2(f)]. Since these curves can
be located inside or outside a preexisting BG at the previ-
ous HL, they can cause the BG split into two or more BGs
[compare gray rectangles in Figs. 2(a) and 2(b)].

To gain insight into the nature of the BGs nucleated due
to the hierarchy, we first analyze the BG mechanisms in
the original, nonhierarchical structure. For this purpose,
we evaluate a midgap Bragg scattering frequency from the
condition of structural periodicity, i.e., fBG = cp /2a with cp
indicating the effective phase velocity in the medium. For
the unit cell with slender elements, the effective velocity
can be evaluated directly from the band-structure diagram
as cp = ω/k in the vicinity of the � point and is indicated
by the slope of tangents to the fundamental longitudinal
and shear modes [dotted lines in Fig. 2(a)] as proposed in
Ref. [49]. The intersection of a tangent with the Brillouin-
zone boundary at point X provides the value of f BG for
each mode type. The midgap Bragg frequency of the lon-
gitudinal mode falls within the first (lowest) BG. Thus, this
BG is generated due to the Bragg-scattering effect of lon-
gitudinal waves in the slender connectors [see also Figs.
2(g) and 2(h)]. The location of the second BG at approx-
imately twice the frequency of the first and the similarity
of the mode shapes at the bounds of the two BGs [com-
pare Figs. 2(g) and 2(h) and Figs. 2(l)–2(o)] suggest that
the second BG is also induced by the Bragg scattering of
higher-frequency waves.

The additional pass bands in the band diagram of the
hierarchically structured unit cell [Fig. 2(b)] decrease the
width of the first BG. At the same time, hierarchy leads
to the change in the mass-stiffness ratio of the resonator at
HL1 level and introduces another set of slender elements,
which, in turn, cause the generation of the two other BGs
at the mid- and high-frequency ranges. The two new BGs
are defined “hierarchically induced” and are highlighted by
red to distinguish them from the original BGs. Although
the BG formation mechanism is different, this result is
reminiscent of the hybrid BGs obtained in [29] with the
introduction of hierarchical structure in a rather different
system, i.e. beam lattices. The new BGs are generated due
to the Bragg scattering of longitudinal waves in the con-
nectors of HL2 level. This conclusion also follows from
the analysis of vibration modes. For example, one observes
that the pattern at the lower bound of the second BG for the
nonhierarchical structure [Fig. 2(l)] is exactly the same as
that at the lower bound of the second additional BG [Fig.
2(d)]. Therefore, the BGs found in the metamaterials with
a nested hierarchy are the superposition of the Bragg BGs
for longitudinal waves in slender elements at different hier-
archical levels. The comparison of the band structures in
Figs. 2(a) and 2(b) highlights another feature of hierarchi-
cal organization: the similarity of dispersion curves below
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FIG. 2. Dispersion diagrams for the hub-spoke metamaterial with: (a) regular and (b) hierarchical organization. The size of the two
representative unit cells is maintained constant and equal to a2, in order to analyze the effects of hierarchy on the wave dispersion in the
same frequency range. Ordinary BGs are indicated in gray. Hierarchical structure allows additional BGs at mid and high frequencies
to be induced (highlighted in red). (c)–(o) Vibration patterns at various frequencies. Colored symbols indicate their corresponding
location on the band diagrams. The intersection of the dashed lines with the Brillion-zone boundary at point X indicate approximate
mid-Bragg scattering frequencies for the fundamental longitudinal and shear modes.

the first BG for both structures. This occurs since low-
frequency waves (below 250 kHz for the analyzed case)
are insensitive to the absence of small portions of the mate-
rial in the unit cell due to the introduction of hierarchy. By
varying the HF value, one increases or decreases the size of
these elements, and thus, can tune the BG frequencies and
width as shown in Fig. 3. For instance, by decreasing the
HF from 0.42 to 0.38, it is possible to obtain up to approxi-
mately three times larger BGs [see Figs. 3(a)–3(c)] as well
as to localize the motion at the level of the internal ring,
limiting the deformations in the HL2 matrix (see Fig. 3d).

Furthermore, hierarchical organization can be useful
to isolate dispersion curves with negative group velocity
[see Figs. 3(a)–3(c)], which makes hierarchically orga-
nized metamaterials attractive for potential applications
exploiting negative refraction [50,51].

B. Hierarchical organization at different spatial scales

Next, we analyze wave dispersion in a crosslike porous
metamaterial with an external hierarchical organization at
different spatial scales [Fig. 1(b)]. This type of design has
been optimized for large BG formation in previous works
[40,52]. The band structures for the regular and hierarchi-
cal metamaterial configurations are shown in Figs. 4(a) and
4(b), respectively. It is apparent that the wide BG rang-
ing from approximately 300 to 740 kHz in Fig. 4(a) is
almost completely preserved in the diagram of Fig. 4(b).
Pass bands located inside the latter BG are represented by

mostly flat lines corresponding to localized modes [Fig.
4(c)]. As discussed below, these modes become evanes-
cent in real structures, which always have a certain level of
energy dissipation.

Figure 5 shows the dispersion diagrams for the unit cell
of a regular metamaterial with a lattice parameter of the
same size of a2 in the HL2 [Fig. 5(a)] and hierarchical
metamaterial [Fig. 5(b)] in the low-frequency range. The
analysis is similar to that in Section III A and reveals that
the BG in the regular structure is generated due to the
Bragg-scattering mechanism of longitudinal waves in the
slender parts of the regular metamaterial unit cell, since
the midgap Bragg frequency is located within the lowest
BG. The introduction of hierarchy results in the shift of
this BG to approximately three times lower frequencies
and the opening of several other BGs at the BG frequencies
of the regular structure. These other BGs are also of Bragg-
type, induced by the changes in the mass-stiffness ratios for
the unit-cell elements. Again, due to the self-similarity of
the constitutive geometries at different HLs, the dispersion
curves below the lowest BG have similar trends for hier-
archical and nonhierarchical structures, together with the
corresponding vibration patterns [Figs. 5(c) and 5(d)].

