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Abstract

For decades, fingerprints have been the most widely used biometric trait in identity
recognition systems, thanks to their natural uniqueness, even in rare cases such as
identical twins. Recently, we witnessed a growth in the use of fingerprint-based
recognition systems in a large variety of devices and applications. This, as a conse-
quence, increased the benefits for offenders capable of attacking these systems. One
of the main issues with the current fingerprint authentication systems is that, even
though they are quite accurate in terms of identity verification, they can be easily
spoofed by presenting to the input sensor an artificial replica of the fingertip skin’s
ridge-valley patterns.

Due to the criticality of this threat, it is crucial to develop countermeasure
methods capable of facing and preventing these kind of attacks. The most effective
counter–spoofing methods are those trying to distinguish between a "live" and a
"fake" fingerprint before it is actually submitted to the recognition system. According
to the technology used, these methods are mainly divided into hardware and software-
based systems. Hardware-based methods rely on extra sensors to gain more pieces
of information regarding the vitality of the fingerprint owner. On the contrary,
software-based methods merely relies on analyzing the fingerprint images acquired
by the scanner. Software-based methods can then be further divided into dynamic,
aimed at analyzing sequences of images to capture those vital signs typical of a real
fingerprint, and static, which process a single fingerprint impression. Among these
different approaches, static software-based methods come with three main benefits.
First, they are cheaper, since they do not require the deployment of any additional
sensor to perform liveness detection. Second, they are faster since the information
they require is extracted from the same input image acquired for the identification
task. Third, they are potentially capable of tackling novel form of attack through an
update of the software.
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The interest for this type of counter–spoofing methods is at the basis of this
dissertations, which addresses the fingerprint liveness detection under a peculiar
perspective, which stems from the following consideration. Generally speaking, this
problem has been tackled in the literature with many different approaches. Most of
them are based on first identifying the most suitable image features for the problem
in analysis and, then, into developing some classification system based on them. In
particular, most of the published methods rely on a single type of feature to perform
this task. Each of this individual features can be more or less discriminative and often
highlights some peculiar characteristics of the data in analysis, often complementary
with that of other feature. Thus, one possible idea to improve the classification
accuracy is to find effective ways to combine them, in order to mutually exploit their
individual strengths and soften, at the same time, their weakness. However, such a
"multi–view" approach has been relatively overlooked in the literature.

Based on the latter observation, the first part of this work attempts to investigate
proper feature fusion methods capable of improving the generalization and robustness
of fingerprint liveness detection systems and enhance their classification strength.
Then, in the second part, it approaches the feature fusion method in a different way,
that is by first dividing the fingerprint image into smaller parts, then extracting an
evidence about the liveness of each of these patch and, finally, combining all these
pieces of information in order to take the final classification decision.

The different approaches have been thoroughly analyzed and assessed by com-
paring their results (on a large number of datasets and using the same experimental
protocol) with that of other works in the literature. The experimental results dis-
cussed in this dissertation show that the proposed approaches are capable of obtaining
state–of–the–art results, thus demonstrating their effectiveness.
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Chapter 1

Introduction

Fingerprints are one of the biometric traits which is most frequently used as authen-
tication system in a plethora of applications ranging from security to surveillance
and forensic analysis [59]. Over the recent years they have established their place
as an alternative or supplement to traditional individual identification methods (e.g.,
token or password-based ones). The reasons for this trend are mainly the (perceived)
increase in security and the ease of use of biometric system. Today fingerprint
recognition systems are cost–effective solutions that guarantee high recognition
accuracy on large datasets of millions of images. Thanks to these characteristics,
beside the most common applications (such as immigration regulations, interna-
tional borders, classified resources or information access control and electronic
transactions), they are starting to be deployed in novel scenarios, like granting access
to schools, health or leisure facilities, identifying patients in hospitals and using
pay–with–fingerprint systems as an alternative to cash or credit cards. Fingerprint
sensors are also becoming commonly available on consumer devices like notebooks
or smartphones.

However, authentication systems based on fingerprints are vulnerable to more or
less sophisticated forms of spoofing that can result in granting unauthorized access.
As an example, in September 2013, Apple revealed its new iPhone 5s. This device
was equipped with a fingerprint sensor that could be used to unlock the device. Three
days later, a German hacker group posted the detailed instructions for hacking the
system. What they did was neither based on an in-depth knowledge of the internal
mechanism of the fingerprint recognition module nor on a brilliant programming
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proficiency. Instead, they simply created a synthetic replica of a latent fingerprint by
using play-doh and vinyl glue, which was sufficient to grant access to the system
when submitted to the recognition system. On September 2014, Apple presented the
iPhone 6, and one might think they learned the lesson. Surprisingly, the exact same
trick worked perfectly again.

This is just a case illustrating the susceptibility of biometric systems in general
and of fingerprint-based identification systems in particular, to intruding attacks.
This vulnerability becomes a serious issue in spite of the variety of daily uses of such
systems.

Speaking in general, two main attack scenarios to a biometric-based recognition
system can be considered: direct or indirect [60]. Indirect methods are regarded as
the attacks carried out in order to break in the internal software or hardware mech-
anisms of the biometric system. Hence, they can be prevented by using encrypted
information or blocked using firewalls and so on. On the contrary, direct attacks (i.e.
attacks at sensor-level) are these attacks carried out on the outside of the system.

The most common form of attack is similar to the example previously introduced,
i.e. a situation where the offender tries to access to the system by presenting to
the input sensor a replica of the biometric traits of an authorized individual. This
method, is called "spoofing attack". In the same fashion, the fake biometric traits
employed in direct attacks are called "spoofs". In the context of this work, the spoofs
are simple artificial duplicated fingerprints obtained by making a mold from a real
or a latent fingerprint, using simple and cheap materials such as Play-Doh, latex,
gelatin and so on ([63, 105, 32]). As a result, the biometric system’s security is
endangered since it might not be capable of distinguishing a real from a fake input.
The literature shows that the success rate of such spoofing attacks can be up to 70%
of the cases [65], which makes the problem extremely critical. This is the reason
why a module capable of detecting spoof attacks, telling a fake from a live sample,
is sorely needed to prevent false samples to be sent to the identification module.

Several methods have been proposed in the literature to detect the liveness of a
fingerprint (or, in other terms, to identify a spoofed fingerprint). One option is to
exploit hardware-based methods, which employ peripheral (and accessory) biometric
sensors capable of capturing the vital characteristics of the input sample. Some
examples are the measurement temperature [22], skin electrical conductivity [75],
pulse oxometry [92], skin resistance [22], the amount of light passing through the
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finger in the presence of a light sensor [7] and the smell of the sample [8]. A different
approach is offered by software-based methods, which are simply based on the
analysis of the acquired fingerprint images. This analysis usually exploit different
image features that are further processed in various ways.

Software–based approaches can be then further divided into static (using a single
image) or dynamic (processing an image sequence). Dynamic methods are aimed
at analyzing, in a temporal video sequence, phenomena like skin deformation and
perspiration that are typical of a live fingerprint. This analysis comes at the cost of
an increase of computational complexity and processing time. On the contrary, static
methods are by far the most attractive methods since, relying on a single image, they
require less data, less computational resources and are suitable for general use (e.g.,
they can be applied also to these sensors that cannot capture an image stream).

While hardware-based techniques are theoretically expected to obtain higher
precision in spoof detection compared to software-based methods, the introduction
of novel components increases as well the cost of the system, without neglecting
the fact that a capable intruder can find a way to spoof even the additional sensors
once their characteristics are known. Thus, software–based approaches are often
preferable in the practice and, in particular, represent the only viable solution when
it is not possible to modify the deployed hardware (e.g., on consumer devices, like
smart–phones, already available in commerce). As other advantages, these solutions
are less invasive and more flexible, since they can potentially tackle novel types of
attack by a simple update of the software.

1.1 Contribution of this work

Given their characteristics of generalization and simplicity, this dissertation focuses
on the development of novel software static methods for the fingerprint liveness
detection. In order to introduce and clarify the approach followed in this work, along
with its contribution, it is necessary to take a brief overview of the literature on the
subject.

Several methods have been proposed and published, most of which focus on
the analysis of individual image features. The initial works were based on the
observation that the images taken from fake fingerprints are usually characterized by
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a lower image quality and, thus, researchers tried to analyze some quality indexes
based on a plethora of different holistic features. However, these approaches did
not show a promising discriminative power, and the following approaches started
analyzing various local textural features extracted from the image.

The common characteristic of all these features is that their engineering is based
on expert knowledge of the problem under analysis. Thus, they can also be seen
as different observations of the same data from different viewpoints, each of which
focuses on specific and often complementary characteristics of the samples. Given
their differences, developing approaches that combine multiple features, capable of
mutually exploiting their strengths and, at the same time, softening their weaknesses,
could lead to improve both the accuracy and the generalization properties of the
classification system.

Feature fusion approaches, also referred to as multi–view learning, have been
applied in different computer vision tasks, such as object classification [50] and
human activity recognition [56], face [26] and facial expression recognition [110],
content–based image retrieval [15] and hyperspectral image classification [108].
These works show that multi–view learning is effective and promising in practice. In
contrast, this approach has been relatively overlooked in the context of fingerprint
liveness detection.

Based on this observation, the first part of this dissertation focuses on analyzing
the effectiveness of feature fusion approaches as anti–spoofing methods and to
compare them with the state of the art (Chapter 3). This objective raises several
research questions, such as which features can be combined and how. Since an
exhaustive assessment of all the available features and feature fusion methods would
have been clearly unfeasible, the approach followed has been to (i) select a subset
of promising features, based on the literature, and (ii) compare methods capable of
dealing, from a number of different perspectives, with the various issues involved
(e.g. when to fuse, how to cope with the curse of dimensionality, how to provide a
shared representation of the different features, and so on).

The second part of this research (Chapter 4) leverages on the recent popularity
gained by Deep Learning approaches (in particular, of Convolutional Neural Net-
works, CNNs) in several visual recognition tasks, which has motivated researchers
to apply them to the fingerprint liveness detection problem. The main idea behind
this general approach is that CNNs, which works directly on the raw input image,
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are capable of automatically learning the "optimal" features for the problem at hand.
This is in contrast with the approaches based on "handcrafted" features, where the
choice of (what can be considered as) the most suited features is often empirical and
sub-optimal.

In particular, this part of the dissertation proposes a patch-based strategy whose
rationale is threefold. First, since the dimension of the CNN input layers is neces-
sarily limited, using small sized patches allows to avoid resizing the samples and,
thus, to retain the original resolution and image information. Second, using patches
rather than the full images as samples, allows increasing the size of the training set,
thus (hopefully) making the classifier more robust and increasing its generalization
capabilities. Third, the exploitation of fusion approaches, based on the combination
at different levels of the pieces of information extracted from the patches, is likely
(again) to improve the robustness of the final fingerprint classification process.

Both the proposed approaches (i.e., fusing handcrafted features or deep patch–
based features) have been assessed on a set of publicly available benchmarks that
have been widely used in the literature and, thus, enable a comparison with a great
variety of methods. Overall, experimental results indicate the effectiveness of both
the general approaches, which are capable of providing state–of–the–art results.



Chapter 2

Background and Literature Review

Biometric recognition, or biometrics, in short, is referred as the identity recognition
of a person based on physical or behavioral attributes such as fingerprint, face, iris,
and voice [44]. The uniqueness of many physical and behavioral attributes of humans,
combined with the capability of capturing in digital format, these characteristics
using well-designed sensors, allows the development of identity recognition systems
based on the comparison of the extracted data. Thus, biometrics can be viewed as
a pattern recognition problem, where the machine first learns the salient features
(patterns) in the biometric attributes of an individual and then matches such patterns
efficiently and effectively [44].

Among the different biometric traits used in automated identification systems,
fingerprints can be considered as the most popular and successful one. Although
fingerprints have been in use in forensic applications for over 100 years, the recent
availability of low-cost and compact fingerprint scanners allowed the deployment of
a large number of different scenarios, in such a way that fingerprint recognition has
become in people’s mind a synonymous of biometric recognition.

However, despite the general accuracy and ease of use of fingerprint–based
recognition systems, there is a significant body of research showing their vulnerability
to different types of threatening attacks. These attacks can be classified in two main
groups: obfuscation and impersonation. Fingerprint obfuscation (or alteration) is
the intentional attempt of a person to mask her/his identity to a biometric system
by altering the fingertip skin pattern [107] (e.g., by burning or cutting the fingertip,
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surgically interventions and so on). Example of these attempts have been observed
in law enforcement, national identification and border control systems [106].

A more dangerous type of attack is impersonation, which corresponds to a sensor-
level attack where either an attacker gains unauthorized access using the biometric
identity of an enrolled person or a new identity (possibly shared between multiple
individuals) is created using fake biometric traits [75]. These kinds of attacks, which
are also referred as presentation attack or spoofing attack, are generally carried out
with spoofs, i.e. objects created by making a mold of a latent or real fingerprint
and then filling it with materials such as gelatin, silicone or Play-Doh. In these
terms, performing a spoofing attack does not require any expert knowledge about
the internal operation of the biometric system and, although extremely simple, the
literature reports the (surprisingly) high success rate of these attacks [65].

In order to reduce this vulnerability, different countermeasure methods (usually
referred to as liveness detection) have been proposed in the literature. Their goal is
to provide the biometric system with the capability of automatically telling whether
the object placed on the sensor is a live or a fake finger. In the following Sections,
details will be given on the characteristics of fingerprint patterns and of the different
counter–spoofing methods proposed in the literature.

2.1 Fingerprint patterns

Fingerprints are characterized by an intricate pattern of interleaved ridges and valleys
on the tip of the finger (friction ridges) [59]. This pattern is claimed to be unique and
permanent for each finger, thus suggesting its use as a robust identifier. As a matter
of facts, even identical twins (which are hardly distinguishable with face recognition
systems) have different fingerprint patterns.

The process of fingerprint recognition, either done by a human expert or a
machine, is mainly feature-based [44], where the features used can be represented in
hierarchical order at the following three different levels, ranging from coarse to fine
(see Fig 2.1).

• Level 1. At the global level (Level 1), the shape and structure of a fingerprint
are summarized by features like ridge orientation and ridge frequency map
for each location on the fingerprint. This information allows to extract a
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Fig. 2.1 (a) Grayscale fingerprint image, (b) Level 1 feature (orientation field, ridge flow and
singular points), (c) Level 2 feature (ridge skeleton), and (d) Level 3 features (ridge contour,
pores, and dots).

characterizing shape (such as arch, loop, delta, or whorl), whose distinctiveness
is not sufficient for recognition, but is enough for fingerprint classification and
indexing. Since level 1 features ignore the exact location and dimensional
details of ridges, a low-resolution scanner (250 ppi) is usually enough to extract
them.

• Level 2. The second level groups local features called minutiae, which are
defined as the locations where a ridge emerges, ends, splits, or merges with
another ridge. The minutiae are extracted through a detailed analysis of
ridges, which involves their preliminary skeletonization. Each minutia is then
characterized by its direction, type and location in the image. Level 2 features
can be easily extracted from images acquired at a resolution higher than
500 ppi. Minutiae-based representations are extensively used in automated
fingerprint recognition systems, primarily due to the fact that they capture most
of the discriminative information of fingerprints and are reasonably robust to
variations of the image quality.

• Level 3. At a very fine level, a fingerprint is represented by the pores and edges
of the ridges acquired by high-resolution scanners (with resolution higher
than 1,000 ppi). Level 3 features are receiving increased attention due to their
importance in the analysis of latent fingerprints, which generally contain much
fewer details compared to the rolled or plain ones.
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2.2 Spoofed fingerprints

An artificial (or spoofed) fingerprint is a skin-like mask made of gelatin, latex,
silicone, wood glue, clay or similar materials, which contains a fingerprint pattern
on its outer surface [63]. Spoofs can be created in two ways, according to the level
of participation in this process of the fingerprint owner [63] [32].

