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Abstract

The Internet has brought substantial changes to our life as the main tool to access
a large variety of services and applications. Internet distributed nature and tech-
nological improvements lead to new challenges for researchers, service providers,
and network administrators. Internet traffic measurement and analysis is one of the
most trivial and powerful tools to study such a complex environment from different
aspects. Mobile BroadBand (MBB) networks have become one of the main means
to access the Internet. MBB networks are evolving at a rapid pace with technol-
ogy enhancements that promise drastic improvements in capacity, connectivity, and
coverage, i.e., better performance in general.

Open experimentation with operational MBB networks in the wild is currently a
fundamental requirement of the research community in its endeavor to address the
need for innovative solutions for mobile communications. There is a strong need for
objective data relating to stability and performance of MBB (e.g., 2G, 3G, 4G, and
soon-to-come 5G) networks and for tools that rigorously and scientifically assess
their performance. Thus, measuring end user performance in such an environment
is a challenge that calls for large-scale measurements and profound analysis of the
collected data. The intertwining of technologies, protocols, and setups makes it even
more complicated to design scientifically sound and robust measurement campaigns.
In such a complex scenario, the randomness of the wireless access channel coupled
with the often unknown operator configurations makes this scenario even more
challenging.

In this thesis, we introduce the MONROE measurement platform: an open
access and flexible hardware-based platform for measurements on operational MBB
networks. The MONROE platform enables accurate, realistic, and meaningful
assessment of the performance and reliability of MBB networks. We detail the
challenges we overcame while building and testing the MONROE testbed and argue
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our design and implementation choices accordingly. Measurements are designed
to stress performance of MBB networks at different network layers by proposing
scalable experiments and methodologies. We study: (i) Network layer performance,
characterizing and possibly estimating the download speed offered by commercial
MBB networks; (ii) End users’ Quality of Experience (QoE), specifically targeting
the web performance of HTTP1.1/TLS and HTTP2 on various popular web sites; (iii)
Implication of roaming in Europe, understanding the roaming ecosystem in Europe
after the "Roam like Home" initiative; and (iv) A novel adaptive scheduler family
with deadline is proposed for multihomed devices that only require a very coarse
knowledge of the wireless bandwidth.

Our results comprise different contributions in the scope of each research topic.
To put it in a nutshell, we pinpoint the impact of different network configurations
that further complicate the picture and hopefully contribute to the debate about
performance assessment in MBB networks. The MBB users web performance
shows that HTTP1.1/TLS is very similar to HTTP2 in our large-scale measurements.
Furthermore, we observe that roaming is well supported for the monitored operators
and the operators using the same approach for routing roaming traffic. The proposed
adaptive schedulers for content upload in multihomed devices are evaluated in
both numerical simulations and real mobile nodes. Simulation results show that
the adaptive solutions can effectively leverage the fundamental tradeoff between
the upload cost and completion time, despite unpredictable variations in available
bandwidth of wireless interfaces. Experiments in the real mobile nodes provided by
the MONROE platform confirm the findings.
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Chapter 1

Introduction

In this chapter, we present an introduction and outlook of this thesis. We briefly de-
scribe covered research topics. Then, we illustrate well-known scientific techniques
used to solve these kinds of problems. Moreover, the structure of the thesis and a
short guide are provided to ease the readability of the thesis.

1.1 Motivation and Research Questions

In this thesis, we aim at providing experimentation challenges and characterization
of the Mobile BroadBand (MBB) [1] networks in mobile and stationary scenarios.
Our goal is to take the user perspective using customized approaches as well as
generic algorithms applied to wired and wireless network traffic processing. We
focus on three major topics:

• Design and implementation of the first open access hardware-based platform
for independent, multihomed, large-scale experimentation in MBB heteroge-
neous environments (MONROE)

• Performance assessment in MBB networks:

– Speedtest-like measurement

– Evaluation of users’ Quality of Experience (QoE) [2] on the web domain

– Understanding of roaming in Europe



2 Introduction

• Profound study and evaluation of video upload scheduling problems with
deadline

In the following, we provide a brief outlook of research questions which we intend
to address.

1.1.1 Motivation

The Internet is one of the most sophisticated technologies that has ever been created
by humans that has changed the way we live and communicate, allowing us to be
informed, buy goods, enjoy shows, play games, keep in touch with friends, and freely
express our opinions to potentially very large audiences. People are more and more
connected to the Internet, with mobile terminals allowing access to information from
anywhere and anytime. Considering this growth, there are many researchers trying
to understand the Internet architecture, performance of different technologies, users’
QoE, user behavior in the web, and etc.

Internet traffic measurement and monitoring are the most practical and powerful
tools to study various aspects of the Internet and its effects on our live. The evo-
lution of the Internet services and protocols has caused traditional traffic analysis
approaches to be ineffective in certain cases. Traditional solutions for traffic analysis,
classification, and measurement fall short in fully understanding of Internet services
and protocols as a key requirement for network monitoring/planning and security
monitoring tools. When it comes to MBB networks, the picture becomes much more
complicated than wired networks because of several additional factors.

MBB networks have become a crucial infrastructure for people to stay connected
everywhere and while on the move. Society’s increased dependence on MBB
networks motivates researchers and engineers to enhance the capabilities of mobile
networks by designing new technologies to cater for a plenty of new applications
and services, growth in traffic volume and a wide variety of user devices (e.g., smart
phones, tablets, smart devices, toys, etc.). Wireless technologies such as WiFi, 2G,
3G, 4G, and soon-to-come 5G, provide access capacities up to hundreds of Mb/s.
Still, there are scenarios in which the volume of data being produced and consumed
challenges the bandwidth offered by wireless networks.



1.1 Motivation and Research Questions 3

Subsequently, researchers show a regularly revived interest in understanding the
dynamics of such an emerging environment. A rigorous knowledge of the services of
MBB network providers would allow a better network administration, an enhanced
resilience against failures, an intelligent usage of available resources, an appropriate
support of new applications, and the provisioning of new services. Such notions are
preeminent today as the MBB network is mostly compelled by economic interests:
Technical achievements bring improvements over previous technologies but their
actual adoption depends on the usefulness to develop new businesses. In addition,
rising attention is given to the QoE offered to end users: given the competitive reality
in which they work, Internet Service Providers (ISP), and MBB network providers
must always provide a satisfactory QoE.

To measure the network accurately and fairly, it is crucial to identify the met-
rics that accurately capture the performance and the conditions under which these
parameters should be measured. These parameters might be different for various
stakeholders. For example, regulators need connectivity, coverage and speed in-
formation collected from a third-party, an independent platform to monitor how
operators fulfill their obligations, and a baseline for designing regulatory policies.
On the other hand, operators are interested in operational instability and anomalies
to identify problems in their networks. For end-users, Quality of Service (QoS) and
QoE parameters are of paramount importance, while application developers need
information about the underlying network to design robust services and protocols.
There are only limited studies in the literature that focus on identifying these param-
eters. Therefore, one of the main objectives and unique features of this thesis is its
potentials to define measurement methodologies and to experimentally verify them
in order to accurately reflect the performance and reliability of MBB networks from
the perspective of different stakeholders.

Achieving an extensive understanding of MBB network dynamics is not a straight-
forward task. There is strong need to develop methodologies that are not case-specific
or dependent on the application. To this end, we aim to design and build platforms
and methodologies able to infer profound statistics by leveraging the network traffic
and different visibility aspects of operational MBB networks. We propose to build
an open measurement platform to inspect MBB network traffic at different levels,
e.g., per-packet, per-flow, per-user, per-application, in order to gain a complete
understanding of MBB networks.
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In this complex environment, there is a substantial need for both open data about
the performance and reliability of commercial operators, as well as open platforms
for experimentation with operational MBB providers. Thorough methodological
repeatable end-to-end measurements are vital for evaluating network performance,
determining the quality experienced by end users and analyzing novel protocols.
Existing experimental platforms, such as Planetlab [3], RIPE Atlas [4], or CAIDA
Ark [5]; meet these requirements. However, they are limited to fixed broadband
networks and are not multihomed.

To this end, we introduce MONROE measurement platform, uses to accurately
identify key performance indexes and then allow experimenters to measure and
experiment with them as realistically as possible.

1.2 Topics Outline

1.2.1 MONROE

In this thesis, we introduce MONROE: the first open access hardware-based platform
for independent, multihomed, large-scale experimentation in MBB heterogeneous
environments. MONROE platform enables accurate, realistic and meaningful assess-
ment of the performance and reliability of 11 MBB networks in Europe. We report
on our experience designing, implementing and testing our proposed solution for
the platform. We detail the challenges we overcame while building and testing the
MONROE testbed and discuss our design and implementation choices accordingly.
Ultimately, we describe and exemplify the capabilities of the platform.

A typical alternative to using controlled testbeds such as MONROE is to rely
on end users and their devices to run tests by visiting a website [6] or running a
special application [7]. The main advantage of such crowdsourcing techniques is
scalability: it can collect millions of measurements from different regions, networks,
and user equipment types [8]. However, repeatability is challenging and one can only
collect measurements at users’ own will, with no possibility of either monitoring
or controlling the measurement process. Mostly due to privacy reasons, crowd
measurements do not always provide important context information (e.g., location,
type of user equipment, type of subscription, and connection status, e.g., 2G, 3G, 4G,
or WiFi). MONROE is complementary to crowdsourcing approaches and the control
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over the measurement environment tackles the drawbacks of crowd data, though at
the cost of a smaller geographical footprint [9]. Furthermore, MONROE supports
the deployment of different applications and protocols, and enables benchmarking
tools and methodologies.

1.2.2 MBB Networks Performance Assessment

MBB networks revolutionized the way people interact and brings a variety of com-
munication services into most of our daily activities. Today, messaging, videos, and
the web are key components of our lives, and we expect our MBB network providers
to supply high performance service in extremely dynamic scenarios.

When coming to performance assessment, the picture becomes much more
complicated in MBB networks than in wired networks. Even the simplest of the
tests, i.e., a "speedtest-like" measurement of the single TCP [10] bulk download
speed using HTTP, may become complicated to interpret in MBB networks, due to
the large number of factors that affect performance. Physical impairments, mobility,
variety of devices, presence of Performance Enhancing Proxies (PEP) [11], different
access network configurations, etc., all possibly impact the measurement results, and
complicate the picture.

Speedtest-like Measurements in MBB Networks

In the first part, we report our experience in designing, running, and analyzing
speedtest-like experiments on MONROE nodes. Despite the large dataset, and the
scientific approach, we find that running even a simple speedtest-like experiment
proves to be very complicated, with results that apparently vary on a large scale, with
no obvious correlations, and sometimes in an unpredictable way. We observe the
presence of Network Address Translation (NAT), and of transparent proxies, as well
as different access network configurations, and roaming agreements, each adding
complexity to the already complicated picture.



6 Introduction

WebWorks: Experimenting the Mobile Web

The intertwining of technologies, protocols, setups, and service design makes it
complicated to design scientifically sound and robust measurement campaigns. For
example, the higher the load in the MBB network cell, the larger the variance users
perceive in the time to reach the content of interest (e.g., a webpage), which, in turn,
translates into poor QoE. In this complex ecosystem, data analytics that focus on
finding relationships between user experience and network performance statistics
offer the promise of helping operators target those technology improvements that
matter most to their customers.

In this part, we discuss different ways to monitor service performance in MBB
networks, with the objective of quantifying end user QoE in web while using
HTTP1.1/TLS and HTTP2 with focusing on various popular web sites. We ex-
ploit the MONROE system, which we built to enable controlled experiments in
multiple MBB networks under similar conditions. Then, by leveraging data analytics,
we show how the data we collected enables us to directly relate user experience
to network performance statistics, an important step on the way to monitoring and
managing service quality and user satisfaction.

Understanding Roaming in Europe

International roaming allows mobile users to use their voice and data services when
they are abroad. The European Commission (EC), in an effort to create a single
digital market across the European Union (EU), has recently (as of June 2017)
introduced a set of regulatory decisions [12] as part of the "Roam like Home"
initiative. This initiative abolishes additional charges for users when they use voice
and data services while roaming in EU. In this setting, MNOs are expected to deliver
services with QoS properties similar to the ones a user experiences when at home. As
a result, people are able to use data services more freely across Europe. However, the
performance implications of roaming solutions have not been carefully examined.

This work provides an in-depth characterization of the implications of inter-
national data roaming within Europe. We build a unique roaming measurements
platform using 16 different mobile networks deployed in 6 countries across Europe.
Using this platform, we measure different aspects of international roaming in MBB
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networks, including mobile network configuration, performance characteristics, and
content discrimination.

1.2.3 Deadline-Constrained Content Upload from Multihomed
Devices

Our interest is motivated and inspired by the real needs of public transport operators.
Public transport vehicles (like buses or trains) are equipped with multiple MBB
interfaces; several onboard security cameras record videos. Those must be uploaded
to a security center where an operator occasionally requests to watch selected portions
of the videos. In this scenario, continuous real-time video uploading is too expensive.
Even if current MBB networks can offer capacities up to 100 Mb/s, the number
of vehicles and videos, the limited data quota, the performance variability along
the route, and the need to check only parts of the videos, call for ingenious upload
strategies. Hence, videos are stored onboard, and, only when an alarm is triggered,
the security operator on duty requests the specific portion of the video that must be
uploaded before a specified short deadline.

In this thesis, we propose and analyze a family of adaptive schedulers that require
only a very coarse knowledge of the available bandwidth on wireless interfaces. The
main contributions of this research topic are: i) Devising mathematical formulations
of the deadline constrained content upload problem from multihomed terminals,
under different assumptions; ii) Reporting extensive evaluations of the proposed
solutions, based on trace-driven simulations using recently collected traces; and
iii) Designing, implementing, testing, and evaluating a real implementation of the
proposed dynamic algorithm on MONROE nodes.

1.3 Internet Measurement Techniques and tools

The research work realized in this thesis has its roots in Internet measurement
platform [13] and scientific approach to use these platforms for Internet traffic
measurement [14]. Internet is one of the most sophisticated technologies that has
ever been created by humans and it is evolving rapidly. Internet traffic measurement
and analysis is one of the most powerful tools to understand this phenomenon.
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These days, Internet measurement platform plays a vital role in running large-scale
measurements to gain insight into operators operational setting, Internet service, user
QoE, and etc. When it comes to MBB networks, obtaining such information needs
more efforts and well studied approach because of the nature of MBB networks.

In this section, we present description of the scientific techniques that we exploit
in this thesis. These consist of either specialized techniques for network traffic
processing or general purpose algorithms applied to specific contexts. In the latter
case, additional details are reported along with the dissertation of the research topic
for which they are applied.

1.3.1 Passive Traffic Measurement

Passive traffic collection is a tool aimed at storing network traffic as it passes through
communication media and devices ideally without any change or interfering the
traffic. Capturing traffic needs to setup a tool (i.e., probe) instrumented to sniff raw
packets while they are passing through the network. Probes can capture traffic either
at packet level or flow level; in the latter case there is need to process packets as they
capture and extract information about layer-3 or layer-4 flows. Probes can be either
specialized hardware or be built into already existing network devices.

Passive measurements are the most practical means to analyze the real behavior
of network users. They provide immediate and detailed insights about the actual
usage of the network at the physical layer. Furthermore, when proper processing
is performed on captured data, it can provide higher level metrics to measure, e.g.,
users’ perceived QoE [15], video streaming quality, and etc. The collected data
includes knowledge about the users and services that they are using.

Fig. 1.1 shows a typical deployment of network passive monitoring at ISP level.
A probe seats at ISP level, e.g., a Point of Presence (PoP) where households’ traffic
is aggregated. All users’ connections behind the probe can be possibly captured and
analyzed by the probe. Moreover, nowadays probes are able to filter connections or
packets with protocol-based and content-based filtering rules.

In this thesis, passive measurements are employed to characterize the MBB
networks performance assessment (Chapter 3), to assess users’ QoE in case of using
different applications (Chapter 4), to understand the roaming in Europe (Chapter 5),
and to create traffic traces to present the behavior of operational MBB networks
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31

Fig. 1.1 Typical network probe deployment at ISP level

(Chapter 6). To this end, we use TCP STatistic and Analysis Tool (Tstat1 [16]) to
get flow level information, we also exploit tcpdump2 to capture packet level traces.

Tstat

Tstat is an advanced open-source tool for passive network traffic monitoring and
analysis. Tstat is a high-performing passive probe able to monitor live networks up
to 40 Gb/s speed on off-the-shelf hardware [17]. It also brings traffic classification
capabilities through behavioral classifiers [18, 19], high-level visibility on encrypted
traffic through the analysis of Domain Name System (DNS) queries [20], and a
thorough characterization of activities in the monitored network.

The basic operation performed by Tstat consists of processing the IP packets
passing on the link to rebuild upper network layer flows. Packets group according
to precise rules that define a flow identifier. A conventional choice is to aggregate
packets according to a tuple defined by (L4 protocol, source IP address, source port,
destination IP address, destination port). For TCP, the beginning and the end of a
TCP flow are provided by the identification of the connection set-up and tear-down
messages, i.e., SYN and FIN flags set in the TCP header, respectively. In case
the connection is unexpectedly interrupted without the FIN messages, the flow is
considered closed after an idle time. For UDP, a flow is identified when the first
packet matching a new flow identifier and considered closed after an idle time.

1http://tstat.polito.it/
2http://www.tcpdump.org/

http://tstat.polito.it/
http://www.tcpdump.org/
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Tstat provides a valuable set of statistics, some of which are common to all flows,
e.g., source and destination IP addresses, timestamp of the first and last packet seen,
number of bytes and packets exchanged, and connection duration. Other statistics
instead depend on the L4 protocol. While for UDP only the source and destination
port numbers are reported, TCP statistics are more than 100 different metrics such
as counters for TCP flags, i.e., SYN, ACK, FIN, RST, timestamps for first and last
packet with payload, and number of retransmitted bytes and packets, etc.

1.3.2 Active Traffic Measurement

Active traffic measurement refers to a technique in which we inject traffic into the
network and study the behavior of the network with respect to the injected traffic.
Typically, they are used to provide network performance statistics, e.g., checking
connectivity, packet loss, path changes, and etc. Usually, each active tool is designed
to address a specific problem and there is possibility for researchers to design their
own customized active tools.

However, these techniques bring extra cost. We need to run an experiment which
means inserting additional traffic into network. It causes more load on the networks
that can affect the users in the network and create congestion in network. Moreover,
active measurement can be trickier in some cases. For instance, we still pay charges
based on the traffic volume usage in the MBB networks, thus it calls for efficient and
careful use of active measurement in these environments.

In this thesis, active measurements are used to assess MBB networks perfor-
mance (Chapter 3, 4, 5, and 6). To this end, we use several classical tools (e.g.,
traceroute [21], ping [22] and iperf [23]) and customized tools that we will
describe in following chapters.

1.3.3 Optimization Technique

The concept of optimization is rooted in a basis underlying the analysis of a wide
range of allocation problems or complex decisions. It provides a degree of philo-
sophical elegance that is hard to dispute. In complex decision problems, involving
the selection of values for a number of interrelated variables, by concentrating on
a single objective designed to quantify performance and measure the quality of the
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decision. This objective is minimized (or maximized, depending on the problem
or the formulation) subject to the constraints that may narrow the selection of de-
cision variable values. If a proper single aspect of a problem can be isolated and
characterized by an objective, optimization may provide an appropriate framework.