To explain the shift of the first BG to lower frequencies,
we consider an equivalent mass-spring model capable of
predicting the BG bounds for a metamaterial with crosslike
holes [40]. According to this model, a square lattice of
crosslike cavities can be considered as a lattice of square
blocks connected by thin ligaments (see Fig. SM6(a) in
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FIG. 3. Dispersion diagrams for the hub-spoke metamaterial for three different values of the HF: (a) 0.38, (b) 0.40, and (c) 0.42. (d)
Mode shapes at the edges of the hierarchically induced BGs.

the Supplemental Material [48]). At low frequencies, the
blocks behave as rigid bodies, whereas ligaments play the
role of springs (Fig. SM6b). Thus, the lower bound of
the BG is evaluated as [40]

ωBG
l =

√
K̄
M̄

, (2)

where K̄ = 2S{[(λ + 2μ)/(lb + ls)] + (αμ/ls)} and M̄ =
ml + (ms/2) are effective stiffness and effective mass,
respectively; mb, ms and lb, ls are masses and lengths of

FIG. 4. Dispersion diagrams for the crosslike porous metama-
terial with (a) regular and (b) external hierarchical organization.
The size for the unit cell of the regular structure is the same as
that for hierarchical level 1. (c) A part of the dispersion diagram
for a hierarchical metamaterial inside the BG. The hierarchical
organization at different spatial scales allows the BG originating
from a smaller constitutive geometry to be preserved.

the block (subscript b) and springs (subscript s); S is the
cross section of the springs, λ = K − (2/3)G and μ = G
are the Lamé constants, and α is a weighting coefficient.

The same model can be applied to the self-similar hier-
archical structure. Obviously, by introducing the hierarchy,
the lengths of the blocks and ligaments remain unchanged.
Therefore, for the calculation of the effective stiffness K̄h,
the only variable quantity is the cross section Sh

1 = (a1 −
2b1) × 1, which is Sh

1 = HF × Sh
2, with Sh

2 indicating the
cross section of the structure at HL2 (superscript h refers
to a hierarchical structure). As mentioned previously, the
mass of the hierarchical unit cell is 45% of the regular
counterpart, i.e., M̄ h = 0.45M̄ r (superscript r refers to a
regular structure). The ratio of the lower bounds for the
band gaps in the hierarchical and regular structures is then
as follows:

ωh

ωr =
√

K̄hM̄ r

M̄ hK̄r
=

√
0.05
0.45

= 1
3

. (3)

Therefore, the equivalent spring-mass model adapted for a
hierarchical structure with crosslike holes predicts a shift
of the lower BG bound to three times lower frequencies,
while the calculated data gives ωh/ωr = 1/2.82, i.e., the
accuracy of the model approximation is 94%. Hence, the
first BG in the band structure of the hierarchical unit cell is
generated by the same mechanism as in a regular unit cell,
and its shift to lower frequencies occurs due to the reduc-
tion of the effective stiffness and mass of the slender parts.
Similar shifts can be achieved by exploiting hierarchical
organization of non-self-similar structures. However, self-
similarity of hierarchical constituents enables similarity to
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(e) (f)

FIG. 5. Dispersion diagrams for
the crosslike porous metamaterial
with (a) regular and (b) hierarchi-
cal organization. The size for the
regular unit cell is the same as
for HL 2. The hierarchical orga-
nization allows the first BG to
be shifted to lower frequencies.
(c)–(f) Vibration patterns for the
regular and hierarchical unit cells.
The intersection of the dashed line
with the Brillouin-zone boundary
at point X indicates an approx-
imate mid-Bragg scattering fre-
quency for the fundamental longi-
tudinal mode.

be preserved in the dispersion-curve trends below the low-
est BG. Above the BG, the curve trends differ, but the
vibration patterns in the vicinity of the BG are still similar
[see Figs. 5(e) and 5(f)].

Overall, the introduced external hierarchical organiza-
tion can be considered as a means of tuning BGs to lower
frequencies accompanied by the simultaneous reduction of
the structural weight and generation of additional BGs at
higher frequencies. This mechanism may extend applica-
bility ranges of elastic metamaterials and facilitate their
wide practical utilization. Moreover, the main advantages
found for the nested hierarchical organization at similar
spatial scales are preserved for the metamaterial with the
external hierarchy at different spatial scales. Specifically,
these are (1) (partial) conservation of the BGs induced by
the constitutive geometries, (2) nucleation of additional
BGs in the midfrequency range, and (3) similarity of the
dispersion curves below the BG frequencies for the self-
similar hierarchical structure and the regular counterpart.
These properties are common to various hierarchical struc-
tures, as demonstrated in the Supplemental Material, where
other designs are considered with similar results [48].

IV. DISSIPATIVE HIERARCHICAL
METAMATERIALS

Many materials, e.g., polymers used to produce 3D-
printed samples, typically display wave-dissipation char-
acteristics. For solid structures, this can be taken into
account by considering viscoelastic properties of the meta-
material constituents [53]. Viscoelastic material behav-
ior usually influences wave-propagation characteristics
of elastic metamaterials and modifies band-structure

diagrams calculated under assumption of the linear
elasticity [47].