• Cooperative spoofing. In the first method, the enrolled user actively cooperate
to create a negative impression of her/his fingertip by placing it on a mold
made of various materials, like silicone or plaster. The spoof is then created
by filling the mold with a thin layer of a moisture-based spoof material.

• Non-cooperative spoofing. When the user is not directly involved into the
spoof creation process, another option is to use a latent fingerprint (e.g., one
impressed on a surface such as the display of a mobile phone or a glass). This
latent fingerprint is first lifted and then used for creating a spoof, either by
printing its image with conductive silver ink or by etching it onto a photo-
lithographic printed circuit board (PCB) and then covering it with a thin layer
of a spoof material.

From this description, it is clear that there is a large difference in the spoof quality
among those obtained in a consensual and unconsensual way. The former allows
to create an almost perfect copy a fingerprint, which can be difficult to be detected
as a fake even by a human expert. On the contrary, the non-cooperative methods
results in a fingerprint image with a lower quality, due to the fact that several details
are already lost in the latent fingerprint and further imperfections are introduced by
the subsequent spoof creation procedure. However, it should be underlined that it is
much easier for an intruder to operate on a latent fingerprint rather than convincing
an enrolled user to leave a cast of her/his finger [33].

2.3 Liveness Detection Methods

According to the technology used, the liveness detection methods can be roughly
divided into hardware and software based.
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Hardware-based techniques try to capture the vitality attributes of the fingertip,
such as finger’s temperature, electrical conductivity, heartbeat and skin resistance.
These characteristics are analyzed by coupling additional dedicated hardware along
with the fingerprint sensor, however, this introduces several drawbacks. For instance,
the new required hardware increases the costs and, then, it does not necessarily secure
the system against spoofing attacks, since an expert can exploit the knowledge of the
new configuration to find suitable counter–measures (e.g., placing a fake fingerprint
on the fingerprint scanner and a live one on the additional hardware [92] [60]).

Software-based liveness detection methods are, instead, merely based on image
processing algorithms applied to the samples acquired from the scanner [19]. These
methods offer some desirable properties compared to hardware-based ones, since
they do not require the deployment of any additional hardware. Thus, they are less
expensive and there is no need to update or modify the hardware of any biometric
systems already available. In these methods, pieces of information (features) are
extracted from the fingerprint images in order to tell a live from a fake input. Based
on the number of images that are required to perform liveness detection of each input
fingertip, they are further divided into the two sub classes of dynamic and static
methods, which are detailed in the following subsections.

2.3.1 Dynamic methods

Dynamic methods are based on the observation that live and fake fingers are char-
acterized by different changes occurring over time in their “skin”. Capturing these
differences can be done analyzing a temporal image sequence during the fingerprint
impression, on a time span that usually ranges between 2 and 5 seconds. As a result,
there is an increase in the response time required by dynamic methods to take the
decision of keeping or rejecting an input sample.

As for the possible approaches, the analysis is usually focused on identifying
two distinct (dynamic) phenomena occurring in the fingerprint surface: perspiration
and elastic deformation.
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Perspiration Based

Perspiration is a typical behavior of the human skin, where the sweat leaks from pores
and expands along ridges, causing a variation of the intensity in the regions between
pores. These moisture patterns can be captured by observing multiple fingerprint
images over a short time interval time. For instance, [20] captured the perspiration
pattern’s change from two consecutive fingerprints scanned with a difference of 5
seconds. Then, several statistics about the temporal changes occurring in the ridge
signals were used to discriminate between live and fake samples. Since an excessive
amount of moisture can produce a saturated signal, two new dynamic measures,
respectively the dry and wet saturation percentage changes, were added in [86],
showing an improvement of the overall accuracies for different devices. In [2], the
use of a wavelet analysis is proposed to isolate the changes in perspiration patterns.
In this case, the differences in the wavelet coefficients between two consecutive
scans (taken 2 seconds apart) are used as vitality measures.

Elastic Deformation Based (Morphology-based)

Elastic deformation refers to the distortions of the fingertip skin during the scan.
To analyze this penomenon, in [5] the user is asked to rotate the fingertip on the
scanner surface. An image sequence acquired at high frame rate is then processed to
extract the optical flow between consecutive images, whose output is encoded into a
“distortion code” that is finally used for comparison. Another work [45] proposed two
(simple) dynamic features to capture the fingertip skins elasticity: (i) the correlation
coefficient between the fingerprint area and the signal (pixel) intensity, and (ii) the
standard deviation of the fingerprint area extension along x and y. Then, the Fisher
Linear Discriminant is used to tell a real skin from a spoofed one. In [109] authors
modeled the skin deformation using a thin plate spline (TPS). Users are asked to put
their finger on the sensor surface, and then apply minor pressure in four different
directions. Authors observed that, spoof materials are usually more rigid than live
skin and, thus, their deformation is lower under the same pressure condition. The
minutiae displacement were used to build the TPS models, whose bending energy
vector was used as the discriminative characteristic.
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2.3.2 Static methods

Static software methods are based on the analysis of a single image. Thus, (i) they
have a faster response time than dynamic ones, (ii) they are usually computationally
lighter (since they do require the registration of multiple images) and (iii) they are
more general, since they can be applied to any device (thus, including those not
initially designed for acquiring an image sequence). An indication of the great
interest towards these counter–spoofing methods is the large public availability of
single–scan datasets such as the ones described in Section 2.4 , which have been
collected to provide a common testbed that allows researchers assessing different
algorithms on the same experimental conditions.

The general approach implemented in static methods is to analyze different image
features. These features can be roughly divided in two main groups, based on the
way they are computed: holistic features, which consider the image as a whole,
and local features, which are extracted on a per–pixel (or per–region) base. As we
will highlight in the following, the literature clearly shows large differences in the
discriminative power expressed by these two classes. More recently, researchers
started exploiting as well the advanced classification capabilities offered by deep
learning approaches.

Holistic Features (Global Descriptors)

One of the options considered by holistic approaches is to derive, from a single
image, some global characteristics related to the perspiration phenomenon. For
instance, [98] try to discriminate between live and fake perspiration patterns by
means of a combination of spatial, frequency and wavelet analyses. Different
classifiers (including classification trees, neural networks and SVM) are then used
to classify these features. A ridgelet [11] transform-based method is proposed in
[74]. Ridgelet energy and co-occurrence signatures, compressed with PCA, are first
used to characterize fingerprint textures and then fed to an ensemble classifier that
combines neural network, SVM and k-NN.

Some of the holistic approaches are based on the observation that, when captured
by the same sensor, fake samples produce images with lower quality than live ones.
Thus, trying to capture these quality differences could result in highly discriminative
features. In [1] the texture coarseness is used to highlight the blemishes present in
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fakes. In [18] it is observed that live images exhibit higher frequencies than fake
ones and, consequently, that the modulus of the Fourier Transform can be a valid
liveness detector. A more detailed characterization of the quality differences is
attempted in [27], where 25 different quality measures are extracted and classified
with a Quadratic Discriminant Analysis approach.

Other holistic approaches are based on textural features extracted from the images.
The use of first and second-order statistical features derived from multiresolution
texture analysis and the interridge frequency analysis was proposed in [1]. The
features are further processed using PCA and Fuzzy c-mean classifier. In [47]
authors proposed a method based on band-selective Fourier spectrum. The authors
state that ridge-valley texture of the fingerprint produces ring patterns around the
center in the Fourier spectral image. These rings show differences between live and
fake fingerprint images in the Fourier spectral energies of certain bands. In [73]
curvlet energy signatures and corresponding co–occurrences are used to represent
fingerprints. First, two features based on texture measures are extracted, namely the
curvlet energy signatures and their co-occurrences. After applying feature selection,
the resulting vectors are tested independently on three classifiers (Adaboost, SVM,
k–NN) and finally an ensamble classifier based on a majority voting rule is created,
showing that the feature based on co-occurrences is slightly better. A different
method [61] gathers several first and second order texture statistics and intensity
based features into a unique characteristic vector. Feature selection and different
classifiers are then combined to get the final results. Gray–Level Co–Occurrence
Matrix (GLCM) and wavelet energy signature are analyzed in [72] to extract textural
anomalies (like structural, orientation, roughness, smoothness and regularity ones) in
different image regions. The size of the feature set is reduced by Sequential Forward
Floating Selection (SFFS). The resulting vectors are independently tested on three
classifiers: neural network, SVM and k–NN. Finally, the two best classifiers are
fused using a “sum rule”.

Local Features

Despite the efforts made by researchers, comparisons on public benchmarks show
that the discriminative power of holistic features is rather low and better performances
can be obtained by local image descriptors ([37, 38]).
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These descriptors can be roughly divided into micro–textural descriptors, which
represent an input image by building statistics on the local micro–pattern variations,
and rich local descriptors, which provide a much stronger characterization of local
patches [37]. Most of these features have been initially designed for coping with
different problems in computer vision and quickly found effective applications for
fingerprint liveness detection. First attempts were based on Linear Binary Patterns
(LBP), a popular descriptor for texture classification tasks. Basic LBPs are invariant
to intensity variations and several extensions have been proposed to add more
invariant properties. Combining multiple local resolutions was also found effective
in improving robustness to scale variations. Examples of other local descriptors
borrowed from different image processing tasks are Weber Local Descriptor (WLD),
Binary Statistical Image Features (BSIF), Local Phase Quantization(LPQ) and the
whole class of rich local descriptors, such as Scale-Invariant Feature Transform
(SIFT), DAISY and the Scale-Invariant Descriptor (SID).

Recently, some novel micro–textural descriptors expressly designed for finger-
print liveness detection have been proposed. The Histogram of Invariant gradients
(HIG) [35] adds to the rotation and translation invariance of Histograms of Oriented
Gradient the invariance to curvature and deformations, which characterize fingerprint
images. Local Contrast Phase Descriptor (LCPD) [38] is a joint distribution of
WLD and LPQ. Convolutional Comparison Pattern (CCP) [34] is a rotation invariant
descriptor based on the preliminary segmentation of the fingerprint and on its orien-
tation into a reference direction. Then, per–pixel binary codes computed from DCT
coefficients of local patches are summarized into histograms at different local scales,
which are finally concatenated.

Feature fusion Approaches

Since the various image features convey different and usually complementary infor-
mation on the analyzed data, an interesting perspective could be to integrate multiple
features in order to obtain better accuracies compared to systems trained on a single
representation. However, few results based on these feature fusion approaches have
been reported.

In [30] various combinations of image features (LPQ, LBP, curvelet GLCM
and valley wavelets) were used to train a linear SVM. Good results were obtained
aggregating LPQ and LBP, but the accuracy was saturating adding more features,
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thus highlighting the importance of carefully selecting features according to both
their performance and complementarity.

Another approach [87] combines various image filters, statistic measures and
quality indexes. (i.e., pore spacing, residual noise, first order statistics, intensity
based, ridge strength, ridge continuity). Two classifiers, Multilayer Perceptron with
one hidden layer and SVM, were compared after chaining the features and selecting
the most relevant variables with the Sequential Forward Selection algorithm. Results
show that SVM performs slightly better.

Finally, the study in [36] compared the integration of LBP+LPQ and LPQ+WLD.
Individual features were chained and fed to a linear kernel SVM. The results clearly
highlight that (i) any combination of multiple features provide better accuracy than
that of individual features, and (ii) the integration of WLD and LPQ is the optimal
one.

Deep Learning methods

The recent success demonstrated by deep learning approaches and of Convolutional
Neural Networks (CNN) in particular in several computer vision tasks, stimulated
the interest of researchers into applying them to the liveness detection problem as
well. A possible taxonomy of these methods divides them into approaches that use
the whole fingerprint images as samples and those who analyze separately different
regions (patches) of the image and then combine the different pieces of evidence
obtained.

Full image approaches. One of the early works in this direction was [24],
which assessed the discriminative power of features extracted from a CNN initialized
with random weights. Authors examined the effects of different preprocessing
steps such as Gaussian low-pass and high-pass filtering for noise removal, image
spatial reduction, region of interest (ROI) detection and data augmentation. PCA
and whitening were also applied for dimensionality reduction and normalization
of the extracted features. Then, authors compared, using a SVM classifier, the
discriminative power of their CNN features and that of standard LBPs, showing
the higher performances of the former. Two years later, Nogueira et al extended
this work. In [77], they exploited a Transfer Learning (TL) approach by fine-tuning
two well-known CNN architectures that were pre-trained on the Image-Net dataset.
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These models were used as end-to-end classifiers, showing higher performances with
respect to the random-weight CNN and the classical LBP methods analyzed in [24].

A Siamese network was proposed in [62] for learning a distance metric aimed at
maximizing the inter-class distance between live and fake samples. The focus of the
work is improving sensor interoperability and robustness of the liveness detection
module to unseen spoofing materials. Pre–trained CaffeNet and GoogLeNet were
used as basic CNN models and extensive experiments in parameter optimization
during fine tuning were described.

Another interesting approach has been presented in [66], where authors combined
an optimization of the hyperparameters of the CNN architecture with an optimization
of the filter weights via back–propagation algorithm to construct spoofnet, which is
able to greatly improve the results of other state–of–the–art approaches.

Patch–based approaches. One of the first works in this direction was based on
a Deep Belief Network (DBN) [51]. The patches are extracted by first detecting a
set of salient points in the fingerprint image and then using their average location
to select a ROI which is further split into overlapping patches of size 16×16. The
network architecture is composed by different layers of Restrict Boltzman Machines
(RBM). After a (greedy) unsupervised training of each layer, the whole DBN network
is fine-tuned using labeled training data. In testing phase, the DBN outputs of the
image patches (considered as posterior probabilities) are averaged and then used to
select the final label, according to a threshold learned in the training step.

In [83], authors presented a deep distance metric learning method based on triplet
loss embedding. Each image patch is paired with a fake and a live patch. Then, this
triplet is transferred into a common latent space where a suitable metric (aimed at
maximizing inter-class distances and minimizing intra-class ones) is learned. To
this end, three identical CNNs with shared weights are trained by minimizing a
suitable loss function based on the distance function to learn. The trained network
is then used as an end-to-end patch-based classifier. In order to determine the final
image label, the distances with the reference sets of live and fake samples for each
fingerprint image are analyzed and combined into a voting system.

In [85], after applying a pixel-wise background subtraction method, based on
the mean and variance of the pixel’s gray-scale intensity, a grid-wise patching step
is applied to divide each fingerprint into non-overlapping regions. Then, different
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methods (a patch-based voting, a patch-based with optimal threshold and a non-
patch-based CNN) are compared.

Finally, a minutiae–based approach was proposed in [16]. In this work, patches
with size 96×96 are extracted from the areas of the fingerprint image centered on
the extracted minutiae points. The obtained patches are then fed to a CNN standard
model (Mobilenet v1), which outputs a class probability. The final image label is
computed with an average voting over all the image patches.

2.4 Experimental data

The Fingerprint Liveness Detection Competition (LivDet) [28] is a challenge orga-
nized by the Departments of Electrical and Electronic Engineering of the University
of Cagliari and Clarkson University. The purpose of this competition is to assess the
achievements of the state of the art in fingerprint liveness detection and it is open
to academic and industrial institutions. The first edition was held in 2009 [63] and
actually it takes place every two years.

The datasets collected in the various editions (three in 2009 and four in each
of the following) have been made publicly available. As a result, they have been
largely used in the literature and, thus, a work based on them and on the LivDet
experimental protocol enable a comparison with a great variety of methods.

