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Transient response and frequency
domain analysis of an electrically
variable transmission

Enrico Galvagno , Alessandro Vigliani and Mauro Velardocchia

Abstract
This article deals with the dynamic behavior of a passenger car equipped with an electrically variable transmission, which
is analyzed both in time and frequency domains. After deriving the dynamic equations in the state-space form for both
open- and closed-loop systems, a methodology for objectively evaluating the drivability of this over-actuated system is
proposed. Several simulation results are presented with the aim of highlighting the transient response to fast engine tor-
que changes and the effect of the generator speed controller calibration on the system dynamics. Moreover, the influ-
ence of the ratio between electrical and thermal power on the frequency response is discussed. The proposed analysis,
which is based on a simple static torque split between internal combustion engine and propulsion electric motor, depicts
the dynamic signature of the electrically variable transmission powertrain system, without any additional drivability filter.
Hence, these results can constitute the base for the design of dynamic torque splitting aimed at optimizing the longitudi-
nal vehicle response to the driver’s acceleration demand.
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Introduction

The ever-increasing popularity of hybrid electric vehi-
cles (HEVs) has led to the development of new trans-
mission systems combining electric motors and internal
combustion engine (ICE) in an optimized way. An elec-
trically variable transmission (EVT) is a type of power-
split transmission used to propel HEVs. It uses two
motor-generator units to obtain a continuously vari-
able speed ratio between the engine crankshaft and the
wheels, thereby permitting the engine to supply power
very efficiently. The strategy to control the energy flow
among these multiple sources is termed ‘‘energy man-
agement’’ and is crucial for fuel economy.

Most existing works in the literature focus on con-
trollers that try to minimize fuel consumption, neglect-
ing other attributes that affect the smoothness and
responsiveness of vehicle, which are commonly referred
to as drivability.1

Vinot et al.2 use optimal offline management with
discrete dynamic programming to evaluate the fuel
consumption in the global design process of an EVT,
aiming at minimizing fuel consumption and the number
of battery cells. Kessels et al.3 face the optimization of
the power flow by means of an integrated powertrain
control considering the efficiency of all powertrain
components, aiming at energy efficiency. Similarly,
other authors focus on different transmission layouts,
for example, series4 or parallel5 hybrid architectures,
always limiting to fuel economy or low emission
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aspects; Delkhosh et al.6 present a control strategy that
can be used only for hybrid vehicles with Continuously
Variable Transmission (CVT), proposing an optimiza-
tion for different driving cycles.

Taylor and Katariya7 developed a dynamic model
for a two-mode EVT and proposed a control system
capable of meeting driver torque demands while also
accommodating preferred engine operating points.

Other works8 discuss different layouts and solutions
for EVT transmissions comparing the power perfor-
mances of each proposal, but also considering some
production aspects (costs, ease of manufacture, and
sustainability).

Besides energy management tasks, drivability aspects
are becoming increasingly important for HEVs. In par-
ticular, drivability refers to the powertrain capability of
guaranteeing smooth and fast vehicle response to driver
requests and to manage the operating mode change
without perceptible noise and vibration. These aspects
mainly affect the vehicle longitudinal dynamic perfor-
mance and require finding a trade-off between comfort
and sporty feeling also in relation to the specific seg-
ment and mission of the car.

In Opila et al.,1 drivability restrictions are directly
incorporated in a causal, optimal controller design
method for the energy management system of an HEV.
The focus is on drivability with respect to engine start-
stop and gear shifts; a host of other drivability issues,
such as low-frequency longitudinal vibration and other
attributes which are typically mitigated by hardware
design or low-level control actions, are not considered.

The purpose of the study reported in Galvagno
et al.9 is to assess the drivability of a through-the-road-
parallel HEV, with an ICE powering the front axle and
an electric motor the rear axle. Through the simulation
of a linearized model, the vehicle response to the diver
request is analyzed in the time and frequency domain.
The effect of the actual gear ratio is investigated and a
sensitivity analysis of the influence of the torque distri-
bution between the front (thermal) and rear (electric)
axles on vehicle drivability is presented.

In the study by Koprubasi et al.,10 the typical dri-
vability issues of a power-split hybrid-electric vehicle
are considered and identified: pedal tip-in and tip-
out, change of operating modes, and gear shifting are
discussed. The proposed model is useful for the
design, improvement, and calibration of control
strategies.