To analyze viscoelastic effects on wave dispersion in
hierarchically organized metamaterials, we assume dis-
sipation to be linearly proportional to frequency, which
is admissible for most polymers [46,53]. Since, under
isothermal conditions, the bulk modulus of most polymers
appears to retain a stationary equilibrium value over a
range of time scales [47,53,54], i.e., Kve = K and θ loss = 0
in Eq. (1), time dependency of the shear modulus G can
be effectively exploited. In the frequency domain, vis-
coelastic dissipation is then described by the Kelvin-Voigt
model in Eq. (1), which approximates the response of real
polymers well [47] and is commonly used to study damped
metamaterials [47,55].

To model physically realistic scenarios, the values of
shear viscosity ηloss are chosen by considering the vis-
coelastic effect on the wave dispersion in a homogeneous
material, similarly to [47]. It is found that in the consid-
ered frequency range for ηloss ≤ 5 Pa s, the real part of
wave vectors for propagating modes is almost unchanged
compared to that for the corresponding elastic case, while
the imaginary part shows small deviations from zero val-
ues at higher frequencies, up to 800 kHz. Hence, these
values correspond to small material dissipation [47,56].
Considering that the objective of this study is not to model
wave dissipation in any specific polymer, but rather to
theoretically analyze the influence of viscoelasticity on
the dynamics of hierarchically organized metamaterials,
we choose the representative values of ηloss = 2 Pa s and
ηloss = 5 Pa s to obtain indicative results.

For a viscoelastic medium, pure propagating waves or
BGs can no longer be identified, since all waves are
attenuating or evanescent. Thus, the study is performed
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FIG. 6. (a) Dispersion diagram
for waves propagating in �-X
direction in the hub-spoke meta-
material with hierarchical orga-
nization. (b) Attenuation spec-
trum for the same metamate-
rial with linear elastic (K,G)
and viscoelastic (Kve = K , Gve =
G + iωηloss, ηloss = 2 Pa s) mate-
rial behavior. (c) Transmission
spectrum for elastic and vis-
coelastic hierarchical metamate-
rials. Propagating elastic waves
are shown by blue, attenuating
elastic and viscoelastic waves
are shown by black, dark green
(ηloss = 2 Pa s), and red (ηloss = 5
Pa s), respectively. Viscoelasticity
leads to the expected frequency-
proportional increase of the wave
attenuation with curve-rounding
trends near the BG bounds.

for experimentally realistic scenarios, for which waves
are characterized by real-valued frequencies and complex-
valued wave vectors k = Re k + i Im k with the imaginary
part Im k describing the wave spatial attenuation. The
intensity of the wave attenuation can be evaluated by
considering either an attenuation spectrum relating the fre-
quency to the wave attenuation level 2 Im(k)/Re(k) [47,57]
or a transmission spectrum showing amplitudes of trans-
mitted waves normalized with respect to the amplitude of
the input signal, versus the wave frequency.

Figure 6(a) shows a dispersion diagram for waves prop-
agating in the �-X direction in the hub-spoke hierarchical
metamaterial together with attenuation [Fig. 6(b)] and
transmission [Fig. 6(c)] spectra for elastic and viscoelas-
tic (ηloss = 2 Pa s and ηloss = 5 Pa s) cases. In the latter,
the transmission coefficient is defined as the normalized
total displacement, i.e., the amplitude of the total displace-
ments averaged over the evaluated area (

√
u2

out + v2
out)

divided by the amplitude of the input signal (uin). Figure
6(a) reproduces a part of Fig. 2(b) for only one prop-
agation direction. The BGs for the elastic structure are
highlighted by shaded regions. According to the definition,
the wave attenuation for propagating modes (Im k = 0) in
the elastic case is zero outside the BGs and has finite val-
ues for the evanescent modes (Im k �= 0). The attenuation
diagram of waves shown in Fig. 6(b) is in good agree-
ment with their transmission characteristics for both elastic
and viscoelastic structures, discussed below. Despite the
small level of viscosity, wave attenuation and transmis-
sion in the viscoelastic metamaterial differs from that in
its elastic counterpart starting from frequencies of the low-
est BG. In general, the attenuation (transmission) increases
(decreases) linearly with the frequency, in agreement with

the adopted assumption. Viscoelasticity at most influences
the BG bounds, where straight edges of attenuation curves,
typical for the elastic case, become rounded in a simi-
lar way as for regular metamaterials [47,56]. No peculiar
influence of viscoelasticity is observed for the additional
BGs opened due to hierarchy. These effects are similar for
the two considered viscoelastic values, confirming that the
derived conclusions are of a general nature.

Similar features are found for waves propagating in the
crosslike porous metamaterial with external hierarchy at
different spatial scales. Here, we focus our attention on
frequencies within the BGs generated by crosses of HL1.
Figure 7(a) shows a part of the dispersion diagram given
in Fig. 4(c) for waves propagating in the �-X direction
in the specified frequency range. Results show that there
are many (almost) flat pass bands forming the dispersion
spectrum preventing the formation of a complete BG at
the considered frequencies. Poor wave-attenuation perfor-
mance of the metamaterial is also found in the transmission
spectrum [Fig. 7(c)], where multiple peaks appear in cor-
respondence with these pass bands (black line). However,
when material dissipation is taken into account, all the
pass bands are transformed into attenuating waves with
nonzero imaginary part values, as emerges comparing the
attenuation spectra for the elastic (black lines) and vis-
coelastic (dark green lines, ηloss = 2 Pa s) metamaterial
models in Fig. 7(b). The smallest attenuation level for
the viscoelastic case exceeds the maximum attenuation in
the elastic case. Also, the introduction of viscoelasticity
leads to a considerable modification of the attenuation
spectrum. All of the almost flat pure real bands become
complex-valued with a large imaginary part [Fig. 7(b)].
Interestingly, the maximum attenuation occurs at lower
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FIG. 7. (a) Dispersion diagram
for waves propagating in �-X
direction in the crosslike porous
metamaterial with hierarchical
organization. (b) Attenuation
spectrum for the same meta-
material with linear elastic
(K,G) and viscoelastic (Kve =
K , Gve = G + iωηloss, ηloss = 2 Pa s)
material behavior. (c) Trans-
mission spectrum for the
same metamaterial with
elastic (K , G; black) and
viscoelastic (Kve = K , Gve =
G + 2iω; green) material
behavior.