This observation motivated the use of the LivDet 2009 [63], LivDet 2011 [105]
and LivDet 2013 [32] benchmarks in this work. Overall, these benchmarks consist
in eleven sets of live and fake fingerprints acquired with different devices, all of
which are equipped with flatbad scanners, with the exception of Swipe, which has a
linear sensor. Its images are obtained by swiping the fingerprint and thus include
a temporal dimension as well. Each dataset is divided into separate training and
test sets, and is characterized by a different image size and resolution, number of
individuals, number of fake and live samples and number and type of materials used
for creating the spoof artifacts (Fig. 2.2). Nine out of the eleven fake sets were
acquired using a consensual method, where the subject actively cooperated to create
a mold of his/her finger, increasing the challenges related to the analysis of these
datasets.
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Fig. 2.2 Examples of live and fake samples (created with different materials) from the LivDet
2011 datasets.

A detailed characterization of the various datasets used can be found in Table 2.1.
According to the standard LivDet protocols, the main parameter adopted for the
performance evaluation is the Average Classification Error (ACE), which is the
average between the percentage of misclassified live (ferrlive) and fake (ferrfake)
fingerprints, i.e. ACE = f errlive+ f err f ake

2 .

Dataset LivDet2009 LivDet2011 LivDet2013
Scanner Biom. XMatch Identix Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe

Res.(dpi) 569 500 686 500 500 500 500 569 500 500 96
Image size 312x372 480x640 720x720 312x372 355x391 640x480 352x384 312x372 800x750 640x480 208x1500
Live samples 1993 2000 1500 2000 2004 2000 2009 2000 2500 2000 2500
Fake samples 2000 2000 1500 2000 2000 2000 2037 2000 2000 2000 2000
Total subjects 50 254 160 200 82 92 200 45 64 45 70
Materials 1 3 3 5 5 5 5 5 5 5 5
Co-operative Yes Yes Yes Yes Yes Yes Yes No Yes No Yes

Table 2.1 Characteristics of the datasets used in the experiments.
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Feature Fusion Approaches

The first general approach introduced in this Section refers to the analysis of the
contribution of feature–fusion (or multi–view) methods to the liveness detection
problem. Here, I briefly recall the rationale of this approach. Most of the initial
software methods implemented relied on the analysis of different individual image
features extracted from the input samples. These "hand-crafted" features have been
engineered on the basis of an expert knowledge of the problem under analysis. As an-
other characteristic, each of these features highlights a peculiar aspect of the analyzed
data or, in other words, it offers a different view under which a sample is examined.
These features have their own descriptive power and are often complementary one
with each other. The main idea behind multi–view approaches is to try exploiting
this complementarity and allow the different features to mutually support each other
(by leveraging on their strengths and, at the same time, softening their weaknesses).

As we stated in the Introduction, while this general approach has been largely
investigated in several computer vision and machine learning tasks, it has been
relatively overlooked in the area of fingerprint liveness detection. Based on these
preliminary observations, the rationale of the work described in this section is to
analyze the effectiveness of feature fusion approaches as anti–spoofing methods and
to compare them with the state of the art. This raises several research questions, such
as: which are the most effective methods for combining different views? Which
are the most suitable views for such integration? Are multi–view approaches, in
the specific problem, indeed capable of improving the performances of single–view
approaches? Are they competitive with the current state–of–the art?
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Since an exhaustive assessment of all the available features and feature fusion
methods would have been clearly unfeasible, the approach followed to reply to the
previous research question has been to (i) select, on the basis of the results discussed
in the literature, a subset of promising features, and (ii) compare various methods
capable of dealing, from a number of different perspectives, with the main issues
involved (e.g. when to fuse, how to cope with the curse of dimensionality, how to
provide a shared representation of the different features, and so on).

The main contribution of this work can be summarized as follows:

• it extends the analysis of multi–view learning approaches discussed in the
literature by providing an in–depth comparison of different feature–fusion
approaches;

• it introduces Spidernet, a novel two-stage deep neural architecture capable of
effectively combining different general image descriptors;

• it demonstrates the superiority of multi–view approaches compared to single–
view ones;

• it shows that the proposed methods (and feature combinations) are indeed
effective, capable of generalizing well across different datasets and, most of
all, of obtaining results comparable with (if not superior to) the current state
of the art.

The preliminary version of this work has been presented at the CIARP 2015
conference [102], while its extended version has been published in [101].

The rest of this Chapter is organized as follows. First, the image features
considered in this work are detailed in Section 3.1, along with the rationale for
picking them. Then, the various multi–view learning approaches selected for research
are introduced in Section 3.2. Finally, Section 3.3 presents and discusses the
experimental results.

3.1 Image Features

Given the demonstrated relevance of micro–textural and rich local features to the
fingerprint liveness detection problem ([37]), this research is focused on them.
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Speaking in general, features in these two classes are characterized, among many
other traits, by different invariant properties (e.g. to illumination, scale, rotation,
translation, blur and so on). When features have to be considered individually, it
is clear that the more invariance they express the better it is. However, in a multi–
view approach, this issue is less pressing since it can be expected that the mutual
contribution of different features helps overcoming their individual limitations.

Thus, rather than using high invariance as a constraint, the selection process was
mainly based on the discriminative power of the features, which was inferred from
both the results available in the literature and those of preliminary tests conducted.
Another selection criterion was the possibility to apply a descriptor to all the experi-
mental benchmarks and with the same experimental settings. For instance, CCP [34]
was ruled out since it requires a prior fingerprint segmentation.

In the following, the selected features for each of the two main categories are
shortly described.

3.1.1 Micro-textural local descriptors

These descriptors capture the statistical behavior of small image patches, generally
highlighting, as a pre–processing step, the high frequency components of the signal.
Such descriptors are usually represented as binary codes, which summarize the result
of the local analysis and are then encoded into an histogram that describes the whole
image. Common parameters for these features are, therefore, the size of the local
patch and the number of bits used to compute them.

Several results in the literature ([14, 78, 79, 12]) show that when micro–textural
features are computed at different scales (i.e. using different size of the local patches)
and combined, better results are obtained with respect to the same features computed
at a single resolution. Hence, when practicable, this option was considered as well
(see Section 3.3.2).

Co-occurrence of Adjacent LBPs (CoALBP)

In the context of local textural features, one of the most famous descriptor is the LBP.
This light weight image descriptor was initially introduced back in [80] specifically
for general texture classification. In the original version, LBP descriptor encodes
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the gray intensity variations of adjacent pixels placed in a circle (which is called
a micro-pattern) centering each image pixel into a binary bit vector by means of
thresholding the gray value intensity of each neighbor pixel around the center, and
then summarize the occurrence of resulting binary patterns throughout the image by
means of histograms. This is a very simple yet powerful textural descriptor, whose
main advantage is its invariance to illumination changes.

However, one of the main drawbacks of the original LBP formulation is that it
lacks structural information. To overcome this issue, in [78] the authors introduced a
new variant where the co-occurrence among multiple LBPs (and in particular, among
adjacent LBPs) is measured. CoALBP results in a high-dimensional feature vector
that has been found to provide a better texture characterization compared to previous
LBPs. A single-scale histogram has size 1.024. Preliminary test showed that a
three-scale version (resulting in a vector of size 3072) was consistently providing
better results than the single-scale one.

Rotation–Invariant Co-occurrence of adjacent LBPs (RICLBP)

The CoALBP features can vary significantly depending on the orientation of the
target object. In order to cope with this problem, a recent extension proposed
by [79] introduces the concept of rotation equivalence class of CoALBPs. This is
achieved by attaching a rotation invariant label to each LBP pair, so that all CoALBPs
corresponding to different rotations of the same LBPs have the same value. Thus, the
size of the final histogram is reduced to 136 and (again) only a multi-scale version of
RICLBP, with three scales and a final dimension of 408 elements, was used.

Weber Local Descriptor (WLD)

WLD is a dense local image descriptor, which has shown good performances on
texture classification and face detection [14] and, more recently, on face recognition
too [42]. WLD is based on the Weber’s law, which states that the difference in a
stimulus can be perceived only if the ratio between this difference and the original
stimulus exceeds a certain threshold. WLD is built on two components computed
on each pixel: orientation and differential excitation. The orientation is simply the
angle of the local gradient, while the differential excitation is the ratio between the
sum of neighboring pixel intensity and the intensity of the pixel itself. Typically
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the orientation is quantized into 8 directions and the differential excitation into 120
levels, encoded into a histogram of 960 elements. As with the previous features, only
its multi-scale version, computed at three different resolutions, was considered.

Local Phase Quantization (LPQ)

LPQ is an operator originally proposed for texture classification [81] and later
applied to face recognition tasks, achieving complementary performance to other
descriptors on challenging datasets ([3, 39, 12]). The main property of this operator
is its invariance to centrally symmetric blur, such as the one caused by linear motion
and out of focus. Furthermore, it is contrast and illumination invariant.

LPQ exploits the blur invariance property of the phase spectrum and encodes
phase information in a way similar to the coding mechanism of LBPs. LPQ codes are
obtained by computing, in a neighborhood of each image pixel, the phase of the 2D
Short Term Fourier Transform (STFT). To maintain a compact representation, only
the quantized phase of selected frequency components are extracted. Each quantized
LPQ code is then encoded as an 8-bit digit and, thus, the final LPQ descriptor has
size 256.

As shown in [12], a multi-scale approach helps optimizing the trade off between
the discrimination power of the LPQ descriptor and its blur-tolerance. Decreasing
the local patch size helps capturing more detailed local information, but at the same
time it reduces the descriptor tolerance to blur. Thus, different scales were tested in
our experiments.

Rotation–Invariant version of LPQ (RILPQ)

LPQs can be further improved by adding rotation invariance. As shown in [82], this
can be done by first applying a blur insensitive filter that estimates the local texture
orientation at each location and, then, orient accordingly the phase estimation step
of LPQ.
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Local Contrast Phase Descriptors (LCPD)

This descriptor has been expressly proposed in [38] to tackle the fingerprint liveness
detection problem. The idea behind LCPD is, basically, to combine the best char-
acteristics of WLD and LPQ. WLD is characterized by two components related to
contrast and orientation. In LCPD, the contrast component is first computed with a
LoG (Laplacian of Gaussian) operator, which helps better dealing with the intrinsic
noise of fingerprint images. Then, contrast values are quantized on N levels. The
orientation component is computed with the RiLPQ descriptor, which guarantees
higher robustness to noise and image rotation with respect to the gradient used in
WLD. The final LCPD descriptor has size N ×256, where the fixed value N = 8 was
selected for all devices and datasets according to the suggestions in [37]. Different
scales where tested and, possibly, combined.

Binary Statistical Image Features (BSIF)

BSIF [49] are histograms of binary codes obtained by applying to local image patches
a set of filters learned from natural images. Such filters are computed by maximizing
the statistical independence of their output using Independent Component Analysis.
The bits of the binary codes are obtained by simply thresholding the filter responses.
The statistical independence of the filter outputs is a relevant property that improves
the representation capabilities of BSIF when compared with operators that produce
dependent output. Furthermore, these filters are not built upon the training set of a
specific benchmark, which also prevent the necessity to fine-tune their parameters
for each application. In order to allow the combination of different scales, 10 bits
were used to represent the binary codes, resulting in an histogram of size 1.024 for
each scale.

3.1.2 Rich (Dense) Local Descriptors

Compared with micro-textural features, these descriptors provide a much stronger
characterization of the local image patches, which makes them better suited for tasks
like image registration, object tracking and recognition. Furthermore, the extracted
features are usually invariant to changes in image scale, noise and illumination. To
improve their distinctiveness, they are often coupled with a feature-specific keypoint
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detector. These detectors return a local measure of the feature uniqueness and usually
promote high-contrast regions of the image, such as object corners.

Robust matching algorithm can then be applied to pair keypoint descriptors
obtained from different images and, thus, to obtain the required registration infor-
mation. When these descriptors are used for tasks like object classification, the
common practice shows that better results are obtained using a dense approach, i.e.
computing a local descriptor on every image pixel or on a regular grid. A compact
representation of this dense set is usually obtained creating a vocabulary of visual
words by clustering training samples with vector quantization approaches and then
using bag-of-words (BoW) models.

The following paragraphs provide, for the sake of brevity, a short description of
the rich local descriptors used in the experiments. The interested readers are referred
to the referenced articles for more details. It should be highlighted that, in all cases
involving a BoW representation, this was obtained using a base of 600 codevectors,
which were computed from 30 random train images picked from both live and fake
sets and different spoofing materials.

Scale Invariant Feature Transform (SIFT)

SIFT [58] is a popular local image descriptor in Computer Vision for several tasks
like object recognition, image registration and content-based image retrieval.SIFT
works on monochromatic images, it is invariant to uniform scaling and rotation, and
partially invariant to affine distortion and illumination changes.

SIFT was computed in both sparse and dense way. The sparse version, referred
in the following as keypoint-SIFT (KSIFT), applies the detector to identify the
keypoints where descriptors can be computed. However computing robust keypoint
correspondences between fingerprint images is virtually impossible. Thus, the
extracted descriptors were transformed into a normalized histogram using again a
BoW approach.

Dense-SIFT (DSIFT) were obtained computing a descriptor for each image
pixel. It should be noted that DSIFT does not guarantee scale-invariance, since the
descriptor scale, whose optimal value is obtained by applying the SIFT keypoint
detector, is fixed beforehand.
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DAISY

This is a descriptor specifically designed to be extracted in a pixel-wise dense
way [100]. While providing distinctiveness and robustness properties similar to
the SIFT ones, except for a greater robustness to rotation, it is much faster to
compute. The name DAISY derives from the fact that the descriptor is computed
on a neighborhood organized in concentric circles that resembles the shape of the
flower.

Scale–Invariant Descriptor (SID)

One of main issues with rich local descriptors is the way they deal with scale changes,
which requires a keypoint detector to provide a local estimate of their optimal scale.
However, this approach often reduces the locations where a reliable estimate can be
obtained (e.g. usually ruling out object edges).

SID [53] aims at overcoming this issue with a two step approach. First, the image
is log-polar sampled around a point of interest, extracting samples at varying scales
proportional to the logarithmic distance from the point of interest. This process
converts scaling and rotations into translations in log-polar coordinates. Then, the
variations related to these translations are removed by computing and normalizing
the Fourier Transform modulus of the transformed signal.

As for the experiments, SID was computed in a dense way, extracting a descriptor
per pixel.

3.2 Feature fusion approaches to fingerprint liveness
detection

After having introduced in the previous Section the various image features that we
deemed interesting to investigate in the context of fingerprint liveness detection, this
Section focuses on describing different multiview learning methods that can leverage
on these data to improve (i) the classification accuracy and (ii) its generalization
capabilities. Clearly, an exhaustive analysis of the multiview approaches would be
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too broad for this work. Thus, the approach followed aimed at exploring the different
challenges that appear in the multiview learning process, such as:

• when combining multiple features, which is the best strategy to follow between
early fusion (i.e., fusion at feature level, Sections 3.2.2, 3.2.3, 3.2.5) and late
fusion (i.e., fusion at decision level 3.2.4)?

• given that different features have different characteristics and belong to differ-
ent representational spaces, how can we harmonize or normalize them (3.2.2,
3.2.3, 3.2.5)?

• since combining multiple views increases the number of variables, which
data reduction techniques, such as feature selection (3.2.2, 3.2.4) or subspace
transformations (3.2.3, 3.2.5), are suitable to soften the curse of dimensionality
problem?

• rather than engineering methods to aggregate features on the basis of some
expert knowledge, can we exploit Deep Learning approaches to automatically
learn such combinations (3.2.5)?

The discussion section will try to provide answers to these questions on the basis
of the experimental results. For the sake of clarity, it should be underlined that in the
following the terms features and views, feature fusion approaches and multi–view
learning will be used interchangeably.