The purpose of this article is to present a
drivability-oriented dynamic model for the one-mode
EVT, which takes into account the effect of the gen-
erator speed controller on the vehicle dynamic perfor-
mance and on the low frequency torsional behavior of
the transmission. After presenting the considered
powertrain layout and the adopted lumped parameter
model, the dynamic and kinematic equations are

reported. The final state-space formulations of both
uncontrolled (open loop) and controlled system, con-
sidering a closed-loop proportional generator speed
controller, are shown.

A frequency response function (FRF) suitable for
the drivability assessment of this kind of HEV architec-
ture is proposed and then used to evaluate the influence
of different parameters. Finally, the transient response
during the application of engine torque disturbances is
evaluated under different vehicle speeds and controller
calibrations.

Series/parallel hybrid electric powertrain

Figure 1(a) shows the powertrain layout of a series/par-
allel HEV: this powertrain architecture, also known as
input-split EVT, allows changing continuously the
speed ratio between the engine and the driving wheels.
In fact, the generator, in addition to enabling the trans-
fer of mechanical power from the engine to the wheels
through the power-split device by absorbing or generat-
ing electrical power, realizes a speed ratio controller, as
will be shown in the article.

With reference to Figure 1, the ICE E shaft is con-
nected to the planet carrier c of the epicyclic gear set
EGS (also known as power-split device) through a tor-
sional damper. The other two mechanical interfaces of
the EGS are connected to generator G, via sun gear s,
and to electric motor M and final reduction stage of
the transmission via the ring gear r. The final reduction
stage is composed of a silent chain transmission SC
and an ordinary gear train. Finally, the differential gear
D splits the transmission output torque to the two half-
shafts and allows the transfer of the mechanical power
to the driving wheels W of the vehicle.

An appropriate lumped parameter model to study
the drivability of the analyzed system is shown in
Figure 1(b). The compliances of the transmission sys-
tem are lumped in three spring and damper elements:
one for the torsional damper downstream of the engine
and one for each half-shaft. In addition, also the tire
torsional flexibility is considered by means of a model
that includes the effects of the tire relaxation-length.
More details about the modeling process and assump-
tions are given in the following section.

Dynamic model

The model equations for each powertrain component
are here reported.

Engine. A first-order differential equation is introduced
for modeling the dynamics of the engine torque genera-
tion system
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_Te =
1

te

Tde � Teð Þ ð1Þ

where Tde is the desired engine torque, Te is the effective
engine torque applied by the engine, and te is a time
constant.

The second equation of the engine model is the
dynamic balance of the moments applied to the engine
shaft

Te � Je
€ue � kd ue � ucð Þ+bd

_ue � _uc

� �� �
= 0 ð2Þ

Je is the mass moment of inertia of the engine and fly-
wheel, kd and bd are the torsional stiffness and damp-
ing of the torsional damper, _ue and _uc are the angular
speeds of the engine and the planet carrier of the plane-
tary gear set.

Electric generator. For the generator, a first-order model
is also used to describe the torque generation system

_Tg =
1

tg

Tdg � Tg

� �
ð3Þ

Newton’s second law applied to the generator rotat-
ing inertia gives

Tg � Jg
€ug + Ts=g = 0 ð4Þ

where Tg is the effective generator torque, Jg is the mass
moment of inertia of the generator, Ts=g is the EGS sun
gear torque, and _ug is the angular speed of the electric
generator.

Electric motor. Similar to the other actuators, the delay
due to the electric motor torque control system is mod-
eled as follows

_Tm =
1

tm

Tdm � Tmð Þ ð5Þ

Tm � Jm
€um + Tr=m � Tsc = 0 ð6Þ

where Tm is the effective propulsion electric motor tor-
que, Jm is the mass moment of inertia of the electric
motor, Tr=m is the EGS ring gear torque, Tsc is the silent
chain torque, and _um is the angular speeds of the elec-
tric motor.

Primary shaft.
ischscTsc � JG1

€uG1 � TG2 = 0 ð7Þ

TG2 is the torque coming from the secondary shaft, isc

and hsc the speed ratio and the efficiency of the silent
chain, JG1 the moment of inertia of the primary reduc-
tion shaft, and €uG1 its angular acceleration.

Secondary shaft.
iGhGTG2 � JG2

€uG2 � TD = 0 ð8Þ

TD is the differential ring torque reflected to the second-
ary shaft, iG and hG the gear ratio and the efficiency of
the gear pair, JG2 the moment of inertia of the secondary
reduction shaft, and €uG2 its angular acceleration.