For instance, we present a very simple problem in which the goal is minimizing
the production costs of a company. The company builds B different products and
each item i has cost equal to ci. The company can only build C items in total. We
present a possible formulation as following:

min
B

∑
i

cixi (1.1)

B

∑
i

xi <C (1.2)

xi ≥ 0 ∀i ∈ [0,B] (1.3)

The objective function in (1.1) presents the total cost, which must be minimized.
In our formulation, xi is the decision variable that we want to figure out to minimize
the total cost, i.e., the number of items needed to produce from product i. Expressions
(1.2 and 1.3) force constraints in problem. Expression (1.2) states that the sum of
decision variable is less than constant value C, i.e., total number of production of all
products. Expression (1.3) forces the decision variable and can not be negative, i.e.,
the number of items can not be negative.

It is a scarce problem in which it is feasible to fully represent all the complexities
of variable interactions, constraints, and appropriate objectives when dealing with
a sophisticated problem. Therefore, an approximation of a specific optimization
formulation should be considered. Ability in modeling, reasonable interpretation
of results, and in getting the important aspects of a problem are needed to acquire
purposeful conclusions. Problem formulation itself involves a trade-off between the
conflicting objectives of building a mathematical model to precisely capturing the
problem specification and building a model that is tractable.

In this thesis, optimization methods are used to create a model for video upload
scheduling in multihomed systems (Chapter 6). To this end, we exploit different kinds
of formulations, e.g., Linear programing, Stochastic optimization, and customized
heuristics that we will describe in the following chapter.
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1.3.4 Statistical Correlation Method

Correlation is a statistical method used to assess a possible linear association between
two variables. It is simple both to calculate and to interpret. There are two major types
of correlation coefficients: Pearson’s product moment correlation coefficient [24]
and Spearman’s rank correlation coefficient [25]. The correct usage of correlation
coefficient type depends on the types of variables being studied.

The most popular type of correlation coefficient is Pearson. Informally, it can
be said that the correlation coefficient demonstrates the extent to which values of
two variables are "proportional" to each other. The value of the correlation (i.e.,
correlation coefficient) does not depend on the particular measurement units used.
Proportional means linearly related; that is, the correlation is high if it can be
approximated by a straight line (sloped upwards or downwards). This line is called
the regression line or least squares line, because it is determined in such a way that
the sum of the squared distances of all the data points from the line is the lowest
possible. Pearson correlation assumes that the two variables are measured on at least
interval scales.

Pearson’s correlation coefficient when applied to a sample is commonly repre-
sented by the letter r and may be referred to as the sample correlation coefficient
or the sample Pearson correlation coefficient. We can obtain a formula for r by
substituting estimates of the covariances and variances based on a sample into the
formula above. Expression 1.4 illustrates the Pearson product moment correlation
coefficient calculation, for one dataset x1, ...,xn containing n values and another
dataset y1, ...,yn containing n values.

r = ∑
n
i=0(xi−x̄)(yi−ȳ)√

∑
n
i=0(xi−x̄)2

√
∑

n
i=0(yi−ȳ)2

(1.4)

Where: n is the number of samples, xi and yi are the single samples indexed by i,
and x̄ = ∑

n
i=0 xi
n .

In this thesis, correlation method is used to verify correlation between different
metrics collected at network layer and physical layer in MBB networks (Chapter 3).
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1.3.5 Statistical Distance Measure

There are statistical approaches to compactly quantify the difference between two
distributions. Statistical distance quantifies the distance between two statistical
objects, which can be two random variables or two probability distributions. In
formal terms, the comparison function has the form F(p,q) : (R,R)→ R, while the
quantization function can be defined as Q(F(p,q)) : R→ N, where p = p(x) and
q = q(x) are two empirical distributions under analysis.

To simplify the discussion, we consider a single statistical distance measure
(SDM) for the sake of illustration, and defer to the Appendix A through discussion
and sensitivity analysis on all related settings (e.g., different metrics, population size,
binning, etc.). As a representative SDM in this class, we take the Jensen-Shannon
divergence (JSdiv), which is defined as:

JSdiv = ∑
i

{1
2

pi ln
( pi

1
2 pi +

1
2 qi

)
+

1
2

qi ln
( qi

1
2 qi +

1
2 pi

)}
where pi and qi are the empirical probabilities of samples taking values in the i-th

bin. JSdiv is a popular statistical measure based on the Kullback-Leibler divergence.
JSdiv adds symmetry, i.e., JSdiv(p,q) = JSdiv(q, p), and bounded image, i.e., JSdiv ∈
[0, ln(2)] to the Kullback-Leibler divergence. JSdiv is equal to 0 if p = q, while it
saturates to ln(2) for two completely disjoint distributions.

In our context, we specifically look for SDMs with bounded support as it makes
the comparison of the difference between distributions more practical. More im-
portantly, the symmetry property is required as it makes the SDM invariant to the
choice of the distribution considered as reference. While asymmetric metrics can
be used to contrast a suspect population against a well-behaving one, we have no
apriori knowledge on which population should be considered the reference.

While we discuss these issues further in Appendix A, the information provided
in this section allows us to understand the application of the general framework in
users’ QoE comparison, we focus on it in the Chapter 4.

1.4 Thesis Organization

Besides this introduction, the thesis is organized into six chapters.
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Chapter 2 (MONROE) focuses on presentation of MONROE: the first open
access hardware-based platform for independent, multihomed, large-scale experi-
mentation in MBB heterogeneous environments. We describe MONROE in detail
and its architecture and capabilities. Most of this work has its roots in the following
papers:

• O. Alay, A. Lutu, R. Garcia, M. Peon Quiros, V. Mancuso, T. Hirsch, T. Dely,
J. Werme, K. Evensen, A. Fosselie Hansen, S. Alfredsson, J. Karlsson, A.
Brunstrom, A. Safari Khatouni, M. Mellia, M. Ajmone Marsan, R. Monno,
H. Lonsethagen, Measuring and Assessing Mobile Broadband Networks with
MONROE, 17th IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, June 21-24, 2016

• O. Alay, A. Lutu, R. Garcia, M. Peon Quiros, V. Mancuso, T. Hirsch, T. Dely,
J. Werme, K. Evensen, A. Fosselie Hansen, S. Alfredsson, J. Karlsson, A.
Brunstrom, A. Safari Khatouni, M. Mellia, M. Ajmone Marsan, R. Monno,
H. Lonsethagen, Demo: MONROE, a distributed platform to measure and
assess mobile broadband networks, ACM WiNTECH, October 3, 2016

• O. Alay, A. Lutu, M. Peon-Quir, V. Mancuso, T. Hirsch, K. Evensen, A.
Hansen, S. Alfredsson, J. Karlsson, A. Brunstrom, A. Safari Khatouni, M.
Mellia, M. Ajmone Marsan, Experience: An Open Platform for Experimen-
tation with Commercial Mobile Broadband Networks, MobiCom, the 23th
Annual International Conference on Mobile Computing and Networking, Oc-
tober 16-20, 2017

Chapter 3 (Speedtest-like Measurements in MBB Networks) concentrates
on "speedtest-like" measurements to evaluate the download speed offered by MBB
networks. We indicate that the benchmarks for the performance assessment of MBB
networks are needed, in order to avoid simplistic, superficial, wrong, or even biased
studies, which are difficult to prove false.

Most of this work has its roots in the following paper:

• A. Safari Khatouni, M. Mellia, M. Ajmone Marsan, S. Alfredsson, J. Karls-
son, A. Brunstrom, O. Alay, A. Lutu, C. Midoglu, V. Mancuso, Speedtest-like
Measurements in 3G/4G Networks: the MONROE Experience, 29th Interna-
tional Teletraffic Congress, September 4-8, 2017
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Chapter 4 (WebWorks: Experimenting the Mobile Web) focuses on users’
QoE of web on commercial mobile carriers. Our results and further analysis shed
light on the complexity of the cellular networks, where the randomness of the wire-
less access channel coupled with the often unknown operator configurations makes
monitoring performance very challenging. We find that the overall web performance
is similar across different countries and operators, with only slight variations. In
aggregate per target websitse, our measurements show that the performance improve-
ments HTTP2 promised still remain to be experienced.

Most of this work has its roots in the following paper:

• M. Peon-Quiros, V. Mancuso, V. Comite, A. Lutu, O. Alay, S. Alfredsson, J.
Karlsson, A. Brunstrom, M. Mellia, A. Safari Khatouni, T. Hirsch, Results
from running an experiment as a service platform for mobile networks, The
11th ACM International Workshop on Wireless Network Testbeds, Experimen-
tal Evaluation & Characterization, October 20, 2017

Chapter 5 (Understanding Roaming in Europe) focuses on an profound char-
acterization of the implications of international data roaming within Europe. We
opted for a unique roaming measurements platform using 16 different mobile net-
works deployed in 6 countries across Europe. Using this platform, we measure
different aspects of international roaming in MBB networks, including mobile net-
work configuration, performance characteristics, and content discrimination. Results
show that operators adopt common approaches to implementing roaming.

Most of this work has its roots in the following paper:

• Submitted: A. M. Mandalari, A. Lutu, A. Custura, A. Safari Khatouni, O.
Alay, M. Bagnulo, V. Bajpai, A. Brunstrom, J. Ott, M. Mellia, G. Fairhurst,
Experience: Implications of Roaming in Europe, the 24th Annual International
Conference on Mobile Computing and Networking

Chapter 6 (Deadline-Constrained Content Upload from Multihomed De-
vices) focuses on the work originating from the practical requirements of video
surveillance in public transport systems, where security cameras store video onboard,
and a central operator occasionally needs to access portions of the recordings. When
this happens, the selected video portions must be uploaded within a given deadline,
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using (multiple) wireless interfaces, with different costs (which correspond to, e.g.,
tariffs). We study this video upload problem as a scheduling problem with deadline,
where our goal is to choose which interfaces to use and when, so as to minimize the
cost of the upload while meeting the given deadline. Our study gives rise to adaptive
schedulers that require only a very coarse knowledge of the wireless interfaces
bandwidth.

Most of this work has its roots in the following papers:

• A. Safari Khatouni, M. Ajmone Marsan, M. Mellia, Video Upload from
Public Transport Vehicles using Multihomed Systems, 2016 IEEE Conference
on Computer Communications Workshops: Student Activities, 10 April 2016

• A. Safari Khatouni, M. Ajmone Marsan, M. Mellia, Delay Tolerant Video
Upload from Public Vehicles, Smart Cities and Urban Computing, April 11,
2016

• A. Safari Khatouni, M. Ajmone Marsan, M. Mellia, R. Rejaie, Adaptive
Schedulers for Deadline-Constrained Content Upload from Mobile Multi-
homed Vehicles, The 23rd IEEE International Symposium on Local and
Metropolitan Area Networks, June 12-14, 2017

• Submitted: A. Safari Khatouni, M. Ajmone Marsan, M. Mellia, R. Rejaie,
Deadline-Constrained Content Upload from Multihomed Devices: Formula-
tions and Algorithms, Computer Networks (COMNET), 2018

Chapter 7 summarizes this work, recaps the collected findings, and highlights
the most significant results obtained. In addition, Appendix A presents additional
detail that are kept out of the main flow of this work to improve readability. Finally,
Appendix B illustrates a short biography of the author.

1.5 Readers’ Guide

I have actively participated in MONROE project during my PhD. Thus, some parts
of this thesis was developed in collaboration with other partners and researchers.
There are several parts of this thesis for which I have developed the main ideas and
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methodologies on my own. In the following, I list the parts whose the main ideas
and methodologies have been done by myself:

• Integration of the Tstat passive probe in the MONROE platform with design,
implementation, and support of corresponding backend systems (Section 2.4)

• The idea, methodology, and analysis developed in Chapter 3

• Methodology and statistical analysis presented in Section 4.4.2

• Besides the experiment coordination, experiment design and analysis of col-
lected data in Section 5.4.1

• The idea, methodology, and analysis developed in Chapter 6

The rest of the work has been done in collaboration with other researchers (see
Appendix B).



Chapter 2

MONROE

2.1 Introduction

MBB networks have become the key infrastructure for people to stay connected
everywhere they go and while on the move. Society’s increased reliance on MBB
networks motivates researchers and engineers to enhance the capabilities of mobile
networks by designing new technologies to cater for a plethora of new applications
and services, growth in traffic volume and a wide variety of user devices. In this
dynamic ecosystem, there is a strong need for both open objective data about the
performance and reliability of commercial operators, as well as open platforms for
experimentation with operational MBB providers.

In this thesis, we introduce MONROE: the first open access hardware-based
platform for independent, multihomed, large-scale experimentation in MBB hetero-
geneous environments. MONROE comprises a large set of custom hardware devices,
both mobile (e.g., via hardware operating aboard public transport vehicles) and
stationary (e.g., volunteers hosting the equipment in their homes), all multihomed to
three operators using commercial grade subscriptions.

Thorough systematic repeatable end-to-end measurements are essential for eval-
uating network performance, assessing the quality experienced by end users and
experimenting with novel protocols. While existing experimental platforms, such
as PlanetLab [3], RIPE Atlas [4] or CAIDA Ark [5], meet these requirements, they
are limited to fixed broadband networks and are not multihomed. MONROE is a
one-of-a-kind platform that enables controlled experimentation with different com-
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mercial mobile carriers. It enables users to run custom experiments and to schedule
experimental campaigns to collect data from operational MBB and WiFi networks,
together with full context information (metadata). For example, MONROE can
accommodate performance evaluation of different applications (e.g., web and video)
over different networks or testing various protocols and solutions under the same
conditions.

Objective performance data is crucial for regulators to ensure transparency and
the general quality level of the basic Internet access service [26]. Several regulators
responded to this need with ongoing nationwide efforts [27]. Often, they do not open
the solutions to the research community to enable custom experimentation, nor do
they grant free access to the measurement results and methodology. MONROE aims
to fill this gap and offers free access to custom experimentation. The MONROE
project selected different external users to deploy their own custom experiments on
the MONROE system with the purpose of testing and further improving the platform
based on their feedback.

A common alternative to using controlled testbeds such as MONROE is to rely
on end users and their devices to run tests by visiting a website [6] or running a
special application [7]. The main advantage of such crowdsourcing techniques is
scalability: it can collect millions of measurements from different regions, networks
and user equipment types [8]. However, repeatability is challenging and one can only
collect measurements at users’ own will, with no possibility of either monitoring
or controlling the measurement process. Mostly due to privacy reasons, crowd
measurements do not always provide important context information (e.g., location,
type of user equipment, type of subscription, and connection status (2G/3G/4G and
WiFi)). MONROE is complementary to crowdsourcing approaches and the control
over the measurement environment tackles the shortcomings of crowd data, though
at the cost of a smaller geographical footprint [9]. Furthermore, MONROE supports
the deployment of different applications and protocols, and enables benchmarking
tools and methodologies.

In the rest of the chapter, we report on our experience designing, implementing
and using the platform. We detail the design considerations and demonstrate the ver-
satility of our approach (Section 2.2). We explain how we cater for the requirements
of experimenters and enable them to deploy myriad measurements on operational
commercial MBB networks. The MONROE measurement node (hereinafter, the
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node or the MONROE node) sits in the center of the system and is the most impor-
tant element, conditioning the proper functionality of the measurement system. We
describe our experience with the MONROE system implementation and detail the
hardware selection for the MONROE measurement node (Section 2.3). We forged
the node to be flexible and powerful enough to run a wide range of measurement and
experimental tasks, including demanding applications like adaptive video streaming.
In the same time, we ensured that the node software design translates into a robust
implementation (Section 2.4) that is also easily evolved and upgraded in order to
sustain the most recent technological innovations. We further present the user access
and scheduling solution we offer experimenters for exploiting the available resources
of the platform in a fair manner (Section 2.5).

We show that the MONROE system is a fitting solution to conduct a wide range
of experiments over commercial cellular networks. To showcase its capabilities, we
describe different categories of experiments MONROE supports (Section 2.6), which
give an overview of the main categories of experiments MONROE are conducting at
the time of writing. Finally, Section 2.7 concludes the chapter.

2.2 System Design

Throughout the design process of MONROE, we interacted with the users of the
platform (e.g., universities, research centers, industry and SMEs1) and collected
their feedback on requirements for platform functionality. This allowed us to gauge
experimenters’ expectations and use them to sketch the platform specifications.

2.2.1 Requirements

We summarize the main requirements as follows.

Large scale and Diversity: To give a representative view of the characteristics
of an entire network, we need to collect measurements from a large number of
vantage points. Furthermore, we should strive to collect measurements under diverse
geographical settings, from major cities to remote islands.

1Small and medium-sized enterprises
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Mobility: Mobility is what makes MBB networks unique compared to other
wireless networks. To provide insight into the mobility dimension of MBB networks,
it is imperative that the platform integrates a deployment under realistic mobility
scenarios.

Fully programmable nodes: To accommodate the wide range of experiments
users contemplate to run on the platform, we should forge measurement devices that
are flexible, powerful and robust.

Multihoming support: To compare different mobile operators and/or different
wireless technologies under the same conditions, the same node should connect
to multiple providers at the same time (multihoming support). This further makes
the platform particularly well suited for experimentation with methods that exploit
aggregation of multiple connections.

Rich context information: While analyzing the measurements, context infor-
mation is crucial. The platform should monitor the network conditions, the time and
location of the experiment, as well as the metadata from the modems, including, for
example, cell ID, signal strength and connection mode.

Easy to use platform: It is crucial to make it easy for users to access the system
and deploy experiments on all or a selected subset of nodes. This requires a user
friendly interface together with a well managed and fair scheduling system.

2.2.2 Design Overview

We shaped the main building blocks of the MONROE platform such that we can
meet the above-mentioned requirements. Note that while implementing different
components of the platform, operational aspects also impacted the design choices,
which we will discuss in detail in Sections 2.4 and 2.5. Next, we give an overview of
the purpose and functionality of the main building blocks of the MONROE system,
which we illustrate in Figure 2.1. All the software components of the MONROE
system are open source [28].

MONROE Node: MONROE operates 150 nodes in 4 countries in Europe (Spain,
Italy, Sweden, and Norway). The measurement node resides at the core of our
platform. Its design comprises two main notions, namely the hardware configuration,
and the software ecosystem. In terms of hardware, each node has a main board that
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Fig. 2.1 The MONROE platform: MONROE Nodes operate in trains, buses or inside homes
and each connects to three commercial mobile operators in each country with MONROE
presence. Users access the available resources and deploy their experiments via the User
Access and Scheduling. Measurement results synchronize to external repositories operating
in the back-end.

is a small programmable computer and supports (at least) 4 interfaces: three 3G/4G
modems and one WiFi modem. To cover a diverse set of mobility scenarios, we
customize a portion of the nodes (i.e., 95 out of 150 total nodes) to operate on public
transport vehicles (buses and trains) and also in delivery trucks. In Section 2.3, we
detail the choices for the node hardware implementation and our experience with
running two node prototypes.