3.2.1 Notation

The notation that will be used throughout this section is the following. Let y =

{y1, . . . ,yK} be a test sample described under K views, where each view yk is defined
into its own representation space, a subset of Rmk , and each sample y ∈ Rm, where
m = ∑

K
k=1 mk.

The training set is defined as X = {X1, . . . ,XK}. Here, Xk = {Xk
1 , . . . ,X

k
J } is the

training set for view k, J is the number of classes and Xk
j = {x jki}, i = 1, . . . ,n jk,

where n jk is the number of train samples for the k–th view of the j–th class (thus,
Xk

j ∈ Rmk×n jk).
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3.2.2 Feature Chaining

A simple but effective way of combining multiple representations of the same
sample is to concatenate the characteristic vector of each representation. Hence,
y = (y1, . . . ,yK) denote a test sample in this case. The concatenated samples are
then classified by means of a linear SVM, an approach that has shown to provide
good results for a wide set of different features ([37, 34, 38, 36, 66, 29, 30]). Before
classification, as suggested in [13], each feature variable in y is linearly scaled
according to the factors used to scale the same variable in the training set to the range
[0,1]; this avoids the variables in larger scales to dominate those in smaller ranges.

The success of linear kernels can be motivated by the high dimensionality of the
chained features. This characteristic guarantees a proper class separation without
necessarily requiring their expansion into a higher dimensionality space, as that
provided by non–linear kernels (the interested reader can refer to [104] for details).
Linear SVMs also provide huge benefits in terms of computational and memory
requirements, since (i) the separation hyperplane can be computed offline and (ii)
scoring reduces to a simple dot–product in feature space. Finally, the presence
of a regularizer imposing a penalty on the classification weights allows the model
to implicitly select the most discriminative features, thus making explicit feature
selection less relevant. Nevertheless, in preliminary tests the effectiveness of an
additional feature selection step based on the Relief algorithm [52] was tested as
well.

3.2.3 Multi–view Discriminant Analysis (MvDA)

MvDA has been proposed in [48]. It is a subspace learning approach that transforms
the different views describing a sample into a common latent space L which is
discriminant with respect to the classification variable. In other words, MvDA tries
to compute a latent space where the between–class variations (both intra–view and
inter–view) are maximized and the within–class variations (again, both intra–view
and inter–view) are minimized. Thus, MvDA performs a sort of (supervised) optimal
feature vector reduction and, at the same time, improves the class separability, thus
allowing for simpler classification in the latent space (see Figure 3.1).
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Fig. 3.1 Overview of MvDA method. The different views (i.e. features) extracted from
fingerprint images are projected into a discriminant common latent space by computing
a proper linear transformation for each view. Here, samples from different views are
represented with distinct colors and the letters denote the view class (F for fake and L for
live).

In brief, MvDA computes the K linear transformations w1, . . . ,wK that project
each of the K views of a sample into the latent space L. As introduced before, let
Xk

j = {x jki} be the set of training samples for class j and view k. Each sample x jki

is projected into L as l jki = wT
k ∗ x jki. Since the common space should maximize

the between–class variation Sl
B and minimize the within–class variation Sl

W between
all views, the required projection matrices wk can be obtained by optimizing the
following generalized Rayleigh quotient:

(w1, . . . ,wK) = arg max
w1,...,wK

Tr(Sl
B)

Tr(Sl
W )

(3.1)

The two scatter matrices Sl
B and Sl

W are defined as:

Sl
W =

J

∑
j=1

K

∑
k=1

n jk

∑
i=1

(l jki −µ j)(l jki −µ j)
T (3.2)

where µ j = ∑
K
k=1 ∑

n jk
i=1 l jki is the mean of all samples from the j–th class and k–th

view in the common space, and
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Sl
B =

J

∑
j=1

n j(µ j −µ)(µ j −µ)T (3.3)

where n j = ∑
K
k=1 n jk is the total number of samples of the j–th class over all

views, µ = 1
n ∑

J
j=1 ∑

K
k=1 ∑

n jk
i=1 l jki is the mean of all projected training samples and

n = ∑
J
j=1 ∑

K
k=1 n jk is the number of all training samples.

After the projection matrices w1, . . . ,wK have been obtained, the train and test
samples are first transformed into the latent space, i.e. each sample is transformed
into a set of points in L. These points are then concatenated to obtain the characteristic
vectors of the samples, which are finally fed to a linear SVM for classification.

As a final note, the original MvDA formulation adds the possibility to take
advantage of the cross-consistencies between the views. While this could be a
relevant feature in general, initial experiments showed that it was not providing
substantial contribution and, thus, it was not further taken into consideration.

Details on the analytic solution of MvDA can be found in [48]. Summarizing, in
the described method the within and between class scatter matrices in the common
space L are expressed in terms of two matrices D and S in the feature space as
follows:

Sl
W =W T DW

Sl
B =W T SW

where W = [wT
1 ,w

T
2 , . . . ,w

T
K]

T and D and S are derived from, respectively, (3.2)
and (3.3). Computing S and D requires to first reduce the dimensionality of all
the input views to a common dimension, which is done by applying principal
component analysis (PCA). Then the trace ratio problem in (3.1) is transformed into
a more tractable ratio trace, which can be solved through generalized eigenvalue
decomposition. The optimal dimension of the latent space L has been estimated by
means of cross–validation on the training set.
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3.2.4 Multi–view Real AdaBoost

Real Adaboost is an improvement of the original Adaboost algorithm [25], which
outperforms the standard formulation in several practical cases and allows an effec-
tive combination of different descriptors [69, 70]. The basic idea of Adaboost is
to build a highly accurate classifier by combining several “weak” classifiers. The
various Adaboost versions mainly differ on the design of the weak classifiers and
whether and how confidence measures of their predictions are considered to improve
the overall robustness [91].

The first step of the multi–view Real Adaboost consists in chaining the different
features of each sample, i.e. y = (y1, . . . ,yK) and X = (X1, . . . ,XK). Each training
sample xi in X has an associated label ci. Since liveness detection is a two class
problem, it is assumed, without loss of generality, that ci ∈ {−1,+1}. The decision
rule on a test sample y is then implemented as:

H(y) = sign

(
T

∑
t=1

ht(y)

)
(3.4)

where T is the total number of weak classifiers ht composing the strong classifier H,
and each of the ht is a real valued function.

In brief, the method is iterative and at each iteration t = 1, . . . ,T it computes the
classification function ht that better discriminates the two classes. This is done by
first defining a set of classifiers and their confidence level. Then, the most confident
function is selected and the algorithm is iterated. At each round, the misclassified
samples are emphasized, so that the classifier built on the next iteration can try to
compensate for errors in the previous steps.

In details, each sample xi =
{

ν
g
i
}

g=1,...,m is a real–valued vector composed by
m feature variables ν

g
i , where m is the sum of the size mk of each view. Then, we

define a distribution ω = {ωi}i=1,...,n that assigns a weighting value to each training
sample i. The initial weights are 1/n for each sample.

For each feature variable g, the two lists v+g =
{

ν
g
i |ci = 1

}
and v−g =

{
ν

g
i |ci =−1

}
of the values that it assumes on, respectively, the positive and negative training sam-
ples, are extracted. Such sets are clearly constant for all the iterations.
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Finally, the weak classifiers are constructed iteratively as follows. For each
iteration t and each feature variable g:

1. compute the two conditional probabilities P+
g = Pω(v+g ) and P−

g = Pω(v−g );
P+

g and P−
g are actually obtained as the weighted histograms of v+g and v−g

computed on a predefined number of bins (16 in our implementation); when
applied to sample y, P+

g (P−
g ) returns the bin value of the g–th feature variable

of y in the positive (negative) distribution;

2. define the following classification function for g:

hg(y) =
1
2

log

(
P+

g (y)+ ε

P−
g (y)+ ε

)
(3.5)

where ε avoids division by zero, and can be equal to 1/n; when applied to a
test sample y the sign of hg returns the label assigned to y;

3. compute the confidence of hg from the Chi square distance between P+
g and

P−
g as:

Zg = 1−χ
2(P+

g ,P−
g ) (3.6)

clearly, Zg is lower when the two distributions are different (i.e., hg is more
discriminant, Fig. 3.2) and higher when they are similar (i.e., hg is less dis-
criminant);

Once the pool of m classification functions has been created (one for each feature
variable), the one with the lowest Z measure is picked as weak classifier ht at step
t. In other words, at each iteration t, the method greedily selects the best view and
its best variable to define ht . As a result, the final strong classifier will (in general)
include classification functions from different feature spaces.

Then, given ht , the sample weights are updated as follows:

ωi = ωi · e−ci·ht(xi) (3.7)

This update rule aims at increasing the weight of the training samples that are
wrongly classified by ht . Thus, these samples will have, on the next iteration, an
higher influence on the probability distributions and Adaboost will focus on trying
to find a proper discriminant function for them.
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Fig. 3.2 An example of a classification function hg showing a good discriminant power.

From this description, it is also clear that Real Adaboost performs an (implicit)
feature selection, since only the most promising feature variables from the different
views are included into the final classifier.

An example of the algorithm behavior is shown in Fig. 3.3(a), which plots the per-
view number of classifiers at each iteration for a two views (α and β ) experiment. It
can be seen that, in this example, classification functions from feature α were selected
in the first iterations while, for higher values of T , β becomes more discriminating
and is selected in the majority of times.

As for the implementation details, the only parameter of the algorithm is T , the
number of weak classifiers. It was experimentally verified that the algorithm has
a similar behavior for different attribute groups, reaching a plateau after a certain
number of iterations (see Fig. 3.3(b) for an example). It was also found that the
starting value of this plateau is somewhat related to the discriminative power of the
different views. This observation allowed the definition of a heuristic rule to select T
based on the residuals from Principal Component Analysis on the training set (as a
note, usual T values range between 600 and 800).
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(a) Number of Classification Functions

(b) Error Rate (%)

Fig. 3.3 (a) number of classification functions per view at each iteration and (b) behavior of
the classification error in a two-view experiment for increasing values of T.
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3.2.5 Spidernet

As a contribution to this comparative study, a novel two–stage Deep Neural Network
(DNN) architecture, called Spidernet, is proposed. Starting from general image
descriptors (fig. 3.4), Spidernet is capable of simultaneously learning a suitable
transformation of the different features into a common latent space (in the first stage)
and carrying out a classification based on the feature fusion in that space (in the
second stage).

The input of the network consists of the stacked characteristic vectors of the
different views and the last layer consists of two softmax activated units whose
outputs can be interpreted as class posterior probabilities. The first stage is composed
by hl1 hidden layers, which are not fully connected. Instead, the characteristic vector
of each view is independently propagated through a network “leg”, whose hidden
layers’ size is sleg. This allows for a sensitive reduction of the number of weights
with respect to a fully connected architecture and, consequently, of the over-fitting
issues caused by the small number of training samples. The last layers of each leg
are then concatenated and used as inputs for a fully connected architecture with
hl2 hidden layers (of size sleg times the number of views). Thus, intuitively, during
training the network jointly learns the feature transformation (in the spider legs) and
the aggregation and classification rules (in the spider body).

The final classifier is built upon two steps: learning the network weights (weight
optimization) and estimating the optimal architecture hyper-parameters (architecture
optimization).

Weight optimization

The activation function of all hidden units is sigmoidal. The network weights
are initialized by training a Restricted Boltzmann Machine (RBM) by means of
Contrastive Divergence (CD) [40]. Stochastic Gradient Descent (SGD) with a
decreasing learning rate and momentum is then used to fine–tune the network
parameters [41]. For each dataset, the batch size is one fortieth of the training set
size. The objective function for fine–tuning is the negative cross–entropy between
network outputs and training labels.

Both dropout and L2 regularization were used to soften the over-fitting issues,
which can affect our approach due to the quite limited number of training patterns.
Dropout was introduced in [96] as a method to train a robust classifier by randomly



36 Feature Fusion Approaches

Input layer
(num. 

features 
per view)View 1 (?  lR   ) View K - 1 (?  lR     )

1st Stage 
hl1 Hidden  
Layers per 

leg
(Sleg each 

leg)

2nd Stage 
hl2 Hidden  

Layers 
(Sleg x num. 

views)

Output Layer 
(Softmax)

View K (?  lR    )mk-1m1 mk

Fig. 3.4 Spidernet architecture. In the first stage, each view is independently processed by a
network "leg" and projected into a common latent space. In the second stage, the transformed
views are first combined and then classified.
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removing, at each iteration, some of the neural network units. An effective dropout
strategy (proposed in [23]) was used, with an initial dropout of 0.5 decreased at each
epoch. The coefficient for L2 regularization was set to 0.001.

Architecture optimization

The optimization of the hl1, hl2 and sleg hyper-parameters was carried out in the
following way. For each benchmark, the training samples were equally divided into
a training and a validation set, taking care into putting all samples of an individual
into the same set to enforce robustness to cross–individual variations. Then, for each
parameter, a variation interval was defined (in details, hl1 ∈ [2,4], hl2 ∈ [1,3] and
sleg ∈ [30,200] with a step size of ten). Finally, the choice of the optimal architecture
was based on the value provided by a functional built upon a weighted combination
of loss on the train set and accuracy on the validation set. The architecture providing
the lowest functional value was finally re–trained on the whole training set and used
to classify the test set.

3.3 Experimental Results

The following subsections describe the experimental results. First, the baselines
used to assess the results are introduced (Section 3.3). Then, the strategy used to
identify the optimal feature combinations is described (Section 3.3.1). Finally, the
experimental results are discussed (Section 3.3.2).

Baselines

Different baselines, summarized in Table 3.1, were used to assess our results1. The
first one (Baseline) includes the best results achieved by the analysis of individual
features only and allows appreciating that feature fusion approaches are indeed
capable of outperforming single–view learning methods. For each dataset, a reference
to the best scoring attribute is provided in the table. The second baseline (SOA)

1I recall that the parameter adopted for the performance evaluation is the Average Classification
Error (ACE), as defined in Section 2.4
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collects the “best of the best results” selected from any approach following the
LivDet experimental protocol. This second baseline determines if the proposed
approach are indeed competitive against the state–of–the–art. Alternatively, it can
highlight limitations of our work.

Since some authors (e.g. [37]) discarded the Crossmatch 2013 dataset, due to its
generalization problems [32], for fair comparison, two different average results for
each baseline were considered: Avg, which includes all eleven datasets, and AvgXM− ,
which rules out Crossmatch 2013.

As for these baselines, we stress the fact that they were compiled when the
experiments were conducted (i.e., between late 2015 and beginning of 2016) and,
thus, they reflect the state–of–the–art of that period. IF we consider the actual
scenario, while no significant differences can be reported for Baseline, there have
been recent advances (such as [83, 16]) that led to an improvement of SOA for some
of the datasets, mainly for those included in the LivDet 2011 edition. Despite that, in
this dissertation I deemed preferable (and fair) to base the discussion on the results
available at the time the work was conceived. In the general conclusions (Chapter 5),
I will further discuss this point.

Image Pre–processing and Feature Extraction

For each benchmark, all the attributes described in Section 3.1 were extracted without
applying any preliminary image segmentation or pre–processing. This might appear
a counterintuitive choice, especially when fingerprint segmentation is not taken into
account, since removing the background helps to reduce the noise in the extracted
features. The rationale of this choice was twofold. First, to keep the problem
tractable since, besides optimizing the methods’ hyper-parameters, each combination
of dataset, feature and classifier would also have required the preprocessing pipeline
to be optimized. Second, the main target was to provide a fair comparison with
previous approaches, most of which did not rely on any pre–processing step.