Differential.
iDhDTD � JD

€uD � khs uD � uwð Þ+bhs
_uD � _uw

� �� �
= 0

ð9Þ

Figure 1. Input-split EVT: (a) layout and (b) mechanical model.
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iD and hD are the gear ratio and the efficiency of the
last reduction gear before differential, JD the moment of
inertia of the differential and €uD its angular acceleration,
khs = khs, L + khs,R and bhs =bhs, L +bhs,R are the tor-
sional stiffness and damping of the half-shafts, and _uw is
the wheel angular speed. Note that, under the assump-
tion of symmetry of the two half-shafts and wheels, the
two transmission paths have the same mechanical beha-
vior, hence can be modeled as an equivalent system with
double stiffness, damping, and inertia.

Driving wheels (front axle).

khs uD � uwð Þ+bhs
_uD � _uw

� �� �
� Tt � Jw

€uw � Troll, f = 0

ð10Þ

Tt is the effective wheel torque (two wheels) due to tire-
road interaction, Troll, f = Troll, L + Troll,R is the rolling
resistance torque of the front tires, and
Jw = Jw, L + Jw,R the moment of inertia of the front
wheels.

Tire model. The linearization of the tires longitudinal
force versus slip steady-state characteristic,11 valid for
low slip values, leads to an equivalent viscous damper
with viscous friction coefficient bt placed between the
wheels and the equivalent inertia of the vehicle,9 for fur-
ther details

Tt, ss =bt
_uw � _uv

� �
ð11Þ

bt =
CsRw

_uw0

ð12Þ

where Rw is the wheel radius, _uw0 is the wheel speed
value about which the tire longitudinal force has been
linearized, and Cs is the longitudinal slip stiffness of the
driving axle, that is, twice the value of a single tire.
Moreover, the tire transient behavior is modeled intro-
ducing the longitudinal relaxation length Lx, resulting
in a first-order system with time constant tt ¼ Lx=v

_Tt =
1

tt

ðTt, ss � TtÞ=
bt

tt

_uw �
bt

tt

_uv �
1

tt

Tt ð13Þ

where Tt, ss is the steady-state wheel torque due to tire-
road interaction, _uv = v=Rw is the vehicle equivalent
angular speed, and v the vehicle longitudinal speed.

Vehicle. The dynamic balance of the vehicle longitudinal
motion reflected to the front wheels axis gives

Tt � (R2
wMv + Jw, r)€uv = Troll, r +RwFaer ð14Þ

where Troll, r is the rolling resistance torque of the rear
wheels, Faer is the aerodynamic resistance of the vehicle,
Mv is the vehicle mass, Jw, r the moment of inertia of the
rear wheels.

Since the rear wheels are not driven, their behavior
can be described using a simplified pure rolling model,
that is

_uw, r = _uv = v=Rw ð15Þ

Since both rolling and aerodynamic resistances are
nonlinear functions of the state variables, they need to
be linearized as clarified later in a specific section.

EGS. Considering a unitary efficiency and neglecting
the inertia of the inner components of the gear set, the
following torque equations hold

Ts=g =
Rs

Rr +Rs

Tc ð16Þ

Tr=m =
Rr

Rs +Rr

Tc ð17Þ

where subscripts s, r, and c represent sun gear, ring
gear, and planet carrier of the planetary gear set,
respectively. R is the pitch radius of the gears. See
Velardocchia et al.12 and Galvagno13 for mathematical
models of epicyclical gears including also mesh effi-
ciency, bearings/seals losses, and inertial effects.

The gear train kinematic equation is

_uc =
_usRs + _urRr

Rs +Rr

ð18Þ

Since the generator is connected to the sun gear, the
electric motor to the ring gear, and the carrier to the
engine through the torsional damper, the former equation
can be rewritten as follows under steady-state condition

_ue =
_ugRs + _umRr

Rs +Rr

ð19Þ

From this kinematic equation, the possibility to con-
trol the engine speed through the electric generator
becomes evident. The engine speed is a weighted mean
of the generator and the motor/vehicle speed where the
weights are functions of the gears radii. The parameter
ieg =Rr=Rs, the EGS ratio, will be used in the
following.