The node software is based on a Linux Debian ”stretch” distribution2 to ensure
compatibility with multiple hardware configurations and to enable a large set of
experiments. Furthermore, especially considering the experimentation on protocols,
Linux is the only operating system with sufficient hardware support for research
and implementation of transport protocols due to the accessibility of the source
code, flexibility and community maintenance to ensure operability with other sys-
tems. On top of the operating system, the nodes run: (i) the management software
that performs the normal jobs expected on any mobile device, (ii) the maintenance
software that monitors the operational status of the nodes and diminishes manual
maintenance intervention, and (iii) the experimentation enablers that enable experi-

2https://wiki.debian.org/DebianStretch

https://wiki.debian.org/DebianStretch
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ment deployment (via the scheduler client) and feed rich context information to the
experiments. To provide agile reconfiguration and access for the experimenter to
different software components, the experiments run in the Docker [29] light-weight
virtualized environment. This also ensures containment of external actions in the
node system. We periodically transfer the results of the experiments from the nodes
to a remote repository. We further detail in Section 2.4 the node software ecosystem
and present our evaluation of potential node internal performance overheads.

User access and scheduling: MONROE enables access to platform resources
through a user-friendly web portal [30] that allows authenticated users to use the
MONROE scheduler to deploy their experiments. The MONROE Scheduler facili-
tates exclusive access to the nodes (i.e., no two experiments run on the node at the
same time) while ensuring fairness among users by accounting data quotas. We
provide the details and the implementation choices for the user access and scheduling
policies in Section 2.5.

2.3 Hardware Implementation

Given the requirements we drew from MONROE stakeholders (Section 2.2), the
measurement device needs to be small, able to function in different environments
(buses, trains, and homes), affordable, robust, sufficiently powerful, and should
support the mainline Linux kernel. The size and price constraints limited us to
evaluate different Single Board Computers (SBCs). There is a large amount of
different SBCs available to the consumer public, with different CPU architectures
and hardware configurations. However, most contain hardware requiring the use
of proprietary drivers, thus restricting us to old kernels or making it impossible to
compile custom kernels. We evaluated several options, including popular ones such
as Raspberry Pi [31], Odroid [32], Beaglebone [33] and we selected PC Engines
APU [34]. We chose the APU because it provides sufficient processing power,
storage and memory for the foreseeable future at a reasonable cost. APUs integrate
a 1Ghz 64 bit quad core processor, 4GB of RAM and a 16GB HDD. APUs have 3
miniPCI express slots, two of which support 3G/4G modems.

Modem Selection: To multihome to three mobile operators and a WiFi hotspot,
we initially equipped the PC Engines APU board with an Yepkit self-powered USB
hub [35], three USB-based CAT4 MF910 MiFis [36] and one WiFi card [37]. The
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reason we chose the MF910 MiFi is because, at the time we selected the hardware, it
was the most modern device sold by operators we measured.

In the prototype validation phase, this implementation presented some major
obstacles. While the APUs proved to be very stable, the MiFis proved more challeng-
ing than expected. First of all, in the last quarter of 2016, the MiFis’ vendor issued a
forced update to the firmware. The update was applied despite the fact that we took
special care to configure the devices not to receive automatic updates. As a result
of the forced update, all our MiFis became inaccessible for the MONROE system.
Furthermore, the MiFis themselves were prone to resets or to enter a working state
(transparent PPP) from which we could only restore them to normal operation by
draining their batteries, or performing a manual reboot by pushing the power button.
Finally, after 6 months of operation, some of the MiFis showed clear signs of swollen
batteries. This problem brought serious safety concerns for the nodes operating in
places other than our own (controlled) premises (e.g., public transport vehicles). We
thus modified the hardware configuration to use internal modems operating in the
miniPCIe slots of the APU board.

Current Node Configuration: We decided to increase the control over the
MONROE node and base its implementation on a dual-APU system. One of the
two APUs in each node has two MC7455 miniPCI express (USB 3.0) modems [38],
while the other has one MC7455 modem and a WiFi card. We chose Sierra Wireless
MC7455 3 as our 4G modem since, at the time of the upgrade, it was supporting the
most recent category (CAT6) an industrial grade modem could provide. This design
eliminates the risk brought on by the use of batteries, avoids any forced updates (the
new modems are not routers), simplifies resets (no draining of battery) and increases
our overall control over the system.

Takeaways: APUs showed very stable performance, while re-purposing the
MiFis to behave as simple modems presented major challenges (e.g., forced updates
and swollen battery problems). We thus bring forward a more compact and robust
node configuration that relies on internal modems operating in miniPCIe slots. This
also simplifies the node since we avoid potential NAT and routing issues the MiFis
might trigger.

3https://source.sierrawireless.com/devices/mc-series/mc7455/

https://source.sierrawireless.com/devices/mc-series/mc7455/
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2.4 Node Software Implementation

In this section, we describe in detail the node software ecosystem and present the
justification for our implementation choices.

2.4.1 Software Ecosystem

Fig. 2.2 presents the elements that coexist in the MONROE node software ecosystem,
namely the node management software, the node maintenance software and the
experimentation enablers.

The node management software integrates a set of core components that run
continuously in the background. They perform low-level work in line with the
normal jobs expected on any mobile device or computer. These include (i) a Device
Listener, which detects, configures and connects network devices, (ii) a Routing
Daemon, which acquires an IP address through DHCP, sets up routing tables, and
(iii) a Network Monitor, which monitors interface state, checks the connectivity of
the different interfaces and configures default routes. The node operates behind a
firewall, which we configure with strict rules to increase node security.

The node maintenance software integrates components that monitor the node
status and trigger actions to repair or reinstall when malfunctioning. A system-
wide watchdog ensures that all core components (node management) are running.
However, during the first few months, we experienced loss of connection to nodes
because of problems that watchdogs could not tackle, such as file system corruptions
which can occur due to frequent sudden power loss in mobile nodes. Thus, we defined
and implemented a robust node recovery method, called BootOS, that enables a
hard restart of the node (i.e., a reinstallation of the operating system to a known
working baseline). This method allows us to recover both from file system errors
that prevent system boot-ups, and software configurations that may lead to loss of
connectivity. To achieve this goal, we trigger a two-stage boot loader process at node
start-up. In the first stage, we start the BootOS, which resides entirely in RAM and
only uses read-only hard-drive access for its normal operation. The BootOS verifies
that the filesystem of the APU is not corrupt, and that no forced reinstallation has
been requested. It then proceeds to boot the MainOS, which contains the MONROE



26 MONROE

Metadata	
Collector

Connectivity	
measurements		

(ping)

host Namespace
monroe Namespace

Users’
Experiments

op1 op2 op3

wwan0 wwan1 wwan2

Routing
Daemon

Device	
Listener

Network	
Monitor

Internal	NAT	Function

Management

Watchdog BootOS

Maintenance

Scheduler	
ClientMetadata	

Multicast

Ex
pe

rim
en
ta
tio

n	
En
ab

le
rs

Fig. 2.2 Node Software Ecosystem

system software. If the filesystem is corrupted, or in case of a forced reinstallation,
the BootOS reinstalls an image of a known working installation.

The experimentation enablers include the scheduling client, the default ex-
periments, and the services for external experiments. Within the node software
ecosystem, we differentiate between the user experiments and the management
and maintenance software by configuring a separate MONROE network namespace
where experiments run. This increases our control over the ecosystem and limits
the impact external users can have on the node. This separation further allows us to
account (as part of the scheduling system) the traffic volume each user consumes.
We require that each experiment runs inside a virtualized environment (Docker
container) to ensure separation and containment of processes. The Scheduling Client
communicates with the Scheduler to enable experiment deployment per user request.
It periodically checks for new experiment containers to run in the node and deploys
them in advance to their scheduled execution time. Section 2.5 provides more details
on the scheduling system. The metadata broadcasting service runs continuously in
the background and relays metadata through ZeroMQ [39] in JSON [40] format to
experiment containers. The nodes periodically run connectivity measurements (e.g.,
ping), and this together with metadata allow us to monitor the node’s state and the
overall health of the platform. Furthermore, the Tstat [16] passive probe provides
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insights on the traffic patterns at both the network and the transport levels, offering
additional information on the traffic each interface exchanged during an experiment.

Takeaways: Containment of users activity in the node is paramount to avoid se-
curity risks, node malfunctioning events, unreliable results and, more severely, node
loss. We prevent foreign unauthorized access to the node with a strict firewall. Then,
continuous monitoring of the platform is crucial and we enable it by implementing
monitoring functions in the node management software. Node maintenance is expen-
sive, so it is important to forge the node as a self-healing system. We implement this
functionality in the node maintenance software that takes automatic actions when
the node malfunctions.

2.4.2 Experiment Containment

Docker Virtualization: The node design we propose mandates that MONROE users
execute their experiments inside Docker containers, which provide isolation from
the host node. This is true both for default monitoring measurements and external
users experiments. Docker containers are based on a layered file system, where a
container can reuse layers shared with other containers.

MONROE provides the default base image for the experiment containers, which
integrates the base operating system installation with default tools that are potentially
useful for many experiments. The lightweight containers provide just the contents
that are unique for the particular experiment, significantly reducing the download
and deployment time overhead and accountable traffic volume. Running experiments
inside a container have access to the experimental network interfaces. They can read
and write on their own file system, overlaid over that of the base MONROE image.
Finally, there are specific paths (e.g., /MONROE/results/) where the experiments can
write their results and that the node automatically transfers to the MONROE servers.
Our public software repositories contain all the files necessary to build new user
experiments, as well as experiment templates and examples.

Internal NAT Function: To ensure the minimum impact of user experiments
gone wrong, we define the MONROE network namespace where experiment contain-
ers run. For each physical interface that the network-listener detects as available, we
create a virtualized Ethernet, veth, interface pair, and move one end to the MONROE
namespace. We then add routing rules in the network namespace to allow routing



28 MONROE

0.00

0.25

0.50

0.75

1.00

5.0 7.5 10.0 12.5 15.0
RTT [ms]

C
D

F

Configuration
Docker, NAT

Docker, no NAT

No Docker, NAT

No Docker, no NAT

Fig. 2.3 CDFs of ICMP RTTs [ms] measured against 8.8.8.8 per testing configuration over
Fast Ethernet link

by interface. In order to allow the network devices in the host namespace to com-
municate with the ones in the MONROE network namespace, we define an internal
NAT function. We use iptables NAT masquerading rules in the host namespace to
configure the NAT function. Finally, we add the corresponding routing rules to map
each veth interface to the correct physical interface.

Overhead Quantification: The internal network design introduces two poten-
tial overheads that might impact performance measurements: (i) the internal NAT
function that connects the network devices in the host namespace with their cor-
responding duplicates in the monroe namespace, and (ii) the Docker containers
we use to separate the processes that correspond to a certain experiment that runs
inside the container. Thus, prior to detailing the measurement results of different
commercial MBB operators, we focus here on these two design overheads and aim to
quantify their impact (if any) on performance measurement results. Specifically, we
quantify the delay overhead by running ICMP ping measurements, and the impact
on throughput by running HTTP downloads.

To instrument our system benchmarking measurements we use a single APU
node running the Debian “stretch” MONROE image with a local Fast Ethernet
link. Using a local link allows us to minimize the impact of the network on our
measurements, and focus on the impact of the system overheads. We run http
download measurements with curl and ICMP ping measurements with fping to
quantify the impact of the internal NAT function and of the Docker virtualization. We
focus on four configurations for our testing setup, namely: no NAT and no Docker
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(experiments run in host namespace), no NAT but Docker (experiments run inside a
Docker container in the host namespace), internal NAT and no Docker (experiments
run in the MONROE namespace) and internal NAT and Docker (experiments run
inside a Docker container in the MONROE namespace).

To quantify the delay overhead, we collect 1,000 RTT samples against the Google
DNS server 8.8.8.8 on the Ethernet connection on all four configurations. Fig. 2.3
shows the results of the measurements. We conclude that the overhead of the NAT
function internal to the node is insignificant. In average, we see a penalty in the order
of 0.1ms, (i.e., in the range of clock granularity in Linux systems). We note that the
Docker and NAT combination introduces a slight delay, which is not overwhelming.

For the throughput measurements, we download 1GB of data from a server
configured in the local network. We collect 30 samples for each testing configuration.
In Fig. 2.4, we show the Cumulative Distribution Function (CDF) of download speed
per namespace and operator, for each of the different targets. We find that there
is a 1% performance penalty that using the internal NAT function and the Docker
virtualization introduces in average. We report no direct impact of using the Docker
containers, which we expected, since the purpose of the Docker virtualization is
purely for experiment containment.

Takeaways: Our priority in the node software implementation phase is keeping
the nodes within normal functioning parameters for as long as possible and limiting
direct maintenance intervention, while allowing external users to run a wide range of
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complex measurements with minimum interference. To achieve this, we separate the
network namespace where users can run their experiments from the host namespace,
where the monitoring and management software runs. This introduces two potential
overheads in the system, which we quantify and show to have little or no impact.

2.5 User Access and Scheduling

We provide access to the MONROE platform through a user-friendly interface con-
sisting of an AngularJS-based web portal [30]. As part of the MONROE federation
with the Fed4FIRE [41] initiative, the user access follows the Fed4FIRE specifi-
cations in terms of authentication and resource provisioning. Through the portal,
experimenters interact with the scheduler and deploy their experiments without
accessing directly the nodes. The scheduler API is accessible to enable experiment
deployment automation. The scheduler prevents conflicts between experiments
(i.e., only one user can run an experiment on a certain node at a time) and assigns
resources to each user based on their requirements and resource availability.

Given the challenging scenarios we aim to cover in our testbed, nodes in MON-
ROE have potentially unreliable connectivity and low bandwidth. This is the norm
for node in buses, trains, and trucks, which follow the schedule of the host vehicle.
Experiment scheduling therefore accounts for two factors: (i) the node may not
have connectivity at the time of the experiment, and (ii) a high lead time when
deploying containers means that experiments should be deployed early. Furthermore,
experimenters may require to run synchronous measurements on multiple nodes. The
common approach to task scheduling and decentralized computing, which deploys
jobs to registered nodes based on their availability, struggles with these constraints.
Therefore, for the MONROE scheduler, we follow a calendar-based approach, as-
signing time slots to experiments. Deployment of experiments takes place up to 24
hours in advance, as soon as the node retrieves information about the assigned task.
It allows both immediate scheduling on nodes that are not otherwise occupied, and
scheduling synchronous experiments on low availability nodes well in advance. It
also allows synchronizing experiment runtime with vehicle schedules when available.

In addition to manage the time resource, the scheduler handles data quotas
assigned by the contracts with the MBB operators. We assign each experimenter
a fix data quota. In addition, we may assign users a quota on computing time (i.e.,
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maximum time the users can run experiments on the node). We designed the quota
system to provide fair usage of the available resources. An important factor to
ensure fairness in day-to-day usage, is that a certain data quota is reserved by the
experimenter in advance, and subtracted from the user quota for the duration of the
experiment. Experimenters may subsequently refund the remaining quota. Hence, it
is not possible to block large quantities of resources without having been assigned
the necessary budget, even if the resources are not actually used.

From March 2016 until March 2017, the MONROE scheduler has been actively
used by 30 users. A total of 75,002 experiments have successfully ran on the
platform, while 7,972 scheduled experiments failed. There are many different
reasons for failed experiments, for example that the container exits unexpectedly or
the data quota is exceeded. Note that these failures are expected especially for the
new users that are trying to familiarize themselves with the platform. We are running
an open conversation with our users, gathering feedback from them and updating the
user access and scheduling policies accordingly.

Takeaways: Resource allocation and experiment scheduling on MONROE are
challenging because nodes have potentially unreliable connectivity (e.g., nodes in
mobility scenarios) and limited data quota due to commercial-grade subscriptions. A
calendar-based approach for scheduling addresses these requirements by taking into
account per user and per node data quota, and synchronized experiment start time.

2.6 Open Experimentation

Starting from the platform design phase, we have been working together with our
stakeholders to understand their requirements from the MONROE system and which
experiments have the highest appeal (Section 2.2).

2.6.1 MONROE Experiments

We present the base experiments deployed by the consortium. We are currently
offering to the community a series of experiments [42], which any external users can
deploy on their own. This goes toward achieving our goal of shaping MONROE into
an Experimentation as a Service (EaaS) platform. We group all these experiments in
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three main categories: MBB Performance, Service Oriented QoE, and Innovative
Protocols and Services. These categories also fit to the range of measurements that
our users are currently curating and have been already actively deploying. The
distribution of experiment runs on the MONROE platform to the time of writing
among these categories is: MBB Performance (19%), Service Oriented QoE (36%)
and Innovative Protocols and Services (45%). The volume of data that experiments
in different categories consume varies, with Service Oriented QoE taking the largest
quota (60%), while Innovative Protocols and Services are the least demanding (10%),
despite registering the largest number of experiment runs. We further detail each
category and provide examples of experiments and analysis one can perform using
MONROE.

MBB Performance

To measure a mobile network in a reliable and fair way, it is important to identify the
metrics that accurately capture its performance. Different stakeholders have different
metrics of interest and we argue that MONROE is able to cater all of them (Chapter
3).

Service Oriented QoE

An important measurement dimension to explore comes from the great interest in
how users perceive individual services and applications over different terminals
(e.g., mobile phones, tablets, and computers). The recent proliferation of user-
centric measurement tools (such as Netalyzr [7]) to complement available network
centric measurements validates the increasing interest in integrating the end user
layer in network performance optimization. MONROE enables experimentation
with essential services and applications, including video streaming, web browsing,
real-time voice and video, and file transfer services (Chapter 4).

Innovative Protocols and Services

Another significant use case for MONROE is investigating the impact of middleboxes
in the current Internet ecosystem. These range from NATs to security devices to
performance enhancing TCP proxies. Middleboxes are known to introduce a series
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of issues and hinder the evolution of protocols such as TCP. Since middleboxes
are ubiquitous in MBB networks [43–45], in collaboration with the H2020 MAMI
project [46] we aim to observe and characterize middlebox operations in the context
of real-world MBB deployments (Chapter 3). MONROE further enables assessment
of new protocol innovation (Chapter 6).

2.7 Conclusions

In this chapter, we reported on our experience designing an open large-scale mea-
surement platform for experimentation with commercial MBB networks. MONROE
is a completely open system allowing authenticated users to deploy their own cus-
tom experiments and conduct their research in the wild. The platform is crucial to
understand, validate and ultimately improve how current operational MBB networks
perform towards providing guidelines to the design of future 5G architectures. We
described our experience with the MONROE system implementation and detailed
the hardware selection for the MONROE measurement node, its software ecosystem
and the user access and scheduling solution. We emphasized the versatility of the
design we propose, both for the overall platform and, more specifically, for the
measurement nodes. In fact, the node software design is compatible with a number
of different hardware implementations, given that it can run on any Linux-compatible
multihomed system. Our current hardware solution is the most fitting for the set of
requirements and the predicted usage of MONROE, which we evaluated based on
our discussions and interaction with the platform’s users.



Chapter 3

Speedtest-like Measurements in
MBB Networks

3.1 Introduction

The society’s increased reliance on MBB networks has made provisioning ubiquitous
coverage and providing high network performance and user QoE the highest priority
goal for mobile network operators. This motivates researchers and engineers to
further enhance the capabilities of MBB networks, by designing new technologies to
cater for a plethora of new applications and services, for the growth in traffic volume,
and for a wide variety of user devices.

