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Summary

Virtualization is a key building block of next-generation mobile networks. It can be
implemented through two main approaches: traditional virtual machines and lighter-
weight containers. Our objective in this paper is to compare these approaches and
study the power consumption they are associated with. To this end, we perform a
large set of real-world measurements, using both synthetic workloads and real-world
applications, and use them to model the relationship between the resource usage
of the hosted application and the power consumption of both virtual machines and
containers hosting it. We find that containers incur substantially lower power con-
sumption than virtual machines, and that such consumption increases more slowly
with the application load.
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1 INTRODUCTION

One of the most notable differences between next-generation (“5G”) mobile networks and present-day ones is the former’s
ability to serve user request within the network itself. Instead of traveling all the way to an Internet-based server, requests will
be processed at computation-capable nodes belonging to the backhaul network itself. This paradigm is known as multi-access
edge computing (MEC)1,2.
Virtualization is a key enabling technology of MEC, as it allows general-purpose network hardware to process requests of

any type. At the same time, it is associated with an overhead in terms of CPU usage and memory occupation; such overhead in
turn translates into additional power consumption. Power consumption is an increasingly important key performance indicator
(KPI) for all types of networks, as it affects their profitability as well as their environmental sustainability. In this context, it is
important that the virtualization technique is chosen accounting for the associated power consumption.
The traditional approach is virtual machine (VM)-based virtualization3: as summarized in Fig. 1 , a hypervisor software

emulates a whole virtual machine, running the guest operating system and applications. The main advantage of VM-based
virtualization is the high level of separation between guests and host: guest machines can have different architecture (e.g., x86
and ARM) and different operating system (e.g., Windows or Linux) from their host; furthermore, the same host can run multiple
guests with different architectures and operating systems at the same time. On the negative side, the tasks of emulating guest
hardware and running the guest operating system translate into a significant CPU and memory overhead.
More recently, container-based virtualization4 has emerged as a lighter-weight alternative to VMs. As shown in Fig. 1 , both

the hardware and the operating system kernel are shared between host and guest applications. Isolation is obtained through
operating system-level primitives such as namespaces and cgroups, controlling the parts of the execution environment (running
processes, daemons...) and system resources visible to guest applications running within containers. The main advantage of
container-based virtualization is its lower overhead compared to VMs.Main drawbacks include a lower level of isolation between
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FIGURE 1 High-level architecture of virtual machine-based virtualization (left) and container-based virtualization (right).

host and guests (which can lead to security issues) and the impossibility of emulating a guest operating system different from
the host one.
In this paper, we embark on the twofold task of (i) measuring the power consumption associated with VM- and container-based

virtualization under a variety of workloads, and (ii) modeling how such consumption depends on the workload at hand. By fulfill-
ing the first task, we can check to which extent the lower overhead touted by containers translates into lower power consumption.
Perhaps more importantly, studying the link between workload, chosen virtualization technique and power consumption allows
us to estimate the power consumption associated with a generic workload, beyond those we directly test.
The rest of this paper is organized as follows. We begin by describing our methodology in Sec. 2, including our testbed and

the workloads we use. Then, in Sec. 3 and Sec. 4 we summarize the results we obtain from synthetic and real-world workloads
respectively. Finally, after summarizing related work in Sec. 5, we conclude the paper in Sec. 6.

2 METHODOLOGY

We measure the power consumption associated with virtualization through a small-scale testbed. Whenever possible, we use
commodity hardware and open-source software, so as to make our results as easy to reproduce as possible. This section describes
the hardware (Sec. 2.1) and software (Sec. 2.2) we use in our testbed, as well as the workloads, both synthetic and real, we take
into account (Sec. 2.3).

