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a b s t r a c t 

Simple analytical and finite element models are widely employed by practising engineers for the stress 

analysis of beam structures, because of their simplicity and acceptable levels of accuracy. However, the 

validity of these models is limited by assumptions of material heterogeneity, geometric dimensions and 

slenderness, and by Saint-Venant’s Principle, i.e. they are only applicable to regions remote from bound- 

ary constraints, discontinuities and points of load application. To predict accurate stress fields in these 

locations, computationally expensive three-dimensional (3D) finite element analyses are routinely per- 

formed. Alternatively, displacement based high-order beam models are often employed to capture lo- 

calised three-dimensional stress fields analytically. Herein, a novel approach for the analysis of beam-like 

structures is presented. The approach is based on the Unified Formulation by Carrera and co-workers, 

and is able to recover complex, 3D stress fields in a computationally efficient manner. As a novelty, pur- 

posely adapted, hierarchical polynomials are used to define cross-sectional displacements. Due to the 

nature of their properties with respect to computational nodes, these functions are known as Serendip- 

ity Lagrange polynomials. This new cross-sectional expansion model is benchmarked against traditional 

finite elements and other implementations of the Unified Formulation by means of static analyses of 

beams with different complex cross-sections. It is shown that Serendipity Lagrange elements solve some 

of the shortcomings of the most commonly used Unified Formulation beam models based on Taylor and 

Lagrange expansion functions. Furthermore, significant computational efficiency gains over 3D finite ele- 

ments are achieved for similar levels of accuracy. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In engineering design, long slender structures are typically anal-

sed using axiomatic beam models. These models are valid un-

er the premise that the longitudinal dimension of a structure is

t least one order of magnitude larger than representative cross-

ectional dimensions. This geometric feature allows the governing

lasticity equations to be reduced from three to one dimension,

with the reference axis coinciding with the beam axis), and in so

oing, brings about significant physical insight and computational

enefits. The aim of this current work is to build a model capable

f capturing three-dimensional stress fields for beam-like struc-

ures in a computationally efficient manner. In this regard, many
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ffort s have been carried out in the last few decades. A brief his-

orical excursus is now presented. 

Classical axiomatic theories are sufficiently accurate for rela-

ively slender beam structures (length to thickness ratio L / t > 20)

ut their accuracy is limited by Saint-Venant’s principle, i.e. to re-

ions remote from the boundary constraints, discontinuities and

oints of load application. Traditionally, the most popular ax-

omatic postulations use a purely displacement-based approach.

hese include, for instance, the classical theory of beams de-

eloped by Euler-Bernoulli ( Euler, 1744 ) and Timoshenko (1921,

922) —a comprehensive comparison of which can be found

n Mucichescu (1984) . These theories assume that the effect of

hrough-thickness deformations on overall behaviour are negligi-

le and that axial displacements vary linearly through-thickness.

imoshenko’s beam model (TB) enhances Euler-Bernoulli’s (EB) by

onsidering the effects of shear deformations. Still only a uni-

orm cross-sectional shear distributions can be obtained. To ac-

ount for shear-free boundary conditions along the beam’s longi-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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tudinal surface, correction factors are commonly employed in a TB

setting ( Timoshenko and Goodier, 1970; Cowper, 1966; Sokolnikoff,

1956 ). 

To account for effects that are not captured by classical ax-

iomatic theories, several refined finite element (FE) models have

been developed. However, geometric complexities and accurate ap-

proximations of the displacement field can lead to computationally

expensive models, where a large number of unknown variables is

required. 

An approach developed by Ladevèze and Simmonds (1996) re-

duces a three-dimensional (3D) model to a beam-like struc-

ture thereby simplifying the 3D elasticity equations. Using this

method a beam model can be constructed as the sum of a Saint-

enant part and a residual, higher-order part. In a following work,

Ladevèze and Simmonds (1998) used linear shape functions on

beams with general cross-section and developed an exact beam

theory for calculating 3D displacements and stresses. However,

the theory only works if one neglects localised effects that oc-

cur at extremities and geometric discontinuities. Surana and

Nguyen (1990) developed a two-dimensional (2D) curved beam el-

ement using Lagrange interpolating polynomials along the cross-

section to describe transverse shear stress distributions in com-

posite structures. Although accurate, the computational cost of

Surana’s model grows rapidly as the number of composite lay-

ers increases. Recently, Groh and Weaver (2016) used high-

order Equivalent Single Layer theories to study the stretching and

bending of multilayered variable stiffness, anisotropic flat plates.

Kameswara et al. (2001) used Taylor series to include displace-

ment components along the cross-section and proposed an ana-

lytical solution based on a mixed formulation, whereby, to ensure

continuity, transverse stresses are invoked as degrees of freedom

(DOFs). Kameswara’s model has been employed for static and dy-

namic analyses of laminated plates and beams. 

Another powerful tool to develop structural models is the

asymptotic method. In the beam model scenario, the works by

Berdichevsky (1976) and Berdichevsky et al. (1992) are among

the earliest contributions that exploited the Variational Asymptotic

Method (VAM). More recently, Yu et al. (2002, 2012) have devel-

oped the so called variational asymptotic beam sectional analysis

(VABS) which uses VAM to split the 3D elastic problem into a 2D

linear problem in the cross-section and a 1D beam problem in lon-

gitudinal direction. 

Classical approaches have also been enhanced by the Gener-

alized Beam Theory (GBT) for thin-walled structures, as given by

Silvestre and Camotim (2002) , where transverse cross-sectional

displacements are obtained from the axial ones. In GBT, in order

to obtain a displacement representation compatible with classi-

cal beam theories, each component of displacement is expressed

as a product of two single-variable functions—one depending on

the longitudinal position along the reference axis and the other

on cross-sectional coordinates. However, since thin plate assump-

tions are adopted ( Silvestre and Camotim, 2002 ), through-thickness

strains are set to be zero and full 3D stress fields cannot be cap-

tured. Following on from early implementations of the GBT, many

other high-order theories, based on enriched cross-section dis-

placement fields, have been developed in order to describe effects

that classical models cannot capture. A complete account of the

literature, however, goes beyond the scope of this paper. The keen

reader is referred to Carrera et al. (2015) for further details. 