Linearization of the external forces. Rolling resistance is
generally modeled as a quadratic function of the wheel
speed and aerodynamic force as a quadratic function of
the vehicle speed. A constant weight distribution
between front and rear axle is considered, hence the
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longitudinal load transfer is neglected. The lineariza-
tion of these functions gives

Troll, r =
a

L
RwMvg f0 +K _u2

w, rR
2
w

� �
’ c0r, r + c1r, r

_uv

Troll, f =
b

L
RwMvg f0 +K _u2

w, f R2
w

� �
’ c0r, f + c1r, f

_uw

Faer =
1

2
rSvCd

_u2
vR3

w ’ c0a + c1a
_uv

8>>>>><
>>>>>:

ð20Þ

where a and b are the distances from the vehicle center
of mass to the front and rear wheels, L the wheelbase,
f0 and K are rolling resistance constant and quadratic
coefficients, r is the air density, Sv the vehicle frontal
area, and Cd is the aerodynamic drag coefficient.

The expressions of the constants of linearization are
reported in Appendix 1.

The linearization process of the system nonlinearities
leads to different parameter values and consequently
different system response for different vehicle speed as
will be discussed in the ‘‘Simulation results’’ section.

State-space model of the uncontrolled system

The continuous time-invariant state-space representa-
tion of the uncontrolled mechanical system, that is,
considering as input the torque requests to the three
actuators, is

_zf g= A½ �|{z}
14x14

zf g+ B½ �|{z}
14x3

uf g+ Hf g|ffl{zffl}
14x1

ð21Þ

where the state vector fzg includes the angular speeds
and positions of the selected degrees of freedom of the
system, the torque generated by the actuators and by
the front tires

zf g= _ue, _ug, _um, _uw, _uv, ue, ug, um, uw, uv, Te, Tg, Tm, Tt

	 
T

ð22Þ

The input vector fug contains the desired torque of
engine, generator, and motor

uf g= Tde, Tdg, Tdm

	 
T ð23Þ

The dynamic matrix ½A�, the input matrix ½B�, and
the constant matrix ½H �, expressed in terms of the sys-
tem parameters, are reported in Appendix 1.

Generator speed controller

Different from more traditional mechanical transmis-
sions, for example, MT, AT, and DCT, an EVT does
not represent a mechanical constraint for the speed
ratio between engine and wheels. The generator accom-
plishes this specific objective: by controlling its shaft

speed, it varies the ratio between the transmission input
and output speeds. Moreover, it is of interest noting
that while the speed ratio of the EVT can be continu-
ously adjusted through the generator control, the tor-
que ratio is constant and dependent on the mechanical
parameters of the system.

In order to study the dynamic behavior of an EVT-
equipped vehicle, it is therefore necessary to consider
also the generator speed controller

Tdg = Tff + Tfb = � Tde

1+ ieg

+Kp
_ug, ref � _ug

� �
ð24Þ

The generator torque demand Tg can be generally
expressed as the sum of a feed-forward term Tff , which
is the steady-state solution of the nominal plant, and a
feed-back term Tfb, which attempts to minimize the
error over the time between the target generator speed
_qg, ref and the actual generator speed _qg. In this article,
a pure proportional speed controlled is considered, and
Kp is the proportional gain.

Introducing a target overall speed ratio iH between
the engine and the wheels and recalling that the speed
of the driving wheels is proportional to the motor speed
in steady-state conditions, the target speed ratio z

between engine and motor can be found

_ue

_uw

= iH;
_ue

_um

=
iH

isciGiD

= z ð25Þ

The target ratio z is an output of the energy manage-
ment controller: in fact, the aim is to keep the engine
operation point at the best possible efficiency during all
operating conditions. The generator continuously
adjusts the engine speed so that the engine can work on
its optimal operation line.

The equation for calculating the generator speed set
point _ug, ref , for a given motor speed _um and a desired
speed ratio z is derived by inserting equation (25) into
equation (19)

_ug, ref = _um z 1+ ieg

� �
� ieg

� �
ð26Þ

The engine speed and the electric motors speeds are
available measures that are used as known quantities by
the control system.

Hence, the reference speed for the generator can be
easily computed and introduced in equation (24) to
obtain the generator torque as a function of inputs and
states

Tdg = � Kp
_qg +Kp z 1+ ieg

� �
� ieg

� �
_qm �

1

1+ ieg

Tde

ð27Þ

Inserting the former equation in equation (3), a new
equation for the state space becomes available. Hence,

Galvagno et al. 5



Tdg does not enter as an input in the state-space model
anymore, but its value is automatically computed
through equation (27) starting from the engine torque
command Tde, the speeds _qm and _qg of the electric
machines, and the desired speed ratio z.

