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Abstract: This paper presents a gray-box modeling technique for obtaining physical models
of electrical components. These models are obtained through topological fitting, thus yielding
equivalent electrical circuit models which are guaranteed to be stable and passive. The algorithm
finds the values of the circuit elements given a description of the circuit such that the resulting
model fits the frequency response measurements provided for the component. Moreover, in case
the circuit is incomplete, the algorithm extends it by automatically generating all series and
parallel augmentations and re-optimizing the values of the elements.

1. INTRODUCTION

The increase in the operating frequency of integrated
circuits require broadband component models to be easily
included in a simulator. Hence equivalent circuit models
(ECMs) are designed to take into account parasitic, skin
and proximity effects, which are present in high-frequency.

Broadband models are typically developed for each com-
ponent using physical insight: spiral inductors (Cao et al.
(2003); Wang et al. (2006)), ceramic capacitors (Sullivan
et al. (2002)), thin-film resistors (Li and Wei (2015)), etc.
For large circuits, the number of possible topologies increa-
ses dramatically. The choice of element types and values is
another issue. Alternatively, frequency responses (Z-,Y- or
S-parameters) are used to fit a rational model via black-
box system identification techniques, followed by circuit
synthesis (Zhaoqing (2015)), however synthesis using only
passive elements is not trivial. Passivity is crucial in circuit
simulation because a stable but non-passive network may
become unstable for certain terminations.

This paper aims to make a step towards a fully-automated
circuit generation for components described by frequency
domain measurements. Oftentimes, one already has some
preliminary idea of the topology of an incomplete ECM of
a given component or subsystem (nominal circuit). This
model can be enhanced by the addition of elements to
improve its accuracy. We propose to generate all possible
augmentations of the nominal circuit by inserting elements
in series or in parallel to the existing ones. To find the
optimal value of the added elements, we solve the resulting
nonlinear optimization problem via a Sanathanan-Koerner
iteration combined with an alternating least-squares.

Previous approaches for automated broadband model ge-
neration were not able to ensure stability and passivity by
construction. In Kolstad et al. (2006), the error between
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the available measurements and the response of the no-
minal circuit is modeled by a small number of pole-zero
elements, so the final model consists of the ECM together
with the augmentation network described as pole-zero
elements, which are found by black-box fitting. Stability of
the augmentation can be enforced by pole-flipping, while
passivity is enforced a-posteriori. Paul et al. (2009) solves
the same nonlinear optimization problem as in Eq. (15)
by expressing the unknown as a rational function and the
coefficients of numerator and denominator polynomials are
found via least squares. Stability can be enforced by con-
straining the coefficients to stay positive, while passivity
is enforced via perturbation of the purely imaginary eige-
nvalues of the Hamiltonian matrix pencil (Grivet-Talocia
and Gustavsen (2015)). In our approach, we optimize the
value of each added circuit element independently in an al-
ternating least-squares setting, thus guaranteeing stability
and passivity of the final model.

The paper is structured as follows. Section 2 presents
a short review of the modified nodal analysis used to
represent electrical circuits. In Sect. 3, we propose to
perform all possible series and parallel augmentations
of the nominal circuit. Sect. 4 discusses the proposed
approach for topological fitting. Lastly, Sect. 5 presents
numerical examples validating our approach and Sect. 6
concludes the paper.

2. CIRCUIT MODELING VIA MODIFIED NODAL
ANALYSIS (MNA) - SHORT REVIEW

MNA (Ho et al. (1975); Vlach and Singhal (1983)) is
a powerful technique for automatically formulating (and
solving) circuit equations. Multi-port circuits are typically
given in terms of their impedance (Z-), admittance (Y-),
or scattering (S-) formulation:

• for the impedance formulation, the circuit is current-
controlled at all ports and the corresponding volta-
ges are measured as outputs: V = ZI, where V =

[ v1 . . . vp ]
T

and I = [ i1 . . . ip ]
T

are the vectors of
port voltages and currents, respectively, with p, the
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number of ports (we assume, for each port, one input
and one output variable).

• for the admittance formulation, the circuit is
voltage-controlled at all ports and the corresponding
currents are measured as outputs: I = YV.

• for the scattering formulation, at each port, the
input is the incident wave a = v+R0i

2
√
R0

and the output

is the reflected wave b = v−R0i
2
√
R0

, where R0 is the port

reference impedance (typically 50Ω).