When coming to performance assessment, the picture is much more complicated
in MBB networks than in wired networks. Even the simplest of the tests, i.e., a
”speedtest-like” measurement of the single TCP bulk download speed using HTTP,
may become complicated to interpret in MBB networks, due to the large number of
factors that affect performance. Physical impairments, mobility, variety of devices,
presence of Performance Enhancing Proxies (PEP), different access network con-
figurations, etc., all possibly impact the measurement results, and complicate the
picture.

When facing performance assessments, a common approach is to rely on end
users, and their devices, to run tests by visiting a website [6], or running a special
application [7]. Federal Communications Commission (FCC) follows a similar
crowdsourcing approach to measure MBB networks in the USA [27]. Network oper-
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ators and independent agencies sometimes perform drive tests to identify coverage
holes or performance problems. These tests are, however, expensive, do not scale
well [47], and little information on methodology is given.

Here, we rely on the MONROE (Chapter 2) open platform, that offers an inde-
pendent, multihomed, large-scale monitoring platform for MBB testing in Europe.
Despite the large dataset, and the scientific approach, we find that running even a
simple speedtest-like experiment proves to be very complicated, with results that
apparently vary on a large scale, with no obvious correlations, and sometimes in
an unpredictable way. We observe the presence of NAT, and of transparent proxies,
as well as different access network configurations, and roaming agreements, each
adding complexity to the already complicated picture. Thanks to the MONROE
platform, we design and run further experiments to corroborate our findings, and
better understand the results.

While preliminary, we present our finding (and make available all raw data) in
the hope to shed some light into the debate about performance assessment in MBB
environments. Indeed, since the issue is far from trivial, we believe there is a need to
define benchmarking principles that allow to fairly compare performance in MBB
(and soon in 5G) networks.

The rest of this chapter is organized as follows. In Section 3.2, we present the
motivation of this work. In Section 3.3, we briefly discuss the related work. In
Section 3.4, we describe the measurement approach we use to collect and analyze the
collected dataset. Our methodology is discussed in Section 3.5. In Section 3.6, we
present our finding. Finally, in Section 3.7, we conclude the chapter and we discuss
future research issues.

3.2 Motivation

To take a first look into speedtest measurements in commercial MBB networks, we
conducted an initial measurement campaign, and measured different speedtest apps
under the same conditions, using an Android phone as a regular user could do, from
home. There are a number of crowdsourced apps for measuring MBB performance
via end-user devices. Among them, we choose the most popular ones: Speedtest by
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Fig. 3.1 ECDF of reported download rate for different tools in 4G

Ookla [6], OpenSignal by OpenSignal [48], RTR-Nettest by Austrian Regulatory
Authority for Broadcasting and Telecommunications (RTR) [49].

Typical performance measurements by such tools comprise Downlink (DL) and
Uplink (UL) data rate, and latency. Here we focus on download speed only. For our
measurement campaign, we run speedtest measurements with Speedtest (v3.2.29),
OpenSignal (v5.10), and Nettest (v2.2.9). To ensure the fair comparison of the
tools, we run the tools in rounds where each tool is run one after the other and in
randomized order on a stationary measurement device located in Oslo, Norway,
when connected to the same network in 4G.

We ran 320 batches of measurements in total. Fig. 3.1 shows the Empirical
Cumulative Distribution Function (ECDF) of download rate values reported by the
tools. Surprisingly, we observe a large variation in measurements, both within runs
of the same tool (max-min variation of 60 Mb/s, see the Opensignal in Fig. 3.1),
and between tools (max-max variation of 20 Mb/s range, see the difference between
Nettest and Speedtest in Fig. 3.1).

These large differences indicate a significant variation in both measurement
methodology and network condition, which we have confirmed through the reverse-
analysis of traffic traces collected during measurements with different tools. Thus
the natural question is "Can we reliably benchmark download speed in MBB net-
works?".
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3.3 Related Work

The analysis of MBB network performance, and its prediction are on the research
agenda of the networking community. There are mainly three approaches for mea-
suring the performance of MBB networks: (i) crowd-sourced results from a large
number of MBB users [50, 51], (ii) measurements based on network-side data such
as [52–54], and (iii) measurements collected using a dedicated infrastructure [55–57].
Network-side and active tests can be combined in the so-called "hybrid measure-
ments" approach, as implemented, e.g., in [58]. In this thesis, we collect data from a
dedicated infrastructure in order to have full control over the measurement nodes,
allowing us to systematically collect a rich and high quality dataset over a long
period of time.

In the literature, some studies take it one step further and focus on the mo-
bile infrastructure (e.g., presence of middleboxes) and its impact on performance.
Performance enhancing middleboxes are widely deployed in the Internet and it is
of great interest to measure and characterize the behavior of them especially in
MBB networks where the resources are scarce. The impact of middleboxes on
measurements was explored in [59] where the authors proposed a methodology for
measurements in MBB networks. Farkas et al. [60] used numerical simulations to
quantify the performance improvements of proxies in LTE networks. In [54], the
authors analyzed LTE data collected in one city, to study the impact of protocol and
application behaviors on network performance, mostly focusing on the utilization of
TCP. Becker et al. [61] worked on analysis of application-level performance of LTE,
and detected middle-boxes deployed on LTE networks, studying their impact on the
measured performance. The most thorough analysis to characterize the behavior and
performance impact of deployed proxies on MBB networks was carried out in [45]
where the authors enumerate the detailed TCP-level behavior of MBB proxies for
various network conditions and Web workloads. Although the common belief is
that proxies provide performance benefits, Hui et al. [62] showed that they can actu-
ally hurt performance by revealing that direct server-client connections have lower
retransmission rates and higher throughput. Wang et al. [44] showed how MBB
middlebox settings can impact mobile device energy usage and how middleboxes can
be used to attack or deny service to mobile devices. Taking a different route, Kaup et
al. [63] studied the root causes of MBB network performance variability by means
of measurements in one country, and showed that management and configuration
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Table 3.1 The number of experiments in the dataset

country City (sites) Operator # Nodes # Experiments

Italy
Torino(4)
Pisa(5)

op0 12 1995
op1 14 2184
op2 14 2316

Sweden
Karlstad(7)

op0 28 3029
op1 28 2644
op2 28 3117

Spain
Madrid(6)
Leganes(5)

op0 18 4924
op1 15 3502
op2 7 1888

Norway
Fornebu(3)

Oslo(4)
Bergen(4)

op0 13 2437
op1 12 2220

Total 8 11 73 30256

decisions have a considerable impact on performance. We differentiate our work
from these studies by focusing on different countries and operators. Furthermore,
these studies consider a snapshot of the experiments which bound results to the
measured ISP network and to the geographical location of the setup. On the contrary,
our approach and experiments, by using the MONROE platform, allowed us to
collect data through continuous experiments over 4 countries and 11 operators. Our
goal is to understand the mobile ecosystem and whether a simple speedtest can be
run reliably over the current complex mobile networks, rather than measuring the
performance of the mobile networks or the impact of middleboxes.

In closing, we remark that even performance measurements in wired networks can
be a fairly complex task, because of user preferences, of the influence of users’ home
networks, of ISP traffic shaping policies, as noted by Sundaresan et al. in [64], who
studied the performance of wired networks observed from home gateway devices,
and observed counter-intuitive results.

3.4 Measurement Setup

In this section, we briefly describe the collected dataset.
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Fig. 3.2 Experiment setup

3.4.1 Basic HTTP Test

Fig. 5.3 shows the experiment setup we consider in this chapter. The leftmost
element is the MONROE node. It contains the core components, with containers
that run active experiments. Traffic generated by the applications passes through the
selected MiFi modem ( initial modem configuration Section 2.3 ) where a NAT is
in place, then goes through the ISP network, and the Internet, toward the selected
server – on the rightmost part of figure. Each node runs also Tstat [16], a specialized
passive sniffer. Tstat captures traffic on each MBB interface and extracts statistics
by passively observing packets exchanged with the network. Another instance of
Tstat runs on the server side, thus capturing and processing traffic at the other end of
the path.
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As previously mentioned, each MONROE node regularly runs a basic set of
experiments. Among these, the HTTP download experiment uses single thread
curl to download a 40 MB file for a maximum of 10 seconds from dedicated and
not-congested servers in two countries, one in Italy, one in Sweden1. Network
configuration may change from country to country, and from operator to operator as
depicted in Fig. 5.3. Beside the NAT at the MiFi router, the ISP can provide a public
IP address to the modem (e.g., Operator 0) and no other NAT or middlebox on the
path. Alternatively, the ISP might use some kind of PEP (e.g., Operator 1), or it can
use Carrier Grade NAT to do NAT/NAPT (e.g., Operator 2).

In this chapter, we consider measurements that were run during September and
October 2016 in four countries and different sites. We consider only stationary nodes.
The experiment ran every 3 hours in synchronized fashion. Table 3.1 reports the
total number of nodes and the number of experiments for each operator. Overall,
we collected more than 30 000 experiments from 11 operators. ISPs were subjected
to different numbers of experiments. The reason can be coverage holes, exhausted
data quota on subscriptions, or rare failures inside the nodes. The name of the ISP
is specified by a number, to avoid exposing the operator name – our goal is not to
provide a ranking among ISPs but rather to observe if it would be possible to reliably
measure performance. During experiments, all networks were in normal operating
conditions (and unaware of our tests).

The active application and passive flow-level traces on the client and server
sides cannot give us information about the technology and signal strength at the
MBB channel during the experiment. Therefore, we use the metadata collected by
the MONROE platform to augment the information about the access link status.
The MONROE metadata are event-based data collected by passively monitoring
the statistics exposed directly from the MiFi modems through their management
interface. This data is transmitted and stored in the project database for analysis, and
can be easily correlated to each node and interface.

1During the HTTP test no other experiment can run. The 3 h periodicity and 10 s limit are imposed
to avoid booking the platform for long time. The 40 MB file size limits the total volume of data to
less than 9.6 GB/month and avoids to erode the limited data quota of each subscription.
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Fig. 3.3 Packet timeline in case of PEP in the path

3.4.2 Additional Tests

To verify some of the hypotheses about the presence of NAT or PEP in the ISP
network, we additionally instrumented a subset of nodes to run HTTP tests, but
against HTTP servers running on different TCP ports. In particular, we checked
possible HTTP-related ports (80, 8080), HTTPS port (443), and random ports (4981,
19563). Again, Tstat runs on both client and server, and lets us verify the presence
of middle-boxes by contrasting the measurements on both sides.
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3.5 Methodology

Here we detail the methodology we used to process the collected data. Let us first
start describing in more details the available information at our disposal.

3.5.1 Measurement Definition

Fig. 3.3 reports the possible setup during an experiment. The client (on the left)
opens a TCP connection, and fetches the file via HTTP. Tstat on the client side
sniffs packets, and extracts measurements by correlating the sent and received
segments. For instance, it extracts the Round Trip Time (RTT) of each TCP seg-
ment/acknowledgement pair, the Time to complete the Three Way Handshake Time
(TWHT), the Time To receive the First Byte from the server (TTFB), and the down-
load speed. In the example, there is a PEP, which terminates the TCP connection
from the client side, while opening another one toward the server. The second Tstat
instance running on the server observes the segments being exchanged between
the PEP and the server, and collects statistics that we can later contrast with those
collected on the client side.

We now define the most important measurements we use in this work. We
indicate measurements collected on the client side or server side with subscript C or
S, respectively.

Goodput – Ĝ

Ĝ is the most important measurement, and is defined as the average rate at which
the client receives information at the application layer. Let T̂ResponseC and T̂LastC (see
Fig. 3.3) be the timestamps of the first and the last data packet at the client side, and
let D be the size of the application payload size sent by the server. We define the
client-side goodput as:

ĜC =
D

T̂LastC − T̂ResponseC

Since Tstat is co-located at the client, this measurement is actually the same as the
measure computed directly by the curl application.
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Round Trip Time – RT T

Tstat measures the RTT by matching the data segment and the corresponding ac-
knowledgement in a flow (as depicted in Fig. 3.3). For each segment/ack pair, Tstat
obtains a RTT sample. It then computes the average, standard deviation, minimum
and maximum among all RTT samples seen in the same TCP connection. On the
client side, Tstat gets a reliable measurement of the RTT between the TCP client and
the TCP server (or PEP) nodes. On the HTTP server, Tstat measures the RTT from
the server to the client (or PEP).

Time To Live – T T L

For each packet, Tstat extracts the TTL values from IP packets, and tracks minimum,
maximum, and average values seen in all packets of the same TCP flow. On the
client side, we consider the maximum TTL observed in packets transmitted by the
server (or PEP). This is linked to the number of hops that the packets in the flow
have traversed before reaching their destination.

TCP Options

For each TCP connection, Tstat logs information about TCP options such as Times-
tamps, Maximum Segment Size (MSS) [65], and negotiated window scale factor [66].
In the MONROE platform, all nodes run the same software and hardware. Since we
have also control on the server side, we know exactly which options are declared and
supported by both endpoints. If the ISP does L4 mangling, or a PEP is present on the
path, Tstat could observe different TCP options on the client side and server side.

Received Signal Strength Indicator – RSSI

Among the information the MONROE node collects from the modem, we use the
RSSI reported in dBm (logarithmic scale) as indicator of the quality of the channel.
The RSSI indicates the total received signal power and typically, -100 dBm and -
60 dBm indicate low signal level and very strong signal level, respectively. Recall that
all nodes use the same MiFi modems, so this information is measured consistently
by the platform. We use the RSSI value reported at the time T̂SY NC .
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3.5.2 Joining Client with Server Data

All connections go through at least the first NAT at the MONROE node. This implies
that Tstat at the client side sees the client private IP address provided by the MiFi
modem, while Tstat at the server would observe the client public IP address.2 If
there is a middle-box in the ISP network, it could further change the IP address, and
the port numbers. Thus, matching the connection observed at the server side to the
one seen at the client side is not trivial. The MONROE metadata exposes the actual
IP address provided by the operator (either private or public) to the MiFi modem,
so that we can use this to map connections on the client and server side. We call it
”client IP” for simplicity in the following.

Let the client IP provided by operator to the MiFi modem at the node and seen
by Tstat at the HTTP server side be indicated by IPC and IPS, respectively. Similarly,
the client port at the node and HTTP server sides are denoted by PortC and PortS,
respectively.

In case of NAT, NAPT, or in presence of a PEP, IPC ̸= IPS, and it becomes
complicated to associate the flows seen in each single experiment (since we lose
the information about the originating node). In this case, we associate the flow to
the operator by resolving the IPS address into its owner. We use the MAXMIND
database [67], and, in case of a miss, we default to whois [68].

In more details, we match the flow associated with a certain experiment’s TCP
connection on the node side and HTTP server side if they start within a 1 second
time window (T̂SY NS− T̂SY NC < 1 s), as follows:

1. If IPC = IPS and PortC = PortS, we claim there is no NAT or PEP in the ISP
network.

2. If PortC = PortS, IPC ̸= IPS, and IPC is a private IP address, we claim there is
NAT in the ISP network. We can still associate each single flow by matching
PortC to PortS.

3. If IPC ̸= IPS, PortC ̸= PortS, we claim there is NAPT in the ISP network. We
match the operator by looking at the IPS as above.

2The MiFi does not change the TCP port number, but only the client IP address.
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Hence, we define a flow at the node and HTTP server sides when the connections
start in a 1-second time window, have the same client IP address, the same server
port number, and the same client port number (considering the port number is not
changed by NAPT or PEP). If this is not possible, we simply assign data collected on
the server side to the operator (but we cannot match the single flows). Our analysis
shows that the first case can cover most of the operators.

3.5.3 Ĝ Mismatch

Given the i-th flow, let ĜC(i) and ĜS(i) be the goodput recorded by Tstat at the node
and HTTP server, respectively. By comparing the observed values, we can show the
existence of a PEP in the ISP network:

• ĜC(i) ∼ ĜS(i), illustrates the node experiences almost the same goodput as
seen on the HTTP server. In this case, no PEP is present.3

• ĜC(i)< ĜS(i), shows a mismatch. In this case, there is a PEP able to download
the file from the server with considerably higher Ĝ than the capacity on the
path from the PEP to the client.

In case we cannot match the single flows, we can still compare statistics of {ĜC(i)}
and {ĜS(i)} for all flows seen for a given operator.

3.6 Results

In this section we present the results obtained with the experiment setup described in
the previous section.

3.6.1 Download Goodput

As a first observation, Fig. 3.4 reports the goodput observed on three of the considered
operators during a week, each point presenting the average ĜC of a set of experiments

3We do not consider exact equality because some packets are in flight, and delay would make
ĜS(i)> ĜC(i) in general.
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Fig. 3.4 Client-side goodput observed over one week for three operators

in a window of 1000 seconds, i.e., averaging all ĜC measurements for that operator
during each run every 3 hours. This figure explains the complexity of speedtest-like
experiments in MBB networks. Indeed, we observe quite different behaviors, such as
i) a daily pattern (op0 in Spain), ii) a change of behavior over time (op2 in Sweden -
see the last two days), or iii) unpredictable high variations (op1 in Italy). To check
the impact of the duration of the test, and observe the fine grained variability of the
capacity measurement, we also report the evolution over time of the download rate
measured at the client, every second. Fig. 3.5 shows 2 runs, during which the client
downloaded a 1 GB file in no more than 100 s. We observe a large variability, even
during a relatively short test. This partly explains the variability observed in Fig. 3.4.

Fig. 3.6 shows the big picture of the client-side goodput observed over the
eleven networks we tested in four European countries: Italy, Spain, Sweden, and
Norway. Results report the ECDF of the client-side goodput computed from Tstat
logs collected in our experiments. The x-axis in each chart of Fig. 3.6 gives the
goodput (ĜC) in Mb/s and the y-axis gives the probability of the goodput being less
than the x-axis value. Variability is evident, and confirms the unpredictability seen
in Fig. 3.1. Yet, some significant differences exist when comparing operators.
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Fig. 3.5 Evolution over time of download speed in two simple run of 100 s on op2 in Italy

In Fig. 3.6d, we see that the two operators we considered in Norway provide
similar values of the client-side goodput ĜC.

On the contrary, the three operators that were measured in Italy gave quite
different goodput results. In particular, op0 had a significantly high probability of
providing low values of the client-side goodput ĜC, in comparison to the other two
operators. By looking at Fig. 3.8a, that we will discuss in detail later on, the red color
of dots of op0 indicate that op0 mostly uses the 3G technology, and is configured
so as to have higher RTT with respect to the other two operators. This explains the
lower goodput values for op0.

In the case of Spain, we see that op0 in about 40% of the cases provided quite
low values of the ĜC. Our dataset indicates that, during peak times, the goodput
provided by this operator is low, as can be seen in Fig. 3.4. We can clearly see that
ĜC for op0 in Spain exhibits a daily pattern, probably due to throttling in periods of
peak traffic. In addition, also by looking at the set of blue squares at the bottom of
Fig.3.7b we observe a high percentage of low goodput experiments.