Therefore, the state-space formulation of the con-
trolled mechanical system has a reduced number of
inputs, that are the torque demand for the engine and
the electric motor, while the target speed ratio enters as
a parameter in the dynamic matrix ½AC�, in formulas

_zf g= AC zð Þ½ �|fflfflffl{zfflfflffl}
14x14

zf g+ BC½ �|{z}
14x2

Te

Tm

� �
+ Hf g|ffl{zffl}

14x1

ð28Þ

Powertrain torque control

Since the aim of this research is to investigate the ‘‘pas-
sive’’ dynamic behavior of an EVT-equipped vehicle,
that is, in absence of drivability control, we assume to
proportionally distribute the total effort requested at
the wheels according to the energy management control
strategy requirements. A simple gain between the
desired engine torque and the desired electric motor
torque is imposed, that is

Tdm tð Þ= kTde tð Þ ð29Þ

It must be noted that a dynamic correction G(s)
could be designed in order to tune the desired drivabil-
ity performance of the vehicle, that is, Tm =G(s)Te; this
aspect goes beyond the main scope of the article.

At the same time, the generator exerts the reaction
torque to the epicyclic gear train needed to enable the
transfer of engine power to the wheels, according to its
control logic explained in the former section.

In order to quantify the contribution to the vehicle
propulsion of the engine and the electric motor, a para-
meter p is introduced. It represents the percentage of
the total tractive torque, delivered at the drive wheels
Tw by the engine in steady-state conditions.

The steady-state torque contributions of the actua-
tors evaluated at the wheels can be easily obtained start-
ing from the dynamic equations

Tdw = Tdm + Tde

ieg

1+ ieg

 �
ischsc ð30Þ

Dividing equation (30) by Tdw and introducing the
percentage of utilization of the ICE p, it yields

1= ischsc

Tdm

Tdw

+
ischscieg

1+ ieg

Tde

Tdw

= 1� pð Þ+ p ð31Þ

Isolating the engine and electric motor terms

Tde

Tdw

=
ischscieg

1+ ieg

Tde

Tdw

= p

Tdm

Tdw

= ischsc

Tdm

Tdw

= 1� p

8>>><
>>>: ð32Þ

Consequently, if p=1 the vehicle utilizes only the
engine (and the generator) torque to propel the vehicle,
whereas if p=0 the vehicle is running in pure electric
mode.

Finally, the following equations can be used to eval-
uate the engine torque demand and the electric motor
torque demand from a given desired wheel torque and
percentage of utilization p

Tde

Tdw

=
1+ ieg

ischscieg

p

k =
Tdm

Tde

=
ieg 1� pð Þ
1+ ieg

� �
p

8>>><
>>>: ð33Þ

Frequency response function for drivability
assessment

Vehicle longitudinal acceleration is one of the most
important quantities that is commonly used for the
evaluation of the drivability of a vehicle because it can
be strictly correlated to both comfort and sportiness
perceived by the passengers of a car.

As it has been done for the drivability assessment of
other HEV architectures,9 a transfer function to charac-
terize the drivability performance of the EVT-equipped
vehicle must be carefully chosen. It correlates the tor-
que total request at the wheels, coming from the driver,
to the actual response of the vehicle, in terms of longi-
tudinal acceleration.

Since the system is over-actuated, this drivability
transfer function cannot be derived immediately but
requires some assumptions. A static torque split is
applied also in this case, thus allowing to study the sys-
tem response to synchronous harmonic excitations
(same frequency and same phase) applied by the i.c.
engine and the electric propulsion motor. The ampli-
tude ratio between the two exciting torques is regulated
by a torque distribution parameter.

From the mathematical point of view, the vehicle
response to a driver request of acceleration can be eval-
uated starting from the transfer function between the
wheel torque demand Tdw and the vehicle acceleration
ax, which can be easily computed from the state-space
matrices

ax

Tdw

sð Þ=Rws
_qV

Tdw

sð Þ ð34Þ

6 Advances in Mechanical Engineering



where s is the Laplace variable.
Under the hypothesis of linear system and static tor-

que split between the electric and thermal actuators,
according to equation (33), the superposition principle
can be applied, that is, the resulting FRF is the sum of
the contributions of the two inputs