Of relevance to the present work, is one of the most recent con-

tributions to the development of refined beam theories and that is

the Unified Formulation by Carrera and Giunta (2010) . The for-

mulation provides one-dimensional (beam) ( Carrera et al., 2010 )

and two-dimensional (plate and shell) ( Carrera, 2002 ) models that

extend the classical approximations by exploiting a compact, hi-

erarchical notation that allows most classic and recent formula-
ions to be retrieved from one, hence unified , model. The displace-

ent field is expressed over the cross-section (beam case) and

hrough the thickness (plate and shell cases) by employing various

xpansion functions including Taylor polynomials ( Carrera et al.,

010 ), Lagrange polynomials ( Carrera and Giunta, 2010 ), expo-

ential and trigonometric functions ( Carrera et al., 2013 ), Cheby-

hev ( Filippi et al., 2015 ) and Legendre polynomials ( Pagani et al.,

016 ). Amongst these, Taylor (TE) and Lagrange expansion (LE)

odels are most widely adopted. TE models are hierarchical and

he degree of accuracy with which kinematic variables are cap-

ured is enriched by increasing the order of the cross-sectional ex-

ansion. On the other hand, LE models are based on cross-sectional

iscretisations using Lagrange elements of given kinematic order

nd refinement is obtained by increasing the mesh density, i.e. by

ncreasing the number of Lagrange elements in the cross-section.

oth models are found to be accurate and computationally effi-

ient, but have limitations. Namely, TE models incur numerical in-

tabilities when enriched to capture stresses near geometric dis-

ontinuities, such as corners, whilst LE models can have slow mesh

onvergence rates. Another known limitation of Carrera’s Unified

ormulation (CUF) is the oscillation of shear stresses along the

eam axis that appears if the mesh along the beam length is not

ufficiently fine. 

In this work, we propose a new approach for the analysis of

eam-like structures that overcome all of the above limitations.

he approach is based on CUF and, as a novelty, hierarchical La-

range polynomials are used to define cross-sectional displacement

elds. This new element class, called Serendipity Lagrange (SL), is

ased on the Trunk (or Serendipity) Space which is a polynomial

pace spanned by the set of monomials ξ i ηj , i, j = 0 , 1 , 2 , . . . , N,

here N is the order of the polynomial ( Szabó and Babuška, 2011 ).

L expansions combine two of the main features of TE and LE mod-

ls, i.e. they are hierarchical and facilitate numerically stable cross-

ectional refinements via remeshing. The advantages of using SL

lements for beams of general cross-section compared with finite

lements, Taylor and Lagrange type models are discussed in the

ollowing sections. In addition we investigate the effect of collo-

ating beam nodes towards the boundaries using Chebyshev biased

rids, which reduce problematic oscillations in numerical solutions

the Runge effect) ( Kreyszig, 2011 ). 

The remainder of the paper is structured as follows.

ection 2 summarises the derivation of the governing elastic-

ty equations in weak form. In Section 3 , the equations are cast in

 form suitable for the Unified Formulation. Section 4 provides an

verview of the Taylor and Lagrange expansion models and details

f the derivation of the new Serendipity Lagrange expansions.

n Section 5 , Chebyshev biased meshes are described. Numerical

esults obtained for various beams are found in Section 6 , where

ccuracy, computational efficiency and numerical stability of the

roposed model are discussed. Finally, conclusions are drawn in

ection 7 . 

. Finite element formulation 

CUF relies on a displacement-based formulation of the finite el-

ment method. Fundamental equations are summarised here for

ompleteness and clarity of exposition. 

Let us consider an elastic continuum of volume V , embedded

n R 

3 . In a finite element setting, the volume is discretised into a

eries of N -noded subdomains (the elements), so that displacement

elds of the form 

 (x, y, z) = 

[ 

U x (x, y, z) 
U y (x, y, z) 
U z (x, y, z) 

] 
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an be approximated element-wise by means of local shape func-

ions, N i , and generalised nodal displacements, u i , such that 

 (e) (x, y, z) = N i (x, y, z) u i , with i = 1 , . . . , N. (1)

n the previous expression and throughout remainder of the pa-

er, the Einstein summation convention is implied over repeated

ndices. 

As per the classical theory of elasticity, the stress and strain

ensors can be expressed by six-term vectors as 

T = { σxx , σyy , σzz , τyz , τzx , τxy } , 

 

T = { ε xx , ε yy , ε zz , γyz , γzx , γxy } . 
hese tensors are related through the material’s stiffness matrix C

y Hooke’s law, stating that 

= Cε . (2) 

or the sake of brevity, the reader is referred to Reddy (2003) for

n explicit definition of the coefficients in C . 

Using Eq. (1) , the strain-displacement relationship in its linear

orm may be recast as 

 = B i u i , (3) 

here 

 i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂N i 
∂x 

0 0 

0 

∂N i 
∂y 

0 

0 0 

∂N i 
∂z 

0 

∂N i 
∂z 

∂N i 
∂y 

∂N i 
∂z 

0 

∂N i 
∂x 

∂N i 
∂y 

∂N i 
∂x 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Elastic equilibrium is enforced via the Principle of Virtual Dis-

lacements, which, in a quasi-static setting, states that 

W int = δW ext , (4) 

here W int and W ext are the internal and external works, respec-

ively, and δ denotes virtual variation with respect to displace-

ents. 

By definition, the internal work is the work done by stresses

ver corresponding virtual strains. Noting that W int = 

∑ 

e W 

(e) 

int 
and

etting V (e) be the volume of the generic element 

W 

(e) 

int 
= 

∫ 
V (e) 

δε 

T σ dV, (5) 

here 1 

ε = δ
[
B j u j 

]
= B j δu j . (6) 

ubstituting (2) and (3) into (5) 

W 

(e) 

int 
= 

∫ 
V (e) 

δε 

T σ dV 

= 

∫ 
V (e) 

δε 

T Cε dV 

= 

∫ 
V (e) 

δu 

T 

j 
B 

T 

j 
C B i u i dV 

= δu 

T 

j 

(∫ 
V (e) 

B 

T 

j 
C B i dV 

)
u i 

= δu 

T 

j 
K 

(e) 

i j 
u i . (7) 
1 Note the change of subscript for consistent summations using Einstein notation. 

T  

m

If we now denote body forces per unit volume as g , surface

orces per unit area as p , line forces per unit length as q and con-

entrated forces acting on Q as P , the external work is 

δW 

(e) 

ext = 

∫ 
V (e) 

δu 

T g dV + 

∫ 
S 

δu 

T p dS + 

∫ 
l 

δu 

T q dl + δu 

T | Q P . (8)

ecasting Eq. (8) as −δW 

(e) 

ext = δu 

T f (e) and substituting

ith (7) into (4) we get 

u 

T 

j 
K 

(e) 

i j 
u i = δu 

T 

j 
f (e) , (9)

hich is a statement of elastic equilibrium in weak form, where

 

(e) 

i j 
and f (e) are, respectively, the structural stiffness matrix and

he generalised load vector of the generic element. 