Nodes are defined such that there exists a single element
between two nodes. For the simple RLC circuit in Fig. 1,
nodes have been indicated by circled numbers. Node 0 is
the ground (reference for node voltages).

L1

C2 R3

1 2

0

Fig. 1. RLC circuit

The topology of the circuit is described by the incidence
matrix: the number of rows is the number of nodes in
the circuit and each column corresponds to one branch
which contains a single element. Each column is mostly
zero, except for the rows given by the two nodes between
which this element is connected, which contain 1 and −1.
For the RLC circuit, the incidence matrix is:

AF =




1 2 3

1 1 0 0
2 −1 1 1
0 0 −1 −1


. (1)

Kirchhoff’s current law at each node yields the product
between the incidence matrix and the branch currents
being 0: AF Ib = 0. The last equation is the negative of
the sum of the previous ones, so we can disregard it and
delete the last row to obtain the reduced incidence matrix:

A =

[ 1 2 3

1 1 0 0
2 −1 1 1

]
. (2)

The Kirchhoff’s voltage law expresses branch voltages Vb

in terms of nodal voltages E: Vb = ATE. KCL and KVL
describe topological equations, which, together with the
constitutive equations, yield the MNA formulation.

We distinguish between the following types of branches:

(1) shunt dynamic: a capacitor (branch 2),
(2) shunt resistive: a conductance (no such branch is

present in our example),
(3) series dynamic: an inductance (branch 1)
(4) series resistive: a resistor (branch 3).

The columns of the incidence matrix are partitioned accor-
ding to the type of element: shunt dynamic iC = [2],
where iC stores their indices, shunt resistive iG = [ ], series
dynamic iL = [1] and series resistive iR = [3]:

AC =

[
0
1

]
, AG = [ ] , AL =

[
1

−1

]
, AR =

[
0
1

]
. (3)

We also define diagonal matrices storing the values of the
elements depending on the type:

Cb = [C2] , Gb = [ ] , Lb = [L1] , Rb = [R3] . (4)

For voltage controlled (shunt) elements, the constitutive
equations are iG = GbvG and iC = sCvC , with s,
the Laplace variable, while for current controlled (series)
elements, they are vR = RbiR and vL = sLbiL.

The unknowns of the MNA system are the node voltages
and the branch currents for the series elements. These are
included as state variables. In our case:

x(t) =

[
v1
v2
iL1

]
.

The RLC circuit in Fig. 1 has one single port defined
between nodes 1 and 0 , corresponding to one input
and one output variable. We distinguish between the three
formulations:

(1) impedance case: inputs are port currents and outputs
are port voltages. Correspondingly, the input and
output mapping matrices are

C = [1 0 0 0] , B = CT .

(2) admittance case: inputs are port voltages and outputs
are port currents. Since the input current is not
present in the vector of generalized state variables,
we add a series resistive element (with zero-valued
resistance), whose current will be our input variable.
Correspondingly, the matrices after the update are:

AR =

[
0 −1
1 0

]
, Rb =

[
R3

0

]
.

The input and output mapping matrices are

C = [0 0 0 0 1] , B = CT .

(3) scattering case: inputs are the incident waves and
outputs are the reflected waves. Incident waves can be
represented by series Thevenin sources with internal
resistance R0, hence the incidence matrix AR should
be updated with such new elements, and the diagonal
R should be updated with a block containing the
reference R0 on the diagonal:

AR =

[
0 −1
1 0

]
, Rb =

[
R3

R0

]
.

The input and output mapping matrices are

B =
[
0 0 0 0 2

√
R0

]
,

C =
[

1
2
√
R0

0 0 0 −
√
R0

2

]
.

The descriptor matrices of the MNA formulation are

Edae=


ACCbA

T
C 0 0

0 Lb 0
0 0 0


,Adae=−



AGGbA

T
G AL AR

−AT
L 0 0

−AT
R 0 Rb




(5)
and the transfer function is given by the usual formula

H(s) = C (sEdae −Adae)
−1

B, (6)

which can represent the Z-,Y- or S-parameter formula-
tion. H(s) is a rational matrix function of variable s and
size p. This dynamical system is described by a differen-
tial algebraic equation with an invertible matrix pencil
(Adae,Edae), a singular Edae and the output equation
having D = 0:

Edaeẋ(t) =Adaex(t) +Bu(t), (7)

y(t) =Cx(t). (8)
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number of ports (we assume, for each port, one input
and one output variable).

