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Bayesian K-SVD Using Fast Variational Inference
Juan G. Serra*, Matteo Testa*, Rafael Molina, Aggelos K. Katsaggelos

Abstract—Recent work in signal processing in general and
image processing in particular deals with sparse representa-
tion related problems. Two such problems are of paramount
importance: an overriding need for designing a well-suited
overcomplete dictionary containing a redundant set of atoms —
i.e., basis signals— and how to find a sparse representation of
a given signal with respect to the chosen dictionary. Dictionary
learning techniques, among which we find the popular K-Singular
Value Decomposition (K-SVD) algorithm, tackle these problems
by adapting a dictionary to a set of training data. A common
drawback of such techniques is the need for parameter-tuning. In
order to overcome this limitation, we propose a fully-automated
Bayesian method that takes into account the uncertainty of
the estimates and produces a sparse representation of the data
without prior information on the number of non-zeros in each
representation vector. We follow a Bayesian approach that uses
a three-tiered hierarchical prior to enforce sparsity on the
representations and develop an efficient variational inference
framework that reduces computational complexity. Furthermore,
we describe a greedy approach that speeds up the whole process.
Finally, we present experimental results that show superior
performance on two different applications with real images:
denoising and inpainting.

Index Terms—Bayesian Modeling, Sparse Representation, K-
SVD, Variational Inference, Dictionary Learning, Denoising,
Inpainting.

I. INTRODUCTION

Signal representation has drawn a lot of attention in the last
decades. Be it a 1D signal, an image or a video, such repre-
sentations should capture the most significant characteristics of
the signal. These depend heavily on the application but seem
to find a common goal in simplicity nonetheless.

Representing a signal requires the selection of a dictionary,
i.e., a set of “atoms” or vectors in the signal space, a linear
combination of which represents the given signal (alternative
representations based on the use of manifolds [1], [2] are
also relevant but will not be discussed here). The obvious and
simplest choice of a dictionary is a basis, the smallest possible
dictionary with the capability of representing the whole signal
space. Simple as they are, the scarce expressiveness of such
dictionaries led to the ongoing development of overcomplete
dictionaries [3].
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The transition to overcomplete dictionaries was gradual.
Analytical complete dictionaries were introduced first, which
made use of different transforms such as DCT, Wavelet or
Gabor. The limitations of such transforms were soon brought
to light. Indeed, the work in [4] pointed out the deficiencies
of the popular orthogonal wavelet transforms, namely its
sensitivity to translation, dilation and rotation, resulting in
the development of the Steerable Wavelet Transform. Early
approaches towards overcomplete dictionaries tried to preserve
the favorable orthogonality properties of bases but soon proved
to be insufficient.

Parallel work suggested the use of collections of data to
better describe signals, rather than the use of mathematical
artificial functions. The works in [5] and [6] were very
influential towards the recent advances in dictionary learning
and sparse signal representation.

Let us now introduce the dictionary learning problem in a
more formal way: we aim to find a sparse representation of
each signal in a database of Q natural signals to RP con-
catenated column-wise into a matrix as Y = [y1, · · · ,yQ] ∈
RP×Q. We do this by finding a set of K atoms in the
signals’ ambient space, concatenated into a dictionary matrix
D = [d1, · · · ,dK ] ∈ RP×K . This dictionary, and the corre-
sponding assignment matrix X = [x1, · · · ,xQ] ∈ RK×Q for
the signals, are recovered by solving an optimization problem
where we seek the best reconstruction of our signals given a
budget T for the number of non-zero entries allowed in each
column of X. Formally this problem takes the form

min
D,X
‖Y −DX‖2F

s.t. ‖xq‖0 ≤ T, q = 1, . . . , Q,
(1)

where ‖ · ‖0 denotes the `0-(pseudo)norm, which counts the
non-zero entries in a vector, and ‖ · ‖F denotes the Frobenius
norm.

Since the objective function ‖Y − DX‖2F is not convex
in X and D jointly, but biconvex, that is, convex in X and
D individually, this problem can be addressed by alternating
minimization over each variable separately. However, the
exact minimization over X is well known to be NP-hard.
Therefore greedy methods, among which the popular K-SVD
algorithm [7], are used to approximate the true solution.
Alternatively, the sparsity constraint can be relaxed, resulting
in the following problem

min
D,X
‖Y −DX‖2F

s.t. ‖xq‖1 ≤ T, q = 1, . . . , Q,
(2)

where ‖ · ‖1 denotes the vector `1-norm. A wide array of
techniques from convex optimization can be applied to solve
this problem (e.g., [7]–[10]).
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The dictionary learning problem (in both forms of (1)
and (2)) has been widely applied in image processing and
machine learning. Applications include image denoising and
deblurring [11], [12], image super-resolution [13], image
restoration [14], face recognition [15], and classification [16]
among many others. Focusing on this latter category, in
[17] the authors propose to perform histopathological image
classification through the use of class-specific dictionaries.
In more detail, a class-specific dictionary should be able to
correctly sparsify a signal belonging to the related class by
employing just few atoms in the representation, but it should
represent poorly a signal belonging to a different class. Thus,
the classification is performed by analyzing the usage of atoms
in the different dictionaries.

Back to the general dictionary learning problem, an al-
ternative approach to the problem it is studied in the work
of Skretting and Engan [18], referred to as the Recursive
Least Squares Dictionary Learning Algorithm (RLS-DLA),
according to which a continuous update of the dictionary is
performed after each training vector is processed. Therein lies
the main difference between RLS-DLA and other previous
approaches such as its precedent ILS-DLA [19] or K-SVD
[7]. However, its convergence has not been established. Liu
et al. [20] propose a different method for the estimation of
D and X using a two-level Bregman-based technique for
MRI reconstruction. Its inner loop updates the sparse coeffi-
cients following an iterative shrinkage/thresholding algorithm,
whereas the outer loop basically updates the atoms of the
dictionary, which consists of a refinement of the previous one,
involving just a matrix multiplication. A follow-up publication
by the same authors, [21], further validates their previously
presented method applying sparse representations to the image
deconvolution problem.

For what concerns deterministic techniques for dictionary
learning, another popular approach is the analysis approach.
In contrast to the standard synthesis method in which the
emphasis is placed on the signal decomposition by means of
linear combinations of few atoms of a given dictionary, in
the analysis counterpart the dictionary represents an operator
which, multiplied by the signals, results in a sparse outcome.
Examples of works following this approach include [22] and
[23].

Along with deterministic methods to solve the dictionary
learning problem, probabilistic approaches have also been
proposed. In their seminal works, Olshausen and Field [6] and
Lewicki and Sejnowski [24] introduced a generative model
for the data which allowed them to develop a Maximum
Likelihood (ML) estimator for both the sparse coding and
the dictionary. According to this model, when the prior on
the sparse signal is a heavily peaked Laplacian distribution
around zero and the residual is approximated by a zero-
mean Gaussian distribution, the dictionary learning problem
reduces to the one in (2). Following this work, other authors
proposed modifications to either the sparse approximation
step, the dictionary update, or both. In [25], using the same
generative model introduced in [6], the authors proposed the
use of Orthogonal Matching Pursuit (OMP) to solve the
sparse coding problem and a closed form solution for the

dictionary update equation. Later papers focused on the use
of a Maximum a Posteriori (MAP) approach instead, which
allows to impose constraints on the dictionary as well. For
instance, in the work of Kreutz-Delgado et al. [26] a unit-
norm Frobenius prior is placed on the dictionary. However,
due to the intractability of such a prior, they propose to use
an approximate solution and the FOCUSS [27] algorithm in
order to obtain the sparse solution. Other choices of priors
involve smoother (less sparse) priors based on the Kullback-
Leibler divergence for the `1 regularization as in [28]. The
advantage of this latter approach lies in the increased stability
of the sparse solution and the efficient convex inference.