2.1 Hardware
The host machine we use for both containers and virtual machines is an HP EliteBook 820 G3 laptop, equipped with a Intel
Core i5-6200U processor (two cores, 2.3 GHz, 3 MByte cache) and 8 GByte of RAM. When testing client-server applications,
we run the servers (within containers or VMs) on the laptop, and the clients on a separate computer, namely, a ThinkCenter
M93p desktop. By doing so, we prevent client and server applications from interfering with one another, e.g., triggering thread
preemption. The laptop and desktop are connected through a portable Gigabit Ethernet switch, and that switch is not shared
with other computers. This ensures that the connection between clients and servers is consistently fast, and never represents a
bottleneck for the application running.
Finally, we measure the power consumed by the laptop through an RCE PM600 power meter, displaying the total power the

laptop draws from the grid. By using a power meter instead of estimates from the operating system, we obtain very precise and
reliable measurements. However, this also means that special care is needed to tell the power consumption due to the workload
apart from other contributions, e.g., the power consumed by the host operating system. To this end,

• before running any workload, we measure the idle power consumption of the computer;

• we subtract such value from the power consumption measured under each workload.

Additionally, we remove the battery from the laptop to ensure that no power is drawn to charge it.
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2.2 Software
There are two main decisions we need to make concerning the software to use in our testbed: the operating system to use, and
which VM- and container-based virtualization solutions to adopt.
The natural choice for the operating system is Linux, due to its broad support for all virtualization technologies. Among Linux

distributions we chose Ubuntu, which offers the best balance between up-to-date packages, documentation, and overall system
stability; specifically, we use the 16.10 LTS version, with kernel version 4.8.0-46-generic. As both the i5 processor and this
kernel support hyper-threading, four threads can be run at the same time.
VM-based virtualization is a mature technology, with several available options, both commercial and open-source. We choose

VirtualBox, on the grounds that it is the most popular among open-source ones. Both commercial (most notably, VMWare) and
open-source (namely, QEMU) alternatives are sometimes reported to be marginally faster than VirtualBox; however, VirtualBox
is more widely available than the other two solutions (VMWare requires a license, and QEMU – branded a “processor emulator”
– is suited for narrower set of scenarios).
Choosing the reference container-based solution is easier. Docker is indeed the de facto standard, and arguably the primary

reason why container-based virtualization attained its current level of popularity. It is an open-source application, and Linux
support is its primary (though not exclusive) focus.

2.3 Workloads
We measure the power consumption under two types of workloads:

• synthetic workloads, consuming a predetermined amount of CPU resources, memory, storage, or network capacity;

• real-world applications, with servers running into VMs or containers.

Through synthetic workloads, we can establish which among CPU usage, memory and storage consumption, and network
traffic has the highest impact on power consumption. Real-world workloads, on the other hand, allow us to get a glimpse of how
popular, present-day applications would perform in a virtualized environment, and the power consumption we can expect from
them.

2.3.1 Synthetic workloads
Synthetic workloads aim at stressing a specific component of the system, e.g., CPU or memory, while using as little as possible
of the other resources. As an example, a good CPU test will consume a predictable and configurable amount of CPU, while at
the same time occupying a negligible amount of memory, storing no data on the hard disk, and generating no network traffic.
Whenever possible, we use existing, off-the-shelf test applications as our workloads, as described next.
CPU test. We use the Sysbench application, simulating a high CPU load by testing prime numbers. Prime number testing is a
CPU-intensive task, which requires little memory and no reading/writing from disk or network. This implies that the Sysbench
process will almost never be put to sleep pending I/O operations, thus using (unless preempted by other processes) virtually
100% of a (logical) CPU core. Since Sysbench is a single-threaded application, it will not use multiple cores even when they are
available.
Memory test. Our objective here is to read and write a significant amount of memory, while at the same time using the CPU
as little as possible. To this end, we write a customized Java application that allocates and then copies a large array, without
initializing or writing anything into it.
Network test. We use the iperf program to generate a predetermined quantity of TCP traffic from servers (running within VMs
or containers) and clients, running on the host laptop. We keep the clients on the same machine as the servers in order not to
use any networking hardware, and only measure the power consumption due to the processing at the hypervisor and kernel.
Disk test. We use the Flexible IO (FIO) application to transfer a 10-GByte file using a configurable block size. By doing so, we
are able to adjust the number of disk operations needed for the transfer – the smaller the block size, the more disk operations –,
and thus estimate their impact on the power consumption.