• for the admittance formulation, the circuit is
voltage-controlled at all ports and the corresponding
currents are measured as outputs: I = YV.

• for the scattering formulation, at each port, the
input is the incident wave a = v+R0i

2
√
R0

and the output

is the reflected wave b = v−R0i
2
√
R0

, where R0 is the port

reference impedance (typically 50Ω).

Nodes are defined such that there exists a single element
between two nodes. For the simple RLC circuit in Fig. 1,
nodes have been indicated by circled numbers. Node 0 is
the ground (reference for node voltages).

L1

C2 R3

1 2

0

Fig. 1. RLC circuit

The topology of the circuit is described by the incidence
matrix: the number of rows is the number of nodes in
the circuit and each column corresponds to one branch
which contains a single element. Each column is mostly
zero, except for the rows given by the two nodes between
which this element is connected, which contain 1 and −1.
For the RLC circuit, the incidence matrix is:

AF =




1 2 3

1 1 0 0
2 −1 1 1
0 0 −1 −1


. (1)

Kirchhoff’s current law at each node yields the product
between the incidence matrix and the branch currents
being 0: AF Ib = 0. The last equation is the negative of
the sum of the previous ones, so we can disregard it and
delete the last row to obtain the reduced incidence matrix:

A =

[ 1 2 3

1 1 0 0
2 −1 1 1

]
. (2)

The Kirchhoff’s voltage law expresses branch voltages Vb

in terms of nodal voltages E: Vb = ATE. KCL and KVL
describe topological equations, which, together with the
constitutive equations, yield the MNA formulation.

We distinguish between the following types of branches:

(1) shunt dynamic: a capacitor (branch 2),
(2) shunt resistive: a conductance (no such branch is

present in our example),
(3) series dynamic: an inductance (branch 1)
(4) series resistive: a resistor (branch 3).

The columns of the incidence matrix are partitioned accor-
ding to the type of element: shunt dynamic iC = [2],
where iC stores their indices, shunt resistive iG = [ ], series
dynamic iL = [1] and series resistive iR = [3]:

AC =

[
0
1

]
, AG = [ ] , AL =

[
1

−1

]
, AR =

[
0
1

]
. (3)

We also define diagonal matrices storing the values of the
elements depending on the type:

Cb = [C2] , Gb = [ ] , Lb = [L1] , Rb = [R3] . (4)

For voltage controlled (shunt) elements, the constitutive
equations are iG = GbvG and iC = sCvC , with s,
the Laplace variable, while for current controlled (series)
elements, they are vR = RbiR and vL = sLbiL.

The unknowns of the MNA system are the node voltages
and the branch currents for the series elements. These are
included as state variables. In our case:

x(t) =

[
v1
v2
iL1

]
.

The RLC circuit in Fig. 1 has one single port defined
between nodes 1 and 0 , corresponding to one input
and one output variable. We distinguish between the three
formulations:

(1) impedance case: inputs are port currents and outputs
are port voltages. Correspondingly, the input and
output mapping matrices are

C = [1 0 0 0] , B = CT .

(2) admittance case: inputs are port voltages and outputs
are port currents. Since the input current is not
present in the vector of generalized state variables,
we add a series resistive element (with zero-valued
resistance), whose current will be our input variable.
Correspondingly, the matrices after the update are:

AR =

[
0 −1
1 0

]
, Rb =

[
R3

0

]
.

The input and output mapping matrices are

C = [0 0 0 0 1] , B = CT .

(3) scattering case: inputs are the incident waves and
outputs are the reflected waves. Incident waves can be
represented by series Thevenin sources with internal
resistance R0, hence the incidence matrix AR should
be updated with such new elements, and the diagonal
R should be updated with a block containing the
reference R0 on the diagonal:

AR =

[
0 −1
1 0

]
, Rb =

[
R3

R0

]
.

The input and output mapping matrices are

B =
[
0 0 0 0 2

√
R0

]
,

C =
[

1
2
√
R0

0 0 0 −
√
R0

2

]
.