All of the aforementioned techniques use ML or MAP
estimators to solve the dictionary learning problem. However,
the main drawback of such approaches is that they do not
take into account the uncertainty of the estimated sparse
representation coefficients, which, as we will later examine,
leads to reduced algorithmic performance. Moreover, since the
variance of the noise is not explicitly taken into account in
the model, these algorithms have to rely on other techniques
for noise estimation. The importance of a good estimate of
the noise variance is discussed in [9] where the authors show
that when using K-SVD for image denosing [11], the resulting
PSNR is highly affected by the precision of the noise variance
estimate.

To overcome these problems a few techniques have been
developed. These include the incorporation of the noise vari-
ance/covariance information in the model as a parameter that
can be estimated and taking into account the uncertainty of the
estimates. The author in [29] propose an Expectation Maxi-
mization (EM) algorithm in which the posterior of the sparse
signal is estimated along with the dictionary. In more detail,
each column of X is modeled using a Laplacian prior which,
however, leads to an intractable posterior distribution, for
which the authors propose to use a variational approximation
of the prior which tranforms the posterior of the sparse signal
into a Gaussian form. Finally, an EM algorithm is developed
in order to estimate the parameters of the model. However,
with this approach, the authors do not place a prior on the
entries of the dictionary.

Zhou et al., [9] and [30], utilize a Beta-Bernoulli prior for
the selection of the active-set, employing the Beta Process
Factor Analysis (BPFA) modeling introduced in [31]. The
active-set is the smallest possible set of atoms in the dictionary
which is capable of efficiently explaining the underlying signal
structure. Similarly to [32], the model can also be used to
estimate the size of the dictionary. In addition, the authors
introduced a Dirichlet patch clustering in order to group the
data which have the same probability of being represented
using a fixed set of atoms. Samples from the full posterior
distribution are obtained through Gibbs sampling. BPFA mod-
eling is also used in [33]. In this work, the problem of MRI
image reconstruction from Compressed Sensing measurements
is tackled with the introduction of a Total Variation (TV)
penalty term in the functional, which is then solved through
the use of the Alternating Direction Method of Multipliers
(ADMM). The BPFA modeling falls into the category of
the so-called Spike and Slab (SnS) prior models. The main
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idea of this technique is to introduce a binary vector for the
selection of the variables to be included in the model as in
[34], where authors use this prior on the linear regression
coefficients. This modeling is particularly useful when the
number of observations is smaller than the number of possible
predictors. The presence of the Dirac delta function in the
model makes inference a difficult task. Authors have addressed
this issue in several manners. Bayesian variational inference is
used on SnS based models in [35], where a reparametrization
of the SnS prior is proposed. The novelty of the work lies in
a new factorization thanks to which each factor is a mixture
of two Gaussians. The authors also show the effectiveness
of such approach with respect to standard factorization as
in [36], where the posterior approximation of the factors is
a mixture of components with a single (unimodal) Gaussian
distribution, which leads to a less accurate representation of
the data. Based on this model, and motivated by the fact
that posterior independence results in orthogonality of inferred
atoms, [37] introduces an Expectation Maximization approach
which does not assume independence among the dictionary
elements. To efficiently deal with large datasets, the model
in [30] was adapted to process randomly partitioned data in
[38]. In more detail, the parameters of the model are inferred
locally for each set of partitioned data and then aggregated
using a weighted average to update the global parameters of
the model resulting in an increased robustness to local minima
and reduced memory requirements. Hansen et al. [39] propose
a novel structured SnS prior which allows to incorporate prior
knowledge on the support of the coefficient vectors via a
Gaussian Process (GP) over the SnS probabilities; a later
extension of their work, [40], covers the inference of the GP
parameters. The GP models the sparsity patterns and considers
correlations between the SnS probabilities of different coeffi-
cient vectors. In [41] the authors use a variant of SnS that
replaces the Dirac delta function by an indicator function,
based on the MAP estimation technique proposed in [42].
It allows to infer the optimal sparse coefficients by solving
an optimization problem without relaxation. Finally, the work
by Y. Zhang et al. [43] also utilizes the Bernoulli prior on
the binary activations but imposes a multiplicative Gaussian
process on the 2D coordinates of the image patches which
enforces similarity on the support of neighboring patches.
Furthermore, uncorrelation among dictionary atoms is favored
by the use of a Sigmoid Belief Network.

Note that using variational inference on SnS priors, see for
instance, [30] and [35], may not lead to an exact sparse solu-
tion since computing the expectation over a binary distribution
will not necessarily produce a binary {0, 1} value. However,
this can be easily solved by using the thresholding approach in
[38]. The method we propose in this work also leads to exact
sparse solutions since it allows atoms to be added or removed
completely from the model.

Additionally, we can find Dictionary Learning and Sparse
Coding approximations which seek overall acceleration of
the process. The works by Y. LeCun et al. use a multi-
layer feed forward network [44] or a binary tree [45] which
make the algorithms suitable for real-time visual applications,
such as object recognition. Along with these approximation

techniques, [46] presents three different Dictionary Learning
algorithms which also focus on computational efficiency. The
authors propose partial updating of the atoms to accelerate
convergence, a one-stage procedure in which each atom is
updated along with its corresponding row in the coefficient
matrix, letting the non-zero entries change, contrary to K-SVD,
and lastly they incorporate the FISTA [47] sparse coding stage
to the latter for faster performance.

Works which analyze the theoretical limits of the dictionary
learning approach can also be found in the literature. In
particular, in [48] the authors analyze the local minima of
the non-convex functional in the dictionary learning problem.
The results they obtain show that with high probability the
sparse coding admits a local minimum around the dictionary
which generated the signals. Additionally, C. Bao et al. [49]
present a multi-block alternating proximal method with proven
global convergence which is faster than K-SVD with similar
performance.

In this work we propose a novel Bayesian algorithm for
solving the `1 dictionary learning problems. Our approach
aims at estimating the whole posterior distribution of X
(thus taking into account the uncertainty of the estimated
coefficients) but with an automatic technique for the estima-
tion of the parameters which originate with the introduced
models. The proposed approach is applied to image denoising
and inpainting in order to test its performance in different
applications of interest in image processing.

The paper is organized as follows. In Section II we briefly
describe the K-SVD algorithm. Section III presents a hierarchi-
cal Bayesian model based on the use of the Laplace prior, and
in Section IV we provide the details of the inference procedure
to estimate the unknowns. Based on the inference proce-
dure in Section IV, we develop a computationally efficient
implementation based on Empirical Bayes in Section V-A.
Numerical examples demonstrating the effectiveness of the
proposed algorithm are given in Section VI, where we compare
the results with state-of-the-art alternatives. Finally, we draw
concluding remarks in Section VII.

Notation: Unless otherwise noted, throughout this paper,
we use boldface upper-case and lower-case letters to denote
matrices and vectors, respectively. For a matrix X, its ith
column and jth row are denoted by xi and xj , respectively.
The (i, j)-th entry of a matrix X is denoted by either xij or
X(i, j), whichever makes the notation clearer. Given a vector
x, diag(x) represents the square matrix with the entries of
x on its diagonal, while given a square matrix X, diag(X)
extracts its diagonal into a vector. Given a square matrix X,
Tr(X) and |X| denote the trace and determinant operators,
respectively. The M × 1 all-zero vector is denoted by 0M ,
and finally, the M ×M identity matrix is denoted by IM .

II. THE K-SVD ALGORITHM

Among the most popular algorithms for dictionary learning,
K-SVD [7] is a greedy approach that approximately solves
the standard `0 problem in (1). In K-SVD the optimization is
performed coordinate-wise alternating between X and D.

At each iteration of the K-SVD algorithm, given the current
state update of the dictionary, the Orthogonal Matching Pursuit
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(OMP) algorithm [50] is first applied to determine the support
of X, i.e., the locations of the non-zeros in X, while the values
at these non-zero locations obtained from OMP are discarded.
Notice that this requires manually fixing the number of non-
zero components in each column of X.