The only exception is Crossmatch 2013. The initial tests showed the same
generalization problems experienced by other authors. However, as carried out
in other works (e.g. [24, 66]), a simple reduction of the image size by a factor
four dramatically improved the accuracy for all features and methods. A possible
explanation is that these images have a higher resolution, higher contrast and a better
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quality than images of other benchmarks. This leads to higher frequency components
in smaller patches, which might have a severe impact on local texture features, such
as the one considered in our work. Thus, it would seem that downsizing the images
helps attenuating this problem.

3.3.1 Selecting optimal feature groups

One of the initial research questions was trying to understand which are the most
suitable combinations of attributes for the compared algorithms. In particular, the
proposed approach aims at finding attribute groups capable of generalizing well
across all datasets and methods, rather than selecting the optimal combination of
features and method for each case, an option that could lead to higher accuracies, as it
will be discussed in the following. The rational of this choice is that the generalization
property is desirable in several practical cases (e.g., when the approach has to be
applied to novel sensors or classification methods, or when it has to tackle novel
spoofing materials).

Clearly, the numbers involved made an exhaustive search over all possible com-
binations and classification methods unfeasible. Therefore, we opted for an empiric
“trial and error” approach, where attribute groups were initially created with what
appeared to be the most appealing views. Then, several variations were checked,
such as adding or removing views, combining microtextural and rich local features
in different proportion, changing feature parameters and so on. In creating such
variations, the inclusion of “similar” features (e.g., KSIFT and DSIFT, CoALBP
and RICLBP, LPQ and RILPQ) in the same group was strictly avoided. This choice
was based on the assumption that the complementary properties of these features are
minimal.

The groups were initially tested with linear SVM, which is by far the less
computationally demanding method, thus allowing us to perform many experiments
in a short time. The remaining classifiers were evaluated only for the best scoring
groups. This protocol allowed to spot common trends in the results. As it will
be shown in more detail in Section 3.3.2, the different approaches obtain slightly
different results, but their error variations are strongly consistent. Basically, this
finding allowed to increase the number of SVM–based tests and to reduce the number
of validations required, which involve more computationally demanding methods.
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Since groups can have both fixed (non–parametric) and parametric views, whose
parameters were included in the hyperparameters to be optimized, a set of “fami-
lies” was identified. A family is a group with both fixed and parametric features
and its members are created by varying the parameters of the non–fixed features.
For instance, KSIFT–SID–BSIF represent a family, whose members have a BSIF
component computed at different scales or, in a multi–scale fashion, using different
numbers and values of scales.

Given the candidate view families, the optimal ones were roughly identified
according to the results achieved by the classifiers introduced in Section 3.2. Since
the main interest was finding groups that showed good and coherent behavior, the
mean of the average error over all the benchmarks for each classifier was chosen as
the ranking score. Then, since in preliminary experiments it was noticed that the
scores of the family members varied in a small range, the optimal families were
selected according to the average score of a small number (usually five) of randomly
picked members.

Finally, given the optimal families, all their members were analyzed to select the
one with lowest error as representative.

3.3.2 Results and discussion

The experimental results are summarized in Table 3.1, which, for the sake of brevity,
reports only the representatives of the best six families. The table is divided into
blocks, where each block contains the error for each benchmark and method (along
with their two Avg and AvgXM− averages) of the best performer of a family. Results
are sorted according to their ranking scores (i.e., average error over all benchmarks
and classifiers). In addition, all results with a statistically significant difference
(p < 0.05) with Baseline and SOA are marked with, respectively, “*” or “†”. Finally,
the table lists for each group the total number m of feature variables (i.e. the sum
of the length of each view composing the group) and a label (Gxx) to facilitate the
following discussion. Note that parametric features are identified as well by the scale
used to compute them. For instance LPQ–5 means an LPQ descriptor computed on a
local patch of size 5×5 pixels.
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Features

A first remark concerns the effects of the feature parameters in a multi–view setting.
A multiscale version with three scales for CoALBP, RICLBP and WLD was found
to be the best option in all the cases (as also suggested in [78, 79, 42]).

As for LPQ, the multiscale approach was indeed effective in finding a good
tradeoff between its capability to discriminate small details (for smaller scales) and
the sensitivity to blur (for larger scales). However, an optimal formulation for all
cases could not be found. In particular, it seems that the interaction with other
features requires different settings. Thus, a two scale version was chosen, optimizing
the scales according to the characteristics of the view group.

A similar behavior was expected for RILPQ. On the contrary, it was found that
a single fixed size (a 3×3 neighborhood) was the best choice for all combinations.
The same observation holds true for LCPD (with a local scale of 9). For this latter
case, two possible explanations can be suggested. First, the orientation component
of LCPD is computed with RILPQ and, in some ways, it reflects its experimental
behavior; second, the size of a single–scale LCPD is 2,048 and a multi–scale version
is likely to incur in over-fitting issues.

BSIFs were also tested in both single and multi-scale versions. When tested
individually, a multi-scale version with three scales, spanning uniformly the interval
between 5 and 17, consistently outperformed other options on all benchmarks. On
the contrary, when combined with other features, single scales provided better results.
We assume this behavior is related to the interplay with other group members.

Experimental results offer as well some insights into the relevance of the individ-
ual features in a multi–view setting. First, CoALBP and KSIFT were consistently
outperformed, in any possible group, by their direct peers (respectively, RICLBP and
DSIFT). This fact can be explained in terms of their characteristics. Both CoALBP
and RICLBP exploit the rich descriptive characteristics of LBP, with the addition
of rotation invariance for RICLBP. KSIFT computation relies on the preliminary
detection of the optimal key-points. However, the combination of noisy images
together with the choice to not discard the background might have led to a non
optimal choice of the key-points. On the contrary, the dense approach of DSIFT
seems to be effective in softening the noise effects.
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Final remarks concern the limited relevance of BSIFs (which, apparently, were
not factually contributing to other views) and the lack of contribution of DAISY
(indeed, substituting DAISY with any other rich local descriptor always improved
the accuracy).

Groups

All the best families in Table 3.1 are based on a common core, i.e. the combination
of SID, RICLBP, LCPD and DSIFT, which is also represented by group G6. Adding
more features to this core resulted in a saturation effect and, in some cases, even an
error increase. The best reduction of the optimal average error was a mere 0.2% with
MvDA when LPQ based features where added. Consistent accuracy drops (i.e. an
average relative ACE increase ranging from 3% to 65%) were also experienced for
any combination where one or two core elements were removed or substituted with
other views.

These findings could suggest that the members of the G6 kernel are indeed the
ones, among those analyzed, which express the most complementary information.
Thus, their combination appears effective in capturing the essence of the liveness
detection problem. Analyzing the core features, it can be noticed that micro–textural
(RICLBP and LCPD) and rich local descriptors (DSIFT and SID) are equally rep-
resented, which supports our choice of combining elements from the two classes.
What can be inferred from the characteristics of these individual features?

On the basis of the results in [37], it can be seen that, on average, LCPD and
SID express the best liveness detection capabilities among the analyzed features,
while the rank of DSIFT and RICLBP is quite low. In other words, individual
performances are not sufficient to explain the results. As a demonstration, when
the best four (average) ranking features in [37] (SID, LCPD, BSIF, CoALBP) are
combined, the relative increase of ACE is 65%.

One possible explanation is that the combination of DSIFT and SID allows
exploiting both the descriptive strength of SIFT and the higher robustness to rotation
of SID. This observation might also explain the (lack of) contribution of DAISY,
which has a lower rotation invariance than SID and a lower descriptive power than
SIFT. In addition, (i) LCPD brings as dowry the fact of being conceived specifically
for fingerprint images and, thus, of best exploiting expert knowledge on the specific
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Fig. 3.5 Average classification errors (ACE) of the classifiers on the different groups described
in Table 3.1.

domain, and (ii) RICLBP contributes with its rotation invariance, high descriptive
ability and capability to adapt well to images with different resolutions, when used
in its multi-scale version.

The simpler explanation for the lack of significant improvements expanding the
G6 core is the minimal or null complementarity of the added views. LCPD is a
stack of eight RILPQ histograms, one for each quantization level of the contrast
component. Thus, it conveys somewhat similar information to the LPQs–like views
(G1, G2 and G5). The combination of WLD and LPQ (G2) is already summarized
by LCPD, and BSIF (G3) was already noted for its limited contribution.

Methods

As an initial remark, the four compared methods behave consistently across the
different groups, as can be appreciated from the diagram in Fig. 3.5. Furthermore,
with the exception of AdaBoost, these techniques provide similar degrees of accuracy,
which suggests that the proper selection and engineering of the feature group is more
relevant than the choice of the classification method.

The lowest average error (1.6) is obtained with both MvDA and Spidernet, which
consistently outperform other methods. In the discussion MvDA on G1 is considered
as the optimal model since it provides a slightly lower number of absolute errors
when compared to Spidernet on G4 and MvDA on G5 (respectively, 9 and 10 over
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a total number of 29,896 samples across all test datasets). However, it should be
underlined that this difference is not statistically relevant.

Concerning MvDA, these results are likely due to the fact that MvDA projects all
the features into a common latent subspace taking into account not only inter–view
variations, but also intra–view variations. This has both the effect of removing
directions that are not useful for classification and normalizing the different features,
thus mitigating the issues due to the presence of in–homogeneous features.

As for Spidernet, the two–stage architecture allows reducing over-fitting issues
by decoupling feature processing and classification. Combined with dropout and
L2 regularization, this allows Spidernet to match the performance of MvDA, even
though the amount of training data is very limited (around one thousand patterns per
class). However, it is likely that larger amount of training data would allow Spidernet
to outperform the other methods. One possible question is whether Spidernet does
effectively exploit all the input features. A view is totally discarded if (i) all the input
weights of any of the hidden layers of the corresponding network leg (first stage)
are null, or (ii) all the weights connecting the last hidden layer of the view leg and
the first hidden layer of the second network stage are null. In all the experiments
reported, none of these conditions is ever verified.

SVM with feature chaining has the advantage of providing a simple yet effective
method for estimating cross–correlations among different features. However, the fact
that the chosen features can have very different characteristics seems to adversely
affect the classification. Experiments also show that linear SVM is effective in
controlling the influence of non–discriminative features by imposing a penalty on
the combination weights, while the use of explicit feature selection has a detrimental
effect on accuracy and was, thus, discarded.

As for Adaboost, its main advantage remains the fact that it uses only a few
number of features from the multi–view space and the sample classification is
computationally light.

Concluding, the experimental results allows to provide a preliminary answer to
the questions raised in Section 3.2. It should be underlined that, given the limited
number of different approaches compared, further work has to be done to achieve
more solid conclusions. Based on these premises, the results seem to suggest the
following answers:
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• as for the fusion level, fusion at feature level appears to be more effective than
fusion at decision level;

• as for the harmonization or normalization of the aggregated features, the most
effective methods seem to be those based on a proper transformation of the
different views into a common latent space (i.e., the approach followed by
MvDA and Spidernet);

• in order to deal with the curse of dimensionality problem, subspace transforma-
tions appear to be more useful for reducing the dimension of the classification
space than feature selection techniques, which, in some cases, even appear to
have a detrimental effect;

• finally, the idea to exploit deep learning approaches to automatically learn
how to aggregate different features (Spidernet) seems to be an effective feature
fusion method.

Multiple features vs. individual features

The main research question of this work was to verify the effectiveness of feature
fusion approaches compared to the ones based on individual features. At least three
facts allows to provide an affirmative answer:

• in general, the compared multi–view approaches perform consistently better
than those based on individual features (these results were not reported for the
sake of brevity, although references can be obtained by observing that Baseline
elements are most of the time components of the groups G1–G6);

• if the results averaged over all the benchmarks are compared with those
reported in [37], the best approach (MvDA on group G1) significantly outper-
forms systems trained with a single feature;

• the best model outperforms, on average, the Baseline.

Indeed, it can be observed that MvDA on G1 provides a 64% relative reduction
of average error (58% excluding Crossmatch 2013) compared to models trained
using the optimal feature for each dataset (row Baseline of Table 3.1). This im-
provement is robust across different groups. Furthermore, this approach consistently
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improves single–view performances on 10 out of 11 benchmarks without requiring
to hand–pick different features for different datasets. In other words, the proposed
combinations of features appear to generalize well across different experimental con-
ditions and different sensors. It is worth noting that, using different feature groups,
the results for the Biometrika 2009 dataset, which scored beyond the baseline, can
be improved as well. However, this would result in higher errors over different
datasets.2

Feature fusion approaches vs. state–of–the–art

As for the assessment of this work against the state–of–the–art, taking into account
the general consideration made in Section 3.3, it can be seen that our average
results are comparable with SOA and that, in the optimal case, it improves the
baseline in 6 out of 11 benchmarks. We can also observe that, while we outperform
the CNN–based approach in [24] in all benchmarks except Crossmatch 2013, the
spoofnet CNN of [66], which was tested only on LivDet2013, achieves a significant
reduction in terms of error rates. However, we should recall that (i) we looked for a
solution capable of generalizing well across all datasets and methods, although better
accuracies could be obtained selecting an optimal group for each benchmark, and
(ii) the approach in [66] exploits dataset specific image pre–processing techniques,
including image cropping and data augmentation that could also benefit the proposed
methods (although they were not applied for the reasons explained in Section 3.3).
Furthermore, it should be also noted that, while the relative improvement of spoofnet
compared to the best result obtained looks relevant, if Crossmatch 2013 exclude, it
actually corresponds to a very small difference in terms of absolute number of errors
(11, over a total of 6,157 test samples across 3 datasets), and thus has little statistical
significance.

Cross–dataset evaluation

Finally, it is interesting to test the interoperability performance of feature fusion
approaches, i.e. the capability of handling variations in the biometric data intro-
duced by different sensors. This is a difficult task, due to the different hardware

2A simple evidence of this statement is the SOA baseline for Biometrika 2009, i.e. the group
WLD+LPQ classified with linear SVM, whose overall accuracy drops significantly in the other
benchmarks (see [36]).
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Test Set
Train set Biom. Italdata Digital Sagem
Biom. 0.7 42.1 32.5 29.8
Italdata 22.2 4.9 33.2 30.8
Digital 34.1 35.1 0.7 22.3
Sagem 22.5 39.7 29.0 2.3

Table 3.2 Cross-sensor interoperability results (obtained on the LivDet 2011 datasets with
MvDA and group G1).

characteristics of the capture devices. For this analysis,cross-datasets experiments on
the LivDet 2011 datasets can be performed according to the experimental protocol
defined in [31] and [46]: train a classifier with the training set of sensor A (e.g.
Biometrika2011) and then classy the test set of sensor B (e.g. Italdata2011).

The results are summarized in the Table 3.2 where, for the sake of conciseness,
only the ACE obtained with MvDA and group G1 are reported (which are anyway
consistent with those obtained by other combinations of classifier and feature group).
These results show large improvements with respect to the one showed in [31]
(where the individual contributions of LBP, LPQ and BSIF were analyzed) and [46]
(which uses Multi-Scale LBP as features). However, they also confirm other results
available on cross-dataset experiments ([64, 4, 62]), which clearly show that the
interoperability among different sensors is still an open issue [31].

3.4 Conclusion

This Chapter investigated the effectiveness of feature fusion approaches for fin-
gerprint liveness detection tasks. It addressed the issue of selecting a good set of
complementary features, and it assessed the capabilities of different classifiers over
a wide set of publicly available datasets, comparing the results obtained with that of
both single–view approaches and state–of–the–art techniques.

The experimental results described in Section 3.3 show that feature fusion ap-
proaches are effective and able to generalize well, without the need for dataset–
specific image pre–processing and without requiring hand–picking of different
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features for different datasets. Indeed, a consistent improvement has been found in
terms of accuracy over single–view methods, even when such systems are trained
using the optimal feature for each dataset. Furthermore, feature fusion methods are
also competitive with other state–of–the–art approaches, even those based on CNN
and/or relying on intensive image pre–processing steps.