2.3.2 Real-world workloads
For real-world workloads, we select two types of application that play a crucial role in the traffic of next-generation networks:
video streaming and on-line gaming.



4

FIGURE 2 Testbed setup for real-world workloads.
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FIGURE 3 No workload: CPU usage (a) and power consumption (b) as a function of the number of VMs/containers created,
for VirtualBox (red lines) and Docker (black lines).

Video steaming. We employ the FFServer open-source streaming server, and the VLC free client. A varying number of servers,
each running in its own VM or container, stream a video to a varying number of clients, running on the desktop computer as
standalone applications. This setup, depicted in Fig. 2 , allows us to assess how both the number of servers and the number of
clients per server affect the power consumption.
On-line gaming. We select the popular on-line game Minecraft, as it offers an open-source server. In selecting the client, we
need to ensure that (i) it can run on a headless machine, i.e., without graphical interface, and (ii) we can reproduce multiple
times the same input, i.e., the same game. To this end, we combine the Java-based Minecraft client with the xdtool keystroke
emulator, both running on the desktop computer.

3 RESULTS AND MODELS: SYNTHETIC WORKLOADS

3.1 No workload
Before we apply any workload, we measure the idle power consumption associated with VirtualBox and Docker. To this end, we
create several VMs or containers, leave them idle, and measure the subsequent increase in CPU usage and power consumption.
The results are summarized in Fig. 3 , and already point at a fundamental difference between VMs and containers. Not only

Docker is associated with a lower CPU usage – and, thus, a lower power consumption – than VirtualBox, but its overhead remains
constant as the number of containers increases. The overhead associated with VirtualBox, on the other hand, grows with the
number of idle VMs we create: we can identify an offset, due to running the hypervisor, and a linear growth as the number of
VMs (and thus the quantity of virtual hardware to emulate) increases. Intuitively, Fig. 3 also suggests that there is a penalty
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FIGURE 4 CPU-intensive workload: CPU usage (a), and power consumption (b) and work performed (c) as a function of the
number of Sysbench processes, for VirtualBox (red lines) and Docker (black lines).
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FIGURE 5 Memory-intensive workload: Power consumption as a function of the quantity of memory copied, for VirtualBox
(red lines) and Docker (black lines).

associated with creating a VM and then leaving it unused, while containers only consume system resources if the application
they host is active.

3.2 CPU- and memory-intensive workloads
We now move to the CPU-intensive workload and show, in Fig. 4 , how the number of Sysbench processes we start influences
the power consumption.
Fig. 4 (a) shows that the amount of CPU usage grows linearly with the number of Sysbench processes we start. Recall that

Sysbench is a single-threaded application, so if (for example) we launch two Sysbench processes then exactly two CPU cores
will be used. Fig. 4 (b), more interestingly, shows that the power consumption also grows linearly with the CPU usage, which
suggests that CPU usage is its main component. One might be surprised to see almost no difference between VirtualBox and
Docker curves in Fig. 4 (a) and Fig. 4 (b). We observed from Fig. 3 that Docker has a lower overhead than VirtualBox, so we
could expect a lower CPU usage in Fig. 4 (a) and thus a lower power consumption in Fig. 4 (b).
The solution to this apparent paradox is given in Fig. 4 (c), showing the quantity of work made by Sysbench, i.e., how many

numbers it can check: using Docker instead of VirtualBox means that Sysbench is able to do more work in the same time period.
In summary, the Sysbench test uses the same amount of CPU when VirtualBox and Docker are used; however, in the VirtualBox
case, a higher fraction of that CPU is consumed by virtualization overhead, which results in less CPU available for actual work.
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FIGURE 6 Network-intensive workload with one client and one server: power consumption (a) and CPU usage (b) as a function
of the offered traffic, for VirtualBox (red lines) and Docker (black lines).