After OMP, D and the non-zeros of X are updated. The
term DX can be decomposed as

DX =

K∑
k=1

dkx
k . (3)

This decomposition forms the basis of a cyclic update proce-
dure, where each pair of {(dk,xk)}Kk=1 is updated individually
while all other pairs are held constant at their most recent
values. Specifically, for the jth pair, the objective function in
(1) can be expressed as the sum of a residual and a rank-one
matrix, i.e.,

min
dj ,xj

‖Y −DX‖2F = min
dj ,xj

‖Rj − djx
j‖2F, (4)

where the residual term

Rj = Y −
∑
i6=j

dix
i (5)

does not depend on (dj ,x
j). Because djx

j has at most
rank one, the minimization in (4) is precisely a low-rank
approximation problem, which can be solved via the Singular
Value Decomposition (SVD) [51].

Before computing the SVD of Rj , we note that the support
of X has already been determined using OMP. Resetting xj via
the SVD of Rj would destroy its sparse structure. To resolve
this issue, instead of considering Rj , we consider R̃j , which
is formed by retaining the columns of Rj that correspond to
the non-zero entries in xj . As we will see later, this restricted
processing has a clear justification in the Bayesian context.
Concretely, we have

djx̃
j = σ1u1v

1, (6)

where σ1 is the largest singular value of R̃j , u1 and v1 are its
corresponding left and right singular vectors, and x̃j denotes
the row vector xj after imposing the known sparsity support.
After this step, the values at the non-zero locations of xj are
set equal to x̃j . Notice that this restricted non-zero update
does not have a mathematical justification and will reduce
the quality of the SVD fitting. A justified way to alternate
between atom and representation updates will be proposed in
the coming sections.

The advantage of the K-SVD algorithm is its simplicity, as
the update steps are greedy in nature. One major drawback,
though, is that the uncertainty of the estimates of D and X
is not taken into account in the estimation procedure. While
not taking into account the uncertainty in the atoms of D
may not be a problem due to the generally large number of
columns in X, each column of X normally has a reduced
number of non-zero components and their inherent uncertainty
should be accounted for. Furthermore, K-SVD requires to
know the number of non-zero components in each column
of X, information that may not be available or may even

be column dependent. In this paper we will show how these
problems can be tackled in a principled manner using Bayesian
modeling and inference.

III. HIERARCHICAL BAYESIAN MODEL

A. Noise Modeling

The use of the sparsity inducing `1 norm in (2) requires an
elaborate modeling. Following our previous work in [52], we
begin by modeling the observation process by using

p(Y|D,X, β) ∝ β
PQ
2 exp

{
−β

2
‖Y −DX‖2F

}
, (7)

where β is the noise precision. We assume that

p(β|aβ , bβ) = Γ(β|aβ , bβ) ∝ βa
β−1 exp(−bββ), (8)

with aβ > 0 and bβ > 0 being the shape and inverse scale
parameters, respectively.

B. Modeling of D and X

Since we expect the columns of D to be normalized vectors,
we utilize the following prior on D

p(D) =

K∏
k=1

p(dk) (9)

where
p(dk) =

{
const if ‖ dk ‖= 1
0 elsewhere (10)

We now proceed to model the columns of X. Although
various general sparsity promoting priors could be considered
here, see [53], we will only investigate the use of the Laplace
prior on the components of the columns of X in this paper.
The non-conjugacy of the likelihood in (7) and Laplace prior
distributions makes the use of this prior for the columns of X
intractable. In our approach we address this issue by applying
instead a three-tiered hierarchical prior on each column of X,
which has the same sparsifying effect as a Laplace prior while
rendering the inference tractable.

For each column xq, q = 1, . . . , Q of X, we utilize

p(xq|γq) =
K∏
k=1

N (xkq|0, γkq)

= N (xq|0K ,Γq)
(11)

where γq is a K × 1 column vector with elements γkq ,
k = 1, · · · ,K, and Γq = diag(γq) along with the tiered
hyperpriors

p(γq|λq) =

K∏
k=1

Γ(γkq|1, λq/2) (12)

and

p(λq|νq) = Γ(λq|νq/2, νq/2), (13)

where we assume a flat distribution on νq .
With marginalization, this hierarchical model yields a

Laplace distribution of xq conditioned on λq

p (xq|λq) =
λ
K/2
q

2K
exp

{
−
√
λq‖xq‖1

}
. (14)
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C. Complete System Modeling

Throughout the remainder of this paper we will denote by

Γ =
[
γ1, · · · ,γQ

]
, λ = [λ1, · · · , λQ] , ν = [ν1, · · · , νQ]

(15)

the hyperparameters associated with X.
We also denote the entire set of unknowns as

Θ =
{
{dk}Kk=1, {xq}

Q
q=1,Γ,λ,ν, β

}
. (16)

Based on the above presented modeling, the complete
system modeling is therefore given by the joint distribution

p(Y,Θ) = p(Y|D,X, β)p(β)p(D)p(X|Γ)p(Γ|λ)p(λ|ν)p(ν).
(17)

IV. INFERENCE

Our scheme for estimating D and X depends on our ability
to estimate the posterior distribution p (Θ|Y). We do this
using variational distribution approximation [54]. Specifically,
with Mean-Field Factorization, the joint posterior distribution
is approximated as

q (Θ) = q(β)q (Γ) q (λ) q(ν)q(X)

K∏
k=1

q(dk), (18)

where in our case it is assumed that q (Γ), q (λ), and
q(ν) are degenerate distributions. We also assume that each
q(dk), k = 1, . . . ,K is a degenerate distribution on a vector
with ‖ dk ‖2= 1.

For each θi ∈ Θ where q(θi) is assumed to be degenerate,
we can update its value by calculating

θ̂i = arg max
θi

ln q (θi) = arg max
θi

〈ln p (Y,Θ)〉Θ\θi , (19)

where 〈·〉Θ\θi denotes the expectation taken with respect to
all approximating factors q(θj), j 6= i.

For each θi where q(θi) is assumed to be non-degenerate,
we apply calculus of variations and obtain

ln q (θi) = 〈ln p (Y,Θ)〉Θ\θi + C, (20)

where C denotes a constant independent of the variable of
current interest. For non-degenerate distributions q(θi), the
updated value θ̂i will denote its mean.

A. Estimation of X, Γ, λ, and ν

In order to find an approximate posterior distribution of X,
we apply (20) and obtain

ln q(X) = 〈ln p(Y|D,X, β) + ln p(X|Γ)〉Θ\X + C

=

Q∑
q=1

〈
−β

2
‖yq −Dxq‖22 −

1

2
xT
q Γ−1q xq

〉
Θ\xq

+ C

=

Q∑
q=1

{
− β̂

2

∥∥∥yq − D̂xq

∥∥∥2
2
− 1

2
xT
q Γ̂
−1
q xq

}
+ C. (21)

It is clear from (21) that the columns of X in the posterior
distribution approximation are independent with

ln q(xq) = − β̂
2
‖yq − D̂xq‖22 −

1

2
xT
q Γ̂
−1
q xq + C . (22)

It is straightforward to see that q(xq) is a Gaussian distri-
bution

q(xq) = N (xq|x̂q,Σxq ) (23)

with covariance matrix and mean vector defined respectively
as

Σxq =
(
β̂D̂TD̂ + Γ̂

−1
q

)−1
(24)

x̂q = β̂ΣxqD̂
Tyq. (25)

Next, taking the appropriate expectation and finding a
solution to (19) we can calculate the updates for the hyperpa-
rameters associated with X

For γq we have the following optimization problem

γ̂q = arg max
γq

〈ln p (Y,Θ)〉Θ\γq

= arg max
γq

〈ln p
(
xq|γq

)
p
(
γq|λq

)
〉xq,λq + C, (26)

where C contains all the terms which do not involve γq . Using
(11) and (12), we have

〈ln p (Y,Θ)〉Θ\γq = −1

2

K∑
k=1

log γkq −
1

2
〈xTq Γ−1q xq〉xq

+K log λ̂q −
λ̂q
2

K∑
k=1

γkq + C, (27)

where

〈xTq Γ−1q xq〉 = 〈xq〉TΓ−1q 〈xq〉+ tr(ΣxqΓ
−1
q ). (28)

We now find the optimal γkq by setting the derivative of the
previous expression with respect to γkq equal to zero, which
yields:

