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Multi‑tissue and multi‑scale approach 
for nuclei segmentation in H&E stained images
Massimo Salvi*  and Filippo Molinari

Background
The evaluation of cell nuclei plays a crucial role in histopathological images analy-
sis. In fact, parameters such as cell size, shape and spatial distribution are generally 
used by pathologists for cancer detection and reporting [1]. In routine histology, the 
most widely used staining method to visualize tissues is the use of hematoxylin and 
eosin (H&E), which allow to distinguish cell nuclei (bluish color—hematoxylin) from 
cytoplasm (pinkish color—eosin) [2]. Cell nuclei counting is time-consuming and 
prone to inter- and intra-observer variability, which results in a limited reliability. 
Manual delineation of nuclei is an even more cumbersome operation, which is never 
performed in routine, but which would be required to precisely assess nuclei size 

Abstract 

Background: Accurate nuclei detection and segmentation in histological images is 
essential for many clinical purposes. While manual annotations are time-consuming 
and operator-dependent, full automated segmentation remains a challenging task due 
to the high variability of cells intensity, size and morphology. Most of the proposed 
algorithms for the automated segmentation of nuclei were designed for specific organ 
or tissues.

Results: The aim of this study was to develop and validate a fully multiscale method, 
named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in differ-
ent tissues and magnifications. MANA was tested on a dataset of H&E stained tissue 
images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, 
bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). 
Automatic results were compared with manual segmentations and three open-source 
software designed for nuclei detection. For each organ, MANA obtained always an 
F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average compu-
tational time was about 20 s independently of the number of nuclei to be detected 
(anyway, higher than 1000), indicating the efficiency of the proposed technique.

Conclusion: To the best of our knowledge, MANA is the first fully automated multi-
scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and 
versatility of MANA allowed to achieve, on different organs and magnifications, per-
formances in line or better than those of state-of-art algorithms optimized for single 
tissues.
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and morphology. The architectural arrangement of nuclear structures on histology 
is highly relevant in the context of disease (i.e., cancer grading) [3]. Cancer grade is 
a key feature used to predict patient prognosis and in prescribing a treatment [1]. 
Since most of the current pathology diagnosis processes are based on the subjec-
tive opinion of pathologists, solutions for the quantitative assessment of histological 
images would have scope of application.

With the recent advances of techniques in digitalized scanning, tissue histopathol-
ogy slides can be stored in the form of digital images [4]. In the last years, many 
efforts have been devoted to developing automatic nuclear segmentation techniques 
with the aim to improve the efficiency and the accuracy in histopathological image 
analysis.

Most current nuclei detection approaches on H&E stained images are based on 
color information [5, 6]. Using these techniques, a detection accuracy over 85% can be 
achieved [7]. Since these approaches are dependent on either color and intensity-related 
attributes, none of these works have been tested on multi-tissue data or in pathological 
conditions, where nuclei may exhibit irregular shapes and different intensities.

Several methods have been proposed to perform cell segmentation using gradients 
[8] and morphological operations [9]. Nevertheless, methods using a prior knowl-
edge of nuclei shape are prone to fail because of the variation of tissue preparation 
procedures (sectioning and staining). Furthermore, the existence of touching nuclei 
makes their separation quite hard for automated segmentation methods [4].

In the last few year, deep neural networks drove advances in image recognition and 
they achieved state-of-art performance in many segmentation tasks of medical imaging 
[10, 11]. Above all, convolutional neural networks (CNNs) have shown promising results 
in nuclei segmentation for different tissues [12]. These techniques estimate a probability 
map of the nuclear regions based on the learned nuclear appearances. In this way, CNNs 
can generalize across various nuclear color variations. Recently, a detection accuracy of 
80% was obtained for seven organs [12]. However, CNNs need a wide annotated train-
ing set of images to obtain adequate performance and the network architecture must be 
changed in case of variation in the magnification. This is because CNNs fail to generalize 
if the nuclei, in addition to changing color, also change size. For this reason, deep neural 
networks are not suitable for multiscale approaches.

To the best of our knowledge, no multi-tissue and multi-scale solution has been 
proposed so far. In this paper, we present the MANA (Multiscale Adaptive Nuclei 
Analysis) algorithm, a multi-tissue and multi-scale method for cell detection in his-
tological images. The proposed technique takes an H&E staining image as input and 
it shows the nuclei boundaries found within the image.