Concerning the compared classifiers, both MvDA and Spidernet proved to be
the most effective for combining the different features, suggesting that subspace
transformation methods are the best suited for the problem in analysis. As for the
features, care has to be taken when designing the groups, since the selection of
features should not be merely based on their individual performance, but should also
consider their ability to mutually complement each other.

Finally, the experimental data stress the interesting results obtained by the DNN
architecture proposed with Spidernet. Even though it did not outperformed MvDA
in these tests, additional experiments show that its architecture has the potential to
provide higher accuracy whenever larger training sets are available.



Chapter 4

CNN Patch–Based Approaches

Chapter 3 analyzed the contribution of different multi–view methods applied to
various handcrafted image features. This Chapter aims at tackling the same fusion
approach under a slightly different perspective.

First of all, the contribution of a patch–based analysis to the fingerprint liveness
detection problem is investigated. In other words, rather than combining different
features extracted from an individual image, the final decision is taken gathering
together different pieces of (local) information collected from various parts of the
fingerprint image.

Second, this work aims as well at leveraging on the recognized capabilities of
Convolutional Neural Networks (CNN) in tackling different complex computer vision
tasks. However, in order to be effective as classification or feature extraction tools,
these models need to be trained on a huge amount of data. This can be a problem
when they have to be applied to novel tasks that lack sufficient training data. A
possible solution is to rely on Transfer Learning (TL) approaches, whose rationale is
to exploit the knowledge learned while solving a problem and apply it to a different
context. When applied to convolutional neural networks, the common transfer
learning strategy starts from picking deep models that were pre–trained on ImageNet
dataset [90] and then fine–tunning them to the novel task. The rationale of this
procedure is that ImageNet dataset contains millions of natural images that include
objects belonging to 1.000 different categories (like animals, vehicles, buildings and
so on). Therefore, models trained on this dataset are capable of extracting high level
features that are general enough to be “adaptable” to novel vision problems.
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Thus, the aim of this work is to assess the contribution to a patch–based TL
approach of different well–known existing CNN models, such as AlexNet [54],
VGG [95] and GoogLeNet [97]. While similar methods have been already inves-
tigated for the liveness detection problem, previous works were all focused on the
analysis of the whole fingerprint image [66]. Thus, a complete evaluation of their
capabilities in the context of a patch based approach is missing in the literature, a
gap that this work tries to fill.

Going into details, the proposed approach is first based on subdividing fingerprint
images into non–overlapping patches, after a preliminary segmentation step aimed at
discarding (noisy) background information. The patches extracted from the training
set are used to adapt the various reference models to the liveness detection problem.
Then, the test patches are fed to the fine–tuned CNN models and, finally, various
ways of combining the outputs of the convolutional networks in order to get the
fingerprint image labels are analyzed and compared.

The rationale of this approach is threefold. First, since the dimension of the
network input layer is necessarily limited (and usually much lower than that of fin-
gerprint images), using small sized patches allows avoiding to resize the samples and,
thus, to retain the original image resolution and information. Second, using patches
as samples rather than the full images allows increasing the size of the training set,
thus (hopefully) making the classifier more robust and increasing its generalization
capabilities. Third, working at patch level allows again exploiting fusion approaches,
either by combining different features extracted from the patches or different pieces
of evidence obtained from various image regions. This can (hopefully) lead to an
improvement in the robustness of the final fingerprint classification process.

Concluding, the main contributions of this work can be summarized as follows:

• it thoroughly analyzes (CNN) TL patch-based approaches in the context of
fingerprint liveness detection;

• it provides a comparison between full–image and patch–based CNN TL ap-
proaches, showing the better classification accuracies of the latter;

• it assesses the proposed methods, showing that they are indeed competitive
with the current state–of–the–art.
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Fig. 4.1 Outline of the proposed fingerprint liveness detection approach

The preliminary version of this work, presented in [103], has been largely ex-
tended in this Chapter. In details, the current version analyzes four different models
(one in [103]) and different ways of combining the network outputs (again, only one
in [103]).

The remainder of this Chapter first introduces the outline of the proposed ap-
proach (Section 4.1) and the reference CNN models used (Section 4.2). Then, the
different fusion approaches considered are detailed (Section 4.3) and, finally, the
results of our experiments are discussed (Section 4.4) before drawing the conclusions.

4.1 Patch–based approaches to fingerprint liveness de-
tection

In brief, the general outline of our approach comprises the following steps:

1. after a preliminary segmentation step, each fingerprint image is divided into
small patches containing foreground pixels only;

2. the individual patches of the training fingerprint images are used to fine–tune
a pre–trained CNN model (eventually using data augmentation techniques);

3. the individual patches of the test images are fed to the fine–tuned CNN model;

4. the final fingerprint label (i.e., live or fake) is obtained by combining, at various
levels, the outputs of the network for each image patch.

These steps are summarized in Fig. 4.1 and detailed in the following subsections.
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4.1.1 Dividing samples into patches

The method starts with a pre–processing phase aimed at both dividing the input
sample into patches and removing irrelevant information. To this end, the image
background, which is likely to introduce noise in the classification process, is first
discarded. Then, the set of small-sized image patches that are fully contained into the
foreground is extracted. Finally, the obtained patches are normalized before being
processed by the classification pipeline.

Fingerprint segmentation

Fingerprint segmentation is based on the method proposed in [99]. This approach is
built upon the preliminary observation that the patterns of fingerprint images have
frequencies only in specific bands of the Fourier spectrum. In order to preserve
these frequencies, 16 directional sub-bands are obtained by convolving the Fourier
transform of the original image with a directional Hilbert transform of a Butterworth
bandpass filter. Then, soft-thresholding is applied to remove spurious patterns.
Finally, the feature image is binarized and morphological operators are applied to
reduce segmentation noise. The method is characterized by a set of hyperparameters
that should be fine tuned per benchmark. This is done by optimizing the segmentation
error on a small set of manually segmented images (around 30), which are taken from
the training set to include both live and fake samples created with different spoofing
materials. Some examples of the segmentation results can be seen in Fig. 4.2.

The only exception to this procedure is the Swipe 2013 dataset (see Section 2.4),
whose images are obtained by swiping the fingerprint on a linear scanner. In some
cases, these images include other finger parts beyond the pulp (the finger extremity).
When this happens, the segmentation algorithm might be “attracted” by these parts
discarding the pulp. Thus, a slightly different procedure is adopted for these images.

First, the fingerprint is “cleaned” by (i) removing the blank rows at the image
bottom and (ii) detecting the beginning and the end of the impressed fingerprint
by identifying large peaks of the gradient between consecutive image lines. The
resulting region is then processed with the segmentation algorithm and its results are
further analyzed. Clearly, a successful segmentation should start at the beginning of
this region. If, on the contrary, it starts below a certain line (which was heuristically
fixed at the value 300), the starting line of the (incorrectly) segmented area is taken
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Fig. 4.2 Examples of segmented fingerprint images from different sensors: (a) Sagem 2011
(b) Italdata 2011 (c) Biometrika 2013 (d) Italdata 2013 (e) Digital 2011 (f) Biometrika 2011
and (g) Swipe 2013
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Fig. 4.3 An example showing the segmentation algorithm applied to Swipe 2013 images.

as lower boundary of the actual fingerprint region and the segmentation is applied
again to obtain the final foreground mask (see Fig.4.3 for an example).
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Patch extraction and normalization

The segmentation mask defines the ROI where the next computation steps are focused.
This region is divided into patches of size w×w pixels, where w is a parameter of
the method. In order to avoid any influence of background pixels, only those patches
whose pixels are all labeled as foreground are extracted. The algorithm works in the
following way.

The ROI is scanned line by line from its top–left corner and each (i, j) pixel
is treated as the top–left corner of a candidate patch of size w. If all pixels of this
patch are labeled as foreground, the patch is stored and the ROI scan restarts at pixel
(i+w, j). When the scan of line j is concluded, if no patches have been found, the
scan restarts at line j+1, otherwise it restarts at line j+w (see Fig. 4.4).

Segmentation
algorithm

(FDB)

Fingerprint
image

Segmented
image

Mask image
(ROI)

i

j

i + 64

j + 64

Fig. 4.4 Example of the subdivision in patches of a segmented fingerprint for a patch size
w = 64.

Finally, each patch is normalized to zero mean and unit variance. It should be
underlined that, in the following, if no patches can be extracted from a test sample,
the “fake” label is arbitrarily assigned to the fingerprint. This choice derives from
the observation that having a false fake is better than a false live, which could result
in granting unauthorized access to the system.
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4.2 Architectures

Concerning the use of CNNs, as stated in the Introduction of this Chapter, this work
explores methods based on Transfer Learning (TL), whose rationale is to exploit the
knowledge learned while solving a problem and apply it to a similar problem in a
different context. The general approach that was followed is to adapt to the problem
at hand models that have demonstrate state–of–the–art performances in a variety of
image recognition benchmarks. Specifically, this work focuses on several pre-trained
models, like AlexNet [54], VGG [95] and GoogLeNet [97]. Their fine–tuning is
performed through a further learning step for few more epochs, which exploits the
patches extracted from the fingerprint training datasets as input.

4.2.1 AlexNet

This is a well known model that showed state–of–the–art results in the ILSVRC-2012
competition (whose benchmark was ImageNet). The overall AlexNet model used in
our work is substantially equivalent to the one described in [54] and is summarized
in Fig. 4.5. In brief, the network architecture contains five convolutional layers,
interwoven with three sub sampling layers, followed by three fully–connected layers.
The receptive field of each convolutional layer is decreased from 11 in first layer to 5
in the second and 3 in the remaining ones. The network uses Rectified Linear Unit
(ReLU) as activation function. The size of the input layer is w×w×1, where w is
the patch size. In this work, the original 1.000–unit soft–max classification layer
(designed to predict 1.000 different classes, [54]) is replaced by a 2–unit soft–max
layer, which provides an estimation of posterior probabilities of live and fake classes.

Dropout regularization [96], with probability of 0.5, has been applied to the
first two fully connected layers to soften the over-fitting issues. As suggested
in [94], Batch Normalization (BN) is applied as well in order to improve the network
performances. BN, first proposed in [43], aims at stabilizing the learning process
and decreasing the learning rates by reducing the internal covariance shift.
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Fig. 4.5 AlexNet-BN Architecture

4.2.2 VGG

VGG network was introduced by Simonyan and Zisserman’s in [95] with the aim
of improving the original AlexNet architecture. The core idea of VGG is to replace
the large perceptive field of the first convolutional layers of AlexNet with multiple
cascaded small-sized (3×3) kernel filters. This choice has two effects. First, smaller
kernels help to extract image features at a finer grain. Second, the use of a larger
number of stacked filters with respect to AlexNet, increases the depth of the network
and, thus, it enables the learning of more complex features.

While various versions of VGG achieved the best performance in ILSVRC2014
classification task and the second best in the localization task, it has been shown that
they are also able to attain state-of-the-art performances in several image recognition
datasets, even when used as feature extractors [68, 57, 76, 67].

The two best performing architectures released by Simonyan and Zisserman
are VGG-16 and VGG-19, which, as the name suggests, have 16 and 19 layers,
respectively. The original architecture of VGG-16 (VGG-19) accepts 224× 224
RGB images as input, followed by a stack of 13 (16) 3×3 convolution layers, with
4 max-pooling layers that divide the convolution layers into 5 convolution blocks.
The architecture is followed by 3 fully-connected layers, two of them with the size
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Fig. 4.6 VGG-16 Architecture

of 4096 and the last one with 1000 nodes for classification using softmax activations
(See Fig. 4.6). In our work, both VGG versions are considered in order to analyze
the effect of network depth on the discriminative strength of the extracted features.
As for AlexNet, the size of the input layer was changed to w×w×1, where w is the
patch size, and that of the last fully connected layer to 2 (the number of classes of
the liveness detection problem).

4.2.3 GoogLeNet (Inception V-1)

This deep CNN architecture was proposed in 2014 by Szegedy et al. [97]. It was a
successful attempt along the recent trend to increase the network size, both in terms
of width and depth, in order to achieve better classification power. However, this
idea has two main drawbacks. First, an increased depth typically means a larger
number of parameters, which can increase the risks of over-fitting. Second, it also
results in huge computational requirements.

The key to tackle both problems was the introduction of a novel module called
“inception”, which is then stacked into a 22 layer network. Inception derives from the
Network-in-Network approach proposed in [55]. This module exploits, at the same
time, pooling and multiple convolutional filters, whose outputs are concatenated and
made available to the following Inception module. In particular, Inception comprises
three convolution blocks with a size of 1×1, 3×3 and 5×5 where the last two are
preceded by a 1× 1 convolution layer for dimensionality reduction(see Fig. 4.7).
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This structure, basically, allows benefitting from features extracted at different scales
for each input.
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Fig. 4.8 GoogLeNet Architecture

In GoogLeNet, 9 Inception modules are stacked after 2 blocks of traditional
convolution and max-pooling layers. Two max-pooling layers divide these 9 modules
into three groups including 2, 5 and 2 inception modules respectively. An average
pooling along with a dropout layer and a fully connected layer complete the network
architecture. ReLU is used as activation function. Finally, a softmax unit is used
for classification. As it was done for VGG and AlexNet, the original size of both
the input layer and the last fully-connected layer before the softmax unit have been
updated in this work.
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4.2.4 Data augmentation

Data Augmentation (DA) is exploited during the fine–tuning of the reference CNN
models in order to cope with the (relatively) limited amount of training data. DA
is a well–known technique that consists in creating synthetic training samples by
applying small variations to the original data. In the case of images, such variations
are usually obtained by applying various combinations of affine transformations and
image cropping [54]. The advantage of DA is that it “forces” the classifier to learn
small variations of the input data, thus making it (possibly) more robust to unseen
data, and it can also act as a regularizer in preventing over-fitting in deep neural
networks [93].

Original Image

Rotation

Mirroring

-22.5
0

+22.5

Fig. 4.9 Data Augmentation

In this work, five different variations of each fingerprint image are first created
by (i) mirroring the image, (ii) rotating the image by −22.5 and +22.5 degrees, and
(iii) mirroring the rotated images. Then, after applying the same transformations to
the segmentation masks, all augmented version of the input samples are divided in
patches according to the process described in Section 4.1.1 (Fig. 4.9).
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As a result, the total number of training patches after the DA step is listed,
for each benchmark and patch size, in Table 4.1. It should be underlined that the
augmentation process is applied to the training set only and not to the test samples.

4.3 Fusion approaches

Once fingerprint patches have been extracted and processed by the reference CNN
architectures, two decisions should be taken. First, which network output should
be associated with each patch? Second, how the different pieces of information
describing the whole patch set of a fingerprint image can be combined in order to
obtain the final classification label?

Concerning the network outputs, the CNNs can extract both a probability score
and different features, obtained from the intermediate outputs of the inner convolu-
tional layers, each of which capture different characteristics of the data in analysis.
Then, according to the type of output chosen to describe the patches, we can apply
different strategies to combine them, such as early fusion (i.e., fusion at feature level)
and late fusion (i.e., fusion at decision level).

In the following, the different fusion methods that have been approached in this
work are detailed.

4.3.1 Fusion of end–to–end patch scores (E2EF)

Irrespective of the reference network architecture used to process the fingerprint
patches, the output of the last layer of the model provides an estimation of posterior
probabilities of live and fake classes for each patch, from which it is possible to
compute a patch score, corresponding to the log–likelihood ratio between live and
fake class hyposthes for each patch.