. Unified formulation 

A typical way to overcome the limitations of classical beam

odels and to refine the structural analyses that employ them is to

nrich the kinematics of the approximated displacement field. The

se of Taylor expansions, for instance, is common to many theories

here high-order terms are included to enrich the kinematic ap-

roximation. In general, the higher the order, the higher the com-

utational effort required. One of the advantages of CUF is that,

wing to the notation adopted, beam models of increasing kine-

atic refinement are readily developed. Let us consider a beam-

ike structure as shown in Fig. 1 , where the beam extends along

he y -axis and cross-sections lie in the xz -plane. In CUF, the beam

s discretised along the length with traditional 1D finite elements.

ross-sectional deformations can be approximated using different

xpansions as explained in Sections 4.1 and 4.2 . Mathematically,

his means that the displacement field and its virtual variations

ay be written as a product of two functions: cross-sectional ex-

ansion functions, F ( x, z ), and 1D Lagrange shape functions, N ( y ),

long the beam axis. In principle, these functions can have as many

erms as desired. The more terms there are, the richer the kine-

atics. With reference to Eq. (1) , selectfont 

U (e) = F τ (x, z) N i (y ) u iτ , 

δU (e) = F s (x, z) N j (y ) δu js , 
with τ, s = 1 , . . . , M and i, j = 1 , . . . , N e 

(10) 

here M is the number of terms in the cross-sectional expan-

ion depending on the order; N e is the number of Lagrange nodes

ithin each element along the beam; and u i τ and u js are general-

zed displacement vectors. Substituting (10) into Eq. (5) and fol-

owing the steps as shown in (7) gives 

δW 

(e) 

int 
= δu 

T 

js 

(∫ 
V (e) 

B 

T 

js 
C B iτ dV 

)
u iτ

= δu 

T 

js 
k 

i jτ s 
(e) u iτ

(11) 

nd substituting (10) into Eq. (8) gives 

δW 

(e) 

ext = δu 

T 

js 
f (e) . (12)

inally, equating internal and external work 

u 

T 

js 
k 

i jτ s 
(e) u iτ = δu 

T 

js 
f (e) , (13)

hich is a statement of elastic equilibrium in weak form in CUF

otation. The term k 

i jτ s 
(e) 

is referred to as the element Fundamental

ucleus . Its explicit form can be found in Carrera et al. (2014, 2011) .

undamental nuclei may be assembled in a global stiffness matrix

ollowing the standard finite element procedure resulting in 

u = f . (14) 

he latter equation is then solved to find the generalised displace-

ents. 
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(a) Beam element and axes orientation. (b) Beam nodes and element cross-section.

Fig. 1. Unified formulation beam element and relative reference system. 

Fig. 2. Typical cross-sectional discretisation for: (a) Taylor expansions (hierarchical); (b) Lagrange expansions (node-based); (c) Serendipity Lagrange expansions (hierarchical 

and node-based). Grey shading indicates hierarchical shape functions over the section or section sub-domain. 

Fig. 3. Schematic depiction of the mapping from physical cross-sectional sub-domains to computational master reference system. 
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In CUF, the choice of F τ and M is arbitrary. In the literature, dif-

ferent kinds of expansion functions have been used, including Tay-

lor, Lagrange, Legendre, exponential trigonometric and Chebyshev

polynomials ( Carrera and Giunta, 2010; Carrera et al., 2013; Filippi

et al., 2015; Carrera et al., 2012; Pagani et al., 2016 ). In this work,

as a novelty, we introduce and adopt Serendipity Lagrange expan-

sions, which are described in the following sub-sections, together

with more traditional models for comparison. 

4. Cross-sectional expansion models 

As mentioned in the previous section, in the Unified formula-

tion, cross-sectional expansion functions can be chosen arbitrar-

ily. That said, the most widely adopted expansions are based on

Taylor and Lagrange polynomials. These two types of functions are
sed in fundamentally different ways, with profound implications

n some computational and numerical aspects of the implementa-

ion. 

.1. Taylor expansion model 

In Taylor expansion models, the cross-sectional displacement

eld at the i th Lagrange beam node is expressed with complete,

aylor polynomials containing terms of the form F τ = x n z m . For ex-

mple, a second-order expansion ( N = 2 ) has constant, linear and

uadratic terms as follows 

 i = { u x i , u y i , u z i } T = u i 1 + x u i 2 + zu i 3 + x 2 u i 4 + xzu i 5 + z 2 u i 6 , (15)

here the terms u 

T 
iτ

= 

{
u x iτ , u y iτ , u z iτ

}
on the right hand side

re unknown variables to be determined. High-order mod-
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Fig. 4. Serendipity Lagrange hierarchic shape functions (adapted from Szabó and Babuška (2011) ). 

Fig. 5. Schematic summary of possible cross-sectional discretisation strategies in Taylor, Lagrange and Serendipity Lagrange expansion models. 

Fig. 6. Sample Chebyshev grid in [0, L ]. 

Fig. 7. Square cross-section cantilever beam with applied tip load. 
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(a) Chebyshev mesh – 10 B4 elements – 1953 DOFs

(b) Uniform mesh – 10 B4 elements – 1953 DOFs

(c) Uniform mesh – 20 B4 elements – 3843 DOFs

Fig. 8. Chebyshev and uniform node distributions along the beam length and their respective DOFs for Taylor model with N = 5 . 

(a) σyy for (x, z) = (0, h/2) and y ∈ [0, L].

.

. . .

.

(b) σyy for (x, z) = (0, h/2) and y ∈ [0, 0.1L].

Fig. 9. Variation of normal stress ( σ yy ) along the length of the cantilever, square cross-section beam meshed with uniform and Chebyshev grids. 

(a) τyz for (x, z) = (0, 0) and y ∈ [0, L].

.

. . .

.

(b) τyz for (x, z) = (0, 0) and y ∈ [0, 0.1L].

Fig. 10. Variation of shear stress ( τ yz ) along the length of the cantilever, square cross-section beam meshed with uniform and Chebyshev grids. 
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els, i.e. models with high-order kinematics, can be obtained

by enriching the polynomial expansion. The reader is referred

to Carrera et al. (2014) for a more detailed treatment of TE models.

4.2. Lagrange expansion model 

In Lagrange expansion models, beam elements are further dis-

cretised by dividing cross-sections into a number of local sub-

domains as shown in Fig. 2 b. Two-dimensional Lagrange polyno-
ials are used as expansion functions over the sub-domains. The

rder of the Lagrange polynomials spanning each sub-domain de-

ends on the number of computational nodes therein. For instance,

 9-noded Lagrange type element ( L9 ) is spanned by quadratic ex-

ansions so that the displacement field at the i th beam node be-

omes 

 i = L 1 u i 1 + L 2 u i 2 + L 3 u i 3 + L 4 u i 4 + L 5 u i 5 + L 6 u i 6 

+ L 7 u + L 8 u + L 9 u , (16)
i 7 i 8 i 9 
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(a) Normal stress. (b) Shear stress.