The descriptor matrices of the MNA formulation are

Edae=


ACCbA

T
C 0 0

0 Lb 0
0 0 0


,Adae=−



AGGbA

T
G AL AR

−AT
L 0 0

−AT
R 0 Rb




(5)
and the transfer function is given by the usual formula

H(s) = C (sEdae −Adae)
−1

B, (6)

which can represent the Z-,Y- or S-parameter formula-
tion. H(s) is a rational matrix function of variable s and
size p. This dynamical system is described by a differen-
tial algebraic equation with an invertible matrix pencil
(Adae,Edae), a singular Edae and the output equation
having D = 0:

Edaeẋ(t) =Adaex(t) +Bu(t), (7)

y(t) =Cx(t). (8)
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3. CIRCUIT AUGMENTATION

Given a nominal (starting) circuit, it is possible to insert
elements in series or in parallel according to these rules:

(1) parallel augmentations with shunt elements between
any two existing nodes if no such element is already
connected to these nodes,

(2) series augmentations of existing branches with series
elements if no such element is already present.

Parallel augmentation of a given circuit described by its
incidence matrix and types/values of branch elements is
simply performed by adding an element connected to
existing nodes. The new element is described by a new
column appended in the incidence matrix, its type and
value.

On the other hand, series augmentation is performed by
adding an element in series to an existing branch. For this,
the branch is split into two series-connected branches by
adding a node appended to the list of existing nodes. The
original branch is then reconnected between one of the
original nodes and the new node, and the new branch is
connected between the new node and the second original
node. Consequently, the row size of the incidence matrix
grows by one and some entries are modified to account for
the reconnection. An additional column is appended to the
incidence matrix to account for the new element.

To minimize user interaction, we propose to generate all
possible series and parallel augmentations of a nominal
circuit according to the two rules above. This operation
can be performed once or several times, however, the com-
plexity increases significantly after each step. The elements
added by augmentation will account for parasitics, skin
or proximity effects in high-frequency and will yield an
automatically-generated broadband ECM.

4. ELEMENT PERTURBATION

We are provided with frequency responses of components
obtained by direct measurement or using an electroma-
gnetic field solver. Using minimal user insight, a nominal
circuit is defined. This circuit is then augmented following
Sect. 3. Lastly, we perturb the value of each circuit element
to match the response of the new system to the given
measurements.

4.1 Single element

We treat the case of a single element first and we distin-
guish between two scenarios based on its type:

• shunt element: (5) shows that the stamp of the
element in the MNA system is recovered through
the appropriate column of the incidence matrix. If
the element is connected between nodes k and l, the
selector vector ξ indicates its connectivity

ξ =







0
1 ← kth entry
0

−1 ← lth entry.
0

(9)

If node k or l is the ground node, the corresponding
row is deleted, hence ξ contains only 1 or −1.

• series element: (5) shows that the value of the ele-
ment directly multiplies the corresponding current
unknown in the state-space vector, hence

ξ =

[
0n

eL
0nr

]
or ξ =

[
0n

0nl

eR

]
(10)

for perturbing an inductance or a resistance, respecti-
vely. 0n is a null column vector of size n, the number
of nodes, 0nr , of size nr, the number of series resistive
elements and 0nl

, of size nl, the number of series
dynamic elements. Moreover, eL is a unit column
vector with 1 at the position of the corresponding
inductor and similarly for eR.

Denoting sEdae − Adae as G, the transfer function is
H(s) = CG−1B (note that G contains the frequency
dependency). The perturbation induced in the element
value induces a perturbation in G as follows:

G = G0 +∆αξξT , (11)

where G0 is the matrix containing the nominal values and
∆α is the perturbation in the value of the element. If we
treat a dynamic element, a capacitance or an inductance,
then ∆α = s∆Ci or ∆α = s∆Li. For static elements,
∆α = ∆Gi or ∆α = ∆Ri, respectively.

The Sherman-Morrison formula (Golub and Van Loan
(1996)) allows to express G−1:

G−1 = G−1
0 − G−1

0 ∆αξξTG−1
0

1 + ∆αξTG−1
0 ξ

. (12)

Hence, the transfer function is

H(s) =CG−1B = CG−1
0 B︸ ︷︷ ︸

H0(s)

−∆α

Fc(s)︷ ︸︸ ︷
CG−1

0 ξ

Fb(s)︷ ︸︸ ︷
ξTG−1

0 B

1 + ∆α ξTG−1
0 ξ︸ ︷︷ ︸

K(s)

=H0(s)−∆α
F(s)

1 + ∆α ·K(s)
, (13)

with F(s) = Fc(s)Fb(s) (note that K(s) is scalar).