γ̂kq = − 1

2λ̂q
+

√√√√ 1

4λ̂2q
+
x̂2kq + Σxq (k, k)

λ̂q
. (29)

Following an analogous procedure, we have that

λ̂q = arg max
λq

〈ln p (Y,Θ)〉Θ\λq

= arg max
λq

〈ln p
(
γq|λq

)
p (λq|νq)〉γq,νq + C. (30)

Again, expanding the previous expression using (12) and (13)
we obtain

〈ln p (Y,Θ)〉Θ\λq = K log λq −
λq
2

K∑
k=1

γ̂kq (31)

+

(
ν̂q
2
− 1

)
log λq −

ν̂q
2
λq + C, (32)

and maximizing, the optimal λ̂q is given by

λ̂q =
ν̂q + 2K − 2

ν̂q +
K∑
k=1

γ̂kq

. (33)
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Finally, for νq we have

ν̂q = arg max
νq

〈ln p (Y,Θ)〉Θ\νq

= arg max
νq

〈ln p (λq|νq) p〉λq + C,

which, after using (13), produces
νq
2

ln
νq
2
− ln

(
Γ
(νq

2

))
+
νq
2

(
ln λ̂q − λ̂q

)
. (34)

This formula does not allow for an analytical solution, requir-
ing numerical optimization to find the optimal ν̂q .

B. Estimation of D

First notice that we assume that the columns of D are
independent of each other in the posterior distribution approx-
imation, i.e.,

q(D) =

K∏
k=1

q(dk) , (35)

with these distributions degenerate on a point in ‖ dk ‖= 1.
Focusing on a single dk and applying (19), we have

d̂k = arg min
dk

〈
‖Y −DX‖2F

〉
Θ\dk

s.t. ‖ dk ‖= 1. (36)

We can write

〈‖Y −DX‖2F〉Θ\dk = 〈‖Y −DX̂ + D(X̂−X)‖2F〉Θ\dk
= 〈‖Y −DX̂‖2F〉Θ\dk + 〈‖D(X̂−X)‖2F〉Θ\dk (37)

where the cross terms are not included since both are identical
and equal to zero. For the first term we have

〈‖Y −DX̂‖2F〉Θ\dk = ‖Y −
∑

i 6=k
d̂ix̂

i − dkx̂
k‖2F

= ‖x̂k‖22dT
k dk − 2bT

k dk + C (38)

with
bk = (Y −

∑
i 6=k

d̂ix̂
i)(x̂k)T. (39)

Notice that (38) is the only term used in K-SVD to update the
atoms of the dictionary.

The uncertainty of the estimate of xq is incorporated in the
estimation of dk by the second term on the right hand side of
(37) which we now calculate. It can be expressed as

〈‖D(X̂−X)‖2F〉Θ\dk = 〈‖dk(x̂k − xk)‖2F〉Θ\dk
+ 2〈Tr(dk(x̂k − xk)(

∑
i 6=k

d̂i(x̂
i − xi))T)〉Θ\dk + C. (40)

Now, the first term on the right hand side of (40) can be
written as

〈‖dk(x̂k − xk)‖2F〉Θ\dk = ckd
T
k dk, (41)

where

ck = 〈‖x̂k − xk‖22〉Θ\dk = 〈
Q∑
q=1

(x̂kq − xkq)2〉Θ\dk

=

Q∑
q=1

Σxq (k, k), (42)

and Σxq (k, k) denotes the (k, k)-th element of Σxq defined
in (24).

Similarly, the second term on the right hand side of (40)
can be written as

〈Tr(dk(x̂k − xk)(
∑
i 6=k

di(x̂
i − xi))T)〉Θ\dk

= 〈(x̂k − xk)(
∑
i6=k

(x̂i − xi)TdT
i )〉Θ\dkdk

=
∑
i6=k

〈(x̂k − xk)(x̂i − xi)TdT
i 〉Θ\dkdk = aT

k dk, (43)

where

ak =

Q∑
q=1

∑
i 6=k

Σxq (i, k)d̂i . (44)

Substituting (41) and (43) into (40), we obtain

〈‖D(X̂−X)‖2F〉Θ\dk = ckd
T
k dk + 2aT

k dk + C, (45)

and substituting (38) and (45) into (37), we obtain

〈‖Y −DX‖2F〉Θ\dk = ekd
T
k dk − 2(bk − ak)Tdk + C

=‖
√
ekdk −

1
√
ek

(bk − ak)‖2 + C, (46)

where
ek = ‖x̂k‖2 + ck . (47)

Defining

tk =
1
√
ek

(bk − ak) (48)

we obtain

〈‖Y −DX‖2F〉Θ\dk = ‖tk −
√
ekdk‖2 + C . (49)

We can therefore finally write

d̂k = arg min ‖tk −
√
ekdk‖2

s.t. ‖ dk ‖2= 1, (50)

which produces

d̂k =
1

‖ tk ‖
tk =

bk − ak
||bk − ak||

. (51)

C. Estimation of Noise Precision β

Keeping the terms dependent on β in (17) and applying
(20), we obtain

ln q(β) =
PQ

2
lnβ − β

2

〈
‖Y −DX‖2F

〉
Θ\β

+ (aβ − 1) lnβ − bββ + C, (52)

from which we see that q(β) is a Gamma distribution with
mean

β̂ =
PQ+ 2aβ∑Q

q=1〈‖yq − D̂xq‖2〉xq + 2bβ
. (53)
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V. FAST INFERENCE PROCEDURE BASED ON EMPIRICAL
BAYES

The inference procedure introduced in the previous section
is mathematically sound but it can be computationally chal-
lenging and memory intensive since computing Σxq in (24)
for each q requires the inversion of a K ×K matrix at each
iteration step.

In order to reduce the computational complexity and al-
leviate memory requirements, we propose a fast inference
procedure based on the use of Empirical Bayes [52], [55],
[56]. The principle of this approach is first presented in [55]
in the context of Sparse Bayesian Learning (SBL) and later
adapted in [52] and [56] for recovery of sparse signals. Here
we adapt it for the sparse dictionary learning problem.

Specifically, for each xq , we adopt a constructive approach
for identifying its support, i.e., the locations where it assumes
non-zero values. The values of the hyperparameters at these
non-zero locations are obtained via Maximum A Posteriori
(MAP) estimation. With such support identification and hy-
perparameter estimation, the effective problem dimensions
are drastically reduced due to sparsity. Finally, the estimated
values of xq in its support are obtained via (25).

A. Fast Bayesian Inference for Γ and X

We will derive in this section a fast inference approach for
Γ and X. We start from the observation model

yq = Dxq + nq, (54)

and the prior on xq given by (11). Then, using D̂ and β̂ and
integrating on xq , we have

p(yq|β̂, D̂,γq) = N (yq|0P ,Cq), (55)

where
Cq = β̂−1IP + D̂ΓqD̂

T. (56)

We can then write

log p(yq|β̂, D̂,γq)p(γq|λ̂q)

= −1

2

[
log |Cq|+ yT

q Cq
−1yq + λ̂q

∑
k

γkq

]
+ C, (57)

where C contains all terms which do not depend on γq .
We now replace the previously described EM procedure to
estimate γq (and the the posterior distribution of xq) by the
direct maximization of

L(γq) = −1

2

[
log |Cq|+ yT

q Cq
−1yq + λ̂q

∑
k

γkq

]
. (58)

Notice that once γ̂q has been calculated we can easily find the
posterior distribution of xq . Furthermore, if γkq = 0, then the
posterior distribution of xkq will be degenerate at zero.