frequencies, apparently contradicting the assumption that
attenuation is linearly increasing with frequency. The rea-
son for this is that the modes near 555 kHz form the upper
bound of a large BG for the elastic metamaterial, where
the curve-rounding effect occurs [56]. The same conclu-
sion can be derived from the analysis of the transmission
spectra for the viscoelastic case [dark green curve in Fig.
7(c)]. For the same model, as in the elastic case consid-
ered above, the transmission level is very low in the whole
frequency range, indicating a complete BG. Similar results
are obtained for other BG frequencies of the hierarchical
structure. As the viscosity level increases from 2 to 5 Pa s,
the transmission coefficient becomes very small, indicat-
ing that this level of viscosity is too high for the considered
frequencies.

In summary, we can conclude that BGs generated in
structures of a lower hierarchical level are preserved
for hierarchically organized metamaterials, provided that
material losses are taken into account. Hence, the mathe-
matical model accounting for wave dissipation is not only
more realistic, but also enables advanced wave-attenuation
performance of the metamaterial generated by the interplay
between BG generation mechanisms and the attenuation
characteristics of the material constituents to be revealed.

V. EXPERIMENTAL CHARACTERIZATION

To experimentally confirm the capability of the structure
to nucleate BGs at different frequency scales, we con-
sider a hierarchical metamaterial of the type discussed in
Sec. III B, consisting of crosslike cavities at two differ-
ent spatial scales. The specimen consists of a 10-mm-thick
and 960-mm-long × 120-mm-large aluminum plate with
an array of six hierarchical crosslike cavities machined
in its central portion. The sample is obtained via water-
jet cutting starting from a unique pristine aluminum plate,

exhibiting linear elastic properties with the following nom-
inal mechanical parameters ρ = 2700 kg/m3, E = 70 GPa
and ν = 0.33. The specimen is represented schematically in
Fig. 8(a) and dimensions are provided in the Supplemental
Material in Fig. SM9 [48].

We perform two sets of transmission experiments
through the structure, in order to characterize its
frequency-dependent transparency and/or its partial or
total BGs. These fall in low- or high-frequency ranges,
depending on the relation of the wavelengths with the
characteristic length scales of the structure (large or small
crosslike cavities, respectively). Experiments on the alu-
minum sample are performed using two different excitation
systems in the low- and high-frequency ranges. In the first
case, we excite wave propagation in the sample using a
frequency sweep from 1 to 12 kHz (with a sweep rate of
500 ms), by means of an amplified vibration exciter (TIRA,
Shaker 51110) glued to the lower surface of the plate,
in its homogeneous portion [see Fig. 8(b)]. The signal
is recorded after the propagation through the hierarchical

(a)

(b)

FIG. 8. (a) Schematic of the experimental specimen and
(b) sample with applied piezoelectric transducers for signal gen-
eration and detection. Refer to SM [48] for the geometrical
dimensions of the specimen.
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FIG. 9. Comparison between numerical predictions and exper-
imentally measured transmitted signals in the low- and high-
frequency ranges. (a) Numerical dispersion spectrum in the
low-frequency range. Curve color indicates mode polarization,
from red to blue; (b) experimental FFT of the transmitted signal
in the low-frequency range; (c) numerical dispersion spectrum
in the high-frequency range; and (d) experimental FFT of the
transmitted signal in the high-frequency range.

metamaterial by two acquisition systems in order to cap-
ture different vibrational modes and distinguish between
partial and total BGs in the transmission spectrum. The
first acquisition system is a scanning laser vibrometer
(Polytec, OFV 505) placed orthogonally to the surface,
recording out-of-plane vibrations. The second acquisition
system is a broadband piezotransducer sensor glued on top
of the surface of the sample. No significant difference is
observed between the two acquisition methods and only
the one using a piezoelectric transducer has been reported
for the sake of clarity. High-frequency excitation, on the
other hand, is induced by a traditional piezotransducer

sweeping from 280 to 380 kHz, glued to the same region as
the shaker used for low-frequency excitation. The acquisi-
tion is performed in the same way as previously described
(laser and piezotransducer). The spectral response obtained
in transmission experiments is compared to the disper-
sion diagrams obtained by FE analysis and results are
shown in Fig. 9. The numerically predicted modes in the
low-frequency range (1–12 kHz) for the �X direction are
shown in Fig. 9(a), with curve color indicating mode polar-
ization, from blue for in-plane (0 in the scale bar) to red
for out-of-plane (1 in the scale bar). Partial and total BGs
are indicated by gray and green rectangles, respectively.
Figure 9(b) illustrates the fast Fourier transform (FFT)
of the measured transmitted signal in the same frequency
range. Results clearly show a very close agreement with
numerical predictions, including the case of partial BGs,
since the corresponding modes are not excited and detected
because of the adopted excitation-detection setup. The uni-
form attenuation level within the BGs supports the claim
that they are induced by the Bragg-scattering mechanism.
The numerically calculated mode shapes are shown in the
Supplemental Material (Fig. SM10) [48].