These patch scores can be combined, by averaging them1, to compute an image
score. The image score can be interpreted as log–likelihood ratio between live and
fake hypotheses, and the image can be labeled by simply comparing the score to a

1If patches were independent, the image log–likelihood ratio should be computed from the sum of
patch scores. However, since patches are correlated, in practice averaging the log–likelihood ratios
achieves better results
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threshold τ . Theoretically, the optimal accuracy should be obtained by setting τ = 0.
In practice, it was experimentally observed that the scores are not well calibrated,
i.e., the optimal accuracy is achieved with a different value of τ . In order to tackle
this issue, a strategy that has been successfully employed in speaker verification
tasks [10] has been adopted to “recalibrate” the scores. The method assumes that the
scores for live and fake images can be modeled by means of Gaussian distributions,
whose parameters can be estimated on a validation set. Given an image score s, the
calibrated score scal is obtained by computing the following log–likelihood ratio:

scal = log
N (s; µL,σL)

N (s; µF ,σF)
(4.1)

where µL,σL and µF ,σF denote the mean and standard deviation for the live and fake
uncalibrated scores, respectively. The final sample label is then obtain by comparing
the calibrated score scal with the theoretical threshold τ = 0.

Multi–resolution E2EF (MR-E2EF)

Since the local patch size is likely to impact the liveness detection performances,
another possibility is to explore the use of multi–resolution approaches. This is simi-
lar to what has been done with micro–textural handcrafted features (Section 3.1.1).
Experimental results in Chapter 3 showed that their multi–resolution versions usually
performed better than the single resolution ones.

The multi–scale version of E2EF considers jointly different patch sizes for
training independent CNN models. These models are used for patch classification.
Their scores are fused by first computing a calibrated image score for each size
according to equation 4.1. The image scores at different size are then averaged and
thresholded to zero.

4.3.2 Deep patch features fusion (DFF)

Convolutional Neural Networks can also be used as feature extractors. In this case,
given the fact that features computed at different levels of the architecture highlight
different properties of the analyzed samples, a first problem to face is which features
to select for the classification.
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As reported in the literature, this choice is problem dependent. For instance,
in [67] authors compared the discriminative power of features extracted from different
layers of VGG-16 for the iris recognition task. While it can be expected that by
moving higher in the network’s hierarchy the accuracy increases, the best results were
achieved from an intermediate layer, while going higher resulted in large drops of the
accuracy. A possible explanation of this phenomenon is that filters learned at higher
levels start to capture more abstract (high-level) and domain-specific information,
while lower layers tend to capture basic level features. As a result, in tasks where
there are no extreme differences between samples, higher level features may not be
as discriminative as mid-level ones. On the contrary, other works demonstrate that
for different computer vision tasks the higher levels are preferable [88, 21].

Since (i) it is not possible to determinate a priori which are the “optimal” layers
to pick in the context of this work and (ii) using as candidates all the available
ones would result in heavy computational burdens, a subset of the most (potentially)
promising layers has been selected for each reference model. The chosen layers have
been highlighted in the figures that describe each architecture (Fig. 4.5, 4.6 and 4.8).

For AlexNet and VGG, the features corresponding to the last two fully connected
layers (labeled as FC1 and FC2 in the figures) and the pooling layers2 (labeled as
Poolx) were picked. The rationale for preferring pooling to convolutional layers is
that the former (i) reduce the spatial size of the learned representation behind them
while keeping the depth size untouched, (ii) they provide more significant features
compared to convolutional layers (as shown in [6]), and (iii) the placement of the
pooling layers in the hierarchy of AlexNet and VGG guarantees a good overview of
the different transformations the original signals are subject to along the network’s
depth.

Concerning GoogLeNet, various pooling layers at the early and late stages of
the network and different “well-placed” Inception modules (whose outputs have a
great descriptivity richness, since they are a concatenation of information learned at
multiple resolutions) were picked as feature extractors.

Beside solving the problem of how to pick the optimal features for our case,
there are other issues to face. The first is related to the dimensionality of the features
that can be extracted at different levels, whose size range from a minimum of 4,096

2As for VGG, both VGG-16 and VGG-19 have the same number of pooling layers, which are
simply connected, in the two cases, by a different number of convolutional layers
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to tens of thousands variables. It is clear that, in these conditions, it is necessary
to apply data reduction techniques in order to soften the curse of dimensionality
problem. To this end, in this work the extracted features are reduced to a suitable
dimension by means of Principal Component Analysis (PCA). However, both the
number of samples and the dimensionality of the feature vectors are very large,
causing computational and memory problems. In order to address this issue, the
EM–PCA algorithm [89] was used. As the name suggests, this method is based on
Expectation Maximization algorithm and is detailed in the following.

Let D denote the P×N matrix that contains the N samples, each of which is
described by a characteristic vector of size P. EM–PCA allows computing the first
K principal dimensions of the feature space in O(KNP) time, without requiring the
computation of the O(N2) sample covariance matrix.

The algorithm iteratively estimate the PCA projection matrix through a sequence
of Expectation (E) and Maximization (M) steps. In particular, given the current
estimate T of the PCA matrix, the E–step computes a projection of the feature vectors
as:

Y =
(
TT T

)−1TT D (4.2)

This matrix can be easily stored in memory, since Y is a K ×N matrix. Furthermore,
Y can be computed online, i.e. without requiring to store the whole set of sample
features. As for the first iteration, T can be initialized with random values.

Once the new estimate of Y is computed, the M–step updates the estimate of T
as follows:

Tnew = DYT(YYT)−1
(4.3)

The M–step can be computed dividing Y in chunks and thus, similarly to the E–step,
it does not require to store the whole matrix in memory.

It can be proven that the EM–PCA algorithm converges to the PCA solution [89].
However, preliminary experiments with this method showed a different convergence
rate among the K directions. In particular, irrespective of the actual value of K, the
ones with lower variance had a much slower convergence. In order to address this
issue, the following heuristic is applied. First, the number of eigenvectors to compute
is increased by a factor δ (e.g., δ = 100). In this way, the directions showing slow
convergence are likely to be all included in the “extra” set of size δ . Then, the
termination criterion is defined through a threshold on the difference between the
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first K eigenvectors computed in two consecutive iterations. When convergence is
reached, only the first K vectors are kept. This heuristic allows (greatly) improving
the convergence rate of the algorithm, which usually requires just few iterations.

Once PCA reduced features have been obtained, a last problem to address is
how to define a (patch–based) classification approach for telling a live from a fake
fingerprint images. In our case, the extracted (and compressed) patch features are
first classified with a linear SVM. Then the decision values of the classifier are
treated as patch scores and the final image labels is obtained by combining them
according to the procedure described in Section 4.3.1 (i.e., first averaging them and
then re–calibrating the obtained image scores according to equation 4.1).

Fusion of multiple Deep patch features (MDFF)

Another possibility that has been experimented with in this work, in a way similar
to the one proposed in Chapter 3, is the analysis of multi–view methods based on
deep features. The rationale is, again, that features extracted from different layers of
the networks can be seen as different observations of the samples in analysis, each
of which highlights certain peculiar aspects of the data. Thus, another possibility
to exploit these pieces of information it is to combine them in order to (possibly)
strengthen the robustness and generalization capabilities of the classifier.

In the specific context of this work, a possible multi–view approach can be
defined as follows:

• given a benchmark and a reference model, select a suitable subset of layers
where features can be extracted;

• reduce the feature dimensions with EM–PCA;

• combine the features in a multi–view classifier.

Given the computational complexity already involved with feature extraction and
reduction, in this work only a simple feature chaining followed by a classification
with a linear SVM has been used as multi–view classifier. However, it can be
underlined that this option, although simple, is not the optimal one, as shown in the
experimental section of Chapter 3. The final fingerprint label is obtained, as in the
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DFF approach (Section 4.3.2), by averaging and recalibrating the per–patch SVM
decision values.

4.4 Experimental Results

The following subsections describe the outcome of the experiments. First, the base-
lines used to assess the results are introduced (Section 4.4.1). Then, the experimental
results obtained by the different approaches described in Section 4.3 are discussed
(Sections 4.4.2 and 4.4.3).

4.4.1 Baselines

The experimental results can be assessed comparing them with those obtained, on the
same datasets and with the same experimental protocol, with other state–of–the–art
deep learning methods.

These methods can be roughly classified along two different dimensions. The
first is the type of classifier input. According to this taxonomy, there are methods
analyzing either the full image (CIFAR-10 [66], Spoofnet [66], CNN–Random [77],
AlexNet and VGG-19 [77]) or the individual fingerprint patches (DBN [51], TripleNet [83]
and Spoof Buster [16]). As for the second dimension, there are methods either based
on Transfer Learning approaches (CIFAR-10 [66], AlexNet and VGG-19 [77]), or
non TL–based ones (Spoofnet [66], CNN–Random [77], DBN [51], TripleNet [83]
and Spoof Buster [16]).

As explained in Section 2.4, the metric used for comparison, according to the
LivDet protocol ([105, 32]), is the Average Classification Error (ACE). It should be
underlined that, while all methods have been tested with LivDet2013, some results
are not available for LivDet2011.

Dataset LivDet2011 LivDet2013
Patch size Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
32×32 patches 605,582 688,225 703,702 748,368 582,306 848,384 643,363 1,454,649
48×48 patches 225,946 264,104 265,867 283,104 216,914 320,821 240,534 549,862
64×64 patches 106,952 123,659 125,344 132,120 99,272 151,142 112,298 256,472

Table 4.1 Total number of patches for each dataset and for w = 32,48,64.
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Dataset LivDet2011 LivDet2013
Method Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
AlexNet [77] 5.6 4.6 9.1 3.1 1.9 4.7 0.5 4.3
VGG-19 [77] 5.2 3.2 8 1.7 1.8 3.4 0.4 3.7
CIFAR-10 [66] – – – – 1.5 2.7 2.7 1.3
CNN-Random [77] 8.2 3.6 9.2 4.6 0.8 3.2 2.4 7.6
Spoofnet [66] – – – – 0.2 1.7 0.1 0.9
DBN [51] – – – – 1.2 7.0 0.6 2.9
TripletNet [83] 5.2 1.9 5.1 1.2 0.7 – 0.5 0.7
Spoof Buster [16] 1.2 1.6 2.5 1.4 0.2 – 0.3 –

Table 4.2 Baselines. Bold values represent the best accuracies per benchmark.

LivDet2011 LivDet2013
Nets\Datasets Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe

AlexNet E2EF 4.0/64 3.0/48 5.2/48 3.0/64 0.4/48 5.4/64 0.2/48 1.3/64
MR-E2EF 3.8/48−64 2.5/32−48 5.3/48−64 3.3/48−64 0.1∗/32−48 7.4/48−64 0.1/48−64 4.4/48−64

VGG-16 E2EF 3.1/48 0.9∗/32 5.9/48 2.0/64 0.2∗/48 8.0/64 0.1∗/32 0.5∗/64
MR-E2EF 3.0/32−64 1.0∗/32−48 5.9/48−64 1.7/48−64 0.1∗/32−48 8.3/48−64 0.1∗/48−64 3.4/48−64

VGG-19 E2EF 2.8/64 1.0∗/32 5.8/64 1.8/64 0.1∗/32 10.1/64 0.1∗/32 0.6∗/64
MR-E2EF 2.6/48−64 1.1∗/32−64 5.5/48−64 1.7/32−64 0.1∗/48−64 10.3/48−64 0.1∗/48−64 3.8/48−64

GoogLeNet E2EF 4.0/64 0.7∗/48 7.1/48 3.0/64 0.3/48 15.4/32 0.2/32 1.2/64
MR-E2EF 4.2/48−64 0.8∗/all 7.2/48−64 3.2/all 0.1∗/48−64 14.2/32−64 0.1∗/48−64 1.1/48−64

Table 4.3 E2EF and Multi-resolution E2EF results. For each benchmark and model, the
ACEs of the two methods are reported (along with the optimal patch size for E2EF). For
each method, bold values represent the best accuracies per benchmark. “*” indicates an
improvement of (or equivalence with) the state–of–the–art.

4.4.2 Evaluation of E2EF approaches

Before analyzing and assessing the effectiveness of the patch score fusion approach,
it should be recalled that the patch size w influences each of the chosen reference
models (AlexNet, VGG-16, VGG-19 and GoogLeNet). This parameter controls
the granularity of the data, and it is clear that the final accuracies would certainly
benefit from a fine–tuning of w per dataset and method. Since training the models
is a computational extensive task, only three different values were experimented,
namely 32×32, 48×48 and 64×64. The resulting number of patches in the various
cases is illustrated in Table 4.1

The “optimal” patch size (per benchmark and model) is heuristically picked by
analyzing the classification accuracy computed with a 5-fold cross validation on the
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training set, taking care into putting all samples of an individual into the same fold
to enforce robustness to cross—individual variations.

Results are summarized in Table 4.3, which reports for each model the final ACE
along with the picked w value. A first remark concerns the classification accuracies
of the different models. The results show that there is no model outperforming the
others on all datasets although, on the average and excluding XMatch 2013, VGG-19
appears to have slightly superior results when compared to the others. Another
interesting finding is that these results do not seems to be affected by the depth of the
architecture. As a matter of facts, VGG-19 offers slight improvements with respect
to VGG-16 (with a top increase of 0.3% in Biometrica 2011, backed by a loss of
0.1% in Swipe 2013 and Italdata 2011) and GoogLeNet performs optimally only
in Digital 2011 (while having accuracies comparable with AlexNet, whose depth is
much lower).

A second comment relates to the optimal patch size. Analyzing the distribution
of w values for each benchmark, it can be seen that, in general, most of the datasets
are characterized by a “preferred” size. For instance, the optimal size is the same for
all models in two cases (Swipe 2013 and Sagem 2011), the same for all except one
in five cases and for only one dataset (Digital 2011) the models are equally divided
among two choices (32 and 48). In order to gain better insights into these results,
more tests were performed (whose results are not reported in the table for the sake
of clarity). For each of the five cases where only one model picked a different size
(Biometrica and Italdata 2011, Biometrica, XMatch and Italdata 2013), changing
that size to the common one (e.g., using size 64 for VGG-16 and Biometrica 2011)
resulted in minimal losses in the accuracies (an average −0.2% if we do not consider
XMatch 2013). This is an indication that the selection of a sub–optimal patch size
does not have dramatic consequences on the final results.

The comparison with full–image methods shows the effectiveness of our patch–
based approach, as confirmed by previous results in the literature (see Table 4.2).
This is evident in particular when TL–based methods are compared. As a matter
of facts, analyzing the results of both AlexNet and VGG-19, it can be seen that
the full image approach is winning merely in Sagem 2011 (−0.6% for AlexNet
and −0.1% for VGG-19) and XMatch 2013 (−0.7% for AlexNet and −6.7% for
VGG-19) while the proposed patch—based approach shows larger improvements
everywhere else (−2.0% on average for both AlexNet and VGG-19). Similar results
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can be observed comparing CIFAR-10 results. When compared with other non–TL
based approaches, E2EF method is the best performer on almost all the 2013 datasets,
with the exception of (again) XMatch, while it is not able to improve state–of–the–art
results in LivDet 2011. There, Digital 2011 is the only benchmark where E2EF is
the top performer (using GoogLeNet as model). As for Biometrica and Italdata,
E2EF improves both CNN-random and TripleNet, but Spoof Buster has much better
accuracy (on average, 2.1% higher than that achieved by the optimal E2EF model).
Finally, in Sagem the E2EF approach could only outperform CNN-Random.

In case of multi-resolution E2EF, all possible combinations of the three patch
sizes (32,48 and 64) were analyzed. The “optimal” combination was selected based
on the 5 fold cross-validation accuracy the training set.