_qV jvð Þ=
_qV

Tde

jvð Þ � Tde +
_qV

Tdm

jvð Þ � Tdm ð35Þ

Dividing by Tdw and inserting equation (32) in it

_qV jvð Þ
Tdw

=
1+ ieg

ischscieg

p �
_qV

Tde

jvð Þ+ 1� p

ischsc

�
_qV

Tdm

jvð Þ ð36Þ

Introducing the former equation in equation (34)
and rearranging to highlight the effect of the parameter
p on the resulting FRF, we obtain

ax

Tdw

jvð Þ= Rw

ischsc

1+ ieg

ieg

�
_qV

Tde

jvð Þ � p+
_qV

Tdm

jvð Þ � 1� pð Þ
" #

jv

ð37Þ

Since we have considered a closed loop control of
the generator speed directly implemented in the state-
space model, the generator torque does not appear
explicitly in the previous equation since its dynamic
contribution is automatically included in the other two
transfer functions. The calibration of the generator con-
trol plays an important role on the system dynamic per-
formance as will be demonstrated in the ‘‘Simulation
results’’ section.

Simulation results

In this section, the dynamic behavior of a vehicle
equipped with an EVT is investigated through numeri-
cal simulation in both time and frequency domain.

The time domain simulated maneuver is a step
change of the torques applied synchronously by the
actuators. The engine torque demand changes from 0
to 100Nm at second 1 of the simulation and the per-
centage of distribution between the actuators is
p= 50%.

The frequency domain analysis is focused on the
acceleration response of the vehicle to in-phase harmo-
nic excitations applied to the inputs.

In particular, the effects of the generator control cali-
bration, the torque distribution between the electric
motor and the i.c. engine, and the vehicle speed are ana-
lyzed in detail. Two plots for each sensitivity analysis
are shown: the first is obtained considering low vehicle
speed (30 km/h), for example, driving in city traffic, the
second considering high speed (130 km/h), for example,
driving on highways.

Effect of generator speed control

As already mentioned in the generator control section, a
proportional speed controller is assumed. Figures 2 and
3 show the effect of the proportional gain on the FRF
expressed by equation (37) and imposing p=50%.

Looking at Figure 2, the effect of the proportional
gain can be summarized as follows:

1. For low Kp values, that is, from 0 to 0.8, increas-
ing the proportional gain increases the damping
of the first peak of the FRF and shifts this peak
to lower frequencies.

2. For high Kp values, that is, from 0.8 to 100, on
the contrary, increasing the proportional gain
provokes an increase in the amplitude of this
peak. The peak frequency slightly reduces if the
gain increases. Moreover, increasing the propor-
tional gain reduces the operating bandwidth of
the controlled system.

Figure 3 shows the same FRFs but evaluated for a
higher initial vehicle speed, that is, 130km/h. The change
occurred in the parameters values, due to system nonli-
nearities, led to FRF magnitude that is much lower than
the previous case in the whole frequency range. The
increased damping is mainly due to a reduction of the
viscous friction coefficient of front tires bt, which allows
more tire slip and so a greater amount of vibrational
energy dissipation. Moreover, the damping due to aero-
dynamic and rolling resistances increases quadratically
with the vehicle speed; although these last damping para-
meters related to motion resistance are much higher in
the high speed case, their quantitative effect is more lim-
ited if compared with tire damping. Same considerations
done for the low speed maneuver, concerning the effect
of Kp also apply to this case.

Figure 2. Frequency response function ax=Tdw at a vehicle
speed of 30 km/h: effect of the proportional gain of the
generator speed controller with z = 1,9.
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Comparing the results in the frequency domain, it
can be noted that Kp=0.8 gives very good dynamic
performance, since it allows minimizing the H-infinity
norm of the FRF, that is, its maximum magnitude over
the considered frequency range, in both the low and
high speed maneuvers. This parameter setting ensures
high operating bandwidth with fast transient oscillation
damping.

Figures 4–6 show the effect of the proportional gain
on the time history of the vehicle acceleration and of
the actual speed ratio during Tip-In. The test specifica-
tions are step change from 0 to 100Nm of the engine
torque demand and constant torque distribution
p=50%.

Also from this point of view, evidently the optimal
system response is obtained using an intermediate value
of the proportional gain, that is, 0.8. In fact, both
higher and lower values lead to higher overshoot,
undershoot, and settling time of the vehicle accelera-
tion, therefore worsening the system dynamic perfor-
mance. In addition, looking at the speed ratio versus
time plot, it can be noted that the tracking and distur-
bance rejection performance of the speed ratio control-
ler is optimized for this gain choice. Comparing Figure
4 with Figure 5, it can be observed that the considered
Tip-In maneuver is less critical at high cruising speed,
because once again the higher the vehicle speed the
higher the damping effect due to tire slip and motion
resistance on the system dynamics.