We wish to minimize the deviation between the measure-
ments provided, denoted by Hi, and the transfer function
of the perturbed system evaluated at the measurement fre-
quencies ωi, where ωi = 2πfi, for i = 1, . . . , N , with N , the

number of samples provided: E =
∑N

i=1 ‖H(iωi)−Hi‖2F ,
so, after substitution of (13), the error becomes

E =

N∑
i=1

∥∥∥∥
(
H0(iωi)−∆α

F(iωi)

1 + ∆α ·K(iωi)

)
−Hi

∥∥∥∥
2

F

=

N∑
i=1

∥∥∥∥∆H(iωi)−∆α
F(iωi)

1 + ∆α ·K(iωi)

∥∥∥∥
2

F

,

with ∆Hi=H0(iωi)−Hi. We redefine F(iωi) as Fi ∈ Cp×p

and K(iωi) as Ki ∈ C, so the error expression becomes

E =
N∑
i=1

∥∥∥∥∆Hi − Fi
∆α

1 + ∆α ·Ki

∥∥∥∥
2

F

. (14)

The optimization problem is simply

min
∆α

E = min
∆α

N∑
i=1

∥∥∥∥∆Hi − Fi
∆α

1 + ∆α ·Ki

∥∥∥∥
2

F

. (15)

The optimization parameter ∆α appears in the numerator
and denominator, making this problem nonlinear. Emplo-
ying the Sanathanan-Koerner (SK) iteration (Sanathanan
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and Koerner (1963)), we relax the problem by using ∆α
from the previous iteration in the denominator, thus yi-
elding a linear problem which can be solved to determine
the current ∆α:

min
∆α

N∑
i=1

∥∥∥∥
∆Hi + (∆HiKi − Fi)∆αk

1 + ∆αk−1 ·Ki

∥∥∥∥
2

F

(16)

via least-squares: ALS∆αk ≈ bLS , with

ALS=




vec (�(X1))
vec (�(X1))

...
vec (�(XN ))
vec (�(XN ))



,bLS=




vec (�(Y1))
vec (�(Y1))

...
vec (�(YN ))
vec (�(YN ))



, (17)

where vec is the vectorization of the p × p matrix in the
argument, �, � are the real and imaginary parts and lastly,
Xi =

∆HiKi−Fi

1+∆αk−1Ki
and Yi =

−∆Hi

1+∆αk−1Ki
.

4.2 Several elements

For perturbing several elements, we employ the alterna-
ting least squares technique. Each element is optimized
independently by keeping the other parameters fixed and
applying Sect. 4.1. This iterative process is run until co-
nvergence or a maximum number of iterations is reached.
The pseudocode is detailed in Algorithm 1.

5. NUMERICAL EXAMPLES

5.1 RLC circuit with parasitic elements

The first example is a theoretical example (with unrealistic
values) in which the goal is to identify the parasitic
elements of an inductor and a capacitor in an RLC circuit.
The circuit is shown in Fig. 2, with the parasitics indicated
in red, the parasitic elements having values much smaller
than those of the circuit elements. We model the inductor
with value 1.5H as having an equivalent series resistance of
.05Ω. Similarly, the capacitor with value .22F is modeled
together with a series resistance of .005Ω and a series
inductance of .03H.

1.5H .05Ω .22F

.005Ω

.03H

60Ω−
+ Vin

iout

Fig. 2. RLC circuit with parasitics

We consider admittance parameters for the circuit in Fig.
2, by having the circuit voltage-controlled and measuring
the current in the first branch. We generate 200 mea-
surements of the admittance parameters for this circuit
between ω = 1 and ω = 10rad/s. We start from the RLC
circuit with no parasitic elements, which we augment using
all possible series augmentations by R and L elements and
parallel augmentations by G and C elements. Afterwards,
topological fitting is applied to the augmented circuit by
perturbing the values of the augmented elements and the
values found are indicated next to each element in Fig. 3