If we analyze the results and compare them with those obtained by E2EF (see
Table 4.3), MR–E2EF does not provide any substantial improvement of the results.
In general, if XMatch and Swipe 2013 are ruled out, the differences per dataset are
minimal and range in the interval [−0.3%,0.3%]. It can also be seen that the greatest
benefits are obtained by the VGG networks on the 2011 datasets, which are capable
of outperforming full image TL approaches even of Sagem, while their results in
2013 are almost identical to E2EF ones, except for Swipe 2013. The large decrease
obtained on Swipe 2013 by all models except GoogLeNet, although negative, is
another result worth of interest. A possible explanation is related to the low resolution
of this device (96 dpi) compared with the ones of the other scanners (higher than 500
dpi). This evidence is somewhat supported by the E2EF results, which shows that all
models prefer the largest possible patch size (64×64). In other words, it appears
that smaller sizes are not capable of capturing enough fingerprint details to guarantee
an accurate analysis and, consequently, satisfactory live and spoof detection rates.
On the contrary, the performance of GoogLeNet on this dataset can be somewhat
explained in terms of the characteristics of the model, which already incorporates in
its analysis the selection of pieces of information extracted at different resolutions.

Concluding, the results of these experiments show that the proposed E2EF
approaches, both in their single and multi–resolution versions, (i) improve the
accuracies of the same CNN models when they analyze the full fingerprint images,
and (ii) are competitive with (when not superior to) the current state–of–the–art. We
finally highlight that a possible drawback of the MR–E2EF approach proposed is
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related to the facts that, as for E2EF, only a limited set of patch sizes have been
analyzed, which might have led to a sub–optimal choice per dataset.

4.4.3 Evaluation of DFF approaches

LivDet2011 LivDet2013
Nets\Datasets Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe

AlexNet
DFF 4.0 1.8 5.7 3.8 0.4 6.2 0.2 1.4

FC2-439 FC2-327 FC2-386 FC1-101 FC1-178 FC2-143 FC2-340 FC2-141

MDFF 4.0 2.0 5.8 3.5 0.4 6.7 0.2 1.1
Pool5-FC1-FC2 Pool2-FC2 Pool5-FC1 Pool1-FC1 Pool2-FC1 Pool2-FC2 Pool2-FC2 Pool5-FC1-FC2

VGG-16
DFF 2.7 0.9∗ 5.8 1.6 0.2∗ 9.1 0.1∗ 0.5∗

FC1-112 FC2-104 Pool5-240 Pool4-211 Pool5-101 Pool5-241 Pool4-129 FC1-450

MDFF 2.9 0.9∗ 5.6 1.9 0.2∗ 9.1 0.1∗ 0.5∗
Pool5-FC1 Pool3-FC2 Pool5-FC1-FC2 Pool4-FC2 Pool5-FC1 Pool5-FC2 Pool4-Pool5 FC1-FC2

VGG-19
DFF 3.1 1∗ 5.4 1.8 0.1∗ 10.2 0.1∗ 0.6∗

Pool5-165 FC2-100 Pool5-119 Pool5-114 FC1-101 Pool5-138 FC2-121 FC1-104

MDFF 3.4 1∗ 5.6 1.8 0.1∗ 10 0.1∗ 0.6∗

Pool4-Pool5-FC1 Pool5-FC2 Pool5-FC1 Pool5-FC2 Pool5-FC2 Pool3-FC1 Pool3-FC2 Pool5-FC1

GoogleNet
DFF 3.7 0.8∗ 6.9 3.2 0.3 14 0.1∗ 1.4

Inc5-288 Inc2-236 Inc5-155 Inc3-279 Inc3-225 Inc1-112 Inc1-138 Pool2-179

MDFF 3.7 0.8∗ 6.5 3.1 0.4 14.8 0.2 1.6
Inc4-Pool2 Inc2-Pool2 Inc1-Inc5 Inc3-Inc5-Pool2 Inc1-Inc5 Inc2-Inc3 Inc1-Inc2 Inc1-Inc5

Table 4.4 DFF and MDFF results. For each benchmark and model, the ACE is reported. Each
cell reports as well the optimal layer and the PCA size used to reduce its features (for DFF)
and the optimal deep feature group (for MDFF). For each method, bold values represent the
best accuracies per benchmark. “*” indicates an improvement of (or equivalence with) the
state–of–the–art.

As for the individual patch feature fusion approach, the hyper-parameters of the
method are three: the patch size w, the layer used to extract the features and their
reduced size. Concerning w, while it should indeed be jointly optimized with the
other parameters for each dataset and each architecture, a simpler procedure was
followed in order to reduce the computational burden: the optimal sizes were picked
as the ones identified during the analysis of the E2EF approach (see Section 4.4.2).

Concerning the other two parameters, they are heuristically computed by ana-
lyzing, as before, the patch level accuracies of a 5-fold cross validation (CV) over
the training set for different layers and different PCA sizes spanning the interval
[100,450]. The combination providing the highest accuracies is then used in the final
classifier.
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When tackling a multi–view approach, beyond the hyperparameters involved in
the DFF method, it is also necessary to select the subset of features to be combined.
The algorithm followed to approach this task has been the following:

• given a benchmark and a reference model, compute for each of the selected
network layers (see Section 4.3.2) the optimal PCA size for reducing the
feature dimensions in the same way explained in Section 4.3.2 (i.e., using a
linear SVM classifier with a 5–fold cross validation on the training set);

• sort the features according to their descending accuracy;

• select the first 4 features in the list and create with them groups of n f eat features
(where n f eat ∈ [2,3] is a parameter of the method);

• select the group providing the optimal 5–fold cross validation accuracy on the
training set using the feature chaining approach described in Section 3.2.2;

Results for both DFF and MDFF are summarized in Table 4.4, which reports for
each model and benchmark the final ACE along with an indication of the layer and
PCA size picked, for DFF, and the feature combination, for MDFF.

Comparing these results with those presented in Section 4.4.2, it can be noticed
that there are no large differences in the overall accuracies. Results averaged over all
the benchmarks are basically identical and, despite some notable exception (such as
AlexNet on Digital 2011 scoring a 1.2% improvement), there are no clear indications
that DFF or MDFF approaches are better suited with respect to the previous E2EF
methods to address the liveness detection problem.

Concluding, these results confirm the previous conclusions about (i) the effec-
tiveness of patch–based approaches with respect to full–image ones, especially when
TL is concerned, and (ii) their capabilities to be competitive with and even superior
to the current state–of–the–art (in particular in Digital 2011 and most of the LivDet
2013 datasets).

4.5 Conclusion

This work investigated the effectiveness of the combination of Transfer Learning
and patch–based approaches for fingerprint liveness detection tasks. Different well
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known CNN reference models were analyzed and different ways of combining their
outputs were investigated and assessed through a comparison with state–of–the–
art techniques (either full image TL based methods or deep learning approaches
analyzing individual patches).

The experimental results described in Section 4.4 support the validity of the
initial hypothesis, according to which the analysis of the local features extracted at
patch level provides better liveness detection accuracies than that performed on the
whole image.

Concerning the different fusion methods analyzed, no one demonstrated its
superiority with respect to the others. On the contrary, they all showed somewhat
similar accuracies over all the datasets, with some few notable positive and negative
exceptions. That said, some general observations can be made.

First, CNN patch–based TL approaches are indeed effective and, in particular,
capable of improving similar approaches based on the analysis of the whole image.
Second, they show their capabilities to tackle the fingerprint liveness detection
problem and (substantially) to generalize well across different datasets. Third, for
each combination of model and fusion approach, the results achieved are comparable
with the current optimal results on the literature and even improve of the baselines
over different datasets.

Concerning the reference models analyzed, VGG (irrespective of the actual depth,
which was found to have a very limited effect on the experimental results) appears to
be the most fit to the problem analyzed. As a matter of facts, all the fusion approaches
relying on VGGs were able to improve the results on Digital 2011 and Biometrica,
Italdata and Swipe 2013 (with the only exception of MR-E2EF on Swipe 2013).
Results were slightly worse, but still interesting, for the GoogLeNet model, while
AlexNet showed its (relatively) limited relevance.

Concluding, interesting results have been obtained, but there is room for further
improvements. For instance, in E2EF based methods it could be investigated the
possibility to select an optimized patch size (or set) for each sensor. Another point is
that none of the proposed methods and architectures consistently outperforms the
other on all datasets. On the contrary, our results show in some cases a large variance
between the different approaches on the same dataset. Therefore, one option worth to
be investigated is the possibility to automatically select a model and a fusion approach
for each dataset. This choice could be for instance based on the same heuristic used
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throughout this chapter to select the method hyperparameters. Although (extremely)
computationally extensive, this selection would be made in a pre–processing step
and, thus, it would have limited effects on the online performances.



Chapter 5

Conclusions

The work presented in this thesis aimed at analyzing the contribution of fusion meth-
ods to the fingerprint liveness detection problem. The basic idea of these methods
is to combine different pieces of information extracted from the input samples in
order to improve both the final accuracies and, the generalization properties of the
classifiers built on them.

A thorough analysis of fusion methods would require to tackle different and
complex issues, such as deciding which type of information to associate to each
sample, at which level this information should be combined (e.g., at feature level, at
score/decision level) and which are the most effective methods for such combination.
The extent of such analysis would have been too broad for this dissertation, which,
thus, focused on two distinct approaches.

The work started with an analysis of methods capable of effectively combining
multiple handcrafted features. The rationale of this approach is that these features
have been engineered exploiting expert domain knowledge and, thus, they provide
a detailed characterization of the samples under a specific perspective. Such per-
spectives are aimed at highlighting peculiar aspects of the data in analysis and the
different features often provide pieces of information that complement each other.
Therefore, finding effective methods of combining these features, which are capable
of mutually exploiting their individual strengths and softening their weaknesses,
might indeed provide benefits for the classification tasks.

On the basis of these observations, the followed approach has been to (i) select
a subset of promising features, based on the literature, and (ii) compare methods
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capable of dealing, from a number of different perspectives, with the various issues
involved (e.g. when to fuse, how to cope with the curse of dimensionality, how to
provide a shared representation of the different features, and so on). As a further con-
tribution, this work introduced Spidernet, a novel two-stage deep neural architecture
capable of effectively combining different general image descriptors.

The experiments were focused on finding feature groups capable of generalizing
well across all datasets and methods analyzed. While an approach based on the
selection of the optimal combination of features and method for each case would
have certainly led to higher accuracies, the rational of this choice was that the
generalization property is desirable in several practical cases (e.g., when the approach
has to be applied to novel sensors or classification methods, or when it has to tackle
novel spoofing materials).

The experimental results showed that the proposed multi–view methods are
capable of (i) outperforming those based on individual handcrafted features on each
dataset and (ii) providing state–of–the–art results. Concerning these results, it should
be stressed again that the actual performances can be indeed improved by fine–tuning
the chosen feature groups for each dataset and method.

In the second part of this work, we analyzed the fusion problem under a different
perspective. Rather than combining features extracted from the whole image, the
combination of different pieces of information extracted from local image patches
was investigated. In approaching this analysis, the contribution of the recent advances
in the field of deep learning was also exploited. The proposed method relied on
Transfer Learning approaches, aimed at transferring the knowledge learned while
solving a problem to a different context. In particular, the work leveraged on the
recognized capabilities of several reference CNN models to tackle various and
different computer vision tasks. The general approach is to take the pre–trained
version of these models (which were computed to identify thousands of different
object classes and with the support of millions of training images) and, then, fine–
tune them to the problem at hand with a further training step aimed at “adapting”
their characteristic to the novel context they are applied to.

It should be also underlined that, while TL approaches have been already inves-
tigated in the liveness detection context, previous works merely focused on using
the whole image as network input. To the best of my knowledge, this is the first
work in the literature that provides a thorough analysis of TL patch–based methods.
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The rationale of the proposed approach is threefold. First, the use of small sized
patches allows avoiding to resize the samples before they are fed to the network and,
thus, retaining the original resolution and image information. Second, using patches
rather than the full images as samples allows increasing the size of the training set,
thus improving the fine–tuning of the reference models (and even allowing their
re–training from scratch, although this option has not been considered in this work).
Third, working at patch level allows again exploiting fusion approaches that can
(hopefully) lead an improved robustness of the final fingerprint classification process.

Several fusion methods were analyzed and compared. They are based on exploit-
ing (i) different pieces of information extracted from each patch (either decision
scores or deep features extracted from the inner network layers) and (ii) different
ways of combining them (e.g., score fusion, multi-resolution score fusion, fusion
of individual or multiple deep features). Although no method outperformed the
other ones, as a general statement, it should be observed the effectiveness of CNN
patch–based TL approaches, which showed (i) improved accuracies when compared
with similar approaches based on the analysis of the whole image as input and (ii)
the state–of–the–art results.

The assessment of the results of both general approaches (fusion of handcrafted
or deep features) could not lead to identify one of them as being optimal to tackle
all the benchmarks analyzed. However, an overall view of the fusion approaches
analyzed supports the evidence of their effectiveness. Indeed, when the optimal
accuracy for each dataset and each approach is considered (in a way similar to what
has been done to compile the baselines used during the method assessments), the
results, summarized in Table 5.1, clearly show that fusion methods are capable of
improving the current state–of–the–art in all cases except XMatch 20131.

Concerning future perspectives about the patch–based approach, given the promis-
ing results of MvDA and Spidernet methods on hand-crafted features, we are plan-
ning to apply these multi–view methods to the deep patch features extracted from
different layers of trained convolutional neural networks. Furthermore, custom patch
sizes can be picked for each dataset to improve the results. Another possibility for
expanding the current work is to apply the idea of fusing deep features extracted
from different reference CNN models.

1This observation clearly indicates as well that the proposed approaches were not able to fully
address the complexity in the analysis of this specific dataset, which is the same problem highlighted
by several other authors [32] leading them to discard this dataset in their works.
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LivDet2011 LivDet2013
Nets\Datasets Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe

SOA 1.2 1.6 2.5 1.2 0.2 1.8 0.1 0.7
F.S.Buster [17] F.S.Buster [17] F.S.Buster [17] TripletNet [84] spoofnet [66] spoofnet [66] spoofnet [66] TripletNet [84]

Feature Fusion
approach

0.5 0.7 2.1 1.2 0.4 3.3 0.4 1.0
MvDA-G4 MvDA-G1 Spidernet-G1 Spidernet-G4 MvDA-G2 Spidernet-G4 MvDA-G2 MvDA-G3

Patch-based
approach

2.6 0.7 5.2 1.6 0.1 5.4 0.1 0.5
MR–E2EF-VGG 19 E2EF-GNet E2EF-AlexNet DFF-VGG 16 E2EF-VGG 19 E2EF-AlexNet DFF-VGG 16 MDFF-VGG 16

Table 5.1 Comparing the best results in the literature with the best obtained with the two
general approaches analyzed in this dissertation. Bold values represent the optimal result
for each benchmark. Underlined labels indicate that for the specific dataset there are several
combinations of methods and features providing the same result.

As a final comment I would like to underline that the software liveness detection
methods described in my work are sufficiently robust when the operating conditions
are similar to the ones used to create the experimental datasets of my work. These
conditions are based on the assumption that an individual is trying to fool the finger-
print recognition system by presenting a replica of a real sample to the fingerprint
scanner. In other words, this method is robust to attacks at sensor level. However, a
capable intruder could access the system at different levels of the processing chain
and find ways to bypass or make virtually useless any liveness detection scheme.
Concerning that, there is the problem, especially for deep learning approaches, of
images purposely crafted to fool a classifier to ignore actual evidence and report
a predefined target class [71, 9]. Taking advantage of these methods, the intruder
could intercept the communication between the scanner and the liveness detector
and submit one of such images to grant access to the system. Therefore, future work
stemming from this thesis should probably keep this problem into account as well.
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