Figure 6 depicts the instantaneous speed ratio com-
puted during four tip-in tests, each carried out at a dif-
ferent vehicle speed (20, 50, 80, 110 km/h). From this
graph, the effect of the vehicle speed on the perfor-
mance of the generator controller (with constant cali-
bration Kp = 0:8) can be assessed. In particular, the
control is less effective at low speed, while it becomes
progressively more insensitive to the disturbances intro-
duced by the torque steps with increasing velocity. The
steady-state error, which becomes evident at low
speeds, could be eliminated adding an integral term in
the generator feedback controller.

Effect of the torque distribution between the
actuators

The effect of the torque distribution between the ther-
mal and the electric actuators on the FRF is shown in
the upper part of Figure 7 for low speed and in the
lower part for high speed.

Figure 3. Frequency response function ax=Tw at a vehicle
speed of 130 km/h: effect of the proportional gain of the
generator speed controller with z = 0,85.

Figure 4. Vehicle acceleration (on the left) and actual speed ratio (on the right) during a Tip-In test at 30 km/h with p = 50%: effect
of the proportional gain of the generator speed controller.
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At low speed, two resonance peaks are clearly visible
in the FRFs. The frequency and damping of the first
peak is quite insensitive to the variation of the para-
meter p, while the damping of the second mode
increases substantially by increasing the engine torque
contribution. The fully electric operating mode shows a
more critical dynamic behavior with respect to the pure
thermal mode due to a loosely damped second vibra-
tion mode.

At high speed, see the lower part of Figure 7, only
the peak associated with the lowest torsional mode of
the system can be seen. The second mode is highly
damped and cannot be directly identified from this

specific FRF, while the first mode gives origin to a
peak whose magnitude slightly decreases as p decreases.

Figure 5. Vehicle acceleration (on the left) and actual speed ratio (on the right) during a Tip-In test at 130 km/h with p = 50%: effect
of the proportional gain of the generator speed controller.

Figure 6. Actual speed ratio versus time during Tip-In tests
carried out at different vehicle speed while keeping the same
calibration of the generator speed controller, z = 0,85.

Figure 7. FRFs ax=Tw at a vehicle speed of 30 km/h (top) and
130 km/h (bottom): effect of the torque distribution between
the actuators.
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Hence, contrarily to what happens at low vehicle speed,
the increase in the electric motor contribution improves
the dynamic response of the vehicle.

Conclusion

In this article, a dynamic analysis of an EVT-equipped
powertrain is presented. After deriving the dynamic
equations in the state-space form for both open- and
closed-loop systems, a methodology for objectively
evaluating the drivability of this overactuated system
has been proposed. A synchronous excitation from the
engine and the electric propulsion motor is assumed,
while the generator torque is the output of a feedback
controller aiming at keeping constant the speed ratio
between the engine and transmission output shaft.

The dynamic system behavior, investigated through
numerical simulation in both time and frequency
domains, has some interesting features that can be sum-
marized as follows:

1. The calibration of generator speed controller
plays an essential role in the definition of the
dynamic system response, especially during low-
speed maneuvers. As an example, it has been
shown that the optimal selection of the propor-
tional gain of the feedback controller ensures
high operating bandwidth with fast transient
oscillation damping.

2. At high vehicle speeds, a greater damping of the
system is observed. This in general leads to a
more damped drivability FRF and therefore to
less vibration issues.

3. The generator speed control is less effective at
low speed, while it becomes progressively more
insensitive to the disturbances introduced by the
torque steps of the other actuators with increas-
ing velocity.

4. The effect of the electric motor torque contribu-
tion is different depending on the vehicle speed
range. At low speed, the fully electric operating
mode shows a more critical dynamic behavior
with respect to the pure thermal mode due to
the presence of a loosely damped second vibra-
tion mode. Conversely, at high speed, the
increase in the electric motor contribution
improves the dynamic response of the vehicle; a
flatter passband is obtained together with a
higher bandwidth.
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Appendix 1

Linearization constant expressions

c0r, r =
RwaMvg
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� �
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� �
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Closed-loop matrices
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Where
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