Fig. 3.7 plots for each experiment the values of ĜC on the x-axis, and the values of
the RSSI on the y-axis. A first visual inspection indicates that the correlation between
the RSSI and ĜC values is weak. Using Pearson’s correlation coefficient [69] to
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(a) Italy (b) Spain

(c) Sweden (d) Norway

Fig. 3.6 ECDF of the download client-side goodput for the four considered countries

quantitatively corroborate our impression, we obtain values up to 0.37 for Spain
and up to 0.61 in Italy (the correlation coefficient takes values in the range [-1,1],
with 1,-1, and 0 representing total positive correlation, total negative correlation, and
no correlation, respectively). As generally expected, 4G (blue points) frequently
outperforms 3G (red points), with some exceptions, which can be explained with the
fact that RSSI it is not the only factor determining goodput in a mobile environment.

In Fig. 3.8 we plot for each experiment the average RTT value on the Y-axis, and
the RSSI value on the x-axis. Interestingly, from Fig 3.8a, in the case of Italy we
can observe two main intervals for RTT values, due to the fact that both op1 and op2
networks are configured so that RTT is mostly less than 50 ms, while op0 provides
RTT values in the range of 100 ms. This can be the result of different network
configuration choices. In the case of Spain, Fig 3.8b shows that op2∗, largely using
4G technology, offers values of RTT in the range of 50 ms, which are lower than
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(a) Italy (b) Spain

Fig. 3.7 RSSI and download client-side goodput for Italy and Spain. Blue and red markers
indicate 4G and 3G, respectively. Pearson’s correlation coefficients for Italy op0, op1, and
op2 are 0.47, 0.61, and 0.50, respectively. Pearson’s correlation coefficients for Spain op0,
op1, and op2 are -0.008, 0.37, and -0.02, respectively

(a) Italy (b) Spain

Fig. 3.8 RSSI and RTT for Italy and Spain. Blue and red markers indicate 4G and 3G,
respectively. Pearson’s correlation coefficients for Italy op0, op1, and op2 are 0.03, -0.49,
and 0.39, respectively. Pearson’s correlation coefficients for Spain op0, op1, and op2 are
-0.009, -0.33, and -0.03, respectively

with other operators. Surprisingly, op2∗ in Spain is a roaming operator, that offers
better performance with respect to the local operators.

3.6.2 Middle Box Detection

Fig. 3.9 shows the goodput in Mb/s experienced from the client-side (x-axis) and the
server-side (y-axis), when IPC = IPS and PortC = PortS for operators in Sweden. If
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Fig. 3.9 Goodput experienced from client and server sides on Sweden operators

no PEP is present in the operator network, all points are expected to gather along
the line x = y in which ĜC ∼ ĜS. While we see many points along this line, we
also observe points where ĜC < ĜS, indicating the presence of a proxy. This is not
surprising, since the use of PEP is becoming a common practice for mobile operators
trying to improve end-users’ QoE [70, 71, 60].

The MONROE platform allows us to gather detailed information about the
operational state of the MBB networks in different countries. For example, we see
that the operational setting of the Sweden operators are not static, and change over
time. Indeed, the traffic of op2 in Sweden in some time periods crosses a PEP and in
some others does not. Fig. 3.10 presents the server-side and client-side goodputs for
this operator in the week when the traffic of op2 mostly crosses the PEP. The dashed
line (server-side goodput) is often higher that the solid line (client-side goodput), but
not always.

The volume of roaming traffic has been steadily increasing in Europe, and will
increase even more after the reduction of the roaming surcharges, due to take place
in June 2017. Operators have already started offering reduced tariffs for roaming,
and exploiting international roaming agreements. In order to look at this aspect of
MBB network performance, we considered op2∗ in Spain, which is the roaming
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Fig. 3.10 Goodput experienced from client and server sides for op2 in Sweden during one
week

network for op2 in Italy. In other words, op2∗ in Spain is an Italian SIM used in
roaming conditions in Spain. Quite surprisingly, Fig. 3.11 shows that the roaming
SIM (op2* in Spain) obtains higher goodput than the corresponding SIMs at home
(op2 in Italy), and that a PEP is in use in both cases.

Fig. 3.12 shows the values of the MSS and window scaling (WS) declared by the
client to the server on port 80. The MONROE platform provides an equal setting
at all clients with the default values of 1460 Bytes and 7 for MSS and WS. For
visibility, the values in Fig. 3.12 are uniformly distributed around the observed value.
Fig. 3.12a shows that Italian operators modify the client-declared TCP options. In
order to see this, it is necessary to check more than one option, since, for instance,
op1 does not change the MSS value, but changes the WS value. For other operators,
the behavior varies. In Spain, both operators keep the WS value, but reduce the MSS
value to 1400. In Sweden, operators again keep the WS value, but change the MSS to
different values. In Norway, operators always change the MSS value, and sometimes
also the WS value.

Finally, Table 3.2 shows a summary of the characteristics observed on the 11
European operators. The third column of the table indicates the usage of the NAT
in the operator network. We see for example that in Italy op0 is always using NAT
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Fig. 3.11 Goodput experienced from the client and the server sides for the same operator
SIM in Italy and Spain

(Yes), while op1 sometimes uses it (Yes∗), and op2 never uses it (No). Column 4
tells us that most of the operators use a PEP on port 80. The fifth column tells us
that all operators do L4 mangling on all tested ports. Column 6 gives the fractions of
observed 2G, 3G, and 4G connections.

3.7 Conclusions

In this chapter, we discussed our experience in running ”speedtest-like” measure-
ments to estimate the download speed offered by actual MBB networks. Our ex-
periments were permitted by the availability of the MONROE open platform, with
hundreds of multihomed nodes scattered in four different countries, and explicitly
designed with the goal of providing hardware and software solutions to run large
scale experiments in MBB networks. Our data were collected in 4 countries, over 11
operators, from about 50 nodes for more than 2 months.

Despite their simplicity, download speed measurements in MBB networks are
much more complex than in wired networks, because of many factors which clutter
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(a) Italy (b) Spain

(c) Sweden (d) Norway

Fig. 3.12 WS and MSS values experienced at the server side on port 80, default values of
MONROE nodes are 7 and 1460 Bytes, respectively

the picture. The analysis of the results we obtained indicated how complex it is to
draw conclusions, even from an extended and sophisticated measurement campaign.

As a result, the key conclusion of our work is that benchmarks for the perfor-
mance assessment of MBB networks are badly needed, in order to avoid simplistic,
superficial, wrong, or even biased studies, which are difficult to prove false.

Defining benchmarks that can provide reliable results is not easy, and requires
preliminary investigation and experience, both being now possible thanks to the
availability of an extensive Europe-wide platform like MONROE.
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Table 3.2 Summary of the operator settings

Country Operator Private IP Ĝ mismatch L4 Connection (percentage)
& NAT on port 80 Mangling Type

Italy
op0 Yes Yes∗ All 3G (0.46), 4G (0.54)
op1 Yes∗ Yes All 3G (0.15), 4G (0.85)
op2 No Yes All 2G (<0.01), 3G (0.08), 4G (0.92)

Sweden
op0 Yes∗ Yes∗ All 4G (100)
op1 No Yes All 3G (<0.01), 4G (0.99)
op2 No Yes∗ All 3G (0.37), 4G (0.63)

Spain
op0 Yes No All 4G (100)
op1 Yes No All 3G (0.16), 4G (0.84)
op2∗ No Yes All 3G (0.07), 4G (0.93)

Norway
op0 No Yes∗ All 4G (100)
op1 Yes∗ Yes∗ All 3G (0.08), 4G (0.92)



Chapter 4

WebWorks: Experimenting the Mobile
Web

4.1 Introduction

MBB networks revolutionized the way people interact, bringing a variety of commu-
nication services into most of our daily activities. Today, messaging, videos, and the
web are key components of our lives, and we expect our MBB network provider to
deliver performance and efficiency in highly dynamic scenarios.

With a complex ecosystem of networks, smart devices and traffic-intensive appli-
cations, MBB brings both opportunities and challenges to network operators. Indeed,
despite many years of mobile networking research and engineering, MBB perfor-
mance still struggles to meet the growing expectations of users for fast, reliable, and
pervasive services. Accurate measurements are necessary to quantify the achieved
performance and identify the system bottlenecks. However, the intertwining of
technologies, protocols, setups, and service design makes it complicated to design
scientifically sound and robust measurement campaigns. For example, the higher the
load in the MBB network cell, the larger the variance users perceive in the time to
reach the content of interest (e.g., a webpage), which, in turn, translates into poor
QoE [2]. In this complex ecosystem, data analytics that focus on finding relationships
between user experience and network performance statistics offer the promise of
helping operators target those technology improvements that matter most to their
customers.
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In this thesis, we discuss ways to monitor service performance in MBB networks,
with the objective of quantifying end user QoE when user experience is dependent
on a large number of factors. We use MONROE system, which we built to enable
controlled experiments in multiple MBB networks under similar conditions. Then, by
leveraging data analytics, we show how the data we collected enables us to directly
relate user experience to network performance statistics, an important step on the
way to monitoring and managing service quality and user satisfaction.

In particular, in this chapter we focus on web browsing performance as a study
case. Within the MONROE system, we instrumented a long-term, large-scale
measurement campaign capable of harvesting cross-layer measurements that capture
the complex picture of the current mobile web ecosystem. Today, websites are much
more complex than ever, with rich functionality and content. The average number
of bytes per page for mobile devices has increased from 872 kB to 2,532 kB in the
last three years, which is roughly a 200% increase [72]. In this context, the time a
user spends to reach the content (i.e., the web page load time) is a critical metric
the carriers aim to optimize [73, 74], because of its strong correlation with user
satisfaction and, in turn, with company revenues [75–81].

This chapter demonstrates the potential of MONROE for performance assessment
of operational MBB networks. We measure and compare 11 commercial MBB
operators in four countries in Europe from the point of view of the web service
performance their customers experience. We measure one of the operators also while
roaming in another country. We introduce the WebWorks experimental setup we built
on top of MONROE for mobile web measurements (Section 4.3). We use WebWorks

to evaluate the performance of using HTTP1.1/TLS (H1s) or HTTP2 (H2) across
10 different target websites by monitoring three different web performance metrics
(Page Load Time (PLT), ObjectIndex and ByteIndex). To facilitate this analysis,
WebWorks logs the browser interactions with the target sites in a JSON-formatted
archive file called HAR (HTTP Archive). Based on this, we derive a large number of
web metrics, including total web page load time, size of web pages in bytes, number
of objects, size of each object, number of domains, object types (javascript, css,
image etc.), object load time including DNS resolution, TCP connect, send, wait or
object receive timings. We present our unique dataset openly to the community1.
Our results (Section 4.4) show that, for all the 11 different operators we measure,

1https://www.monroe-project.eu/datasets/conext17/

https://www.monroe-project.eu/datasets/conext17/
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the performance improvement for the H2-enabled websites is very limited. The only
website for which the H2-enabled version shows higher performance (according to
the PLT, ByteIndex and ObjectIndex metrics) is youtube.com. We conjecture this is
due to the complexity of the website and the incentives of the corporation hosting
it to optimize user experience. Furthermore, we find that the roaming impact is
insignificant. Finally, we conclude the chapter in Section 4.5.

4.2 Background and Related Work

In the past years, we have seen increased interest in the networking community
from different parties (e.g., researchers, operators, regulators, and policy makers) in
measuring the performance of MBB networks. There are mainly three approaches
for measuring the performance and reliability of MBB networks: (i) crowd-sourced
results from a large number of MBB users [82–84] , (ii) measurements based on
network-side data [85, 52–54], and (iii) measurements collected using dedicated
infrastructure [86, 55, 56]. In this chapter, we collect data from the MONROE
dedicated infrastructure in order to have full control over the measurement nodes,
allowing us to systematically collect a rich and a better quality dataset over a
long period of time. We focus on web measurements and capturing application
performance as experienced by end users for different combinations of target websites
and different protocols.

The Hypertext Transfer Protocol, HTTP/1.1 (H1)[87] has been the de-facto
standard for loading webpages since 1999. It uses the TCP protocol underneath to
deliver web resources to users. However, H1 has been found to limit the performance
of web access, specially as todays webpages have become increasingly complex [88].
One key issue with H1 is head-of-line blocking (HoLB) [89], since it practically
allows to have only one outstanding request per TCP connection.

The design of web browsers responded to this constraint by introducing paral-
lelism. This workaround allows multiple parallel TCP connections to be used. This
alleviates the performance obstacles introduced by the HoLB behavior of H1, but
also has its drawbacks. The collateral damage that can occur to other competing TCP
flows at an Internet bottleneck influences the available capacity and flow dynamics.
Hence web browsers define a limit on the number of parallel TCP connections that
a browser can open towards a particular server (six by default in Mozilla Firefox
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and Google Chrome). The limitation on TCP parallelism (i.e., the number of TCP
connections) has motivated the server to put resources across multiple domains (even
for the same server). The web industry have also adopted other techniques like
spiriting, inlining and concatenation as best practices, all of which have their own
shortcomings [88].

In light of the above observations, Google proposed SPDY [74] to reduce the
web latency keeping the original semantics of H1. Subsequently, IETF standard-
ized HTTP/2 (H2) [73], the evolution of HTTP based on SPDY. H2 uses a single
multiplexed connection per domain, allowing also request prioritization between
multiplexed requests. This reduces overhead and limits HoLB. Efficiency is further
optimized through the use of header compression.

Throughout the recent years, several studies have been tracking and reporting the
adoption of H2 in the web [90–92]. The relative performance differences between
H1 and H2 have been receiving much attention, with numerous related research
efforts in this direction [91, 93–101]. The results are mixed, hence it is hard to make
a clear conclusion on which protocol outperforms the other and in which scenarios.
Research reported in [95, 96, 100, 98, 94] primarily used lab setups with emulated
network scenarios. [97, 100] considered one single operator network to measure
the web performance using both dummy pages and real archived pages or real sites.
[102] models H2 performance using H1 traces, providing an upper bound of H2
performance. [90] identified the lack of key H2 features in its current adoption as a
reason for the absence of performance improvements in H2 measurements. In this
chapter, we present a large-scale web measurements campaign using MONROE,
including results for 11 different mobile carriers over four countries. We do not
only measure the protocol difference from different vantage points, but also set the
operators network performance in a common scale.

Previous web performance measurements also differ in the metric they chose to
evaluate performance. Work in [95, 96, 100, 92, 97, 90] used PLT, a metric primarily
based on OnLoad event fired by the browser. This event is fired when all objects
on the page are loaded. PLT and similar metrics have been criticized for not being
representative of user experience [103–106]. Users are mostly interested in above the
fold content (AFT), PLT waiting for the OnLoad event when all objects are loaded
thus overestimates the user perceived latency [105, 106].
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Google introduced SpeedIndex [107, 108], as an alternative to PLT to better
capture the user perceived experience. SpeedIndex is a measure of an average time
to get all AFT in the screen, in other words an average time for the visual completion
of a page in the browser. More visual contents at the beginning of the page loading
process lead to smaller SpeedIndex. However, measuring SpeedIndex requires to
film the page loading process and is thus quite complex and can significantly inflate
the measurement time. Similar but much less computationally intensive metrics,
ObjectIndex and ByteIndex are proposed in [105]. Additionally, [109] proposed the
"3rd Party Trailing Ratio" metric, which measures the fraction of download time
for the 3rd party assets on the webpage critical path. The authors show that this is
another determinant factor influencing web performance. In our measurements, we
consider three different metrics, namely ByteIndex (BI), ObjectIndex (OI) and PLT.

More then simple measurement analysis, we tackle the need for understanding
the relationship between web performance and network characteristics, which is
important for cellular operators looking to tackle network conditions that impact
web. For example, while generating a model to determine a web-page’s QoE, A.
Balachandran et al. [110] found evidence of the impact of the number of users
and radio access technology (RAT) handovers on the web-page performance. They
discovered that the performance is greatly affected by a website’s own complexity
(e.g., number of objects, domains visited) with some influence of the time-of-day
feature. Their study concluded that when web QoE has logical values like yes/no
(e.g., abandonment of session (yes/no), partial download exists in session time
(yes/no)) then decision tree algorithms work well. However, when the QoE is
measurable (e.g., partial download ratio (i.e., ratio of objects that do not complete
download in a session), or session length (time when user is on a web-page)), linear
regression modeling gives the best result. Our results confirm these previous findings
and bring to notice the complex correlations between various aspects of the web
browsing process and the experience of the end users.

4.3 Measurements

In this section, we describe the approach we put forward for measuring web per-
formance in MONROE. We built our web performance measurement platform on
top of the MONROE system. We design and implement WebWorks, the MONROE-
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compatible Docker container that measures web performance while visiting popular
webpages using Firefox in headless mode. Below, we describe the methodology we
integrate in WebWorks, the specific experimental setup we employ for running our
measurements and the dataset we collect.

4.3.1 WebWorks Design

In this section, we describe the internals of the WebWorks experiment methodology,
as well as the metrics we collect. WebWorks2 enables the collection of multiple web
performance metrics while visiting a target webpage using Firefox in headless mode.
We leverage the Selenium web automation framework [111] to simulate web surfing
and collect web performance metrics in MONROE. Among the several tools that the
framework provides, the Selenium webdriver offers a large set of APIs to interact
with a given web browser in the same way as a regular user would. For example, we
use the APIs to click on links, buttons or to enter text in input forms. Selenium is
compatible with a number of browsers (e.g., Internet Explorer, Firefox, or Chrome)
and also provides a number of language bindings (e.g., C#, Java, JavaScript, or
Python). We enable WebWorks to use Selenium with Firefox: upon invoking the
webdriver, WebWorks launches the native Firefox browser in the MONROE nodes to
visit any target input webpage. We set the user agent string in Firefox as to retrieve
mobile versions of the pages from the web servers. Additionally, to capture the user
web experience as realistically as possible, when creating the Firefox profile during
a web page visit, we also provide cookies and login information (if applicable) to
Selenium. MONROE nodes are not equipped with displays that GUI-based programs
like Firefox require to render the output. We thus use the X virtual framebuffer
(Xvfb [112]) to mimic the missing display and enable the browser to behave normally.

During each experiment run we use the HAR export trigger add-on [113] to
log Firefox’s interactions with the visited pages in a JSON-formatted archive file
called HAR (HTTP Archive). We then use the HAR file to derive a number of web
performance metrics, including PLT, size of web pages in bytes, number of objects,
size of each objects, and number of domains. Additional metrics such as object types
(javascript, css, image etc.), object load time including DNS resolution time, TCP

2WebWorks is available in https://github.com/MONROE-PROJECT/Experiments/
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connection time, and object receive timings are also available from the HAR files.
Apart from the HAR, we collect RTT statistics during each experiment run.

WebWorks tracks three different metrics, namely BI, OI, and PLT. The main
performance metric is PLT, a metric primarily based on OnLoad event triggered by
the browser. This event is fired when all objects on a page are loaded. Furthermore,
we infer the OI and BI [105] from the HAR files. They are computed from the arrival
time of all objects in the webpage waterfall. OI tracks the time at which the content
of the page is retrieved, taking into account all external images, style-sheets and
scripts needed to render the page. BI operates in the same way, but weights objects
by their size. A higher value indicates higher page load time.

