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Abstract 

A pW-power versatile relaxation oscillator operating from 
sub-threshold (0.3V) to nominal voltage (1.8V) is presented, 
having Hz-range frequency under sub-pF capacitor. The wide 
voltage and low sensitivity of frequency/absorbed current to 
the supply allow the suppression of the voltage regulator, and 
direct powering from harvesters (e.g., solar cell, thermal from 
machines) or 1.2-1.5V batteries. A 180nm testchip exhibits a 
frequency of 4Hz , 10%/V supply sensitivity at 0.3-1.8V, 
8-18pA current, 4%/°C thermal drift from -20°C to 40°C. 

Introduction 
Slow oscillators are key building blocks used to periodically 

wake up sensor nodes with low duty cycle [1]. The energy 
source voltage ஽ܸ஽ is typically highly variable, due to the large 
fluctuations in the harvested power and/or battery charge (Fig. 
1). Being always on, the oscillator power consumption needs 
to be as low as possible, reaching the sub-nW range down to 
pWs in recent relaxation oscillators [1]-[6]. 

Oscillators in prior art usually have a strict requirement on 
voltage regulation to mitigate frequency variations and rapid 
power consumption increase at the cost of additional regulator 
power, which is invariably not accounted for in the oscillator 
evaluation [1]-[6]. Such oscillators operate either at near- or 
above-threshold voltages [4]-[6], and in a narrow voltage 
range (e.g., 50-100mV wide [1]-[3], [6]). For applications that 
impose accuracy over large temperature fluctuations, 
temperature compensation is introduced at the cost of 
additional power [2]-[4], which can be saved whenever the 
temperature is naturally restricted to a limited range (e.g., in 
indoor sensing, biomedical/implantable devices). 

In this work, the first relaxation oscillator able to operate 
from sub-threshold to nominal voltage at pW power and 
Hz-range frequency is presented. The low sensitivity of 
frequency and supply current to ஽ܸ஽ permits to eliminate the 
voltage regulator, powering the oscillator directly with the 
harvester or battery (or drastically relaxing its design), while 
maintaining similar frequency and power consumption. 

Proposed Relaxation Oscillator 
The proposed oscillator is based on the novel digital 

architecture in Fig. 2a, with cells designed in dynamic leakage 
suppression (DLS) logic style (Fig. 3) [7]. DLS gates enable 
operation down to 0.3V, nearly-independent of ஽ܸ஽ and very 
low average transistor ON current ܫ஽௅ௌ (∼3pA/gate in 180nm), 
and thus slow operation with small capacitance C, sub-leakage 
overall power consumption, due to super-cutoff transistor 
operation [7]. DLS exhibits hysteretic behavior, with low 
(high) input threshold ஽ܸ௅ௌ,௅ ( ஽ܸ௅ௌ,ு) equal to 75mV (250mV) 
at ஽ܸ஽=0.4V, which is weakly dependent on ஽ܸ஽ [7] (Fig. 3). 

The A and B terminals of the capacitor C in Fig. 2a drive the 
DLS inverters with hysteresis G1a-b, and are driven by the 
outputs തܳ  and ܳ of the latch G3a-b, which is loaded by the 
gates G4a-b with short-circuited input/output (which act like 
inverters, once ܧܮܤܣܰܧ is asserted in Fig. 2b). The size ratio 
of G3a-b and G4a-b sets the high (low) DC voltage ஺ܸ஻,ு 
( ஺ܸ஻,௅) of ݒ஺ and ݒ஻, which is equal to 275mV (32mV) under 

minimum-sized gates and ஽ܸ஽=0.4V (see Fig. 4). 
Assuming that തܳ  is high (ܳ is low) at the beginning of a 