The numerically predicted high-frequency dispersion
spectrum is shown in Fig. 9(c), displaying a single full BG
centered at 345 kHz, confirmed by the experimental data
in Fig. 9(d). This type of BG is generated by the small
crosslike cavities in the hierarchical structure.

Thus, experiments confirm the effects predicted numeri-
cally and described previously, at least for structures with a
large difference between hierarchical scales. In particular,
the hierarchical structure preserves the band structure of
the nonhierarchical structure at low frequency, but BGs are
shifted to lower frequencies due to a reduction of the mean
stiffness and density. At the same time, the smaller features
of the hierarchical structure simultaneously provide BGs at
higher frequencies.

VI. CONCLUSIONS

We have numerically and experimentally investigated
the influence of bioinspired hierarchical organization and
material viscoelasticity on wave dispersion in metama-
terials with self-similar constituents at various spatial
scales. Contrary to previous approaches, our study focuses
on porouslike hierarchical structures, whereby increasing
hierarchy entails a weight reduction. Results reveal vari-
ous advantages of the hierarchical structure on the dynamic
performance of elastic metamaterial. These are as:

(1) conservation of most of the BGs induced by the con-
stitutive regular geometries, in the presence of material
damping;

(2) nucleation of additional hierarchically induced BGs
in the midfrequency range;
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(3) similar wave dynamics at low frequencies for hier-
archical and corresponding regular structures;

(4) shift of BGs to lower frequencies due to the effective
mass and stiffness reduction.

We have discussed the dynamics for the occurrence of hier-
archically induced BGs, and shown the generality of the
observed behavior, which is not limited to a specific con-
figuration. Additionally, experiments convincingly repro-
duce numerical predictions that an external structural hier-
archy occurring at different spatial scales can be exploited
to tune BGs of the regular metamaterial counterpart to
lower frequencies while significantly reducing structural
weight. A simple equivalent mass-spring model has been
developed to predict this BG shift. We have analyzed
the effect of material dissipation losses on wave prop-
agation in hierarchical metamaterials, establishing their
crucial role, even when they are small, on the preserva-
tion of the BG size. Future experiments will concentrate
on the precise determination of the frequency regions
where material viscoelasticity leads to more significant
effects. Overall, this work provides insights on how the
hierarchical organization can be exploited to alter the
dynamics of elastic metamaterials and reveals that the
principles of bioinspired hierarchy can lead to lightweight
metamaterials with multiscale frequency attenuation
properties, providing useful design guidelines for practical
applications.
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1. Evaluation of dispersion spectra: numerical procedure 

We consider small-amplitude vector waves in a linear elastic medium. In the absence of external 

forces the wave field is described by standard wave equations for two-dimensional displacements ࢛ሺ࢞, ሻݐ ൌ ቀݑ௫ሺݔ, ,ݕ ,ሻݐ ,ݔ௬ሺݑ ,ݕ  :ሻቁ [1]ݐ
ଶ࢛׏ܩ ൅ ቀܭ ൅ ଷீቁ ׏ሺ׏ · ࢛ሻ ൌ ߩ డమ࢛డ௧మ     (SM1) 

where ∇  is the gradient operator. The analysis is restricted to harmonic waves and forms a 

necessary basis for studying other types of wave motions. Due to the structural periodicity of the 

metamaterials, the displacements are also periodic in space and can be represented using the 

Floquet-Bloch expansion theorem [2] as follows: 

tii eet
T ωxkxUxu ⋅= )(),(     (SM2) 

where ࢁሺ࢞ሻ ൌ ൫ܷ௫ሺݔ, ,ሻݕ ܷ௬ሺݔ,  ሻ൯ is the Bloch wave amplitude of the same period as the structuralݕ

lattice, ࢑ ൌ ሺ݇௫, ݇௬ሻ is the wave vector, which is periodic in the corresponding reciprocal space. The 

Floquet-Bloch theorem (Eq. (3)) allows to restrict the analysis of an infinite periodic medium to that 

of a representative unit cell only with Bloch periodic conditions at the unit cell boundaries: 

   ࢛ሺݔ ൅ ݊ܽ, ݕ ൅ ݉ܽሻ ൌ ,ݔሺࢁ ሻexp ൫݇௫݊ܽݕ ൅ ݇௬݉ܽ൯   (SM3) 

Here ݊, ݉ are integers equal to 0 or 1 for an appropriate boundary edge. Non-redundant values of ݇௫, ݇௬ are located within the unit cell of the reciprocal space – Brillouin zone (Fig. SM1).  

The boundary-value problem in Eqs. (SM1)-(SM3) can be re-formulated by substituting relation Eq. 

(SM2) into Eq. (SM1), resulting in:  

ࢁ࢑ଶ׏ܩ ൅ ቀܭ ൅ ଷீቁ ࢑׏࢑ሺ׏ · ሻࢁ ൌ െ߱ߩଶࢁ   (SM4)
 



where the exponential term ݁݌ݔ(iωt+i࢑்·x) has been divided out ࢁ࢑׏ ൌ ܷ׏ ൅ ݅࢑ ٔ ࢑ଶൌ׏ and ,ࢁ ࢑׏ ·  The boundary conditions (SM3) are then replaced by continuity periodic conditions for .࢑׏

displacements on the unit cell. 