4.3.2 Experimental Setup

In this section, we present the experimental setup of the measurement campaign we
run with WebWorks on MONROE. We deploy the WebWorks Docker container on 18
MONROE nodes (each node measuring up to three different mobile carriers at the
same time) that operate in the four countries with MONROE coverage (i.e., Norway,
Sweden, Italy, and Spain). For the measurement campaign we analyze in this chapter,
we selected specific nodes which operate inside university campus areas, ensuring
consistency in terms of end-user traffic patterns across countries.

When running the measurements on a MONROE node, WebWorks first verifies
which are the existing MBB connections on each node (i.e., the MBB operators we
can experiment with on each node). It does so by listening to the active stream of
metadata continuously transmitted within the MONROE software ecosystem, as pre-
viously explained in Section 2.4. Each node can measure up to three different mobile
carriers. For each active mobile connection detected on the node, WebWorks sets as
the source endpoint the interface that corresponds to the current operator it selected.
It then starts measuring all target websites in an input list we provide, following a
random order. MONROE nodes resolve the target websites using Google’s public
DNS resolver; not the mobile carrier’s default resolver (during this measurement
campaign).

For this measurement campaign, we configure WebWorks to collect web perfor-
mance measurements while visiting 10 popular websites. We list the websites of
interest in Table 4.1. We selected targets that provide H2 access and that are listed
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Table 4.1 Characteristics of the target websites we select for our measurement campaign.
These are average values over the 10 different pages we visit per website

Site Size (KB) # Objects # Domains

facebook 798 76 6
instagram 1,230 33 6
youtube 815 30 9

wikipedia 241 10 3
google 114 13 4

linkedin 232 24 5
yahoo 1,480 49 8
ebay 493 28 11

guardian 1,895 133 33
nytimes 3,131 205 55

among the most viewed sites in the Alexa [114] top ranking. As all the target web-
sites we chose also expect TLS connections by default, we enable WebWorks to run
over H1s, instead of simple HTTP1.1. We also ensure that with our selection of mea-
surement targets we cover a wide range of user interests in terms of topics, including
social networking, video, career, search engine, news site, wiki, or shopping. For
each target website, we chose 10 different pages to visit (i.e., 100 pages in total) in
order to capture a wide range of resource sizes, resource counts and domains visited.
For example, instead of measuring the landing page for facebook.com, we visit
specific target pages, such as ’facebook.com/telia/’ or ’facebook.com/LeoMessi/’.
We present statistics per target website in Table 4.1.

For each target website, WebWorks triggers Firefox to download the associated
pages we select, also in a random order. We enable Firefox to cache the each page
visit throughout the time it measures the same mobile operator. When moving on to
a different operator connected on the same node, Firefox clears the caches before
starting the measurements against the full set of targets.

4.3.3 WebWorks Dataset

We ran our measurement campaign in May 2017 (from 30th of April until 17th of
May) and June 2017 (from 1st of June until 14th of June). In total, we monitor
11 mobile operators, which we list in Table 4.2. We collected more than 50,000
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Table 4.2 Statistics on the WebWorks dataset; the Country shows where the subscription is
active

Operator Name Country # measurements
Telia (SE) Sweden 6,473

Telenor (SE) Sweden 6,345
3 (SE) Sweden 4,549

Telenor (NO) Norway 6,350
Telia (NO) Norway 2,806
ICE (NO) Norway 2,664
TIM (IT) Italy 4,392

Vodafone (IT) Italy 1,961
Wind (IT) Italy 1,883
Yoigo (ES) Spain 3,183

Orange (ES) Spain 727
Telia (SE) Norway 7,901

Vodafone (IT) Spain 1,093

samples from the 18 MONROE nodes we instrumented for this work, each node
with at most three different MBB interfaces active. We show the distribution of
samples per operator in Table 4.2. This proves the capability of the MONROE
system to enable repetitive measurements within the same context, something that
is challenging for crowd-sourcing approaches to achieve. The WebWorks dataset is
balanced in terms of the number of measurements for H1s/H2 protocols. Aside from
measuring native operators within their home countries, we also measure roaming.
Specifically, we run WebWorks using a Telia (SE) mobile subscription roaming in
Norway and a Vodafone (IT) subscription roaming in Spain. Our dataset includes
approximately 8,000 samples where the SIM card was in roaming mode.

Dataset limitations: We collected the dataset using a limited number of MONROE
nodes (18 out of 150 available). The nodes we selected are operating under similar
conditions. Usually, campus areas are locations with good coverage that present
similar diurnal traffic patterns throughout the countries we measure. This allows
us to compare the performance of operators within these constraints. We expect
performance to vary as we also vary the geographical distribution of the vantage
points. We leave for future work the analysis of a measurement campaign with
measurements from a wider variety of spatio-temporal settings.
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Whenever measuring a MBB operator, we use commercial-grade mobile sub-
scriptions that are compatible with the ones customers can purchase. The differences
in commercial offers thus reflect in the different data plans we activate in MONROE
and in the dataset we collect. For example, we observe in Table 4.2 that the number of
samples for Orange (ES) (limited data plan, 10GB) is much smaller than the number
of samples we collected for Telia (SE) (unlimited data plan, 200GB). For this reason,
we are not able to run the modeling analysis (Section4.4.2) for all operators, and
eliminate Orange because of the lack of large number of samples.

Proxy detection: To get further insight about the existence of a proxy in the MBB
network, we also visit all pages for each of the 10 target websites from each of
the MONROE nodes using a wired connection. For each TCP connection, we
collect information about TCP options such as Timestamps, Maximum Segment
Size (MSS), and negotiated window scale factor. Since we have a wired connection,
we can determine which options are declared and supported by the web servers. If
the ISP does L4 mangling, or a PEP is present on the path, this can be detected by
comparing different TCP options on the wired and wireless connections for a given
web page, also when the requests are served by the same IP. Our analysis show that
all the 11 operators (see Table 4.2) in our dataset do L4 mangling.

4.4 WebWorks Results

In this section, we provide an overview of web performance in MBB networks
in Europe. We then present a more detailed analysis of the relative performance
between H1s and H2.

4.4.1 Web Performance Analysis

We first take a look at the web performance as a whole, without differentiating the
websites. We illustrate in Fig. 4.1 the country-wise overall operator performance.
Here, we consider all the three metrics for the performance evaluation: PLT, BI, and
OI. We observe that the different metrics provide consistent results and the overall
web performance is similar across different countries and operators, with only slight
variations. At this aggregate level, we also observe similar performance between
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Fig. 4.1 Country wise overall operator’s performance considering PLT, BI, and OI
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H1s and H2, indicating that the choice of protocol has no significant impact on
performance.

In Fig. 4.2, we go into more detail, and report the performance of individual
websites on each MBB network. We selected 6 websites among our set of 10, and we
only show the PLT metric, due to space constraints. As expected, we can see from
the Fig. 4.2 that the PLT varies greatly between the different websites. For instance,
we measured median PLTs for wikipedia of around 7 s, and median PLTs for nytimes
of around 30 s or above. Contrariwise, we see very limited differences between
operators. However, we can see from the box plots that the measured performance for
a given operator and website varies significantly between the experiments, indicating
the complexity and dynamics of MBB networks. Looking at the relative performance
of H1s and H2, we see that there appears to be no consistent difference between the
two protocols also when examining the results on a per website granularity with the
only exception of youtube.
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Fig. 4.3 Influence of international roaming on performance. We compare two native operators
(Telia (SE) and Telia (NO)) with the case of Telia (SE) roaming in Norway (the visited
network is Telia (NO))

Finally, we consider the roaming scenario. To this end, we used a Swedish
Telia subscription roaming in Norway and compare it with the performance of Telia
when used as a native operator in Norway (Telia (NO)) and Sweden (Telia (SE)).
Our preliminary analysis shows that for this roaming scenario, all roaming traffic
is detoured over Sweden (home routing). To observe whether this detour in routing
has any impact on the web performance, we compare the three subscriptions in
Figure 4.3. We observe that the roaming scenario is very similar to the native
operator scenarios. Considering that the distance from Norway to Sweden is small,
the impact of roaming is negligible and the users can enjoy a similar web experience
while roaming. Further analysis is required to understand whether the roaming has a
larger impact in the case of countries that are farther apart.

Note that our goal in this section is to compare operators’ performance within
the constraints of our dataset, which only considers measurements collected from a
small geographic area. Thus, our aim is to highlight the complexity and dynamic
nature of MBB networks, even when measured within a controlled environment such
as MBB.



68 WebWorks: Experimenting the Mobile Web

4.4.2 H1s vs H2 Performance

An overview of our measurement results was provided in the previous subsection.
Here we delve deeper into the performance of H1s and H2. In order to quantify
the performance difference between the two protocols, we apply statistical analysis
techniques to compare measurements referring to different datasets.

We first estimate the Empirical Probability Density Function (EPDF) and ECDF
for the H1s and H2 datasets. Using a bin size of 100 milliseconds with support range
of [mean−3∗ std,mean+3∗ std] for each website, we compute the frequency of
samples falling in each bin. In the literature, there are different well-known Statistical
Distance Metrics (SDM), each with its own properties and limitations. In this work,
we chose the Jensen-Shannon divergence (JSdiv), which is defined as:

JSdiv = ∑
i

{1
2

pi ln
( pi

1
2 pi +

1
2qi

)
+

1
2

qi ln
( qi

1
2qi +

1
2 pi

)}
Where pi and qi (relating respectively to H1s and H2) are the EPDF values

generated by samples falling in the i-th bin. JSdiv is a statistical measure based on the
Kullback-Leibler divergence. JSdiv adds symmetry (i.e., JSdiv(p,q) = JSdiv(q, p)),
and bounded image (i.e., JSdiv ∈ [0, ln(2)]), to the Kullback-Leibler divergence. In
fact, the reason we chose the JSdiv is precisely to obtain a symmetric bounded value
for our comparisons. JSdiv is equal to 0 if p = q, while it reaches ln(2) for two
completely disjoint distributions.

In Appendix A, we deeply investigated the criteria for choosing the SDM and
the threshold for JSdiv. We selected the threshold values T− = 2/100 and T+ =

1/10. Intuitively, when JSdiv ∈ [T+, ln(2)], the difference between the two EPDFs
(populations) is significant. When JSdiv ∈ [T−,T+) the difference is observable, and
negligible if JSdiv ∈ [0,T−).

Table 4.3 reports the values of JSdiv for each operator, independent from the
website. The JSdiv is computed over the two EPDFs of H1s and H2 for the three
performance metrics BI, OI, and PLT. Since the value of JSdiv is sensitive to the
number of samples, operators/websites with not enough samples are not presented in
Tables 4.3 and 4.4 3. Table 4.3 shows that none of the considered operators exhibits

3We consider the variable support value for each website in range of [mean−3∗std,mean+3∗std]
with bins of 100 millisecond, Therefore, we remove populations with less 1000 samples.
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Table 4.3 Jensen-Shannon divergence of BI, OI and PLT comparing H1s vs. H2 for each
operator

Operator BI OI PLT
TIM (IT) 0.058 0.061 0.061
Yoigo (ES) 0.06 0.053 0.091
3 (SE) 0.046 0.036 0.066
Telenor (SE) 0.036 0.029 0.061
Telia (SE) 0.041 0.037 0.062
ICE (NO) 0.077 0.066 0.097
Telenor (NO) 0.04 0.033 0.056
Telia (NO) 0.048 0.045 0.066

Table 4.4 Jensen-Shannon divergence of BI, OI and PLT comparing H1s vs. H2 for each
website

Operator BI OI PLT
ebay.com 0.023 0.019 0.034
en.wikipedia.org 0.009 0.01 0.01
facebook.com 0.007 0.007 0.013
instagram.com 0.064 0.048 0.029
linkedin.com 0.066 0.027 0.031
theguardian.com 0.047 0.047 0.059
youtube.com 0.033 0.063 0.207

a significant difference between H1s and H2. This is consistent with the overview of
the measurement results shown in Fig. 4.1.

Table 4.4 reports the values of JSdiv for each website, independent of the opera-
tors. Youtube exhibits a value JSdiv = 0.207 for the PLT metric, hence falling in the
range of significant difference. In Addition, Fig. 4.4 shows that in this case H2 yields
lower PLT with respect to H1. While we observed some differences for Youtube,
the analysis of other cases confirms that no consistent difference can be observed
between H1s and H2 in our measurements. One reason that has been identified in
a very recent work could be that some of the key H2 features are still not in use at
large in the server side [90]. Also we have seen in our findings that domain wise
resource placement is quite similar for both the H1 and H2 cases in the server side,
which influences the potential gain from multiplexing in H2.
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Fig. 4.4 The ECDF of the PLT of Youtube for H1s/H2

4.5 Conclusions

This chapter presented a cross-European study of web performance on commercial
mobile carriers using the MONROE system. The novelty of the study stands in the
sheer volume of data we were able to collect from MONROE nodes operating under
similar conditions in 11 different MBB networks. Our results and further analysis
brought to light the complexity of the cellular networks, where the randomness of
the wireless access channel coupled with the often unknown operator configurations
makes monitoring performance very challenging. We find that the overall web
performance is similar across different countries and operators, with only slight vari-
ations. In aggregate per target website, our measurements show that the performance
improvements H2 promised still remain to be experienced. Furthermore, we find
that web performance is mainly dependent on the characteristics and performance
of the target web page. Thus, for websites where we conjecture that the server-side
implementation of H2 is more mature (youtube) we observe superior performance
from the end-user perspective.



Chapter 5

Understanding Roaming in Europe

5.1 Introduction

International roaming allows mobile users to use their voice and data services when
they are abroad. The EC, in an effort to create a single digital market across the
EU, has recently (as of June 2017) introduced a set of regulatory decisions [12] as
part of the “Roam like Home” initiative. This initiative abolishes charges for users
when they use voice and data services while roaming in EU. In this setting, Mobile
Network Operators (MNOs) are expected to deliver services with QoS properties
similar to the ones a user experiences when at home.

To support roaming, MNOs commonly connect with each other through an IP
Packet Exchange (IPX) network. An IPX [115, 116] can be described as a hub that
interconnects MNOs over a private IP backbone network and is possibly run by a
third party IPX provider. An IPX provider has connections to multiple network
operators and thus enables each MNO to connect to other operators via a single
point of contact. Fig. 5.1 presents a set of topology architectures that can be used
for roaming in a mobile network, namely, HR, local breakout (LBO) and IPX hub
breakout (IHBO).

When a mobile node is at home (left, see Fig. 5.1), the home user’s traffic
will take a short path inside the network to reach a suitable Packet Data Network
Gateway (PGW) to the Internet. The traffic of a roaming user (right, see Fig. 5.1) is
directed to an egress PGW whose location depends on the roaming architecture. In
the case of HR, the mobile node receives the IP address from its home MNO and the
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Fig. 5.1 Internet access options for a mobile node at home (left) and when roaming (right)

roaming user’s traffic is first routed towards a PGW in the home network (red path).
With LBO, the mobile node receives its IP address from the visited network and the
traffic is routed towards a local PGW in the visited network (purple path). When
using IHBO, the mobile node obtains its IP address from the IPX networks and the
traffic is routed through a PGW in the IPX network (green path). These approaches
have a potential impact on the communication performance. For instance, when
the node accesses services inside the visited network, the performance is likely to
be worse in the HR case, because all packets travel twice between the visited and
the home country; less so when the communication peer is in a third country and
minimally when accessing services in the home country.

In this thesis, we perform an extensive large-scale measurement study1 to un-
derstand the roaming ecosystem in Europe after the "Roam like Home" initiative.
More specifically, we investigate: (i) Which technical solutions are actually being
deployed and used today? and (ii) What are the implications of roaming on the
service experienced by the roaming user?

1We will make the code and the dataset we collected open to the community upon publication.
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To address these questions, we built a unique measurement platform, EURoam, to
assess roaming and its performance implications. The platform integrates dedicated
measurement hardware that we deployed in six different countries (see Fig. 5.3
and section 5.2 for details) across Europe, covering a total of 16 MNOs. We pur-
chase Subscriber Identity Modules (SIMs) that support roaming for these MNOs
and distribute them across the six countries. We characterize roaming operation
and network performance (section 5.3) and evaluate the impact on VoIP and web
applications (section 5.4) while roaming. We find that all observed MNOs use HR,
which yields noticeable latency increases. We do not observe traffic differentiation
policies for VoIP or web, but we do find evidence of content discrimination for
roaming users. We review the existing work in section 5.5 and conclude the chapter
in section 5.6.

5.2 EURoam and Measurement Setup

In this section, we present the hardware platform we built for roaming measurements,
and the manner in which we orchestrate it to run measurements and collect our data.

5.2.1 EURoam Platform

We design and build EURoam, a dedicated platform for roaming measurements in
Europe. EURoam integrates several components that we depict in Fig. 5.2. The
main blocks include measurement nodes distributed in six different EU countries, the
backend system, several measurement servers and a scheduler, all of which we detail
next. To build the EURoam platform we adapt the open source software provided by
MONROE [117], an open measurement platform.

EURoam nodes: Each EURoam node is composed of PC equipped with two
3G/4G MC7455 LTE CAT6 miniPCI express modems. Because of the high cost
of nodes and subscriptions, and the complexity of the coordination effort required
(see subsection 5.2.3), we have setup a small scale platform with a total of 12
EURoam nodes dedicated for roaming measurements.
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Fig. 5.2 EURoam platform and experimental setup

EURoam backend: Upon completion of each measurement, EURoam nodes
transfer the results of the measurements to a central server for further processing
analysis.

Measurement servers: We have deployed one measurement server in each
country as measurement responders and also to capture traffic traces.

EURoam scheduler: The scheduler allows the user to query for resources, select
nodes and launch different tests in the platform simultaneously. We used the open
source MONROE scheduler as a basis for the EURoam scheduler. Each test is
designed and implemented in a Docker container [29].

5.2.2 Experimental Setup

We deployed two EURoam nodes in each of the six European countries and we
measured a total of 16 MNOs that operate their own network, as illustrated in
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MNOs

NO Telia NO Telenor NO
SE Telia SE Telenor SE Tre
UK Vodafone UK EE
DE Vodafone DE T-Mobile DE O2 DE
ES Vodafone ES Movistar Orange
IT Vodafone IT TIM 3 3 IT

Fig. 5.3 The distribution (left) of the EURoam nodes in six countries and (right) SIMs for
16 MNOs we measure across Europe. Each country deploys two EURoam nodes and one
measurement server

Fig. 5.3.2 Note that in UK and Norway, there are two major MNOs, while in the
other countries we have considered three MNOs.

For each MNO, we bought six SIMs that support roaming in Europe and we
distributed one SIM in each of the countries we cover. For example, for a given
MNO A in country A, we distributed five roaming SIMs of MNO A to countries B-F
and kept another home SIM in the home country (e.g., country A). Each roaming
SIM connects (or camps) to a local roaming partner (or visited network) native to
the visited country.3 For each roaming SIM, we identify the corresponding visited
network (e.g., MNO B in country B) and, when available, activate the corresponding
SIM from the visited network (which we hereinafter denote by visited SIM). Fig. 5.2
illustrates the configuration in our experimental setup.