Fig. 5 depicts the power consumption resulting from our Java-basedmemory test.We can clearly see that the amount of mem-
ory we copy has almost no impact on the total power consumption. Indeed, memory operations require very little intervention
from the CPU; Fig. 5 also confirms our intuition that CPU usage is the main contribution to the total memory consumption.

3.2.1 Linear fitting
We use the data summarized in Fig. 4 (b) to extrapolate a linear model linking CPU usage with power consumption. Specifically,
we use the ordinary least squares5 method to find the linear relationship that minimizes the sum of squared errors. The fitted
relationship for VirtualBox is the following:

P[W] = 0.0175c[cores] + 4.9091. (1)

For Docker, we have the following:
P[W] = 0.0166c[cores] + 5.0444. (2)

In both (1) and (2), P is the power consumption (in watt), and c represents the CPU usage in cores. The average fitting error is
very low, as little as 0.18% for VirtualBox and 0.04% for Docker. This confirms our intuition that CPU usage is the main driver
of power consumption, and the link between them is as simple as a linear relationship.

3.3 Network-intensive workloads
We now use iperf to create a network-intensive workload. Specifically, we use a single server (running in a container or VM)
and a single client (running directly on the laptop), and change the offered data rate between 0.01 and 0.9 GBit/s.
Fig. 6 (a) depicts the power consumption as a function of the offered traffic, and highlights several very important facts.

First, VirtualBox exhibits a higher power consumption than Docker, consistently with what we observed earlier. Even more
importantly, such power consumption grows much faster for VirtualBox than for Docker, suggesting that containers have not
only a better efficiency than VMs, but also a better scalability.
The reason for this difference lies in the operations needed to transfer packets between the iperf client and server. In Docker,

all that is needed is that packets traverse the networking stack of the host operating system’s kernel. In VirtualBox, packets
need to traverse the host kernel, the hypervisor, and then the guest kernel. As shown in Fig. 6 (b), all these operations take a
substantial toll on the CPU usage, which in turn translates into the higher power consumption we observed in Fig. 6 (a).
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FIGURE 7 Disk-intensive workload: power consumption (a) and transfer time (b) as a function of the block size, for VirtualBox
(red lines) and Docker (black lines).

3.4 Disk-intensive workload
As described earlier, our disk-intensive workload consists in copying a 10-GByte file with different block sizes; the smaller the
block size, the larger the number of I/O operations that are required. Fig. 7 (a) summarizes the power consumption resulting from
such workload for different block sizes. We can observe that containers always exhibit a low power consumption, consistently
with previous tests. More importantly, the power consumption of Docker is almost constant with respect to the block size,
while the one of VirtualBox exhibits a steep increase as the block size drops below 32 kByte. The reason is similar to the one
discussed for the network-intensive workload: a disk operation in VirtualBox requires the hypervisor to simulate the behavior
of the hardware, which implies substantial CPU overhead and thus higher power consumption.
Fig. 7 (b) shows time elapsed while performing the disk transfer. We can observe that, for both Docker and VMs, smaller

block sizes translate into higher transfer times. However, transfer times with Docker are consistently shorter than transfer times
with VirtualBox: the higher overhead incurred by virtual machine translates not only in higher power consumption but also in
longer transfer times.

3.4.1 Exponential fitting
We use the data summarized in Fig. 7 (a) to extrapolate an exponential model linking block size with power consumption. As
in the linear case, we use the least-squares method5 to find the exponential relatioship that minimizes the sum of squared errors.
The fitted relationship for VirtualBox is the following:

P[W] = 4.81 exp
(

−0.1014bkByte
)

+ 2.848 exp
(

0.00072bkByte
)

. (3)

For Docker, we have:
P[W] = 1.857 exp

(

0.0009083bkByte
)

. (4)
In both (3) and (4), P is the power consumption (in watt), and b represents the block size kilobytes. The average fitting error is
11.4% for VirtualBox and 13.9% for Docker. Such figures are higher than those for the linear model described in Sec. 3.2.1; this
suggests a fairly complex relationship between block size and power consumption.