Methods
The MANA algorithm was designed to automatically detect nuclei in H&E stain-
ing images. The algorithm was developed using MATLAB (MathWorks, Natick, 
MA, USA) environment. Three main steps composed the processing: object-based 
thresholding, area-based correction and nuclei separation. In the following sections, 
a detailed description of the algorithm is provided.
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Object‑based detection

This step represents our technical innovation to achieve a first object-based detection 
for nuclei segmentation. The RGB image of a histological specimen is first converted into 
grayscale by eliminating the hue and saturation information while retaining the lumi-
nance. Then, its histogram is calculated and the progressive weighted mean (PWMCURVE) 
of the grayscale histogram is computed.

Let’s consider a grayscale image with pixel intensities expressed by integer numbers 
between 0 and N. The histogram is then a distribution with N + 1 classes and it graphi-
cally displays the frequency (how many times) each gray level occurs. Considering 
a generic class P of the histogram (0 ≤ P ≤ N), the value of PWMCURVE for that class is 
defined as follows:

where wi is the histogram count for the ith class and xi is the respective bin location. 
The PWMCURVE is evaluated for each class of the histogram as the weighted mean of all 
the grayscale histogram values up to that class. The trend of PWMCURVE depends on the 
histogram shape so relevant characteristics on the color distribution of the image can be 
extracted using this function. In particular, if there are significant color variations from 
a certain point on the histogram with respect to the distribution that precedes it, here 
we can expect to see a change of concavity in the PWMCURVE. Inflection points of PWM-

CURVE may be potential threshold values for performing nuclei segmentation as they rep-
resent local stability points of the grayscale histogram.

Conceptually, PWMCURVE is therefore an alternative representation of the color distri-
bution that makes it easier to apply object-based thresholds. For this reason, PWMCURVE 
can be used to automatically spot nuclei inside image. Nuclei are defined as objects with 
an intensity lower than a threshold.

First of all, the PWMCURVE is fitted with a 15th order polynomial function with the aim 
to estimate its inflection points (candidate thresholds). Then, the grayscale image is seg-
mented using all the candidate thresholds and the median area of objects found is evalu-
ated for all thresholds. Among all the candidate thresholds, the algorithm defined as the 
initial threshold the one that had the objects with the highest median area.

The processing for obtaining the initial threshold is illustrated in Fig. 1, where three 
sub-images from different tissues are used as examples. Figure 1 also shows the robust-
ness of the proposed method, where the optimal threshold was chosen, regardless of the 
histogram shapes or cells’ appearance.

By summarizing, being this method an object-based thresholding, it is robust to differ-
ent tissue types, image magnification, and staining.

Area‑based correction

This step is needed in order to correct oversegmentation from previous step because 
the object-based detection may lead to small or too large structures. Too small struc-
tures may be oversegmented or wrong objects, whereas too large areas may consist of 

PWMCURVE =

∑P
i= 0

wixi
∑P

i= 0
wi
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a fusion of different nuclei. To lessen the oversegmentation and to optimize the nuclei 
detection, the mean area of segmented objects (mean total) is first evaluated. Then, areas 
are labelled as: ‘small’, ‘normal’, or ‘big’. ‘Small’ objects are structures smaller than 25% of 
mean area, whereas ‘big’ objects are structures greater than 5 times the mean area. The 
remaining objects are considered as ‘normal’.

‘Small’ objects are deleted because they are too little to be potentially considered as 
nuclei. ‘Big’ objects should be split, in case they were nuclei agglomerates. Separation is 
obtained by iteratively decreasing the initial threshold for these structures until they are 
classified as ‘normal’ (area less than 5 times the mean total). Figure 2a sketches the effect 
of this procedure. Using these criteria, the initial threshold found in the previous section 
is locally modified in order to identify the highest number of nuclei within the histologi-
cal image.

Nuclei separation

The goal of this step is to further separate remaining fused nuclei. In literature, the 
watershed transform was successfully used to isolate merged nuclei [13]. The MANA 
algorithm implements a variant of the classical watershed transform called marker-
based watershed [14]. In this technique, seeds close to nuclear centers (marker) are used 
as starting points for watershed transform. To identify nuclear seed, MANA performs 
the distance transform of the nuclei binary mask and calculates the local maxima using 
the extended-maxima transform [15]. This transform estimates the regional maxima by 
searching in N-connected neighborhoods. The neighborhood size determines the sensi-
tivity of the maxima-extended transform in the detection of nuclear seeds.