Fig. 11. Through the thickness variation of normal ( σ yy ) and shear stress ( τ yz ) at (x, y ) = (0 , 0 . 1 L ) for the cantilever, square cross-section beam meshed with uniform and 

Chebyshev grids. 

...
...

...
...
...
. . .
. . .

. .

.

Fig. 12. Through-thickness plot of shear stress ( τ yz ) at beam mid span, (x, y ) = 

(0 , L/ 2) . 
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here the expansion functions, F τ = L τ , are 2D Lagrange polyno-

ials and the terms u i τ on the right hand side are unknown vari-

bles. Unlike in TE models, these global unknowns are pure dis-

lacement components at the computational nodes defined across

he sub-domains. Refined model accuracy is obtained by increas-

ng the number of sub-domains or the number of nodes therein,

r in other words, by increasing the cross-sectional mesh den-

ity. A more detailed description of LE models can be found

n Carrera and Petrolo (2012) . 

.3. Numerical integration over CUF elements 

Sections 4.1 and 4.2 highlight one of the fundamental differ-

nces between TE models and LE models. Taylor expansions are

efined to span cross-sections starting from the origin of xz -planes

long the y -axis. Lagrange expansions are defined on quadrilateral

ub-domains. This difference is illustrated graphically in Fig. 2 a

nd b. 

In practical terms, the fact that Lagrange expansions are de-

ned on cross-sectional sub-domains implies that an additional
apping is required for integrations over V (e) . To clarify, like tradi-

ional beam elements, N -noded CUF elements based on Taylor ex-

ansions are obtained through integration of 
∫ 

V (e) 
B 

T 
j 
C B i dV over a

aster element defined in ζ ∈ [ −1 , 1] , which is then mapped onto

(x, y, z) ∈ [ x (e) 

1 
, x (e) 

N 
] × [ y (e) 

1 
, y (e) 

N 
] × [ z (e) 

1 
, z (e) 

N 
] , i.e. the element posi-

ion in global coordinates. An identical operation is required, for el-

ments based on Lagrange expansions, to integrate 
∫ 

V (e) 
B 

T 
j 
C B i dV,

owever an additional mapping is required to link physical sub-

omains in cross-sectional xz -planes to the master computational

omain (ξ , η) ∈ [ −1 , 1] × [ −1 , 1] . A visual representation of this

wo-dimensional map is given in Fig. 3 . 

Throughout this paper, cross-sectional sub-domains defined in

 x, z ) are mapped and interpolated using linear Lagrange polyno-

ials L k 

= L k x k , with k = 1 , . . . , 4 (17)

here ξ is the vector of mapped coordinates and x k are the physi-

al positions of the nodes of the generic quadrilateral sub-domain.

s customary, by using (17) one can compute the Jacobian of the

ransformation, which is required for integrals oven the master do-

ain. 

.4. Serendipity Lagrange expansion model 

In TE models, it is straightforward to enrich the displacement

eld by choosing higher order expansions. On the other hand, in

E models, the displacement field is enriched by increasing the

umber of nodes in the beam cross-section. In choosing TEs over

Es one trades-off numerical stability for ease of refinement, i.e.

o need for remeshing. We now introduce alternative expansion

unctions, based on hierarchical Serendipity Lagrange polynomials,

hat eliminate this duality. Adopting this expansion model, cross-

ections are discretised using four-noded Lagrange sub-domains.

n addition, and as a novelty, the displacement field within sub-

omains can be enriched by increasing the order of the local

erendipity Lagrange expansion as depicted in Fig. 2 c, where the

hading indicates enrichment hierarchy. The proposed expansion

odel is based on the hierarchical finite element shape functions

s derived from Trunk (or Serendipity) polynomial spaces in Szabó

nd Babuška (2011) . 

In order to build the new expansion functions, a set of 1D poly-

omials and a set of 2D polynomials are required. These polynomi-
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(a) Displacement (uz) at [0, L, 0] (b) Normal stress (σyy) at [0, L/5, h/2]

(c) Shear stress (τyz) at [0, L/2, 0]

Fig. 13. Relative error with respect to reference 3D FE solution. 
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Fig. 14. Relative error of shear stress ( τ yz ) at [0, L /2, 0] with respect to reference 

3D FE solution for refined Lagrange expansion models. 

 

als are combined and used as expansion functions for the displace-

ment field within the computational sub-domains. Enrichment of

the model kinematics can then be achieved by increasing the ex-

pansion order and/or the number of nodes in the cross-section,

which will be shown to be tantamount to combining the benefits

of TE and LE models, whilst also eliminating their limitations. 

4.4.1. 1D Lagrange-type polynomials 

In this section, we introduce the 1D polynomials used to build

the 2D SL expansions. 

Let us consider the set �1D = { ξ ∈ R : −1 ≤ ξ ≤ 1 } and let N ≥ 2

be the number of equally spaced points ξ i within �1D . 2 Starting at

ξ = −1 , 

ξi = −1 + 

2 

(N − 1) 
(i − 1) , where i = 1 , . . . , N. (18)

An N 

th -order polynomial, p N ( ξ ), can be found such that 

p N (−1) = 0 , 

p N (1) = 0 , 

p N (ξi ) = 0 . (19)

The explicit form of this polynomial is 

p N (ξ ) = (ξ − ξ1 )(ξ − ξ2 ) · · · (ξ − ξN−1 )(ξ − ξN ) , (20)

such that, for instance, 

p 2 (ξ ) = (ξ + 1)(ξ − 1) , 
2 By construction N will also be the order of the polynomial. 

T  

f

p 3 (ξ ) = (ξ + 1) ξ (ξ − 1) , 

p 4 (ξ ) = (ξ + 1)(ξ + 

1 
3 
)(ξ − 1 

3 
)(ξ − 1) , 

p 5 (ξ ) = (ξ + 1)(ξ + 

1 
2 
) ξ (ξ − 1 

2 
)(ξ − 1) , 

p 6 (ξ ) = (ξ + 1)(ξ + 

3 
5 
)(ξ + 

1 
5 
)(ξ − 1 

5 
)(ξ − 3 

5 
)(ξ − 1) , 

p 7 (ξ ) = (ξ + 1)(ξ + 

2 
3 
)(ξ + 

1 
3 
) ξ (ξ − 1 

3 
)(ξ − 2 

3 
)(ξ − 1) . (21)

raditional Lagrange polynomials can readily be derived from (20) ,

or details see Arfken et al. (2013) and Kreyszig (2011) . 
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(b) Transverse normal stress

Fig. 15. Through-thickness plot of shear and transverse normal stresses ( τ yz and σ zz ) at 2%, 5%, 10% and 30% of the beam length from the clamped end and x = 0 . 