Let us examine how to add, update (or remove) a single γkq
in order to increase L(γq). Observing (56) we see that we can
separate the contribution of a single γkq in Cq and write

Cq = β̂−1IP +
∑
i 6=k

γiqd̂id̂
T
i + γkqd̂kd̂

T
k

def
= −kCq + γkqd̂kd̂

T
k , (59)

where, clearly, −kCq denotes the terms not including γkq .
Using the matrix inversion lemma and the determinant

identity on Cq we obtain

C−1q = −kC−1q −
−kC−1q d̂kd̂

T
k
−kCq

−1

γ−1kq + d̂T
k
−kC−1q d̂k

, (60)

|Cq| = |−kCq||1 + γkqd̂
T
k
−kCq

−1d̂k| . (61)

These two equations allow us to rewrite (58) as

L(γq) = −1

2

[
log |−kCq|+ yT

q
−kC−1q yq + λ̂q

∑
n 6=k

γnq

]
+

1

2

[
log

1

1 + γkqsiq
+

h2kqγkq

1 + γkqskq
− λ̂qγiq

]
= L(−kγq) + l(γkq), (62)

where

l(γkq) =
1

2

[
log

1

1 + γkqskq
+

h2kqγkq

1 + γkqskq
− λqγkq

]
(63)

and skq and hkq are defined as

skq = d̂T
k
−kC−1q d̂k

hkq = d̂T
k
−kC−1q yq

. (64)

The quantities skq and hkq do not depend on γkq . Therefore,
the terms related to a single hyperparameter γkq are now sepa-
rated from the rest. A closed form solution of the maximization
of L(γq), when only its kth component is changed, can be
found by holding the other hyperparameters fixed, taking its
derivative with respect to γkq and setting it equal to zero.

The optimal γ̂kq can be obtained as follows (see [52] for
details)

γ̂kq = mkq1[h2
kq−skq≥λ̂q ]

(65)

where

mkq = −skq(skq + 2λ̂q)

2λ̂qs2kq

+
skq

√
(skq + 2λ̂q)2 − 4λ̂q(skq − h2kq + λ̂q)

2λ̂qs2kq
(66)

It is crucial to perform all the calculations efficiently. To
explain how they can be carried out we overload the notation
slightly. We rewrite the current (c) covariance matrix of the
marginal of the observations as

Cc
q = β̂−1IP +

∑
i∈A

γciqd̂id̂
T
i +

∑
i∈A

γciqd̂id̂
T
i , (67)

where A = {i|γciq > 0} and A = {i|γciq = 0}. The last term
on the right hand side of the above equation is zero and has
been included for clarity.

Then using the Woodbury identity we have

d̂T
kCc

q
−1d̂k = β̂d̂T

k d̂k − β̂2d̂T
k D̂cΣcxq (D̂

c)Td̂k
def
= Skq (68)

where Σcxq is obtained from Σxq by keeping only the columns
and rows associated to the indices in A. The same restriction
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applies to the columns of D̂c, that is, we keep in D̂c the
columns associated to γciq > 0.

From (60) we obtain, for k ∈ A ∪A,

skq =
Skq

1− γckq Skq
. (69)

Furthermore

d̂T
kCc

q
−1yq = β̂d̂T

k yq − β̂2d̂T
k D̂cΣcxq (D̂

c)Tyq
def
= Qkq (70)

and following the same procedure we obtain

qkq =
Qkq

1− γckq Skq
. (71)

Given Σcxq we now have an efficient procedure to check
whether we should add γkq, k ∈ A, or update (or remove)
γkq, k ∈ A. Furthermore, the amount the marginal log likeli-
hood is improved by each single addition, update (or removal)
is easily obtained from (62). Finally we notice that Σc

q and x̂cq
can be updated very efficiently when only a single coefficient
γkq is considered, see [55].

With the fast updates just described in hand we can formally
state the full Algorithm 1 which we henceforth refer to as the
Bayesian K-SVD (BKSVD) method.

Notice that at step 7 of the algorithm, a candidate γkq
must be selected for updating. This can be done by randomly
choosing a basis vector d̂k, or by calculating each γkq and
choosing the one that results in the greatest increase in L(γq),
which results in a faster convergence. The latter is the method
implemented in this work.

An important contribution of the algorithm is the estimation
of the noise precision β, which is derived in the previous
section using (53).

In the approach presented in [57], the estimation of the
noise precision is unreliable at early iterations at which it is
necessary to set it to a fixed value. Unreliable estimates can
indeed significantly affect the performance of the technique.
However, in the proposed method β is estimated using a
set of signals which are assumed to share the same noise
variance, thus leading to reliable estimates even at early
BKSVD iterations.

For a comparison of the proposed fast algorithm with the
Relevance Vector Machine (RVM) when the dictionary is
fixed, refer to [52].

We now relate the proposed BKSVD model to K-SVD. In
K-SVD the number of non-zero components, S, in xq is fixed
in advance. In BKSVD we can update γq until convergence
and then keep only its S largest values. We can also run
BKSVD in a greedy fashion until S non-zero components are
incorporated.

Finally, let us compare the iteration procedures for BKSVD
and K-SVD. In K-SVD to update the kth atom we select the
non-zero components in x̂k. If the qth component is selected,
this means that γqk is non-zero in our fast formulation. Notice
that the components selected by BKSVD (γqk 6= 0) and the
ones selected by K-SVD (x̂qk 6= 0) coincide almost surely. K-

SVD then proceeds to find the rank-one SVD decomposition
of the residual term

Rk = Y −
∑
i6=k

d̂ix̂
i (72)

where only the columns yq with non-zero γkq are considered.
This produces an update of dk and the non-zero components of
x̂k. On the other hand, BKSVD not only takes into account the
residual Rk in ‖Y−

∑
i6=k d̂ix̂

i−dkx̂
k‖2F, see (38), but also

makes the uncertainty of the estimation of X reponsible for
some of the variation of the model, see 〈‖D(X̂−X)‖2F〉Θ\dk
in (40).

To update the kth atom BKSVD utilizes (51), while K-SVD
utilizes the rank-one decomposition of Rk to update d̂k and
the non-zero elements in xk. For BKSVD, once the kth atom
has been updated we can also update the non-zero components
in xk. Both strategies will be compared in the experimental
section.

Algorithm 1 Pseudocode for BKSVD algorithm

1: Input: Y, initial normalized D
2: Output: D̂, Γ̂, the posterior approximations q(xq),
q = 1, . . . , Q

3: initialize Γ and λ to zero
4: while not converged do
5: for q in 1, . . . , Q do
6: while not converged do
7: Choose a k ∈ {1, . . . ,K}

(or equivalently choose a γkj)
8: Find optimal γ̂kq using (65)
9: Update Σxq and x̂q based on γ̂kq

10: Update skq and hkq
11: Update λ̂j and ν̂j
12: end while
13: end for
14: for k in 1, . . . ,K do
15: Update dk using (51)
16: end for
17: Update β̂
18: end while

We finally provide in this section a discussion on how
our method relates to existing spike and slab approaches.
We concentrate on xq modeling since the dictionary updates
can be considered to be similar. First we note that a clear
explanation of the spike and slab prior modeling can be
found in [58] where each xq in our model is replaced by the
Hadamard product sq �wq with p(sq) =

∏K
k=1 Ber(skq|πk),

where πk is the probability of the kth atom to appear in the
sparse representation of yq and p(wq) = N (wq|0, γ−1s I). The
prior distribution on π = (π1, . . . , πK)T is assumed to be
p(π) =

∏K
k=1 Beta(a/K, b(K − 1)/K).

As explained in [30], as K → ∞, and integrating on π,
the draws on {sq} should be sparse and there should be a
relatively consistent (re)use of dictionary elements across all
yq , thereby also imposing self-similarity. This reuse of atoms,
which can be an interesting property, can also lead to a lower
incoherence of the dictionary as it will be reported in the
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experimental section. On the other hand, the use of the same π
realization for all sq and also the same precision γ−1s for all wq

leads to fewer parameters to be estimated and also to reduced
overfitting (note also the properties of the Beta process used).
Obviously π and γs could be sampled independently for each
yq . The model we are proposing here has more parameters to
be estimated but we have not experienced any robustness or
overfitting problems, see section VI. Finally, the update of πk
could be considered the spike and slab counterpart of our γkq
parameter update. πk is shared by all yq and the same is true
for γs. This is not the case for γkq in our model.