Fig. 1 Processing for obtaining the initial threshold for different tissues (rows), showing images with a high 
variation of cells number, size and color. Starting from the RGB image, the  PWMCURVE is estimated from its 
grayscale histogram. Then, candidate thresholds are evaluated as inflection points of the curve (red dotted 
lines). The median area of detected objects using candidate thresholds is calculated and the initial threshold 
is determined as the one with the highest median area. In the last column, the application of the initial 
threshold on the RGB image is shown
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Additionally, the solidity of all objects is also evaluated. Solidity of a region is defined 
as the ratio between its actual area and its convex area. Since it is expected that nuclei 
are convex objects, a segmented region containing an actual nucleus should have a solid-
ity approximately equal to 1. Hence, solidity can be used as a discriminant feature for 
varying the neighborhood size of the maxima-extended transform and then the sensitiv-
ity of the marker-based watershed. The MANA algorithm applied a low-sensitive water-
shed for high solidity shapes while sensitivity is increased for low solidity objects. In 
Fig. 2b is shown the application of a marker-based watershed sensitive to shapes solidity.

Finally, the mean area of the objects obtained after watershed is evaluated and items 
smaller than 25% of mean area are erased by the algorithm.

Performance measures

Automatic results provided by MANA were compared with manual segmentations. True 
positive (TP) represents the number of manual cells identified by the algorithm, false 
negative (FN) denotes all nuclei not found by the automatic method and false positive 
(FP) represents all cells obtained by MANA without a corresponding manual nucleus. 
The performance of nuclear detection was evaluated by calculating the recall, precision 
and F1-score, which are defined as follows:

recall =
TP

TP + FN

precision =
TP

TP + FP

Fig. 2 MANA processing steps. Left column reports the input image and the right one represents the output 
of the corresponding step. First row is relative to the areas evaluation (a, b) where small objects (blue) are 
deleted and big structures (red) are partially divided. Second row shows the nuclei separation (c, d) in which 
a marker-based watershed is applied on objects with small (red) and high solidity (green)
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Recall assesses the missed detection of ground truth objects (manual nuclei) while 
precision evaluates the false detection of ghost objects. F1-score is defined as the har-
monic mean of recall and precision. F1-score is a common used object detection metric 
[16], but it penalizes only object-level errors [12]. In fact, F1-score does not take pixel-
level errors into account (i.e. under-segmentation of correctly detected objects). Let  NCS, 
 NUS and  NSE represent the numbers of correct-segmentation (CS), under-segmentation 
(US) and segmentation-error (SE). The pixel-level performance is evaluated using the 
CS, US and SE rates [17], which are defined as follows:

where  NGT (ground truth) represents the number of nuclei manually identified. The US 
rate indicates the failure to split nuclear regions in the correct number of nuclei while SE 

F1 =
2 × (recall × precision)

(recall + precision)
.

CS =
NCS

NGT
× 100%

US =
NUS

NGT
× 100%

SE =
NSE

NGT
× 100%

Fig. 3 Pixel-level performance. Left column illustrates the manual annotations and the right one 
shows the corresponding automatic results. An example of (a, b) correct-segmentation (green), (c, d) 
under-segmentation (orange), (e, f) segmentation-error (yellow)



Page 7 of 13Salvi and Molinari  BioMed Eng OnLine  (2018) 17:89 

rate reveals the missed detection of cells. An example of CS, US and SE cells is provided 
in Fig. 3.

Results
Our dataset consisted of H&E stained images taken from six different organ tissues. 
The six organs were: colon, liver, bone, prostate, adrenal gland and thyroid. In addition, 
images were acquired with three magnifications (10×, 20×, 40×) to test the multiscale 
approach of MANA algorithm. One expert pathologist (more than 10 years of experi-
ence) manually marked the nuclei centers in each image, for a total of 59,123 cells. The 
images were collected and digitalized at the Molinette Città della Salute University hos-
pital (Torino, Italy) and all patients signed an informed consent. The overall dataset 
composition is shown in Table 1.

Table 1 Dataset composition

Tissue Magnifications #Nuclei

Colon 20× 9166

Liver 10×, 20× 5051

Bone 40× 6889

Prostate 20× 5995

Adrenal gland 10×, 20× 12,972

Thyroid 10×, 20× 19,050

Total 10×, 20×, 40× 59,123

Fig. 4 Examples of sub-images taken from different tissues (columns), showing challenging cases based on 
variation in nuclear appearance, crowding and dimension. Manual annotation, automatic segmentation and 
validation process are shown in rows. In the last row, true positive cells are highlighted in green while false 
negative and false positive nuclei are shown in blue and red respectively. Finally, under-segmented nuclei are 
illustrated in orange
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For each of the six organs analyzed, an example of the validation process is shown in 
Fig. 4.