Table 1 

Displacement and stress components of the square cross-section beam. 

u z (0, L , 0) σ yy (0, 0.21437 L, h /2) τ yz (0, L /2, 0) DOFs 

[m] × 10 −6 [Pa] [Pa] # 

ANSYS 

SOLID186 −5.330 47138.0 −1392.4 541059 

Analytical 

EB −5.333 47137.8 - - 

TB −5.368 47137.8 −1500 - 

TB-Enhanced −5.333 47137.8 −1388.8 - 

Taylor Expansions 

T1 −5.369 47139.9 −10 0 0.0 279 

T2 −5.314 47137.6 −10 0 0.0 558 

T3 −5.322 47148.0 −1396.6 930 

T4 −5.326 47137.4 −1396.6 1395 

T5 −5.328 47140.8 −1387.6 1953 

T6 −5.328 47123.4 −1387.6 2604 

T7 −5.329 47131.1 −1389.6 3348 

Lagrange Expansions 

1 × 1 L4 −4.462 47139.7 −10 0 0.0 372 

2 × 1 L4 −4.939 49928.9 −1091.4 558 

2 × 2 L4 −5.064 49761.3 −934.3 837 

1 × 1 L9 −5.315 47145.3 −958.6 837 

2 × 1 L9 −5.322 47139.7 −1579.9 1116 

2 × 2 L9 −5.325 47138.6 −1583.2 2325 

3 × 2 L9 −5.326 47136.4 −1341.2 3255 

3 × 3 L9 −5.327 47136.5 −1342.3 4557 

Serendipity Lagrange Expansions 

SL1 −4.462 47139.7 −10 0 0.0 372 

SL2 −5.315 47146.9 −958.6 744 

SL3 −5.324 47149.1 −1396.6 1116 

SL4 −5.327 47136.1 −1409.2 1581 

SL5 −5.328 47139.2 −1387.6 2139 

SL6 −5.329 47123.5 −1387.3 2790 

SL7 −5.329 47134.0 −1389.6 3534 

 

o  

t  

a

4

 

o

η  

L  

t

 

 

 

 

 

 

 

 

f

L

w

τ

a

t

F

L  

w  
We note that the property of vanishing values on the boundary

f �1D is essential to ensure continuity of the displacement field at

he interfaces between cross-sectional sub-domains, which in turn

llows for the formulation of hierarchical shape functions. 

.4.2. 2D Lagrange-type polynomials 

Polynomials of the family p N ( ξ ) can be used to define their N 

th -

rder 2D counterparts in �2D = { (ξ , η) ∈ R 

2 : −1 ≤ ξ ≤ 1 , −1 ≤
≤ 1 } . These 2D polynomials are to be employed as hierarchical
agrange-type shape functions. With this aim in mind, we need

hree different sets of functions, each with specific requirements: 

1. A set of four first-order Lagrange polynomials. These are bi-

linear polynomials that take value 1 at each of the four nodes

and 0 on the others. These are named polynomials of type I. 

2. A set of N 

th -order polynomials that vanish along three sides of

�2D in order to satisfy the continuity of displacements across

cross-sectional sub-domains. These are named polynomials of

type IIA and IIB. 

3. A set of N 

th -order polynomials defined in the interior subset of

�2D that vanish along its four sides. These are named as poly-

nomials of type III. 

Letting r = 1 , . . . , N, and s = 1 , 2 , 3 , 4 , the Serendipity expansion

unctions are indicated by 

 

(t) 

τ (ξ , η) , (22) 

here the subscript τ is an index defined as 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

s for r = 1 

4(r − 1) + s for r = 2 , 3 

4(r − 1) + 

(r−3)(r−4) 
2 

+ s 

(4 r + 1) + 

(r−3)(r−4) 
2 

, . . . , 4 r + 

(r−2)(r−3) 
2 

} 

for r ≥ 4 

, 

(23) 

nd the superscript (t) denotes the polynomial type as follows 

 = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

I for r = 1 and τ ∈ [ s ] 
IIA for r = 2 , 3 and τ ∈ [ 4(r − 1) + s ] 

IIB for r ≥ 4 and τ ∈ 
[
4(r − 1) + 

(r−3)(r−4) 
2 + s 

]
III for r ≥ 4 and τ ∈ 

[
(4 r + 1) + 

(r−3)(r−4) 
2 , . . . , 4 r + 

(r−3)(r−4) 
2 

]
(24) 

ollowing on from Eqs. (23) and (24) , 

 

(I) 

τ = 

1 

4 

(1 + ξs ξ )(1 + ηs η) , (25)

here ( ξ s , ηs ) are the coordinates of the four corner nodes in �2D .
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(a) Square cross-section (b) T-section

Fig. 16. Conditioning number of the system’s stiffness matrix versus expansion order for Taylor and Serendipity Lagrange models. 

=1m =0.14m

=0.02m

=0.07m

=0.01m

Fig. 17. T-section cantilever beam with applied tip load. 
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L (IIA , IIB) 

τ = 

1 

2 

⎡ 

⎢ ⎣ 

(1 − η) 
(1 + ξ ) 
(1 + η) 
(1 − ξ ) 

⎤ 

⎥ ⎦ 

T ⎡ 

⎢ ⎣ 

δ1 s 0 0 0 

0 δ2 s 0 0 

0 0 δ3 s 0 

0 0 0 δ4 s 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

p r (ξ ) 
p r (η) 

p r (−ξ ) 
p r (−η) 

⎤ 

⎥ ⎦ 

, (26)

where δij is the Kronecker delta and the argument of p r (−ξ ) and

p r (−η) is negative to ensure that all L (IIA , IIB) 
τ polynomials of odd or-

der are identical and separated by a 90 degree rotation; a property

of shape functions required to ensure uniqueness and complete-

ness. And finally, 

L ( III ) τ = p n (ξ ) p m 

(η) , (27)

with n, m = 2 , 3 , . . . N, constrained by n + m = r and n + m ≤ N. 