4 RESULTS AND MODELS: REAL-WORLDWORKLOADS

We now move to the real-word workloads described in Sec. 2.3.2, i.e., the FFServer streaming application and the Minecraft
game. As summarized in Fig. 2 , we run the servers on our laptop, each in its own VM or container, and the clients on a separate
desktop computer.
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FIGURE 8 FFServer, single-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).
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FIGURE 9 FFServer, multiple-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).

4.1 Video streaming: FFServer
In our first test, we deploy one FFServer server on our laptop (running within a VM or container) and use it to stream the same
video to a varying number of VLC clients. It is important to highlight that we are modeling on demand streaming (à la YouTube)
as opposed to real-time streaming (à la AceStream): each client plays an independent stream, and all traffic is unicast.
None the less, as we can see from Fig. 8 , the number of clients only has a small impact on the resources consumed by the

server; indeed, neither the CPU usage (Fig. 8 (b)) nor the memory consumption (Fig. 8 (c)) substantially increases with the
number of clients. As a consequence, the power consumption (Fig. 8 (a)) is essentially always the same.
We now study the effect of having multiple servers running in parallel on the laptop, each in its VM or container, and each

serving one client. The corresponding resource consumption is shown in Fig. 9 .
Once more, we observe differences between Docker and VirtualBox that are not only quantitative, but qualitative. With

Docker, five servers serving five clients consume approximately the same amount of CPU (Fig. 9 (b)) and power (Fig. 9 (a)) of
one server serving five clients; only the memory usage shown in Fig. 9 (c) grows with the number of servers. Using VirtualBox,
on the other hand, means that CPU usage and power consumption grow linearly with the number of servers.
We can conclude that the overhead incurred by container-based solutions like Docker is not only lower than that of VMs, but

also grows more slowly with the number of containers being run. Such a scalability justifies the interest that container-based
virtualization has attracted as a key technology of MEC, and indeed, one of its enablers.
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FIGURE 10 Minecraft, single-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the
number of clients, for VirtualBox (red lines) and Docker (black lines).
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FIGURE 11 Minecraft, multiple-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of
the number of clients, for VirtualBox (red lines) and Docker (black lines).

4.2 Gaming: Minecraft
We now move to the Minecraft game. Fig. 10 refers to the setup with one server and a varying number of clients, similar to
Fig. 8 . We can observe a steep increase in the utilization of resources as the number of clients increases, for both Docker and
VirtualBox; this is due to the different nature of the application being run.
As far as the difference between VirtualBox and Docker is concerned, Docker still exhibits a substantially lower power

consumption, (Fig. 10 (a)), CPU usage (Fig. 10 (b)), and memory usage (Fig. 10 (c)). It is also interesting to notice, from
Fig. 10 (b), how the CPU overhead due to virtualization is higher than the load from the game server itself, intensive as it is.
Fig. 11 summarizes the resource consumption in the multi-server setup, when each user is served by its own server. Similar

to Fig. 9 , we can see a higher resource consumption than in the single-server setup; furthermore, the qualitative behavior is
now the same for both VirtualBox and Docker. The latter has, however, a much lower overhead than the former, suggesting that
the scalability advantage of container-based virtualization is present under all types of workloads.