period (t0 in Fig. 2b), ݒ஺ = ஺ܸ஻,ு since G3a is pulling തܳ  high 
and is loaded by G4a (see above), whereas ݒ஻ = ெܸ஺௑ > ஺ܸ஻,ு 
from the end of the previous period (see evaluation below). 
Since the output ܳ of G3b is low, ݒ஻ is pulled down by the 
DLS gate G3b, which draws a small (∼3pA) and nearly 
supply-independent current ܫ஽௅ௌ that discharges C. During this 
transient, ݒ஻  drops down until it crosses the switching 
threshold ஽ܸ௅ௌ,௅  of G1b (t1 in Fig. 2b). At this point, the 
capacitor voltage is ݒ஼ = ஺ݒ − ஻ݒ = ஺ܸ஻,ு − ஽ܸ௅ௌ,௅ . When ݒ஻ 
crosses ஽ܸ௅ௌ,௅, the inverting behavior of G1b, G2b and G3b 
pulls ܳ high, raising ݒ஻ to ஺ܸ஻,ு  (t2 in Fig. 2b). As C maintains 
the same voltage ݒ஼ = ஺ܸ஻,ு − ஽ܸ௅ௌ,௅  before/after the 
transition, ݒ஺ = ஻ݒ + ஼ݒ  is pulled up from ஺ܸ஻,ு  to ெܸ஺௑ =஺ܸ஻,ு + ൫ ஺ܸ஻,ு − ஽ܸ௅ௌ,௅൯ > ஺ܸ஻,ு. At this point, a semi-period 
T/2 is completed, and a new semi-period with inverted signals 
starts (same as above, swapping ܳ and തܳ  .(஻ݒ ஺ andݒ ,

Full-swing output ܱܷܶ is generated by the G2a-b latch, and 
is a square wave with nearly 50% duty cycle and period ܶ )ܥ4≈ ஺ܸ஻,ு − ஽ܸ௅ௌ,௅)/ܫ஽௅ௌ (constant-current discharge of C, see 
Fig. 2b). T has low sensitivity to the supply voltage since ஺ܸ஻,ு , ஽ܸ௅ௌ,௅ and ܫ஽௅ௌ are weakly supply-dependent in DLS logic [7] 
(see also Figs. 3-4). The power consumption is dominated by 
the static sub-leakage current drawn by transistors, which is 
again rather insensitive to ஽ܸ஽ in DLS logic [7]. 

Testchip and Measurement Results 
The oscillator was demonstrated with a 180nm testchip (Fig. 

5a). The area of 10,000μmଶ  is the second smallest among 
[1]-[6]. Not being temperature-compensated, the frequency 
shows a mean thermal drift of 4%/°C from -20°C to 40°C (Fig. 
5b), which is comparable to [5] and expectedly higher than 
temperature-compensated oscillators [2]-[4].  

Measurements of five dice showed that the proposed 
oscillator is the only one that can operate from deep 
sub-threshold (0.3V) to nominal voltage (1.8V) from Figs. 5-6. 
Across five dice, the frequency ranges from 3.36Hz to 4.28Hz 
(average 4Hz) at 25°C and 0.4V, the supply current ranges 
from 7.3pA to 9.5pA, and the power ranges from 2.9pW to 
3.7pW (average 3.32pW, Fig. 5c), which is the lowest reported 
to date (Fig. 6).  

Further power advantage over [1]-[6] is achieved when the 
power required by the voltage regulator is fairly taken into 
account in [1]-[6], considering that no voltage regulation is 
instead needed in the proposed oscillator. This is because the 
latter operates from 1.8V down to 0.3V, with a low frequency 
sensitivity to supply voltage of 10%/V (Fig. 5d). This is the 
second best voltage sensitivity after [4], which instead requires 
an additional regulated supply and a current reference. Also, 
the supply current (Fig. 5c) has minor increase from 8pA to 
18pA, when varying ஽ܸ஽ from 0.3V to 1.8V (Fig. 5c). 

Thanks to its pW power, Hz-range, frequency/power 
insensitivity to ஽ܸ஽ in a wide range, and low area, the proposed 
oscillator is well suited for low-cost low-power sensor nodes. 
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supply voltage [V] 0.45 0.6 0.7 (1.2 for VDDH) 1.2 0.6 0.5 0.4 
frequency [Hz] 0.09 11.11 0.37 11 18 2.8 4 

power [pW] 120 150 660 5,800 4.2 44.4 3.32 
frequency variability (process) 28% N/A N/A N/A N/A 11.8% 8.9%
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Fig. 6. Relaxation Hz-range oscillator performance comparison (best performance in bold). 
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Fig. 1. Duty-cycled sensor node with slow oscillator for system wake-up. 
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 Fig. 4. a) DLS latch G3a-b loaded with gates G4a-b having short-circuited 
input/output, b) resulting ஺ܸ஻,ு and ஺ܸ஻,௅ vs. VDD (showing weak dependence). 