Algorithm 1: top fit

Input : (fi,Hi), ∀i = 1, . . . , N : measurements,
R0: diagonal matrix with input impedance at
each port: ∞ (impedance), 0 (admittance), real
positive (scattering),
A: reduced incidence matrix,
nodes: structure with node information,
list el: list of elements as a cell array of strings
{’R’,’L’,’C’,’G’},
val el: vector of nominal values,
ind el: vector of indices for the elements to be
perturbed
opts: structure with tolerance and maximum
iterations number

Output: new val el: vector of new numerical values
Edae, Adae: updated descriptor-form

1 [AC ,AG,AL,AR,Cb,Gb,Lb,Rb, iC , iG, iR, iL] =
get top(A,list el,val el) // Obtain circuit
topology as in (3) and (4)

2 nx = #rows(A)+size(Lb)+size(Rb)
3 [AR,Rb,B,C] = add top ports(nx,nodes,R0,AR,Rb)

// Based on Z-/Y-/S-formulation, extend AR

and R as needed and create B and C
4 [Edae,Adae] = construct DAE(AC ,AG,AL,AR,Cb,Lb,
5 Gb,Rb) // Constructs A and E as in (5)
6 ξξξ = create xi(ind el,list el,iC ,iG,iL,iR,AC ,AG,AL,AR,

size(Edae))// selector vectors as in (9),(10)
7 nIter1 = 0, ε1 = ∞// outer loop
8 ααα = 0 // initial guess
9 ∆ααα = 0// stores increments

10 α̃αα =val el(ind el)// stores current values
11 while nIter1 <opts.maxIter & ε1 >opts.tol do
12 for j do
13 ξ = ξξξj
14 for i do
15 Compute ∆Hi, Fi and Ki

16 α = αααj , nIter2 = 0, ε2 = ∞// inner loop
17 while nIter2 <opts.maxIt & ε2 >opts.tol do
18 nIter2 ← nIter2 + 1
19 Form ALS and bLS as in (17)
20 Solve x = ALS\bLS imposing x+ α̃ααj > 0
21 ε2 ← |α− x|, α ← x

22 ∆αααj ← α, α̃ααj ← α̃ααj + α
23 Update Cb,Lb,Gb or Rb with new value α̃ααj and

Edae,Adae with construct DAE

24 nIter1 ← nIter1 + 1, ε1 ← ‖∆ααα‖2
25 new val el = val el, new val el(ind el) = α̃αα

1.5H .0505Ω .22F

.0045Ω

.03H

10−6S

9 · 10−7F

60Ω

0

4 · 10−6S0

Fig. 3. Augmented RLC circuit with the values found
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and Koerner (1963)), we relax the problem by using ∆α
from the previous iteration in the denominator, thus yi-
elding a linear problem which can be solved to determine
the current ∆α:

min
∆α

N∑
i=1

∥∥∥∥
∆Hi + (∆HiKi − Fi)∆αk

1 + ∆αk−1 ·Ki

∥∥∥∥
2

F

(16)

via least-squares: ALS∆αk ≈ bLS , with

ALS=




vec (�(X1))
vec (�(X1))

...
vec (�(XN ))
vec (�(XN ))



,bLS=




vec (�(Y1))
vec (�(Y1))

...
vec (�(YN ))
vec (�(YN ))



, (17)

where vec is the vectorization of the p × p matrix in the
argument, �, � are the real and imaginary parts and lastly,
Xi =

∆HiKi−Fi

1+∆αk−1Ki
and Yi =

−∆Hi

1+∆αk−1Ki
.

4.2 Several elements

For perturbing several elements, we employ the alterna-
ting least squares technique. Each element is optimized
independently by keeping the other parameters fixed and
applying Sect. 4.1. This iterative process is run until co-
nvergence or a maximum number of iterations is reached.
The pseudocode is detailed in Algorithm 1.

5. NUMERICAL EXAMPLES

5.1 RLC circuit with parasitic elements

The first example is a theoretical example (with unrealistic
values) in which the goal is to identify the parasitic
elements of an inductor and a capacitor in an RLC circuit.
The circuit is shown in Fig. 2, with the parasitics indicated
in red, the parasitic elements having values much smaller
than those of the circuit elements. We model the inductor
with value 1.5H as having an equivalent series resistance of
.05Ω. Similarly, the capacitor with value .22F is modeled
together with a series resistance of .005Ω and a series
inductance of .03H.