5 RELATEDWORK

Measuring the power consumption of virtualization environments and applications running on them is the subject of several
existing works. Kansal et al.6 have developed Joulemeter, a tool to measure the energy consumption of a virtual machine and
break it down as the sum of the individual power consumptions of CPU, memory and disk. Krishnan et al.7 have modeled the
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power consumption of virtual machines as a linear function of the number of CPU instructions and the number of Last Level
Cache (LLC) memory misses. Similar to what we obtained Kansal et al.6 and Krishnan et al.7 has obtained a linear relationship
between the power consumption of the CPU intensive task and the number of instructions retired per second (CPU usage in
our case). The power consumption models obtained for memory intensive test of Krishnan et al.7 and Kansal et al.6 have linear
dependence on the last level cache misses.
Another VM power modelling technique is VMeter by Ata E et al.8, which is based on online monitoring of CPU, cache, disk

and RAM. Themodel predicts instantaneous power consumption of an individual VMhosted on a physical node in addition to the
full system power consumption with amodel which predicts the power consumption as the weighted sum of CPU, cache, disk and
memory utilization. Yet another tool to measure power consumption of virtualized applications are presented by Colmant et al.9.
This paper9 presents a fine-grained monitoring middleware named BITWATTS, which automatically learns an application-
agnostic power model, which can be used to estimate the power consumption of applications.
Dhiman et al.10 present a system for online power prediction in virtualized environments based on Gaussian mixture models

that use architectural metrics of the physical and virtual machines (VM) collected dynamically by the system to predict both
the physical machine and per VM level power consumption. Bertran11 proposed a system based on CPU and memory power
models, relying on Performance Monitoring Counters (PMCs), to perform energy accounting in virtualized systems. Bertran11

have modeled the power consumption of VMs as the weighted sum of performance counters by learning the weights of the
model using incremental linear regression techniques.
Morabito12 has presented an empirical investigation of different virtualization technologies (including containers) from the

viewpoint of power consumption. The work by Morabito12 is more similar to our tests on synthetic applications. Their test on
CPU and network transfers have qualitatively the same result as the results we got. Their CPU tests show the same performance
on both kind of virtualization platforms and for the network transfer test of single client and single server they have shown that
VMs consumemore power than containers which is in agreement with what we have seen in our results for synthetic applications.
The memory test of Morabito12 on the other hand show that VMs consume almost the same power as containers while our
results show that a little more power is consumed by VMs than containers.
Kritwara et al.13 investigated power consumption and performance issues concerning memory and disk I/O in Xen and KVM

virtualization environments. The power consumption and the latency in the disk I/O test results of Kritwara et al.13 are reported
to be decreasing function of the block size similar to what we obtained. The memory test in Kritwara et al.13 compares the
memory usage of Mysqlslap queries in KVM and Xen which can not be compared with our memory test which allocates and
deallocates a certain amount of memory. Avino et al.14 addressed the suitability of Docker in MEC scenarios by quantifying the
CPU consumed by Docker when running two different containerized services: multiplayer gaming and video streaming. They
have done tests by varying the number of clients and servers for both services. For the gaming service, the overhead logged by
Docker increased only with the number of servers; conversely, for the video streaming case, the overhead is not affected by the
number of either clients or servers. The work by Avino et al.14 has followed similar methodology in observing system resource
utilization of real-world applications except that they do not present power consumption measurements. We see that the CPU
utilization has the same qualitative behavior.
Fan et al.15 proposed the Energy driven AvataR migration (EARN) scheme to reduce the total on-grid energy consumption

of GCN by considering the energy consumption of Avatar migrations.

6 CONCLUSION

We aimed to assess the power consumption due to VM- and container-based virtualization. To this end, we performed an
extensive set of real-world measurements, using VirtualBox and Docker as reference technologies and a wide set of workloads,
both synthetic and real-world.
Through our measurements, we found that CPU usage is the main driver of the global power consumption, and the extra

power consumption of container-based virtualization is not only lower than that of VM-based virtualization, but also grows more
slowly as the workload increases. Additionally, we observed that that there is a penalty in energy consumption associated with
creating a VM and then leaving it unused, while containers only consume system resources if the application they host is active.
These findings suggest that container-based virtualization is an attractive technology for MEC scenarios, when large numbers
of virtualized applications run on the same physical hardware and some of them may be inactive for some time periods, e.g.,
during user handover.
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