Fig. 4 shows the first few polynomials L (t) 
τ , sorted by order, type

and index τ . Henceforth, N 

th -order Serendipity Lagrange models

are implicitly assumed to include all of the shape functions of or-

ders 1 to N , as opposite to just order N . As an example, a model of

order N = 5 contains: 

1. Four bi-linear Lagrange polynomials (type I). Subscripts 1 to

4; 

2. Four second-order polynomials (type II). Subscripts 5 to 8; 

3. Four third-order polynomials (type II). Subscripts 9 to 12; 

4. Five fourth-order polynomials (4 type II, 1 type III). Sub-

scripts 13 to 17; 

5. Six fifth-order polynomials (4 type II, 2 type III). Subscripts
18 to 23. b  
Similarly, cross-sectional displacements of order N = 2 , at the

 

th Lagrange beam node, take the form (using the notation F τ =
 

(t) 
τ ): 

 i = 

4 ∑ 

k =1 

L (I) 

k 
u ik + L ( II ) 

5 
u i 5 + L ( II ) 

6 
u i 6 + L ( II ) 

7 
u i 7 + L ( II ) 

8 
u i 8 . (28)

In conclusion, the SL expansion model is beneficial in that it has

haracteristics of both TE and LE models, because: (a) Serendipity

olynomials have the same hierarchical nature of TEs; (b) as in LE

odels, they are defined on sub-domains thus enabling local re-

nement and enhanced numerical stability via cross-sectional dis-

retisation. A schematic representation of the trade-offs between

he three expansion models is shown in Fig. 5 . 

. Chebyshev node distribution 

CUF models can lead to inaccurate prediction of shear stresses

ear the boundaries. For instance, considering a cantilever beam,

hear stress oscillations may be observed along the axis near the

xed support. One way to overcome this problem is to increase

he number of beam elements or to use a high-order expansion in

he longitudinal direction. Both choices can significantly increase

he number of unknowns required for convergence. These mesh-

ependent stress oscillations are of numerical nature and are detri-

ental to the objective we set out to achieve, i.e. performing de-

ailed, yet inexpensive, stress analyses around localised features in

eam-like structures. To solve this issue, we propose a simple, yet
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Fig. 18. Cross-sectional discretisations for T-section beam. 

Fig. 19. Variation of shear stress ( τ yz ) along the T-section flange. 
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Fig. 20. Through-thickness plot of shear stress ( τ yz ). 

Fig. 21. Through-thickness plot of shear stress ( τ yz ) at locations 2%, 5% and 50% of the beam length from clamped end. 
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effective, approach to redistribute the nodes with a bias towards

boundaries and features. Namely, the nodes are distributed using a

Chebyshev biased mesh. 

Chebyshev polynomials are known to give better conver-

gence criteria and minimise Runge phenomena ( Boyd and

Petschek, 2014 ). These polynomials of the first kind of order n ,

denoted as T n ( y ) ∈ [ −1 , 1] , are a set of orthogonal functions de-

fined as the solutions to the Chebyshev differential equation. They

are related to Legendre and Jacobi Polynomials ( Rivlin and Wayne,

1969; Arfken et al., 2013 ) and may be defined using a series ex-

pansion: 

T n (y ) = 

n 

2 

� n 2 � ∑ 

i =0 

(
n 

2 i 

)
y n −2 i 

(
y 2 − 1 

)i 
. (29)

Chebyshev meshes are defined using the set of zeros of (29) in

[ −1 , 1] , i.e. 

y k = cos 

(
2 k − 1 

2 n 

π

)
, k = 1 , . . . , n, (30)
hich can be mapped in [0, L ] as follows: 

 k = 

L 

2 

− L 

2 

cos 

(
2 k − 1 

2 n 

π

)
. (31)

s seen in Fig. 6 , we use y k to place n nodes along the length L of

he beam. Consequently, the nodes are positioned more compactly

owards the boundaries. 

. Numerical examples and discussion 

Capturing 3D stress fields accurately using displacement-based

eak formulations can be challenging. Since stresses and strains

re obtained by differentiating the displacement field components,

he stress equilibrium equations are satistied in a weak sense

nd not necessarily point-wise. In all numerical cases assessed

ere, displacements and stresses are computed at various locations

long the beam. Results are compared with 3D finite element so-

ution. 
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Table 2 

Displacement and stress components of the T-section beam. 

u z ( f /2, L , 0.025) σ yy ( f /2, L /5, w ) τ yz ( f /2, L /2, 0.025) τ yz ( f /2, L /2, 0.01) DOFs 

[m] × 10 −5 [Pa] [Pa] [Pa] # 

ANSYS 

SOLID186 −2 . 6304 258410 −8830 . 4 -6266.3 7225431 

Taylor Expansion 

T5 −2 . 6248 258323 −8520 . 6 -44031.3 5733 

T6 −2 . 6268 258321 −8999 . 9 -4667.6 7644 

T7 −2 . 6274 258327 −9080 . 2 -5061.7 9828 

T8 −2 . 6280 258326 −8897 . 8 -5159.9 12285 

T9 −2 . 6284 258324 −8802 . 7 -5485.1 15015 

Lagrange Expansion 

40 L9 −2 . 6298 258326 −8973 . 3 -44031.3 52689 

126 L9 −2 . 6301 258327 −8816 . 4 -6544.9 153699 

184 L9 −2 . 6303 258327 −8843 . 8 -6247.3 221949 

336 L9 −2 . 6303 258327 −8844 . 4 -6309.4 395577 

432 L9 −2 . 6304 258327 −8844 . 9 -6304.8 502593 

488 L9 −2 . 6304 258327 −8845 . 6 -6277.7 567021 

Serendipity Lagrange Expansion 

66 SL5 −2 . 6304 258327 −8826 . 2 -5990.7 250614 

66 SL6 −2 . 6305 258327 −8815 . 7 -6135.0 347529 

66 SL7 −2 . 6305 258327 −8838 . 1 -6207.0 462462 

66 SL8 −2 . 6305 258327 −8824 . 7 -6243.1 595413 

66 SL9 −2 . 6305 258327 −8826 . 6 -6259.8 746382 

Fig. 22. Through-thickness plot of shear stress ( τ yz ) at locations 2%, 5% and 50% of 

the beam length from clamped end at x = f/ 2 . 
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.1. Comparison of Chebyshev and uniform node distribution 

This section draws a comparison between the convergence be-

aviour of stress fields obtained using Chebyshev and uniform

eam meshes. For this purpose, a clamped-free, square cross-

ection beam of length L = 1 m , height h = 0 . 1 m and width b =
 . 1 m is considered. A load P z = −10 N is applied at the end (y =
 ) , on the neutral axis, as shown in Fig. 7 . The constituent ma-

erial is isotropic with Young’s modulus E = 75 GPa and Poisson’s

atio ν = 0 . 33 . A 3D FE analysis, performed with ANSYS , is used

s a reference for validation, where the beam is discretised using

0 0 0 0 SOLID186 (3D 20-noded) elements to yield converged re-

ults. 

One-dimensional CUF models, based on Taylor expansions, are

sed for the analyses presented in this section, as they are known

o perform well with beams of square cross-section. The analyses

re carried out with expansion order N = 5 and different meshes

f 4-noded ( B4 ) elements with uniform and Chebyshev distribu-

ions. Ensuing nodes and respective degrees of freedom are shown

n Fig. 8 , where it can be seen that the Chebyshev and uniform
eshes, with 10 B4 elements, have almost half the DOFs of the

niform mesh with 20 B4 elements. 