Comparison with manual operator

The object-level (recall, precision and F1-score) and pixel-level (CS, US, SE rates) perfor-
mances of MANA algorithm are summarized in Table 2. The processing was performed 
on a workstation with a 2.6 GHz quad-core CPU and 16-GB of RAM.

The algorithm can be considered very performing in object detection, being the aver-
age F1-score equal to 0.9305 on 30 images. For all tissues, precision and recall presented 
similar values so the accuracy of the proposed method was demonstrated (Table 2).

A CS rate of 81.97% coupled to a SE rate of 5.53% was also obtained. Moreover, the US 
rate was small where nuclei had crisp contours (5.81%) while it increased in organs with 
a high percentage of touching nuclei (21.35%).

Finally, the computational time is slightly dependent on image resolution, ranging 
between 11.3 and 23.7 s (average ± SD: 16.89 ± 5.72 s).

Benchmarking with open‑source software

The results obtained by the proposed algorithm were also compared with three open-
source software (CellProfiler, QuPath and Fiji) used in the analysis of histological images 
[18]. CellProfiler [19] allows to create pipelines for the processing of biomedical images. 
The software is composed of a series of image-processing modules that allow the user to 
perform an automatic analysis of the histological images. QuPath [20] is a new bioimage 
analysis software designed to provide an open-source solution for digital pathology and 
whole slide image analysis. This software allows to perform several automatic analyses 
of histological images, including nuclei detection. Fiji [21] is a Java-based software that 
has a watershed transform-based nuclear segmentation plugin available. For this soft-
ware, a semi-automatic pipeline was implemented, consisted of: (i) conversion of H&E 
image into grayscale, (ii) manual intensity thresholding and (iii) automatic cells separa-
tion. The comparison in the nuclei detection of CellProfiler, QuPath, Fiji and MANA is 
provided in Fig. 5. The performances of the three open-source software are also reported 
in Table 3. 

Table 2 Performances of the proposed method

Data are reported as mean ± standard deviation

Organ Computational 
time (s)

Object‑level performance Pixel‑level performance

Recall Precision F1‑score CS (%) US (%) SE (%)

Colon 22.89 ± 2.15 0.9505 ± 0.0121 0.9048 ± 0.0114 0.9270 ± 0.0086 86.78 ± 1.97 8.69 ± 2.00 4.53 ± 1.14

Liver 11.32 ± 1.25 0.9249 ± 0.0267 0.9547 ± 0.0114 0.9392 ± 0.0101 87.17 ± 4.55 5.81 ± 2.42 7.02 ± 2.37

Bone 13.10 ± 1.13 0.9486 ± 0.0290 0.9362 ± 0.0203 0.9417 ± 0.0077 74.15 ± 4.17 21.35 ± 4.30 4.07 ± 2.49

Prostate 12.28 ± 1.31 0.9533 ± 0.0127 0.9404 ± 0.0147 0.9467 ± 0.0106 77.47 ± 7.72 18.79 ± 7.31 3.74 ± 0.88

Adrenal 
gland

18.02 ± 1.26 0.9126 ± 0.0300 0.9239 ± 0.0312 0.9174 ± 0.0129 84.60 ± 4.44 7.33 ± 2.55 8.06 ± 2.62

Thyroid 23.71 ± 5.94 0.9335 ± 0.0296 0.8914 ± 0.0221 0.9112 ± 0.0038 81.62 ± 6.18 12.61 ± 5.39 5.77 ± 2.60

Overall 16.89 ± 5.72 0.9372 ± 0.0288 0.9253 ± 0.0293 0.9305 ± 0.0161 81.97 ± 7.05 12.43 ± 7.32 5.53 ± 2.66
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As can be seen from Table 3, the CellProfiler segmentation is characterized by a low 
recall. Several nuclei are not identified by the software and this generate a high number 
of false negative cells. The average F1-score (0.7154) was lower than the proposed one 
for more than 20%. This software had also a poor pixel-level performance, with a low 
number of correct-segmentation (65.45%) and a high number of segmentation-errors 
(SE equal to 29.73%).