B. Suboptimal greedy version

Since the Bayesian K-SVD algorithm we introduced in the
previous sections takes into account the uncertainties of the
coefficients to improve the estimation, it is computationally
expensive. As an example, using non-optimized code on a
server equipped with Intel Xeon R© CPU E5-4640 @ 2.40 GHz
processor, the learning and reconstruction phases for a 64 ×
255025 Y matrix using Q = 256 atoms require 3 hours and 30
minutes, respectively. During training and reconstruction, the
bottleneck is in the computation of the sparse representation
in which atoms are added, deleted or reestimated.

To improve the overall speed of the Bayesian K-SVD
algorithm, and in particular, that of the sparse representation
computation, we introduce a faster version. Inspired by the
approach of greedy algorithms like OMP, we propose to
compute the sparse representation in an additive suboptimal
fashion. This faster version only adds atoms instead of rees-
timating or deleting elements in the support of the sparse
signals. That is, when the likelihood is maximized only by
removing or reestimating a new atom, the sparse representation
calculation stops. This approach allows for the whole BKSVD
algorithm to perform fewer operations and hence leads to faster
iterations.

To validate the proposed approach, we ran the following
synthetic experiment. We generated a D64×150 dictionary and
a sparse matrix X150×1500 with different numbers of non-zero
components per column, see Table I, and calculated Y = DX
with no noise.

We compared the BKSVD algorithm and its faster version
by examining the percentage of columns in X for which each
method correctly selects at least 80% of the atoms, as shown
in Table I. As can be seen in it, the performance of the two
algoritms is comparable for smaller values of s.

We show next in Figure 1 the required computation times
using different dictionary sizes K with K = iP , i = 2, 3, 4,
P = 64 and the values of Q corresponding to the total number
of overlapping patches in 128×128, 256×256 and 512×512
images assuming full overlap. As can be seen from it, the
computational savings are significant. All the experiments we
present in Sec. VI are performed using this faster and greedy
method.

Finally, we would like to note here that the term fast is used
in the paper title to refer to the greedy algorithms proposed in
sections V.A and V.B to compute the Bayesian inference and
not to a property of our method in comparison with other
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Fig. 1: Time required to compute the sparse representation of
synthetic data (as in the experiment in Table I) for the

proposed methods.

TABLE I: Performance of the BKSVD algorithm and its
faster greedy version for different percentages of non-zero

components s

s (%) Optimal
sparse coding

Greedy
sparse coding

3 100.00 100.00
6 100.00 99.87

10 99.67 98.50
13 92.00 70.00

learning dictionary techniques. In the experimental section
we have reported in an experiment the computational time
required by each method.

C. Influence of dictionary size K

The size of the dictionary influences the execution time
of the proposed algorithm as well as the accuracy of the
representations. In Fig. 2 we can see the influence of K
using three different metrics: training time, MSE, and num-
ber of atoms used. Experiments were carried out on the
256 × 256 “Lena” image. We trained different dictionaries
of size P × kP, k = 1, 1.5, . . . , 8, with P = 64. It is
worth mentioning that when k = 1 the dictionary becomes a
complete one. For each experiment we computed the training
time, the reconstruction error ∝ ||Y − DX||F/PQ, and the
mean number of used atoms. We can appreciate a linear trend
in the training time figure, which implies that increasing the
dictionary size does not have a drastic impact in computation
time. On the other hand, as expected, the larger the dictionary,
the lower the achieved representation error while maintaining
sparsity. Finally, the figure at the bottom shows that by in-
creasing the dictionary size we obtain sparser representations.
However, from k = 2.5 to k = 4 we can see a small plateau
where increasing the dictionary size does not have an effect
on sparsity. For values of k higher than 4.5 the sparsity keeps
increasing but at the expense of a higher computational time
due to the unnecessarily large dictionaries.

Since we are interested in finding a good trade-off between
error, computational complexity and sparseness of the solution,
we should seek a k value for which the algorithm performs
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well in a reasonable amount of time. Taking into account the
aforementioned behaviour of the considered metrics, we chose
k = 4 as a good trade-off value. Thus, since the experiments
carried out in Sec. VI make use of 8 × 8 image patches, the
resulting dictionary are of size 64× 256.

Lastly, it is also worth noting that the level of sparsity we
show in this experiment is lower than the one depicted in the
denoising experiments. The reason lies in the value of the
noise variance: higher variance favors sparser representations
by increasing the degrees of freedom of the solution. On the
other hand, a very small variance tends to reduce sparsity.
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Fig. 2: Influence of K on training time, reconstruction error
and sparsity. For these experiments P = 64.

VI. EXPERIMENTAL RESULTS

In this section we show the results of the experiments on
denoising and inpainting we carried out to demonstrate the
performance of the proposed BKSVD algorithm on real data.
We use standard image processing tasks as a proxy to evaluate
the quality of the estimated dictionaries. This is the reason
why we compare all algorithms under the same settings by
performing only basic dictionary learning operations and no
further processing. We assume that all considered applications
would benefit from an increased complexity of the method by
introducing specific task related operations. As an example,
in [59] the authors add a new inner step within the KSVD
algorithm which improves the performance for the specific
inpainting case.

Experiments were performed on four typical grayscale
images, namely Barbara, Boat, Lena and Peppers. For both
denoising and inpainting a dictionary of 256 atoms was
learned. The dictionary was initialized with an overcomplete

DCT dictionary. To have an unbiased dictionary, the mean
is removed from each patch before running the BKSVD
algorithm and then added back to the processed patches.
Images are divided into 8× 8 overlapping patches vectorized
in columns and stacked into a matrix. We use maximum
overlap for better performance, although it slows down the
representation task. Recovered overlapping patches are then
averaged according to their pixel contribution to the image.
We used aβ = bβ = 1 for the Gamma hyperprior distribution.

A. Denoising

To assess the performance of the proposed fast BKSVD al-
gorithm, we compare it with K-SVD, BPFA [30] and SnS [35]
methods. Differently from K-SVD, which requires knowledge
of the exact noise variance, information rarely available in
real problems, the proposed Bayesian approach as well as the
BPFA and SnS methods are able to infer this quantity directly
from the corrupted data. To perform a fair comparison, K-SVD
is run with both the noise variance estimated by our method
and the true added noise.

We learned the dictionaries for the techniques we consider
in this experiment using the noisy patches of the image
itself (of size 256 × 256 pixels). We corrupted the images
with additive white Gaussian noise (AWGN) with standard
deviation

√
1/β ∈ {5, 10, 15, 20, 25, 50}.

We show in Table V a comparison of the techniques. As we
have already mentioned, we compared the proposed BKSVD
algorithm with the K-SVD algortihm utilizing the true noise
standard deviation and the one estimated by our algorithm.
Notice that, since our noise estimate is very close to the true
one, these two experiments resulted in similar results.

TABLE II: Estimated σ using the ”Lena” image.

σ 5 10 15 20 25 50
σ̂ 5.54 10.39 15.01 19.55 24.46 46.80

The proposed method performs equally or better than K-
SVD in 20 out of 24 experiments and also is capable of
estimating the noise variance. Notice also that unlike our
method, K-SVD is very sensitive to noise variance mismatch.
This mismatch can decrease its PSNR performance by a
few dBs [9]. On the other hand, our technique performs a
completely automatic noise variance estimation and is more
robust to high noise levels because it takes into account the
uncertainty of the estimates. We show in Table V the average
percentage of non-zero components in the estimated X. As can
be seen, while PSNR and SSIM values are similar for both
techniques, BKSVD always obtains sparser solutions which
indicates that the learned dictionary with our method contains
atoms which can better represent the signal. The Spike and
Slab (SnS) method in [35] directly compares to our techinque
since it also has the ability of automatically estimate the noise
variance during the process. In Table V we can see that this
method is able to reach competitive results in the denoising
task. However, our method outperforms SnS in terms of PSNR
and SSIM. By comparing the proposed technique with the one
in [30] we can see that the two techniques, which both can
automatically estimate the parameters of the model, perform
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(a) Noisy image (σ = 20)

(b) BKSVD denoising (c) K-SVD denoising (d) BPFA denoising (e) SnS denoising

Fig. 3: Comparison of the denoising performance of BKSVD, K-SVD, BPFA [30] and Spike and Slab (SnS) model [35]
algorithms.