5.2.3 Measurement Coordination

Each MNO-specific measurement round involves 6 nodes: (i) one node with the
home SIM and (ii) five nodes with both the roaming SIM and the corresponding
visited SIM. This enables us to capture performance metrics for the roaming SIM,
but also to compare those with the local performance of the home network and the
visited network (when possible).

2In the figure, we illustrate the capital of each country as the corresponding node and measurement
server location in order to anonymize the exact locations of our measurements.

3When MNO A (from country A) is a roaming partner of MNO B (from country B), MNO B can
serve MNO A’s customers roaming in country B by allowing MNO A users to camp on MNO B’s
network (and vice-versa).
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Before running the set of measurements (see section 5.3 and section 5.4), we
first need to configure the nodes by activating and deploying the SIMs. For each
MNO, we carry out the measurements at the same time from all six countries and
we coordinate the configuration of the experimental setup in two steps:

Home and Roaming User Activation: Given an MNO, we first insert the SIM
into the first SIM slot in each node in all six deployment locations. For the SIM
located in its home country, this step triggers the home user activation (by inserting
the SIM in the measurement node), while for the rest of the nodes, the roaming user
activation is triggered.

Visited User Activation: Once we complete the home and roaming user acti-
vation, we check the visited network that the roaming SIM uses in each of the five
visited countries. Then, we insert the SIM of this MNO (when available) into the
second slot of each corresponding node.

Using the EURoam scheduler, we orchestrate the execution of the measurements
so that they run in parallel on all nodes. The measurement coordination effort was a
significant part of the process. In each country, at least one person was dedicated
to carry out the experimental setup configuration for each MNO in a timely manner.
Given that we deploy two nodes per country, we could measure two MNOs in parallel.
We coordinated the SIM changes over email. Furthermore, before the change of the
next pair of SIMs, we double-checked the measurement results we had collected to
ensure correctness and completeness of the dataset. Each round lasted one week,
over a total period of more than 16 weeks of experiments.

5.3 Roaming Setup and Performance

5.3.1 Measurements

We run a series of measurements that enable us to identify the roaming setup, infer
the network configuration for the 16 MNOs we measure and quantify the end-user
performance for the roaming configurations we detect. We run traceroute, dig for
DNS lookups and curl for testing data transfers with popular URLs. Furthermore,
we complement the analysis with some metadata (e.g., technology, signal strength
parameters) we collect from each node.



5.3 Roaming Setup and Performance 77

For each MNO, we measure in parallel the roaming user, the home user and
the visited user (see section 5.2 for terminology) through the EURoam scheduler.
This way, we are able to capture potential performance penalties that might result,
for example, from roaming internationally under a home-routed configuration. We
performed measurements using both 3G and 4G networks to evaluate the impact of
potentially different configurations for the two radio access technologies.

Next, we describe each measurement test and its resulting dataset in more details.

traceroute: We run periodic traceroute measurements against all the servers
we deploy in each country as measurement responders. Towards each target we
repeat the measurements for 10 times on average. The resulting dataset lists the set
of IP hops along the data paths from each vantage point towards each measurement
responder in each country. Additionally, we collect the public mapped IP address for
each vantage point (i.e., the IP endpoint associated with the mobile client as seen
from the public Internet).

dig: We run the dig utility for DNS lookups against a list of 180 target Fully
Qualified Domain Names (FQDNs) mapped to advertisement services. We use the
independent filter lists from https://filterlists.com to build the list of targets. We focus
on ad services since this type of third party services inflate significantly the page
load time metrics of web services, as well as impact the web experience of mobile
users [118]. Each experiment uses the default DNS server for the tested MNO and
queries for the A record associated to each of the target FQDNs. We store the entire
output of each dig query, including the query time, the DNS server used and the A
record retrieved. We repeat the dig queries for 2 times for each FQDN from each
vantage point, for a total of more than 2,000 queries per round.

curl: We run curl towards a set of 10 target popular webpages4 over HTTP1.1/TLS.
We repeat the measurements towards each URL for at least 10 times (and we increase
this sample if the SIM data quota allows it). We store various metrics, including the
download speed, the size of the download, the total time of the test, the time to first
byte, the name lookup time (query time) and the handshake time.

4We target the following web pages: www.httpvshttps.com, facebook.com/
telia/, en.wikipedia.org/wiki/Timeline_of_the_far_future, linkedin.com/company/
facebook, www.yahoo.com/movies, instagram.com/leomessi/, google.com/search?q=
iPhone+7,youtube.com/watch?v=xGJ5a7uIZ1g, ebay.com/globaldeals, nytimes.com,
theguardian.com.uk/lifeandstyle.

https://filterlists.com
www.httpvshttps.com
facebook.com/telia/
facebook.com/telia/
en.wikipedia.org/wiki/Timeline_of_the_far_future
linkedin.com/company/facebook
linkedin.com/company/facebook
www.yahoo.com/movies
instagram.com/leomessi/
google.com/search?q=iPhone+7, youtube.com/watch?v=xGJ5a7uIZ1g
google.com/search?q=iPhone+7, youtube.com/watch?v=xGJ5a7uIZ1g
ebay.com/globaldeals
nytimes.com
theguardian.com.uk/lifeandstyle
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Table 5.1 PGW details per MNO

MNO Visited networks # of PGW #of tests First hop distribution(%)3G 4G
O2 DE 9 9 20 657 1; 1; 1; 2; 2; 2; 2; 2; 3; 3; 3; 4; 4; 5; 6; 6; 9; 9; 11; 24

Telekom DE 5 5 4 1424 13; 19; 25; 43
Voda DE 5 6 2 1511 46; 54

Movistar ES 6 6 8 282 4; 5; 5; 7; 8; 21; 22; 28
Orange ES 7 7 3 900 6; 43; 51
Voda ES 5 5 1 1943 100
TIM IT 6 6 4 497 1; 1; 46; 52
Voda IT 5 5 4 759 19; 19; 23; 39

Telenor NO 5 5 3 398 8; 30; 62
Telia NO 5 5 4 379 7; 16; 38; 39

3 SE 7 6 2 828 44; 56
Telenor SE 5 5 2 1362 32; 68

Telia SE 5 5 4 379 7; 16; 38; 39
EE UK 5 5 9 1038 3; 4; 4; 5; 8; 13; 17; 19; 27

Voda UK 5 5 1 503 100

metadata: We collect contextual information from the nodes, including the
visited network Mobile Country Code (MCC) / Mobile Network Code (MNC) for
each roaming SIM and the radio technology. This allows us to verify which visited
network each roaming SIM uses as well as to identify and separate the collected data
by radio technology.

5.3.2 Roaming configuration

Our initial goal is to determine the roaming setup for each MNO (i.e., whether it
used LBO, HR or IHBO). For this, we determine which is the MNO that allocates
the public IP address of the roaming SIM. Our results show that HR was used by all
16 MNOs from all the different roaming locations we capture. We further corroborate
this result by retrieving the first hop replying with a public IP address along the data
path from a roaming SIM to each server and identifying the MNO that owns it. We
find that the first hop with a public IP address along the path lies in the original home
network of each roaming SIM, which is consistent with HR.

We evaluate next the following performance metrics for each roaming SIM, home
SIM and visited SIM: the number of hops from vantage point to target measurement
server, the number of visited networks we observe for the roaming SIM, the number
of home network PGWs that the roaming SIMs reach in comparison with the home
network SIMs.
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Visited network selection: The metadata we collect during the measurement
campaign for each MNO enables us to verify which is the visited network each
roaming user camps on in the visited country. In general, we note stability both in
4G roaming and 3G roaming in the selection of the visited network (Table 5.1) from
the five locations. The locations that presented more variability were Spain and Italy.
We also observe some differences between MNOs. For example, for Telekom DE
the LTE visited network chosen by each roaming SIM never changed during the
measurement campaign, even when we forced the radio technology handover. This
is consistent for all the five roaming locations. For O2 DE, on the other hand, the
default LTE visited network did change in time for the SIMs roaming in Italy (3
visited networks), Norway (3 visited networks), and Sweden (2 visited networks).
However, it should be noted that the length of the measurement period varies for
each MNO, as it is impacted by multiple external factors (e.g., at times some of our
measurement responders were affected by power outages or some SIM cards were
not connecting to the 4G network due to poor coverage). This may be part of the
differences seen between the MNOs.

Traceroutes, number of hops: We analyze our collected traceroute results from
the roaming SIMs and compare with the traceroute results we collect from the
corresponding home SIM towards the same target server. For all MNOs we find
that the number of hops is the same. This is consistent with the HR configuration
(Fig. 5.1), where the GTP tunnel is defined between the SGW of the visited network
and the PGW of the home network. 5

Traceroutes, infrastructure: By learning the IP addresses of the infrastructure
elements along the data path, we are able to infer aspects of the infrastructure
deployment strategy of each MNO. In particular, by checking the IP address of the
first hop in the path, i.e., the PGW router, (Table 5.1), we find that MNOs have
different strategies in terms of their deployments. We note that the first hops have
an even distribution on their assignation to mobile users, showing that the MNOs
have a similar approach for load balancing in their network. For example, for O2
DE we find 20 different first hops, suggesting that there might be a large number
of PGWs deployed in the LTE infrastructure, while for Vodafone UK we see that
the same first hop appears on the data path, suggesting that the GTP tunnels of all
our roaming users is terminated at a single PGW. We also note that although for

5Traceroute for 3 IT did not work in any country to any server.
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the majority of MNOs, these hops are configured with private address space, three
operators (Telekom DE, Telenor NO and Telenor SE) use public address space for
their infrastructure.

We verify that the set of first hops for roaming SIMs is the same as the set we
observe from the home SIMs. This suggests that the roaming SIMs do not receive
any differential treatment in terms of allocation to the PGWs. This is consistent
for all MNOs we measure. Furthermore, when checking the 3G data paths we find
that the set of IP addresses we see in 3G is a subset of the set of IP addresses we
see in 4G, suggesting that the two functions are co-located in the same PGW[119].
We also check the time when the first IP was used. We do not find any evidence of
dependency between the IP usage and the time. We further contacted 3 MNOs and
the information they provided about their network confirms our findings.

5.3.3 Home-Routed Roaming: Implications

Delay Implications: The HR data implies that the roaming user’s exit point to the
Internet is always in the home network (Fig. 5.1). Thus, the data that the roaming
user consumes must always flow through the home network. Depending on the
location of the other communication endpoint, this translates into a potential delay
penalty. Fig. 5.5 shows the ECDF of the measured RTT between the roaming SIMs
and the targets located in the visited or home networks (red and green respectively).
In order to compare the HR with the LBO configuration, we also include the RTT
measurements between the visited SIMs against the same targets in the visited
or home networks (blue and purple respectively). The RTTs experienced by the
visited SIMs serve as estimates of the best RTTs that one could expect with a LBO
configuration. We note that the largest delay penalty comes when the roaming user
tries to access a server located in the visited country. This is because the packets
must go back and forth from the home network. Surprisingly, we note that the HR
configuration also impacts the case when the roaming user accesses a target server
located in the home network. That is, the GTP tunnel is slower than the native
Internet path. In this case, the median value of the delay penalty considering all
the MNOs is approximately 17ms. This varies across MNOs and in some cases we
observe very low penalties (e.g., just 0.2ms for O2 Germany).
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Fig. 5.4 Delay penalty of HR: (a) RTT difference from the visited country to all servers for
Vodafone DE; (b) RTT difference per operator; (c) DNS Query time to all FQDNs for TIM
IT

We investigate this performance impact further and calculate the estimated delay
penalty between LBO and HR when the target is in the visited network. Fig. 5.4a
exemplifies these median values for Vodafone Germany. We note that the delay
penalty varies widely with the geographical location of the roaming users and the
target servers. For example, when a German SIM roams in Spain, the difference in
terms of RTT is higher if the server is in the visited country (i.e., Spain) (red curve
in Fig. 5.5). If the German SIM roams in Spain or Italy and the target server is in
Norway or Sweden the delay penalty of the roaming is less intense, since to go to
Norway or Sweden the data path would anyway likely pass through Germany (and
this is similar to the delay one would have because of the HR configuration).
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Fig. 5.5 ECDF of the RTT from SIM vantage point to target server

We evaluate the RTT difference between the roaming SIM and the visited SIM
towards the same target and we group per MNO. Fig. 5.4b shows the median value
of the delay penalty of an MNO (on the x axis of the tile plot) while roaming against
each the six different servers (on the y axis of the tile plot, marked by country). We
note that the delay penalty varies as a function of the location of the home country.
For example, German SIMs suffer a lower delay penalty, which is potentially due to
the advantageous position in the middle of Europe.

DNS Implications:

The results of the dig measurements show that the DNS server offered to a
roaming user is the same as offered when at home. This is again consistent with
the use of HR. We verify whether this translates into an inflated query time for the
roaming user. Fig. 5.4c presents the distribution of DNS query times for all the SIMs
of TIM IT. We note that for the home user the query time is lower in average than
for the other five roaming users. This further translates into implications in terms of
CDN replica selection: the roaming user would be likely redirected to CDN content
at its home network, and will not be able to access the same content from a local
cache.

HTTP performance implications: Similar to the delay and DNS implications,
international roaming affects HTTP and HTTPS performance. We quantify this
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penalty by considering the handshake time between the SIM and the target web
servers. The median value of the handshake time from the visited SIMs towards all
the targets we measure is 170ms, while the median value for the roaming SIMs is
230ms. This leads to a delay penalty of approximately 60ms. As in the cases before,
some MNOs are affected more by this roaming effect than others.

Takeaway: All operators use HR. This forces all traffic to go through the home
country, adding a latency penalty proportional to geographical distance. Interestingly,
the GTP tunnel is also slower than the corresponding Internet path. All services are
affected.

5.4 VoIP & Content Discrimination

5.4.1 VoIP Call

We focus on three popular Voice over IP (VoIP) applications: Whatsapp [120], Face-
book Messenger, and FaceTime [121]. We aim to verify potential traffic differentia-
tion policies (such as blocking or throttling) that may hamper VoIP communications
from these applications for a roaming user in comparison to a home user.

Experiment Design: Since it is hard to directly run and control each native mobile
application in our platform, we divide the experiment into two parts. In the first
part, we check if the MNO allows us to successfully setup an audio/video call by
manually running the experiment using regular phones. If successful, we proceed to
the second part, where we check for traffic differentiation mechanisms in place.

Towards this end, we made three audio and video calls using each application
running on a regular mobile phone connected using an instrumented WLAN access
point (AP) in our lab. We recorded packet traces using tcpdump, resulting in 18
traces, each with duration between [60,80] s. We verified the call-setup phase, which
used a complex mix of TCP, STUN [122], and custom protocols to setup the end-
to-end communication. From each trace, we then extracted the actual audio/video
streams. In the next step, we created an Docker container with pre-loaded traces,
which we replay using tcpreplay to properly edit them so that packets are directed
toward dedicated receivers in our premises. All applications run SRTP [123] on



84 Understanding Roaming in Europe

0 100 200 300 400 500 600 700
bit rate [kb/s]

0

0.2

0.4

0.6

0.8

1

EC
D
F Facetime snd.

Fbmessenger snd.
Whatsapp snd.
Facetime rcv.
Fbmessenger rcv.
Whatsapp rcv.

(a)

0 20 40 60 80 100
IPG [ms]

0

0.2

0.4

0.6

0.8

1

EC
D
F

Sender
Node in NO call in DE
Node in SE call in DE
Node in DE call in DE
Node in ES call in DE
Node in UK call in DE
Node in IT call in DE

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
KS statistic 

0

0.2

0.4

0.6

0.8

1

P-
Va

lu
e

IPG
bit rate

(c)
Fig. 5.6 A sample of VoIP results and statistical similarity of bitrate and IPG: (a) Bitrate for
operator O2 DE; (b) IPG for operator O2 DE; (c) KS and P-Value test.

top of UDP. This makes it easy to replay the original packet timing, payload, and
updated source and destination IP addresses.

The dedicated server in each country acts as a UDP receiver with a custom
signaling TCP connection providing the status of the node (such as Visited Network,
node identifier, metadata, experiment type, etc.) and experiment association on
the receiver side. Each test sequentially replays each pre-recorded trace with two
receivers: a call to a destination in the home country, and a call to a destination in the
visited country. For each call, we record packets on both the client and server side.
Later, we post-process the pcap traces to check for eventual traffic differentiation.

Results: First, we verified that all operators allowed users (even when roaming)
freely make VoIP calls. Then, we consider eventual traffic differentiation. We focus
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on packet loss, instantaneous bit rate, and IPG (the time difference between two
consecutive packets), all well-known real-time VoIP applications. Results show that
the packet loss is always less then 1% in all experiments. As such, we conclude that
operators did not introduce any artificial packet loss during our tests.

We went to study throughput and compare the per-second bit rate, as seen at
the sender and at the receiver side. In more details, Fig. 5.6a presents the ECDF
of the per second bit rate for all three applications. Solid (dashed) lines present
the bit rate at the sender (receiver) side, when calling a receiver in home or visited
country (operator O2 DE). Notice that applications use different audio/video codec
combinations with different requirements in terms of bit rate. However, we no
differences are observed with respect to throughput.

At last, we study IPG as shown in Fig. 5.6b. We depict the case of the Facetime
application on O2 DE operator in roaming, when calling a receiver in Germany.
Notice the periodic 60 ms long IPG typical of low rate audio codecs used by modern
VoIP applications. In this experiment we observe some differences when comparing
measurement at the sender (solid line) and receiver (dashed lines – one from each
visited country) side. That is, some packets get compressed (smaller IPG) while
other gets separated (larger IPG). This happens in all experiments, with all operators,
also when the sender is in its home country. We ascribe this to the 3G/4G access
mechanisms that modulate IPG. Given the IPG is in any case bounded to less than
80 ms, we conclude that this would not hamper voice quality. As such, IPG variations
are easily absorbed by the receiver playout buffer [124].

While QoS in terms of IPG and throughput are good, the end-to-end delay could
be significantly high due to the HR solution. The delay could grow excessively
large when two roaming SIMs call each other. The same effect was know in GSM
networks, and fixed by Anti-tromboning [125] solutions.

All experiments present very similar results, and we did not find any evidence
of traffic manipulation. We summarize finding by using statistical approaches. We
opted for well-known KS Test [126] and P-Value [127], two non-parametric tests to
determine if two ECDFs differ. In a nutshell, we compare the ECDF at the sender
(our reference) with the one observed at the receiver side. If they are statistically
similar, KS would be close to 0 while P-Value would be close to 1. On the contrary,
if the two distribution are significantly different, KS would be greater than 0, and
P-Value close to 0. Fig. 5.6c shows the scatter plot of the (KS, P-Value) points, for all
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experiments. Results confirm that the per-second receiver throughput is statistically
identical with the sender throughput in all experiments. Conversely, IPG statistics
are affected by the 3G/4G access mechanisms that alter the distribution (albeit not
impairing the VoIP quality).

Takeaway: We did not observed any traffic differentiation policy. However the
additional delay of HR could impair real time communication. This is an old issue
(typically referred as tromboning) which has been solved in GSM networks, but is
back in 3G/4G VoIP.

5.4.2 Content Discrimination

In this section, we aim to evaluate the availability of content when roaming, in
particular how operators filter website content and apply geographical restrictions.