Normal stress ( σ yy ) values along the beam, at x = 0 , z = h/ 2 ,

re plotted in Fig. 9 a, showing that results match the ANSYS model

hroughout the length, except for the region near the clamped end.

or further clarity, Fig. 9 b zooms in on the deviations displaying

yy from root up to 10% of the beam length, i.e. for y ∈ [0, 0.1 L ].

imilarly, shear stress ( τ yz ) distributions along the beam at x = 0 ,

 = 0 , are plotted in Fig. 10 a and b. Finally, through-the-thickness

ariations of σ yy and τ yz at x = 0 , y = 0 . 1 L are plotted in Fig. 11 a

nd b. 

As expected, results show clearly that a Chebyshev grid of 10

lements provides enhanced accuracy near the boundary than uni-

orm meshes of 10 and 20 elements. This conclusion confirms that

iased CUF meshes, refined towards regions of high stress gradi-

nts, can improve accuracy with no need for increasing the total

umber of nodes (and DOFs). For this reason, Chebyshev meshes

re adopted for longitudinal discretisations in all of the following

nalyses. 

.2. Comparison between TE, LE and SL models 

In this section, we compare SL expansion models with the

raditional TE and LE models. First, a cantilevered, square cross-

ection beam is considered, as in Section 6.1 . Ten B4 elements,

ith a Chebyshev type distribution, are employed for the mesh in

he longitudinal direction. 3D FE results are used as a reference.

nalytical results, obtained with classical theories such as Euler-

ernoulli (EB) and Timoshenko beam (TB), are provided for com-

arison. In addition, results are also compared to Timoshenko’s

nhanced analytical (TB-EN) solution obtained using Airy’s stress

unction ( Timoshenko and Goodier, 1970 ). This enhanced formula-

ion predicts accurate transverse shear stress distribution. In chap-

er 11 of reference Timoshenko and Goodier (1970) , the formula-

ion is termed as “exact”. However, it is derived by enforcing cer-

ain stress components to be zero and assumes that the bend-

ng stress varies linearly along the thickness coordinate. As such,

trictly speaking, the formulation is not exact, as these condi-

ions hold true when measuring the stress distribution remote

rom boundary constraints. In contrast, the present formulation

ccounts for all stress components without any of the above-

entioned assumptions and is expected to predict the stress re-
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Fig. 23. Distribution of shear stress ( τ yz ) in the cross-section at 2% of the beam length from the clamped end. 
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sponse accurately in all regions within the structure. The follow-

ing analytical expressions are employed to calculate deflection and

stresses ( Timoshenko and Goodier, 1970; Filippi et al., 2015 ): 

u 

EB 
z = 

P z L 
3 

3 EI 
(32)

u 

TB 
z = 

P z L 
3 

3 EI 
+ 

P z L 

AG 

(33)

σ EB , TB , TB - EN 
yy = 

P z (L − y ) z 
(34)
I 
TB 
yz = −3 P z 

2 A 

(35)

TB - EN 
yz = τ TB 

yz 

[
−ν

1 + ν

(
1 

3 

+ 

∞ ∑ 

n =1 

4 

π2 

(−1) n 

n 

2 cosh (nπ) 

)
+ 1 

]
(36)

here, as is customary, G is the shear modulus, I is the second

oment of area with respect to the x axis and A is the area of the

ross-section. 
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Fig. 24. Distribution of transverse normal stress ( σ zz ) in the cross-section at 2% of the beam length from the clamped end. 

 

u  

t  

i  

w  

o  

s

 

e  

m  

m  

i  

t  

l  

T  

a  

i  

c  

2  

m  

q  
Transverse displacement, normal and shear stresses are eval-

ated at various locations as shown in Table 1 . The through-

hickness variation of shear stress at the beam’s midspan is plotted

n Fig. 12 for SL ( N = 5 ), Taylor ( N = 5 ) and three Lagrange models

ith different cross-sectional meshes. Plots of the percentage error

f displacement, normal and shear stress (with respect to 3D FE

olution) versus DOFs are shown in Fig. 13 . 

Results show that the SL model with one cross-sectional el-

ment of order N = 1 provides identical results to the Lagrange

odel with one L4 element. This result is expected because the

odels have identical kinematical descriptions. The benefits of us-
ng the SL elements can be seen for expansions of order greater

han one ( N > 1). SL, Taylor and Lagrange models perform simi-

arly in terms of convergence of displacement and normal stress.

urning our attention to shear stresses, SL and Taylor expansions

chieve convergence at around 20 0 0 DOFs. Conversely, as shown

n Fig. 13 c, Lagrange expansions fail to do so. Even upon further

ross-sectional discretisation and a number of DOFs in excess of

60 0 0, Fig. 14 indicates that τ yz does not fully converge. This nu-

erical issue is attributed to the use of low order—linear ( L4 ) or

uadratic ( L9 )—shape functions for the cross-sectional elements,
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Fig. 25. Distribution of shear stress ( τ yz ) in the cross-section at 50% of the beam length from the clamped end. 
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which upon differentiation can only provide piecewise constant or

linear stress variations respectively. 

To demonstrate the capabilities of the proposed SL model in

predicting the local variation of 3D stresses towards the clamped

edges, relevant stress components are measured at several loca-

tions along the beam. In the present example, in order to cap-

ture 3D stress fields accurately, the beam’s cross-section is divided

into a 2 × 2 mesh of SL domains of order N = 8 . Fig. 15 shows the

through-thickness variation of shear ( τ yz ) and transverse normal

stress ( σ zz ) at different locations from the clamped support. In the

latter region, significant localised changes in σ zz occur, which can

be characterized by the presence of an inflection point. Moving
way from the clamped end, boundary layer effects are less evi-

ent. Our calculations are in good agreement with 3D FE results at

 significantly reduced computational cost ( ≈ 1/10 of DOFs). Sim-

lar analyses, carried out with a TE model of order N = 8 , are

ound to produce similar results, with some differences. For in-

tance, Fig. 15 b shows σ zz to match the reference solution almost

verywhere, except in a small region near the free surfaces, where

 σ zz / ∂ z is expected to vanish. Unlike the SL model, the TE expan-

ion fails to capture this feature. This discrepancy can be explained

y the fact that SLs allow not only the order of expansion to be in-

reased, but also to discretise the cross-section. Owing to these ca-
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abilities, boundary effects in the stress profiles can be more read-

ly captured. 