Equation (SM4) can be solved numerically using the Finite-Element Method (FEM), which allows 

the analysis of an arbitrarily complex unit cell configuration. The standard Galerkin discretization 

procedure yields a wave dispersion equation: 

ሺࡷ െ ݅ሺ݇௫ ࡷ૚ ൅ ݇௬ ࡷ૛ ሻ ൅ ݇௫ ݇௬ ࡷ૜ ൅ ݇௫ଶ ࡷ૝ ൅ ݇௬ଶ ࡷ૞ െ ߱ଶ ࡹሻࢊ ൌ ૙   (SM5) 

or, in shorter form: 

ሺ࢑ࡷሺ࢑ሻ െ ߱ଶ ࡹሻࢊ ൌ ૙,   (SM6) 

where ࡷ and ࡹ are standard stiffness and mass matrices, and ܌ is the vector of nodal displacements 

(see, e.g. [3, 4] for further details) The definitions of ࡷ௜ matrices are provided in [3]. The values of ܌ are periodic on the unit cell boundaries. The solution procedure to Eq. (SM6) has been 

implemented in the Matlab-based code and verified by directly solving Eqs. (SM1), (SM3) by 

means of a modal analysis procedure with the commercial software COMSOL Multiphysics 4.3 [5]. 

The representative unit cells are discretized into finite elements by using quadrilateral and triangular 

elements, respectively. The evaluation of eigenfrequencies ߱ has been performed for values of the 

wave vector ࢑ along the borders of the irreducible Brillouin zone, allowing the construction of the 

corresponding dispersion diagrams (details in the next section). 

For a viscoelastic medium, the displacement components cannot be represented as a combination of 

time- and space-dependent functions by using the Floquet-Bloch theorem in Eq. (SM2). Due to the 

energy dissipation, spatial wave profiles are time (frequency)-dependent. Also, material 

characteristics of the medium, ܭ௩௘ and ܩ௩௘, are time-dependent, i.e. ܭ௩௘ ൌ ௩௘ܩ ሻ andݐ௩௘ሺܭ ൌ  ሻݐ௩௘ሺܩ



and are known as volumetric and shear relaxation moduli, respectively. In the frequency domain, the 

Floquet-Bloch theorem for a periodic viscoelastic medium takes the form:  

    ෝ࢛ሺ࢞, ࢑, ݅߱ሻ ൌ ,෡ሺ࢞ࢁ ࢑, ݅߱ሻ݁௜࢑೅·࢞    (SM7) 

Here, a hat symbol over the variables indicates the transformed displacements in the frequency 

domain. The reformulated wave Eq. (SM4) can then be written as follows: ܩ෠ሺ߱ሻ࢑׏ଶࢁ෡ ൅ ቀܭ෡ሺ߱ሻ ൅ ෠ீሺఠሻଷ ቁ ࢑׏࢑൫׏ · ෡൯ࢁ ൌ െ߱ߩଶࢁ෡   (SM8) 

where the dependence of vector ࢁ෡  on coordinate vector ࢞, wave vector ࢑, and frequency ߱ is 

implied and omitted for clarity. Similarly to the previously considered elastic case, Eq. (SM8) can 

be solved numerically for a representative unit cell subject to continuity periodic conditions for 

displacements ࢁ෡  at the unit cell boundaries. 

By using the Galerkin approach, the discretized version of Eq. (SM8) can be derived: 

ሺࡷ෡ ࢑ሺ࢑, ߱ሻ െ ߱ଶࡹ෡ ሻ܌መ ൌ ૙   (SM9) 

Here, similarly to Eq. (SM6), ࡷ෡ ௞ and ࡹ෡  are the transformed ࢑-dependent stiffness and standard 

mass matrices of the same form as in Eq. (SM6), ࢊ෡ is the transformed vector of nodal displacements. 

However, contrary to Eq. (SM6) and Eq. (SM9), here the stiffness matrix ࡷ෡ ௞ is frequency-

dependent. This dependence does not allow to evaluate eigenfrequencies directly by solving Eq. 

(SM9). However, this issue can be overcome by inverting the problem, e.g. by specifying the value 

of ߱ and formulating an eigenvalue problem for wave vector ࢑. Since the wave vector has two 

unknown components, it is necessary to introduce a relation between ݇௫and ݇௬ in order to derive a 

typical eigenvalue problem.  

Thus, by assuming e.g. ݇௬ ൌ ܿ݇௫ with c a real constant and 0 < c < 1, Eq. (SM9) can be rewritten as 

[4]: ൫ࡷෙ ࢑ሺ߱ሻ െ ݇௫ࡹෙ ࢑൯ࢊෙ࢑ ൌ 0    (SM10) 



where 

ෙࡷ ࢑ ൌ ൤െ݅ሺࡷଵ ൅ ଶሻࡷܿ ࡷ െ ߱ଶࡵࡹ ૙ ൨,  ࡹෙ ࢑ ൌ ൤െሺࡷସ ൅ ଷࡷܿ ൅ ܿଶࡷହሻ ૙૙ ෙ࢑ࢊ  ,൨ࡵ ൌ ቂ݇௫ࢊࢊ ቃ.  
 (SM11) 

For any specified value of ߱, Eq. (SM10) is an eigenvalue problem for ݇௫ with the continuity 

periodic conditions for ࢊෙ࢑ at the unit cell boundary. Since most of the available FEM software does 

not allow to easily modify the element stiffness and mass matrices, the numerical solution procedure 

for Eq. (SM6) has been implemented as a Matlab-based code. For a periodic viscoelastic medium, 

all the eigenvalues ݇௫ are complex-valued with the imaginary part describing spatially attenuated 

waves [3].  