1.5H .05Ω .22F

.005Ω

.03H

60Ω−
+ Vin

iout

Fig. 2. RLC circuit with parasitics

We consider admittance parameters for the circuit in Fig.
2, by having the circuit voltage-controlled and measuring
the current in the first branch. We generate 200 mea-
surements of the admittance parameters for this circuit
between ω = 1 and ω = 10rad/s. We start from the RLC
circuit with no parasitic elements, which we augment using
all possible series augmentations by R and L elements and
parallel augmentations by G and C elements. Afterwards,
topological fitting is applied to the augmented circuit by
perturbing the values of the augmented elements and the
values found are indicated next to each element in Fig. 3

Algorithm 1: top fit

Input : (fi,Hi), ∀i = 1, . . . , N : measurements,
R0: diagonal matrix with input impedance at
each port: ∞ (impedance), 0 (admittance), real
positive (scattering),
A: reduced incidence matrix,
nodes: structure with node information,
list el: list of elements as a cell array of strings
{’R’,’L’,’C’,’G’},
val el: vector of nominal values,
ind el: vector of indices for the elements to be
perturbed
opts: structure with tolerance and maximum
iterations number

Output: new val el: vector of new numerical values
Edae, Adae: updated descriptor-form

1 [AC ,AG,AL,AR,Cb,Gb,Lb,Rb, iC , iG, iR, iL] =
get top(A,list el,val el) // Obtain circuit
topology as in (3) and (4)

2 nx = #rows(A)+size(Lb)+size(Rb)
3 [AR,Rb,B,C] = add top ports(nx,nodes,R0,AR,Rb)

// Based on Z-/Y-/S-formulation, extend AR

and R as needed and create B and C
4 [Edae,Adae] = construct DAE(AC ,AG,AL,AR,Cb,Lb,
5 Gb,Rb) // Constructs A and E as in (5)
6 ξξξ = create xi(ind el,list el,iC ,iG,iL,iR,AC ,AG,AL,AR,

size(Edae))// selector vectors as in (9),(10)
7 nIter1 = 0, ε1 = ∞// outer loop
8 ααα = 0 // initial guess
9 ∆ααα = 0// stores increments

10 α̃αα =val el(ind el)// stores current values
11 while nIter1 <opts.maxIter & ε1 >opts.tol do
12 for j do
13 ξ = ξξξj
14 for i do
15 Compute ∆Hi, Fi and Ki

16 α = αααj , nIter2 = 0, ε2 = ∞// inner loop
17 while nIter2 <opts.maxIt & ε2 >opts.tol do
18 nIter2 ← nIter2 + 1
19 Form ALS and bLS as in (17)
20 Solve x = ALS\bLS imposing x+ α̃ααj > 0
21 ε2 ← |α− x|, α ← x

22 ∆αααj ← α, α̃ααj ← α̃ααj + α
23 Update Cb,Lb,Gb or Rb with new value α̃ααj and

Edae,Adae with construct DAE

24 nIter1 ← nIter1 + 1, ε1 ← ‖∆ααα‖2
25 new val el = val el, new val el(ind el) = α̃αα

1.5H .0505Ω .22F

.0045Ω

.03H

10−6S

9 · 10−7F

60Ω

0

4 · 10−6S0

Fig. 3. Augmented RLC circuit with the values found
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(the conductance is represented as a rectangle, while the
resistor is displayed using the zig-zag symbol).

Lastly, Fig. 4 shows the Y-parameter measurements of the
circuit in Fig. 2, which, together with the RLC circuit with
no parasitics, are used as input parameters to our approach
to recover the circuit in Fig. 3.
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Fig. 4. Results for the RLC circuit with parasitics

Comparable results were obtained when adding white
Gaussian noise with 60dB signal-to-noise ratio to the
measurements. The circuit found is shown in Fig. 5 while
results are similar to those in Fig. 4. The noise level was
chosen such that the parasitic elements with values in the
10−3 range are not embedded in noise.

1.5H .0505Ω
.22F

.0045Ω

.03H

10−6S

5 · 10−7F

60Ω

0

10−4S0

Fig. 5. RLC circuit with augmented elements and their
values found in the presence of noise

5.2 Spiral inductor

S-parameter measurements obtained from a full-wave ele-
ctromagnetic field simulation of a 2-port spiral inductor
are provided.