In a TE setting, the only way to improve the prediction of trans-

erse normal stresses along the beam’s free surface is to increase

he expansion order. However, this leads to numerical instabilities,

hich may be measured by computing the conditioning number

 r c ) of the ensuing stiffness matrix ( Kreyszig, 2011 ). Fig. 16 a is a

lot of 1/ r c , reciprocal of the conditioning number, versus, N , the

xpansion order of SL and TE models with one cross-sectional ele-

ent. From the figure, we observe that, for increasing N , the stiff-

ess matrix of TE models becomes ill-conditioned (i.e. r c diverges).

onversely, the conditioning properties of SL models are almost in-

ependent from the expansion order. This is shown to be the case

lso for LE models, proving that cross-sectional discretisation im-

roves numerical stability. 

.3. T-section beam 

In order to show the enhanced capabilities of SL expansions, in

omparison with TEs and LEs, an additional beam of more com-

lex geometry is examined. Specifically, we consider the T-section

eam shown in Fig. 17 . Material properties are the same as in the

revious example. The beam is clamped at one end and loaded

ith a concentrated force, P z = −10 N , at the other end. The analy-

is is performed with Taylor, Lagrange and SL models. Converged

D finite element results from ANSYS , computed by discretising

he structure with 554,036 SOLID186 elements, are taken as a

eference for comparison. Displacement fields, as well as, normal

nd shear stresses are evaluated at several locations and a con-

ergence analysis is performed by varying the order of Taylor and

L expansion and by refining the cross-sectional mesh for LE. For

n accurate estimation of the stress field at the intersection be-

ween flange and web, several cross-sectional LE and SL meshes

ave been trialled. Resulting discretisations are shown in Fig. 18 ,

here it can be seen that local refinement is required in the re-

ions with high stress gradients. For the LE mesh, convergence

s achieved with 488 L9 elements; In comparison, the SL model

ecessitates some 66 SL8 elements. Fig. 16 b confirms that, also

n this case, TE models lose numerical stability for increasing N ,

hich limits our analyses to order 9. In contrast, LE and SL are

ound to be numerically stable again. 

Elastic field results are reported in Table 2 . As expected, Taylor

odels produce accurate and converged displacement and normal

tress values, but fail to represent shear stresses to an acceptable

egree of precision. Lagrange and SL models are numerically sta-

le, as such they are able to capture the response of the structure

etter than TEs, particularly localised stresses concentrations. The

eason for this difference is that Lagrange and SL expansions rely

n local discretisations at cross-sectional level, whereas Taylor ex-

ansions are constructed with displacement shape functions span-

ing the entire cross-section from the beam reference axis, which

ffects the conditioning number negatively, thus preventing indef-

nite refinement. 

In the remainder of this section, particular attention is given to

yz , which, as indicated by Table 2 , is the most problematic field

ariable to be modelled accurately. Figs. 19 and 20 show the vari-

tions of shear stress at the beam’s mid span, respectively, along

he flange and through the web at x = 0 . 07 and x = 0 . 06 . In ad-

ition, the models are interrogated throughout the beam’s length.

alues of τ yz through z , at 2%, 5% and 50% of the span from the

lamped end, are reported in Figs. 21 and 22 . The latter, shows

he shear stress distribution along the T-section’s web. At y = 50% L,

uch distributions can be calculated analytically using Jourawski’s

ormula ( Gere and Goodno, 2011 ). This is done to highlight an ex-

mple of the intrinsic limitations that may affect sim plified mod-

ls. Specifically, it is observed that the formula deviates from the
umerical results, proceeding from the top of the section towards

he flange. This result is as expected due to the assumptions in

ourawski’s model. 

In summary, shear stresses from the LE, SL and 3D finite ele-

ent solutions match almost exactly and can capture localised fea-

ures in the 3D stress field. 

Finally, for further appraisal of SL discretisations, 3D stress pro-

les across full cross-sections are compared to the reference AN-

YS solution through contour plots of transverse shear and normal

tresses at various span-wise locations. These positions are shown

n Figs. 23–25 . Overall agreement is excellent, except at the cor-

er between the flange and web, which theoretically is a singular

oint. No model is accurate in capturing stresses exactly in this lo-

ation. 

In conclusion, from the results presented in this section it is

vident that the SL models are capable of accurate stress predic-

ions with considerably less DOFs than 3D FE, which is a proxy

or computational cost. From a numerical standpoint, SL and La-

range models behave identically. This result allows either of the

wo models to be used with confidence. SL meshes, however,

ive an extra advantage, because, unlike LE meshes, they facilitate

lement-wise hierarchical refinement thereby reducing the need

or cross-sectional remeshing. 

. Conclusions 

We have aimed to capture 3D stress fields accurately using 1D

odels with greater computational efficiency than 3D finite ele-

ent analyses. The Serendipity Lagrange expansion model is in-

roduced within the framework of Carrera’s Unified Formulation.

tatic analyses of square and T-section beams have been carried

ut to both challenge and exemplify the merits of the proposed

pproach. The model is benchmarked against traditional Taylor and

agrange expansions, 3D finite element solutions as well as an-

lytical formulae (where available). The main findings from the

resent study can be summarised as follows: 

1. The effect of collocating beam nodes using a Chebyshev bi-

ased mesh has been studied. The mesh was refined in the

regions where stress fields are expected to change rapidly. It

has been observed that, by employing this node distribution,

accurate results can be obtained near constraints, without

the need to increase the total number of beam nodes. This

type of discretisation also precludes spurious oscillations in

the solutions, previously observed in CUF models. 

2. For the numerical cases assessed, the Serendipity Lagrange

expansion model retains benefits of both the Lagrange

model (cross-sectional discretization) and the Taylor model

(hierarchical approximations), eliminating their disadvan- 

tages, as described in the following points. 

3. In order to capture the response of beam-like structures

accurately, high-order models may be required. For Tay-

lor models, as the order of expansion increases, the condi-

tioning number of the stiffness matrix decreases exponen-

tially. This problem makes the system ill-conditioned and

numerically unstable. Serendipity Lagrange expansions over- 

come this limitation and are therefore suitable for analysing

beams with complex cross-sections. 

4. Similarly to Lagrange expansion models, the Serendipity La-

grange ones allow for cross-sectional discretisation. This fea-

ture, together with the hierarchical nature of the local ex-

pansions, makes Serendipity Lagrange elements particularly 

suited for capturing localised stress fields near boundaries,

discontinuities and points of load application, unlike the

Taylor expansion model. 
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5. Cross-sections are also discretised in the Lagrange model,

however model building is cumbersome because remeshing

is the only way to improve accuracy. 

The proposed Serendipity Lagrange expansion models proved

to be an efficient and effective means for computing 3D stress

fields for solid and thin-walled isotropic beam structures. Future

work will focus on composite structures and a comparison with

other Unified Formulation models, such as Legendre based mod-

els ( Pagani et al., 2016 ), that show similar advanced capability. 
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