The evaluation of the wave dispersion for a viscoelastic metamaterial is performed by first fixing the 

value of ܿ in ݇௬ ൌ ܿ݇௫ equal to 0 or 1, which corresponds to the ܺ߁ or ܯ߁ borders of the 

irreducible Brillouin zone, respectively, and then solving the eigenvalue problem in Eq.(11) for the 

specific frequencies in the relevant frequency range. Finally, the real parts of the derived solutions ݇௫ are plotted versus the frequencies as common two-dimensional dispersion diagrams. The 

imaginary parts of ݇௫ are used to evaluate the wave attenuation level ߦ ൌ  ሺ݇௫ሻ/ܴ݁ሺ݇௫ሻ, thus݉ܫ2

providing the attenuation spectrum. 

To validate attenuation capabilities of the metamaterial structures, we additionally performed 

transmission analysis on finite-size metastructures with COMSOL Multiphysics 4.3 [6]. The 

calculations are carried out in the frequency domain for structures composed of 8 adjacent unit cells 

for the hub-spoke geometry and 4 adjacent unit cells for the cross-like cavity geometry, arranged as 

a 1D array in the horizontal direction. The structures are modelled as infinite in the vertical direction 

by applying continuity periodic boundary conditions for wave displacements at the top and bottom 

boundaries. The analysis is performed using horizontally-polarized plane waves incident on one 

boundary of the structure to model waves propagating along the ܺ߁ direction. The opposite 



boundary is subject to non-reflecting boundary conditions (Perfectly Matched Layers – PML - the 

size of 5 unit cells) to eliminate reflections of the incident wave field. The frequency is swept in 500 

or 1000 steps within the ranges specified for each case under consideration from the corresponding 

dispersion diagrams. The transmitted wave field ܶ is evaluated as:  ܶ ൌ ݃݋݈ ׬ ቚ࢛೟ೝ࢛೔೙ቚ஺  (SM12)     ܣ݀

where ࢛௜௡ is the incident displacement amplitude, ࢛௧௥ is the transmitted amplitude, and A is the 

analysed area of 5 unit cells of homogeneous material after the metamaterial region. 

 

2. Evaluation of the dispersion spectra: direct and reciprocal periodic lattices 

In this work, dispersion of elastic waves in metamaterials is studied numerically by analyzing two-

dimensional periodic structures with a square lattice of infinite extent. The dynamic properties of 

such structures can be characterized by considering a primitive unit cell, which is a minimum unit 

representing the whole structure by its periodic repetition. Figure SM1 shows one of the studied 

metamaterial configurations with a primitive unit cell, and the lattice vectors 1a , 2a  of equal length 

a . This lattice is known as a direct lattice. 

 

 

  

(a) (b) (c) 



Figure SM1. a) Periodic hierarchical metamaterial structure with a square lattice (direct lattice); b) 

reciprocal lattice corresponding to the direct lattice with mirror-reflection symmetry along vertical, 

horizontal and diagonal directions; c) reciprocal lattice corresponding to direct lattice with mirror-

reflection symmetry along only vertical and horizontal directions. 

 

Reciprocal lattice is specified by the lattice vectors 1b , 2b defined as follows: 

ijπδ2=⋅ ji ba , or 
1

1 a
b π2= , 

2
2 a

b π2=  

with ijδ  the Kronecker delta. Thus, the square reciprocal lattice is also spatially periodic with the 

period a/1 . Hence, one only needs to consider )(kω for non-redundant vectors k located within the 

first Brillouin zone, which is indicated by black squares in Fig. SM1b-c [7]. Moreover, this domain 

can be further truncated to the irreducible Brillouin zone by taking into account symmetries of 

rotation, mirror-reflection and time-inversion. If, besides time-inversion, a metamaterial has mirror-

reflection symmetries along the direct lattice vector lines as well as along the diagonal of a unit cell, 

the irreducible Brillouin zone is a triangle indicated by green in Fig. SM1b. If the mirror-reflection 

symmetry along the diagonals is absent, the irreducible Brillouin zone is a rectangle shown by green 

in Fig. SM1c. 

3. Parametric study 

The results for the hub-spoke metamaterial discussed in the main text show that introduction of the 

hierarchical organization leads to a reduction of the width of a lower wide BG compared to that of 

the corresponding regular configuration. We perform here parametric studies on the regular and 

hierarchical structures to determine the geometries that open BGs more efficiently. In the case of the 



regular configuration (Fig. SM2), the BG size is almost independent on the thickness of the 

connecting elements and the mass of the internal inclusion. 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure SM2. Dispersion diagrams for regular metamaterial unit cells with a) the same geometric 

parameters as in the main text (reference case); b) two times thicker connectors ( 22 1.0 ad = ) and c) 

two times thinner connectors ( 22 025.0 ad = ) than in the reference case, d) smaller internal mass (

22 25.0 ac = ) compared to the reference case. The BG size is almost the same in all the cases. 

 

By introducing the hierarchical organization, the BG separates into a lower BG, which is 

approximately of at the same frequency as that shown in Fig. SM2, and one or more higher BGs, 

whose width and frequency range can be modified by changing the geometry of the nested structure 

(see Fig. SM3). A self-similar structure (Fig. SM3a) preserves a similar lower BG, with additional 

narrow higher-frequency BGs. 
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(a) 

 

(b) 
 

(c) 

 
(d) 

Figure SM3. Dispersion diagrams for the hierarchical unit cells with a) self-similar and b-d) non-

self-similar hierarchical levels. 