We normalize the frequency by ωnorm = 10−10rad/s.
Inductances and capacitances are rescaled by the same
factors Lnorm = 10−10 H and Cnorm = 10−10 F, while
impedances are normalized by a unit factor Rnorm = 1Ω.
Reported component values are normalized quantities with
no units and actual values are found as

L = LnormL̂, C = CnormĈ, R = RnormR̂.

We first fit a π configuration (Fig. 6) to the first half of
the frequency band to find the elements matching this low-
frequency behaviour. The initial guesses for the elements’
values are 10−7 (this is the nominal circuit for this step).
The values found with top fit yield a model which
matches accurately the first half of the measurements
(shown in Fig. 7).

0.001

87.468

9.2 · 10−4

1 2

0

Fig. 6. π-configuration found from the low-frequency be-
havior of the spiral inductor (normalized component
values)
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Fig. 7. Fitting the π configuration in low-frequency

In the next step, we duplicate this circuit to obtain a
2π configuration, thus accounting for proximity effects
(Cao et al. (2003); Wang et al. (2006)). We distribute
the inductor value found in the first step and use the
value found in Fig. 6 divided by two as initial guess for
the two inductors, while the initial guess for the last
capacitor is 10−7. This constitutes the nominal circuit for
this step. Topological fitting is applied again on the whole
frequency band. The circuit found is depicted in Fig. 8.
The measurements, the response of the nominal model
and the response corresponding to the circuit in Fig. 8
are shown in Fig. 9. This circuit fits the measurements
quite accurately, with a slight discrepancy still observed
in the imaginary part of S12.

7 · 10−4

36.939

8.3 · 10−4

54.89

7.3 · 10−4

1 2 3

0

Fig. 8. 2π-configuration for the spiral inductor (normalized
component values)

In the last step, we generate all possible series and parallel
augmentations of the 2π circuit of Fig. 8 (this is the

Proceedings of the 9th MATHMOD
Vienna, Austria, February 21-23, 2018

5



456 Sanda Lefteriu  et al. / IFAC PapersOnLine 51-2 (2018) 451–456

10
-1

10
0

(normalized)

0.2

0.4

0.6

0.8

M
a
g
n
it
u
d
e
(d

B
)

Real S11

measurements

nominal

model

10
-1

10
0

(normalized)

-0.6
-0.4
-0.2

0
0.2
0.4

M
a
g
n
it
u
d
e
(d

B
)

Imag S11

measurements

nominal

model

10
-1

10
0

(normalized)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

M
a
g
n
it
u
d
e
(d

B
)

Real S12

measurements

nominal

model

10
-1

10
0

(normalized)

-0.5

-0.4

-0.3

-0.2

-0.1

M
a
g
n
it
u
d
e
(d

B
)

Imag S12

measurements

nominal

model

10
-1

10
0

(normalized)

0.2

0.4

0.6

0.8

M
a
g
n
it
u
d
e
(d

B
)

Real S22

measurements

nominal

model

10
-1

10
0

(normalized)

-0.4

-0.2

0

0.2

0.4

M
a
g
n
it
u
d
e
(d

B
)

Imag S22

measurements

nominal

model

Fig. 9. Fitting the 2π configuration on the entire frequency
band

nominal circuit for the last step) and perform topological
fitting to find the missing parasitic elements which would
improve the accuracy in high-frequency. The resulting
circuit is displayed in Fig. 10; it matches the data closely
over the entire frequency band, as shown in Fig. 11.

10−5

5 · 10−4

12.254

.759

33.331 .739

8.4 · 10−4

.126

.723

3.1 · 10−6

58.296 .11

6.5 · 10−4

9.369

0

0

2.7 · 10−5

4.2 · 10−6

4.8 · 10−6

9.2 · 10−6

1.8 · 10−5

10−5

Fig. 10. Circuit obtained after applying topological fitting
on the circuit obtained by all possible series and paral-
lel augmentations of the 2π configuration (normalized
component values)

6. CONCLUSION

This paper aims to make a step towards automated gene-
ration of equivalent circuit models for components. These
models are valid in a broad-band and are stable and pas-
sive by construction. The algorithm works well for simple
topologies with few circuit elements, but may run into dif-
ficulties if the size grows too large or if the topology of the
nominal circuit is not suitable for the application at hand.
In the future, we consider combining the SK process with
a Newton iteration and use regularization for alternate
least-squares to improve and speed up convergence.
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