(a) r = 75% missing pixels (b) BKSVD inpainting (c) K-SVD inpainting

Fig. 4: Comparison of the inpainting performance of BKSVD and K-SVD algorithms. Please note that in this comparison the
dictionary is learn from a set of clean images.

almost equally well. The difference in PSNR and SSIM values
between the two techniques is, in most cases, extremely small.
Thus, in order to further assess in detail the differences in the
quality of the estimated dictionaries, we rely on the mutual
coherence defined as

µ{D} = max
i 6=j

|dᵀ
i dj |

‖di‖‖dj‖
.

The mutual coherence provides a measure of the worst sim-
ilarity between any two columns in the dictionary; in fact,
two columns with high correlation may confuse algorithms
seeking a sparse representation [61]. Even though the design of
incoherent dictionary is out of the scope of this work, in Table
III we show the mutual coherence of the dictionaries learned

with the proposed technique and the one in [30] to further
analyze the differences among the two techniques. It can be
seen that our technique is able to consistently reach lower
mutual coherence at different dictionary sizes. We further
investigate this aspect by characterizing the quality of the
dictionary itself. In order to perform this task, given a set of
non-noisy training patches we learn the dictionaries made of
256 atoms using both the proposed method and the BPFA
technique [30]. Then, we use these dictionaries to denoise
a specific image. In order to perform a fair comparison we
use the OMP algorithm for the sparse representation step
with a fixed sparsity level s = 3. As can be seen in Table
IV, the dictionary learned with the proposed algorithm not
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(a) BKSVD inpainting (b) K-SVD inpainting (c) BPFA inpainting (d) SnS inpainting

Fig. 5: Comparison of the inpainting performances at r = 75% of BKSVD, K-SVD [60], BPFA [30] and Spike and Slab
(SnS) model [35] algorithms. Please note that in this comparison the dictionary is learnt from the corrupted images

themselves.

only has lower mutual coherence but also shows its ability to
better sparsely represent a signal by reaching higher PSNR at
different noise standard deviations σ.

TABLE III: Coherence comparison between the proposed
technique and BPFA [30]. The dictionaries were learned
from 5e3 patches of size 8× 8 extracted from a set of

natural images. Different dictionary sizes K are considered.

K 64 96 128 160 192 224 256
Proposed 0.86 0.87 0.91 0.94 0.94 0.94 0.95

BPFA [30] 0.96 0.97 0.97 0.97 0.98 0.98 0.98

TABLE IV: Denoising performed on noisy Lena using OMP
by employing the dictionaries learned from a set of 94e3

patches of size 8× 8 extracted from non-noisy natural
images. We specifically compare our dictionary with the one

learned using the techinque in [30].

σ 5 10 15 20 25 50
Proposed 33.03 32.20 31.15 29.83 28.57 23.88

BPFA [30] 28.48 28.29 28.00 27.52 26.93 23.70

An example of denoising is shown in Figure 3 where we
can see the denoised ”Lena” provided by the different methods
we are considering in this section. As shown in this figure, the
proposed technique preserves edges and high spatial frequen-
cies better than K-SVD, which produces a flatter and more
blurry image. Moreover, as we already pointed out previously,
our method does not require any prior information on the
noise corrupting the images since its variance is automatically
estimated. When considering other methods, it can also be seen
that our method is able to generate less visible high-frequency
artifacts than BPFA and SnS models.

Table II shows both the true synthetic noise standard devi-
ation and the corresponding estimation by our method for the
denoising experiment using the ”Lena” image.

B. Inpainting

Sparse coding is also capable of dealing with missing
information. The problem stated in (1) needs to be adapted
to handle this lack of information at the reconstruction phase,
that is, after the dictionary has been learned.

For this experiment, a dictionary of 256 atoms was learned
from a database of 23 images. From every image, we selected
the 4096 patches with the highest variances. Following the
approach in [7], these images did not contain missing values.
During testing, and for images not in the training set, 25%,
50% and 75% of the pixels in those images were removed
(set to zero) from every non-overlapping patch of each 512×
512 test image. No noise was added. Regarding the K-SVD
parameters, a very small σ was used since the image has no
noise.

During testing, the process was adapted to deal with the
missing information. Let nq denote the position of the pix-
els in a patch q where the information is available. We
create the set of truncated vectors ỹq = yq(nq) which
contain the entries of yq restricted to the indices in nq , and
consider the set of truncated dictionaries for these signals
D̃(q) = [d1(nq), · · · ,dK(nq)]. We then estimate xq from the
observation model

ỹq = D̃(q)xq, q = 1, . . . , Q. (73)

Finally, the image is recovered from the estimated represen-
tations x̂q and the full dictionary, Ŷ = DX̂. This process is
depicted in Figure 6.

As we can see in table VI, the results obtained by the
proposed method outperform those obtained by K-SVD, sug-
gesting an improved capability of representation by the learned
BKSVD dictionary. Notice that for high percentages r of
missing pixels and due to the scarcity of data both methods
perform similarly, although the proposed one still performs
slightly better. We show a graphical example in figure 4 for
the highest ratio of missing pixels (r = 75%). There is a
noticeable improvement in the visual quality of the image
recovered by our method in contrast to the too smooth K-SVD
reconstruction.

BKSVD can be adapted to learn the dictionary from images
with missing pixels. In this scenario, the per block observation
model becomes

Mqyq = MqDxq + Mεq

where Mq is a diagonal matrix with a value of 1 if the
corresponding position of yq is observed and 0 otherwise,
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TABLE V: Comparison of the proposed BKSVD algorithm with K-SVD [7], batch and online versions of the BPFA
algorithm [30], and Spike and Slab model in [35]. K-SVD was tested with estimated and true σ. We show PSNR (dB), SSIM

and average sparsity (non-zero coefficients over the number of coefficients) denoted as nz. For the SnS model we do not
provide the nz since the learned dictionary is not overcomplete.

σ Barbara Boats Lena Peppers
PSNR SSIM nz PSNR SSIM nz PSNR SSIM nz PSNR SSIM nz

5 38.02 0.97 0.05 36.71 0.96 0.03 38.90 0.97 0.04 38.98 0.97 0.04 BKSVD
38.00 0.97 0.08 36.70 0.96 0.08 38.92 0.97 0.08 38.91 0.97 0.07 K-SVD σ̂
38.10 0.97 0.10 36.40 0.96 0.12 38.93 0.97 0.08 38.89 0.97 0.08 K-SVD σ
35.47 0.94 0.03 36.11 0.96 0.03 37.77 0.97 0.03 38.02 0.97 0.03 BPFA [30]
35.99 0.95 - 36.44 0.96 - 38.21 0.97 - 38.32 0.97 - SnS [35]

10 33.97 0.93 0.02 32.80 0.91 0.02 34.96 0.94 0.02 35.27 0.94 0.01 BKSVD
33.95 0.93 0.04 32.70 0.90 0.04 34.94 0.94 0.04 35.08 0.94 0.03 K-SVD σ̂
33.97 0.93 0.06 33.00 0.92 0.04 34.95 0.94 0.04 35.09 0.94 0.02 K-SVD σ
32.97 0.91 0.02 33.00 0.92 0.02 34.75 0.94 0.02 35.15 0.94 0.02 BPFA [30]
32.98 0.92 - 32.88 0.92 - 34.59 0.94 - 34.81 0.94 - SnS [35]

15 31.85 0.90 0.01 31.01 0.87 0.01 32.78 0.91 0.01 33.12 0.92 0.01 BKSVD
31.82 0.90 0.02 30.90 0.87 0.03 32.73 0.91 0.03 33.00 0.92 0.03 K-SVD σ̂
31.84 0.90 0.02 31.00 0.87 0.02 32.70 0.91 0.03 33.04 0.92 0.02 K-SVD σ
31.43 0.88 0.01 31.06 0.88 0.02 32.71 0.91 0.01 33.10 0.92 0.01 BPFA [30]
30.87 0.87 - 30.73 0.87 - 32.33 0.90 - 32.63 0.91 - SnS [35]