 

4. Equivalent spring-mass model for a metamaterial with cross-like cavities 

Wang et al. [8] revealed that the lowest BG for a metamaterial with cross-like cavities is induced 

due to the local resonance of masses formed by edges of four unit cells (see Fig. SM4a) connected 

by thin ligaments acting as springs. Based on this, they proposed an equivalent mass-spring model 

capable of predicting the lower bound of the BG. This model can be extended to hierarchically 

organized metamaterials. 
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Figure SM4. (a) Four adjacent unit cells of the metamaterial with cross-like cavities and an 

equivalent spring-mass model capable of evaluated the lower bound of the 1st BG developed in Ref. 

[8] capable of evaluating the lower bound of the 1st BG. (b) The vibration pattern of the lower bound 

of the 1st BG. 

 

5. Hierarchical metamaterial with L-like cavities 



To further substantiate the generality of the findings regarding hierarchical metamaterials, in this 

section we consider a new structure, the unit cell of which displays an L-like cavity (see Fig. SM5a). 

Material parameters are the same as those used in the main paper while the geometrical parameters 

are: ܽ ൌ 1 mm, ܾ ൌ 0.9 · ܽ and ܿ ൌ 0.1 · ܽ. A hierarchical factor of HF = 10 is used, leading to the 

final hierarchical geometry represented in Fig. SM5b. 

As expected, the same physics described in Section 3.1 of the Main text is observed, i.e., the two 

BGs ranging from approximately 298 to 315 kHz and 469 to 578 kHz in Fig. SM5c (relative to the 

ordinary structure) are largely preserved in the diagram of Fig. SM5d (relative to the hierarchical 

structure). For example, some pass bands located inside the latter BG are present but characterized 

by mostly flat lines corresponding to localized modes (Fig. SM5e-top). As discussed in the main 

paper, these modes become non-propagating in real structures, which always possess a certain level 

of energy dissipation. Here, for the sake of clarity the computations are limited only to the linear 

elastic case (refer to the main paper for an estimation of the effect of viscoelasticity).  

As for the case presented in the main paper, it can be seen that the introduction of hierarchy allows 

to open a low-frequency BG in a more lightweight structure (refer to Section 3.1 of the main text for 

further details). 



 

Figure SM5: Unit cell for an L-like porous metamaterial with (a) regular and (b) external 

hierarchical organization and (c-d) their corresponding dispersion diagrams. (e) Two zooms of 

portions of the dispersion diagram for the hierarchical metamaterial. 

 

6. Comparison between a simple unit cell scaling and a hierarchical metamaterial 

To better emphasize the mechanisms specifically involved with structural hierarchy, in this Section 

we compare the variation of the dispersion spectra in two scenarios:  

(i) introducing simple scaling of the unit cell  



(ii) introducing a scaling of the unit cell with the additional introduction of a self-similar 

hierarchy at different scale levels 

We consider several systems with N x N (N = 1, 2, ..., 20) unit cells, as shown in Fig. SM6a-c. From 

the schematic representation the lattice parameter can be recursively evaluated as a/N (with N = 1, 2, 

20 and a = 1 mm) for each configuration. At each iteration, the unit cell required for a proper 

application of the Bloch-Floquet conditions is highlighted by a red square. Figures SM6d-f report 

the corresponding dispersion diagrams for these systems. Comparing them, the dispersion diagrams 

in the case of "simple scaling" are exactly the same but scaled towards higher frequencies (the y-axis 

upper limit is shifted from 1.5 MHz in Fig. SM6d to 30 MHz in Fig. SM6f), proportionally with to 

the size reduction of the lattice parameter. No new dispersion curves and no new BGs can be 

observed. 

On the contrary, in the case of the unit cell with added hierarchy (see the main text of the paper), a 

much richer phenomenology is present. This includes many more dispersion curves in the same 

frequency range, dispersion diagram self-similarity at very low frequencies, nucleation of new (low-

frequency) BGs, localized modes, etc. 

This allows us to say that the topological hierarchical architecture can be effectively used to tune 

BGs, dispersion curves and localize motion in preselected regions of the unit cell. 



 

Figure SM6: Schematic representation of (a) 1x1, (b) 2x2 and (c) NxN unit cell systems. The lattice 

parameter for each configuration can be evaluated as a/N (with N = 1,2 and 20) and (d-f) their 

respective dispersion diagrams. The unit cells for the Bloch analysis are highlighted with a red 

rectangle. 

 

7. 3D Numerical analysis of samples for experimental tests 

The sample considered in experiments is shown in Fig. SM7. In this case, the dispersion diagram is 

predicted numerically using a full 3D model to capture all possible wave modes propagating in the 

structure. Cells are meshed by means of 4-node tetrahedral elements of maximum size 1 mm in 

order to provide accurate eigensolutions up to the maximum frequency of interest (300 kHz). The 

band structure is derived assuming periodic (in the x-direction) and free (in the y-direction) 



boundary conditions at the edges of the cell domain. Free boundary conditions are imposed at the 

top and bottom surfaces of the cell. Numerically calculated mode shapes are shown in Fig. SM 8 

 

 

Figure SM7: Geometry and dimensions (in mm) of the experimental sample. Highlighted in red and 

orange are the large and small cross-like cavity unit cells, respectively.  

 

Figure SM8: Numerically calculated mode shapes for the hierarchical-cross-like cavity unit cells in 

the low frequency range.  



 

Figure SM9: Numerically calculated mode shapes for the hierarchical-cross-like cavity unit cells in 

the high frequency range.  
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