QuPath proved to be an efficient tool for nuclei detection, with fast mean computa-
tional time (11.37 s) and average recall of about 0.93. On the other hand, this method 
produced a lot of false-positive nuclei, causing a very low precision (0.7120). This low 
precision leaded to a lowering of the average F1-score (0.8004).

The average F1-score obtained with Fiji was slightly lower than those achieved with 
MANA (0.9030 vs 0.9305). In fact, Fiji processing is based on a single threshold while the 
proposed method can locally modify the threshold on the same image in order to iden-
tify the highest number of nuclei. Moreover, the average computational time in Fiji was 
252.73 s, about 15 times higher than MANA algorithm.

Discussion
In the present study, we proposed a fully automatic method for nuclei identification 
in histological images. The cell nuclei segmentation is crucially important and has 
a wide range of applications, such as cancer diagnosis [22], cancer grading [23] and 
quantification of molecular markers in healthy and pathological specimens [9]. The 
proposed method is able to recognize nuclei boundaries inside H&E images. The cells 
detection in histological images is a challenging task because of nuclei variability in 
shape, intensity and dimension. Our technique did not require any user interaction 
and it was capable of automatically detecting nuclei in different tissues and magni-
fications. We chose to analyze six of the most studied organs in the development of 
automatic nuclei segmentation [24, 25]. Nuclei centers were manually marked by one 
expert pathologist, for a total of 59,123 cells. It was not necessary to segment nuclei 

Fig. 5 Comparison between three open-source software and the proposed method in the nuclei detection. 
Sub-images from different tissues are shown in rows while cell segmentation results are illustrated in columns
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boundaries since the proposed algorithm does not require a training set as deep 
learning-based methods. For this reason, having a faster manual segmentation, the 
number of annotated nuclei was increased, creating a dataset that contains more than 
twice the number of marked nuclei compared to previous works [12, 22, 26].

The automatic method was validated using metrics that penalizes both detec-
tion and segmentation errors. The comparison between manual and automatic seg-
mentation showed high performances of the proposed technique. For each organ, 
MANA algorithm obtained always an F1-score higher than 0.91, with an average F1 
of 0.9305 ± 0.0161. In literature, the only multi-tissue nuclei segmentation system 
[12] had an average F1-score of 0.8267. Compared with this state-of-art method, our 
approach achieved a large margin with 10.38% improvement of the identification rate.

Object-level and pixel-level performances were also comparable to previous works on 
nuclei detection [24, 27, 28]. Overall, the robustness and versatility of MANA allowed to 
achieve, on several organs and magnifications, performances in line or better than those 
of state-of-art algorithms designed for single tissues [19, 20].

The proposed algorithm allowed also to obtain the highest average F1-score compared 
to other open-source software designed for nuclei detection. MANA had one of the low-
est computational time and, respect to other automatic methods, it had the best pixel-
level performances.

Thanks to the reliable nuclei detection provided by MANA, automated systems for 
tumor patterns recognition [29], histological lesions evaluation [25] and markers quan-
tification [9] can be easily developed in a straightforward manner. In the future, a novel 
cells separation will be implemented to further increase the pixel-level performances of 
the proposed algorithm. Future studies are also required to test the accuracy of MANA 
algorithm for nuclei detection in other tissues.

Conclusions
In this paper, an adaptive method for nuclei segmentation in H&E stained images is pre-
sented. To the best of our knowledge, MANA is the first fully automated multi-scale and 
multi-tissue algorithm for nuclei detection.

The algorithm was tested on different organs, in which nuclei had different intensities, 
shapes and dimensions. High segmentation performances were obtained for each image 
of the dataset. The observed robustness in nuclei detection provided by MANA was 
mainly due to the use of an adaptive thresholding and an optimized nuclei separation. 
The algorithm took around 20  s to perform segmentation in images with 1500 nuclei, 
indicating the efficiency of the proposed technique.

Being totally automated, this algorithm could be used in future studies as starting 
point to realize reliable systems for morphological tissue characterization and diagnosis. 
Our research group is currently working on a MANA-based algorithm for the automatic 
detection and quantification of tumor areas in different histological tissue.

Abbreviations
MANA: Multiscale Adaptive Nuclei Analysis; H&E: hematoxylin and eosin; CNNs: convolutional neural networks; PWM-

CURVE: progressive weighted mean; TP: true positive; FN: false negative; FP: false positive; CS: correct-segmentation; US: 
under-segmentation; SE: segmentation-error; NGT: ground truth.
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