20 30.30 0.87 0.01 29.44 0.83 0.01 31.32 0.88 0.01 31.36 0.89 0.01 BKSVD
30.24 0.87 0.02 29.42 0.83 0.02 31.27 0.88 0.02 31.35 0.89 0.02 K-SVD σ̂
30.28 0.87 0.02 29.44 0.83 0.02 31.30 0.88 0.02 31.36 0.89 0.02 K-SVD σ
30.01 0.85 0.01 29.56 0.84 0.01 31.19 0.88 0.01 31.56 0.90 0.01 BPFA [30]
29.52 0.84 - 29.30 0.83 - 30.76 0.87 - 31.01 0.89 - SnS [35]

25 29.10 0.84 0.01 28.38 0.80 0.01 29.99 0.86 0.01 30.20 0.88 0.01 BKSVD
29.10 0.83 0.02 28.38 0.80 0.02 29.87 0.86 0.02 30.12 0.87 0.02 K-SVD σ̂
29.05 0.83 0.01 28.36 0.80 0.01 30.00 0.86 0.01 30.15 0.87 0.01 K-SVD σ
29.01 0.83 0.01 28.63 0.81 0.01 30.12 0.86 0.01 30.27 0.88 0.01 BPFA [30]
28.49 0.81 - 28.13 0.79 - 29.56 0.84 - 29.82 0.86 - SnS [35]

50 25.60 0.72 0.01 25.10 0.67 0.01 26.31 0.73 0.01 26.41 0.77 0.01 BKSVD
25.51 0.71 0.01 25.01 0.66 0.01 26.16 0.72 0.01 26.19 0.76 0.01 K-SVD σ̂
25.43 0.71 0.01 24.92 0.67 0.01 26.23 0.72 0.01 26.32 0.77 0.01 K-SVD σ
25.78 0.72 0.01 25.26 0.68 0.01 26.43 0.76 0.01 26.71 0.80 0.01 BPFA [30]
25.33 0.70 - 24.90 0.66 - 26.13 0.73 - 26.16 0.77 - SnS [35]

TABLE VI: Inpainting results when the dictionary is learnt from a set of natural images. Comparison of the proposed
BKSVD algorithm with K-SVD for different ratios (r) of missing pixels. PSNR and SSIM values are given.

r(%) Barbara Boat Lena Peppers
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25 39.18 0.99 38.54 0.97 41.54 0.98 39.49 0.97 BKSVD
38.80 0.99 36.79 0.96 40.58 0.97 37.17 0.97 K-SVD [7]

50 33.15 0.96 32.65 0.92 36.14 0.95 34.73 0.93 BKSVD
32.59 0.95 32.25 0.90 36.02 0.94 33.82 0.89 K-SVD [7]

75 27.36 0.86 27.39 0.80 30.37 0.88 29.29 0.85 BKSVD
25.03 0.82 26.93 0.76 29.23 0.85 28.70 0.83 K-SVD [7]

and εq ∼ N (0, β−1I). All the prior models remain the same.
Inference and fast inference can be carried out following the
steps in sections IV and V-A, respectively.

Table VII shows a comparison of BKSVD with the methods
in [60], [30] and [35]. These methods learn the dictionary
from the corrupted image. The same missing pixel patterns
as in the previous experiments were used for testing this
second approach. The BKSVD inpainting algorithm performs
similarly to [60], [30] and [35] in terms of PSNR and SSIM.
However, its visual quality is better, with fewer noticeable
artifacts on the edges. This can be observed in Fig. 5, BPFA
and SnS images, have a higher PSNR values, but visually
are worse. Notice also the visual artifacts in the K-SVD
reconstruction.

Finally, we would like to mention that although the obtained
PSNR values for both experiments (learning from clean or

corrupted images) are similar, the visual quality of the recon-
structed images is much better in the first case, where the
use of additional clean data improves the construction of the
dictionary.

C. Runtime comparison
We conclude the experimental section with a final compari-

son of the dictionary learning algorithms in terms of execution
time. The experiments were performed on a server equipped
with AMD OpteronTMCPU @ 2.30 GHz processors. Table
VIII shows runtime for denoising performed on the Lena
image with σ = 20 for different image and dictionary sizes.

K-SVD is the fastest, but it does not include an estimation
of the number of non-zeros in each sparse representation.
Among the Bayesian methods the proposed method ranks
second after BFPA but notice, as pointed out in section V-A,
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TABLE VII: Inpainting results when the dictionary is learnt from the corrupted images themselves. Comparison of the
proposed BKSVD algorithm with SnS and BPFA for different ratios (r) of missing pixels. PSNR and SSIM values are given.

r(%) Barbara Boat Lena Peppers
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25 38.53 0.98 36.28 0.97 38.85 0.97 39.04 0.97 BKSVD
38.85 0.98 36.83 0.96 39.14 0.97 40.14 0.97 K-SVD [60]
34.77 0.94 35.19 0.96 37.87 0.97 38.04 0.97 BPFA [30]
36.34 0.96 35.24 0.95 38.52 0.98 39.03 0.98 SnS [35]

50 33.67 0.95 30.97 0.92 33.73 0.95 33.92 0.96 BKSVD
32.58 0.91 30.73 0.88 33.09 0.90 33.48 0.91 K-SVD [60]
33.33 0.94 32.24 0.93 34.43 0.96 35.10 0.96 BPFA [30]
32.65 0.93 31.21 0.91 33.89 0.95 34.69 0.96 SnS [35]

75 27.99 0.86 25.88 0.79 28.18 0.87 27.84 0.88 BKSVD
23.48 0.70 22.84 0.62 24.13 0.69 23.16 0.70 K-SVD [60]
28.24 0.85 26.91 0.83 29.46 0.91 29.36 0.92 BPFA [30]
27.57 0.82 26.45 0.79 28.93 0.89 28.79 0.90 SnS [35]

Fig. 6: Inpainting process: (a) two patches from image I, y1

and yq (missing pixels in red), (b) vectorization of patch yq;
rows from D corresponding to the missing pixels in yq are
also highlighted in red, (c) highlighted entries are discarded
from the problem formulation, (d) recovery using the full

dictionary D.

TABLE VIII: Runtime in seconds for dictionary learning
algorithms for different image and dictionary (K) sizes.

Image size K BKSVD BPFA K-SVD SnS

256x256 256 2.843 1.054 165 9.960
320 3.603 1.468 171 15.355

128x128 256 774 281 62 2.451
320 894 407 71 3.893

that the proposed method estimates a parameter λkq for every
coefficient in the representation matrix, whereas BFPA only
estimates one probability vector (K parameters) shared by all
xq . It is possible to estimate c such probability vectors in
BFPA, but this was not used in the experiments.

VII. CONCLUSION

In this paper, we presented a novel Bayesian approach
for the `1 sparse dictionary learning problem based on K-
SVD. The prior we utilize on the sparse signals enforces
sparsity while allowing for a tractable Bayesian inference.

The use of Bayesian modeling and inference allows us to take
into account the uncertainty of the estimates in the inference
process. Very importantly, the proposed technique estimates
all parameters without the need of any additional information,
which makes it fully automatic.

The proposed algorithm has been tested on denoising and
inpainting tasks. For the inpainting problem, dictionaries were
learned using two different approaches; first, utilizing a set
of clean images, and secondly, from the corrupted images
themselves. All evaluated techniques yield good results, but K-
SVD has a major drawback: the need of an accurate estimate
of the noise deviation. Bayesian methods solve this deficiency,
but at the expense of higher complexity and computational
time. From the performed experiments, BPFA and the pro-
posed method are the best performing ones; notice also that
our method produces images with reduced artifacts. In order
to further characterize the improved quality of our dictionary
estimation, we evaluated it in terms of lower mutual coherence
and better image recovery under common sparse presentation
algorithms.

Lastly, experiments to analyze the importance of the dictio-
nary size have been carried out. These experiments can be used
to tune the size of the dictionary. We have not addressed here
the estimation of the size of the dictionary using Bayesian
inference. However, we are currently investigating how to
adapt to our model the approach to initially estimate the
dictionary size presented in [30].
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