Experiment Design The Open Observatory of Network Interference (OONI) [128]
provides software tests for detecting censorship, surveillance and traffic manipulation
in the Internet, using open source software. We ran two measurement campaigns to
detect network interference in home and roaming scenarios, one geared at website
restrictions and another at geo-discrimination of content.

The ooniprobe web connectivity test [129] performs the following steps over
both the network of interest (tested network, using both home and roaming SIMs)
and the Tor network [130]: resolver identification, DNS lookup, TCP connect and
HTTP GET requests. Differences in the results for the two networks are indicative
of some manipulations in the tested network. Ooniprobe performs DNS queries to
disclose the IP endpoint of the DNS resolver in the tested network, and records the
response, alongside the response using Google’s DNS resolver. A TCP connection
on port 80 (or port 443 for URLs that support TLS) is attempted using the list of IP
endpoints identified in the responses. HTTP GET requests are then sent towards a
list of URLs over both the tested network and over the Tor network and the responses
are recorded. The results are made available to the public via the OONI API6. These
results were then analyzed to identify any interference. ooniprobe provides results
for HTTP header differences, HTTP body length differences and DNS consistency,
which we categorized into a "network manipulation profile" for each network tested.

6https://api.ooni.io/
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Table 5.2 Interference profile match Home vs. Roaming

UK NO SE DE IT ES
Vodafone UK 100% 98% 99% 98% 99% 86%

Telenor NO 99% 100% 98% 98% 98% 97%
Telia SE 99% 97% 100% 99% 99% 99%

Vodafone DE 98% 97% 99% 100% 98% 97%
TIM IT 98% 98% 98% 97% 100% 97%

Orange ES 99% 98% 98% N/A 97% 100%

Table 5.3 Interference profile match for geo-restricted websites, Roaming vs. Visited

UK NO SE DE IT ES
Orange ES N/A 85% 83% N/A 89% 100%

EE UK 100% 86% 89% 80% 87% 88%
TIM IT N/A 85% 83% 85% 100% 87%
O2 DE 87% 89% 82% 100% N/A 84%

Telia SE N/A 88% 100% 92% 90% 89%
Telenor NO 93 100% 94% 90% 88% 90 %

We tested 50 randomly selected websites from ooniprobe’s default global cen-
sorship list [131]. For the second set of measurements we provided a list of 15
websites known to be available locally in the tested countries, but geo-restricted
abroad due to , e.g., DRM policies. The HTTP responses were searched for known
geo-restriction indicators and warnings, as well as signs of manipulation.

Results: We created a network interference profile for each measurement, con-
taining the names of blocked websites and the HTTP body responses. If the HTTP
response was unavailable due to censorship, we record the blocking method reported
by ooniprobe. The home country measurement served as the baseline profile against
which we compared the roaming profiles for that MNO.

We tested a mixture of dynamic and static websites and conclude no content
discrimination for a match of 95% and above between the profiles. Anything below
this threshold was investigated in more detail. The results as shown in Table 5.2
are consistent with HR for all MNOs, with the exception of one case for Vodafone
UK, where 3 websites blocked by DNS in the home country are instead accessible in
Spain.
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The findings are similar for the geo-restricted content tests, which is also con-
sistent with HR: content available in a user’s home country remains available when
roaming. To discern this, we searched the body of the websites for known content
indicating geo-restriction. In Table 5.3, we present the profile match between the
roaming profile and that of the visited network, for geo-restricted content. Where
the corresponding SIM for the visited network was not available at the time of
measurement, or we failed to collect the results, we display N/A in the table. The
percentages do not indicate substantial differences between the content policy of the
two networks. Further investigation shows websites alert the user on the restriction
only when attempting to retrieve content, whilst loading the page fully otherwise.
We found 10 out of 50 websites in our dataset to have this behavior.

Takeaway: HR keeps the same home policies and preferences also while abroad.
The user can access home services, but might fail to access local services and
vice versa. As a benefit, language preferences are also kept. This might have
legal implications, e.g., being able to access content that would be illegal in visited
country.

5.5 Related Work

International roaming has received little coverage in terms of large measurement
studies, potentially because of the high costs and coordination efforts associated
with running such a campaign. Vallina et al. [43] has leveraged crowdsourced
measurements and focused only on national roaming agreements between MNOs.
Our work presents an extensive measurement study to understand the international
roaming ecosystem in Europe since the introduction of the "Roam like Home"
initiative.

There has been recent studies focusing on mobile network characterization and
performance. For instance, while Huang et al. [132] study LTE network char-
acteristics in a cellular operator in the US, Safari et al. [133] show performance
measurement in mobile networks are much more complex than wired networks, due
to the different network configurations such as the presence of NATs or PEP, which
do vary over time. Kaup et al. [63] run a crowdsourcing campaign to measure RTT
and throughput towards popular websites in Germany. They used the dataset to show
that the association of a mobile endpoint to the PoP within the operator network
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has influence on network performance. Marquez et al. [119] study spatio-temporal
traffic characteristics of applications used by 30M Orange subscribers showing tem-
poral patterns differ by application services. Authors in [134] present a mobile app
and a mechanism for identifying traffic differentiation for arbitrary applications in
the mobile networks. Their results show differentiation tends to affect TCP traffic.
Ververis et al. [135] surveys content filtering for a mixture of broadband and cellular
ISPs, and finds a lack of transparency around the policies they implement, as well
as outdated and poorly implemented blacklists. In our work, we not only focus on
network performance of roaming infrastructure, but also identify possible traffic dif-
ferentiation for particular applications and content discrimination and geo-restriction
for users in international roaming.

5.6 Conclusions

While roaming internationally, different network configuration options can affect
performance of various applications for the end user. In practice, though there are
three possible solutions (i.e., HR, LBO or IHBO), we find that HR is the norm. This
comes with performance penalties on the roaming user, who experiences increased
delay and appears to the public Internet as being connected in the home country.
This has further implications in the selection of CDN server replica when roaming
abroad, because the mobile user will access a server in the home network rather than
one close to their location. However, in the same time, the roaming user is still able
to access (in majority of cases) the geo-restricted services from the home country in
its native language.

We put these results in perspective while trying to also speculate on the com-
mercial implications of the ’Roam like Home’ initiative. As regulation reduces
the ability of MNOs to compete on price, the subscribers’ quality of experience
will potentially become a key factor in choosing a provider. The subscribers will
increasingly start to compare the roaming experience to the home experience. Thus,
an expectation of high quality, always-on services in a visited network follows and if
a home network fails to deliver in the visited network, the risk of churn increases.
To this end, LBO is a natural step for an IP-based service, and could offer lower
operational cost, and cheaper tariffs for data, while at the same time we have shown
this can eliminate delay and potentially increase capacity for some traffic (dependent
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on the destination). Although LBO relies on access to the infrastructure of the visited
network which can have implications on service control and charging, offering this
could act in the advantage of the first operators to provide the service. Furthermore,
in some cases, under the "Roam like Home" paradigm, some users may purchase
SIMs from abroad to use in their country under permanent roaming conditions.



Chapter 6

Deadline-Constrained Content
Upload from Multihomed Devices

6.1 Introduction

Wireless technologies such as WiFi, 3G, 4G, and soon-to-come 5G, provide access
capacities up to hundreds of Mb/s. Multihomed devices are commonly available,
offering the chance to transmit over different technologies and networks at the same
time. Yet, there are scenarios in which the amount of data being produced and
consumed challenges the bandwidth offered by wireless networks.

In this chapter, we look at one of those scenarios. Our interest is motivated and
inspired by the real needs of public transport operators. Public transport vehicles
(like buses or trains) are equipped with multiple MBB [1] interfaces, several onboard
security cameras record videos. Those must be uploaded to a security center where
an operator occasionally requests to watch selected portions of the videos. In this
scenario, continuous real-time video uploading is too expensive. Even if current
MBB networks can offer capacities up to 100 Mb/s, the number of vehicles and
videos, the limited data quota, the performance variability along the route, and the
need to check only parts of the videos, call for ingenious upload strategies. Hence,
videos are stored onboard, and, only when an alarm is triggered, the security operator
on duty requests the specific portion of the video that must be uploaded before a
specified short deadline. The deadline normally is of the order of a few minutes,
depending on the urgency of the incident. For instance, pickpocketing events can wait
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till the vehicle returns to deposit. Instead, in case of health problems of passengers,
the security officer needs to access the video within a short time, after obtaining all
the required authorizations.

We model this problem as the scheduling of content upload from multihomed
mobile devices, where the content must be delivered within a given deadline, while
the cost must be minimized. The cost associated with each interface is defined
according to the nature of the problem. For example cost can correspond to tariffs,
energy consumption, data quota, or system load. In our problem definition, cost is
related to the monetary cost of the data transmission on each technology.

Our problem differs from the classic problem of content upload using multihomed
nodes [136, 137], where upload delay has typically to be minimized, i.e., throughput
maximized. Also, no real time constraint exists in our case, thus making our problem
different from video streaming, and somehow similar to a delay tolerant scenario,
albeit the hard deadline for delivery of the entire content (rather than individual
packets) must be met [138].

We assume that the mobile node is equipped with several MBB interfaces, with
different technologies, e.g., cheap but occasionally available WiFi, more ubiquitous,
but more expensive, 3G, 4G, and soon-to-come 5G subscriptions, possibly offered
by different operators. The system has to decide i) which interface(s) to use, ii) when
to upload from such interface(s), and iii) at which rate to upload (if there is available
bandwidth). Our goal is to minimize the total cost of the upload, while meeting the
deadline. A greedy solution that immediately starts uploading from all interfaces
minimizes the upload time, ignoring opportunities for cheap interfaces to become
available in the future, thus increasing upload cost. A trade-off clearly exists between
minimizing the total transmission cost or minimizing the upload completion time.

In this chapter, we propose and analyze a family of adaptive schedulers that re-
quire only a very coarse knowledge of the available bandwidth on wireless interfaces.
We extend our work in [139] by defining a more refined scheduler, and evaluating
our solution using a larger and recently collected dataset to evaluate the dynamic
algorithm proposed in [140]. In addition, We discuss how to carefully tune the
dynamic algorithm parameters, and we provide a more extensive evaluation. Finally,
we implement and test the algorithms in a real testbed, provided by the MONROE
platform [117].
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The main contributions of this chapter are:

• Devising mathematical formulations of the deadline constrained content upload
problem from multihomed terminals, under different assumptions.

• Reporting extensive evaluations of the proposed solutions, based on trace-driven
simulations using recently collected traces.

• Designing, implementing, testing, and evaluating a real implementation of the
proposed dynamic algorithm on deployed mobile multihomed nodes.

The rest of this chapter is structured as follows. We first overview related
works and we position our work with respect to state-of-the-art solutions for similar
problems (Section 6.2). Then, we report on the collection of traces of content
upload data rates from mobile multihomed terminals, showing the unpredictability
of short-term variations in available bandwidth (Section 6.3) to gain insight about
the trade-off between cost and delivery time over wireless channels. Next, we
formulate and solve an idealized version of the problem, where an oracle has perfect
knowledge of the upload rate on each interface at each time. The oracle can then
schedule the upload in those time slots when cheap connectivity is (expected to
be) available, thus minimizing total cost (Section 6.4.1). We also introduce three
simple greedy heuristics, to show the effectiveness of intuitive approaches to solve
this problem (Section 6.4.2). Then, we formulate the video upload problem as a
centralized scheduling problem, where the upload rates of the available interfaces are
random variables with known distribution. Solving such problem is computationally
impractical (Sec. 6.4.3). Thus, we aim for a practical solution that requires only
a coarse knowledge of the available bandwidth, and we design online, adaptive
schedulers to explore the trade-off between cost and delivery time (Section 6.4.4).
Afterwards, we test the proposed algorithms in the real MBB platform provided by
the MONROE project (Section 6.6). Finally, we conclude the chapter (Section 6.7).

6.2 Related Work

Mobile devices allow users to connect to multiple wireless networks with possibly
different technologies [141–143], obtaining throughput values which depend on the
terminal position, the network coverage, the traffic load, the weather conditions, etc.
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This makes the problem of scheduling transmissions over multihomed [144] wireless
interfaces both relevant and challenging. Several authors already published works
which are close to what we discuss in this thesis. For example, Higgins et al. [145]
were among the first to face this problem. They tackle a problem in this domain, and
propose Intentional Networking, that lets the application choose opportunistically
the interfaces, based on a label that expresses the application requirements. They
however target different problems such as real-time communications, with no support
for deadline.

We discuss related work by looking at three main dimensions, which correspond
to topics which have been widely investigated in the past: predictability of wire-
less network performance, multipath TCP, delay tolerant networks, and deadline
scheduling.

• Predictability of MBB performance: The performance of wireless network
services under uncertain network availability has been previously investigated by
several authors. Deng et al. [146] investigate the characterization of multihomed
systems considering WiFi vs. LTE in a controlled experiment. They show that LTE
can provide better performance than WiFi, also exhibiting large variability on both
short and long time scales. Rahmati et al. [147] present a technique for estimating
and learning the WiFi network conditions from a fixed node. Rathnayake et al. [148]
demonstrate how a prediction engine can be capable of forecasting future network
and bandwidth availability, and propose a utility-based scheduling algorithm which
uses the predicted throughput to schedule the data transfer over multiple interfaces
from fixed nodes. These works heavily rely on channel performance predictions, and
consider scheduling at the packet-level, i.e., choosing which packet to send through
which interface, to maximize the total throughput.

Our work differs from those, since we deal with moving vehicles, and this exac-
erbates the unpredictability of the network performance, as shown by several authors.
For instance, Riiser et al. [149] collected 3G mobile network traces from terminals
onboard public transport vehicles around the city of Oslo (Norway). Similarly, Chen
et al. [150] measured the throughput of both single-path and multi-path data transport
in 3G, 4G, and WiFi networks. In both cases, variability is much higher than for fixed
nodes. Lee et al. [151] showed that mobile data offloading through WiFi can reduce
the energy consumption of the mobile device, Bychkovsky et al. [152] presented the
connectivity characteristic of WiFi for a mobile device traveling in a city. Similarly,
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Safari et al. [133] ran large-scale download measurements in MBB networks. They
show MBB networks are much more complex than wired networks, because of many
factors which clutter the picture.

Given this difficulty in predicting the characteristics of MBB networks, we col-
lected traces, and we used them to run trace-driven evaluations in realistic scenarios.

•Multi-path TCP: A number of recent works focus on multi-path TCP (MPTCP) [136,
153], and look at the design of packet schedulers and congestion control algorithms.
The goal of the authors normally is to maximize throughput, or equivalently to
minimize upload time (rather than to minimize the total cost of uploading a given
content within a specified deadline, as we do). Nikravesh et al. [137] thoroughly
investigate the performance gains and the costs of mobile MPTCP by means of traffic
measurements, and present the MPFLEX software architecture. Wu et al. [154] pro-
pose a framework for video streaming, but do not consider the cost associated with
interfaces or a deadline for video upload, see also [155–157]. Lim et al. [158, 159]
introduce an energy-aware variant of MPTCP which aims to reduce energy consump-
tion with respect to standard MPTCP. They however consider download transfers,
do not consider any deadline, which makes their work different from ours. Han et
al. [160] show the fact that MPTCP implies unnecessary use of cellular interfaces
in case of available bandwidth on WiFi in multihomed system. They present MP-
DASH, a network interface preference-aware multi-path framework for DASH video
streaming. Its performance is highly dependent on the choice of the DASH algorithm.
This work is different from ours because it focuses on real-time streaming solution.

• Delay tolerant networks: Delay Tolerant Network (DTN) solutions for content
upload try to find the way to deliver the content by maximizing the device-to-device
transmission [161–163] or maximizing the use of WiFi [164, 165]. The data delivery
has no deadline, and the main problem is the creation of the time-varying network
topology to guarantee the delivery. Yetim et al. [164] illustrate the benefit of the delay
tolerant approach to save energy by sending more data over WiFi interface. However,
their approach does not support change in cost and deadline. On the contrary, we
rely on MBB to offer connectivity with associated cost, and devise approaches to use
interfaces so as to minimize cost while delivering the content before the deadline.
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• Deadline scheduling: Previous works did consider scheduling under a fixed
deadline, but they assumed that network performance is perfectly known. Zaharia
et al. [166] presented an optimal scheduler over multiple network interfaces, and
proposed approximations which can be implemented with limited resources in mobile
phones, or PDAs. They assumed the cost and bandwidth of each interface to be
constant. Moo-Ryong et al. [167] also proposed an algorithm for video upload
from smartphones with two MBB interfaces. They focus on energy-delay trade-off.
These works differ from ours, since they assume MBB interface availability and
capacity are known (which we consider not realistic). We do not assume any a priori
knowledge of available capacity.

6.3 Characterization of Mobile Traces

We first present some recent mobile traces that we collected from vehicles, with
the dual purpose to show how unpredictable the available bandwidth is, and to run
realistic performance evaluation using trace-driven simulations; indeed, a credible
evaluation of the proposed algorithms calls for realistic data about available upload
bandwidth from public transport vehicles. Previous studies collected traces of
MBB network data rates, e.g., Chen et al. [150] and Riiser et al. [149]. However,
these traces are not very recent, hence they exhibit lower bandwidth values than
the ones that we commonly experience over today’s wireless networks. Lutu et
al. [168] collected a large set of recent traces for MBB from public transport vehicles.
However, they primarily focus on the transfer of relatively short files (4 MB) that is
less likely to effectively utilize the available bandwidth, and to represent its variations
over a longer time scale (minutes vs. seconds). We thus resolved to collect our own
traces by using mobile terminals onboard private and public vehicles, or carried by
walking users.

6.3.1 Trace Collection Methodology

All traces were collected in the city of Torino in Italy in 2016, and refer to three tech-
nologies (WiFi, 3G, and 4G), and different mobile network operators. During trace
collection, the MBB networks were in normal operating conditions (and unaware of
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Fig. 6.1 A sample of collected traces for each technology

our tests). Our terminals (both Android and iOS smartphones) accessed the mobile
networks to upload data to a server on campus. We used both TCP and UDP.

We used a hybrid method in the trace collection process: during each experiment,
the mobile terminal runs iperf2 1 in the upload direction for 600 seconds while
tcpdump 2 captures packets at the server. Using the packet trace, we compute the
throughput in each second of the experiment. The number of repetitions of active
measurements is critical to make sure that enough samples are collected for a sound
estimation of the distribution of the throughput of each technology. It is important to
note that repetitions cover different times of the day and different days of the week.
We repeated the experiment on the same driving routes for at least 5 times, during
different days.

In total, we collected 40 traces for each of the three different mobile network
operators in Italy (namely TIM, Wind, and Vodafone), with the objective of obtaining
multiple samples of the upload throughput in MBB networks. Traces are collected in
mobile scenario, the speed of vehicles were in range of [0,70]km/h, most of them
collected in three routes with length [2,5]km. For WiFi, we considered the open

1https://iperf.fr/iperf-doc.php
2http://www.tcpdump.org/
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Fig. 6.2 CDF of throughput for multiple traces and technologies

Table 6.1 Throughput statistics

interface mean standard deviation 80-th percentile max min
WiFi 0.77 Mb/s 2.06 0.57 11.56 0
3G 2.23 Mb/s 1.29 3.44 5.23 0
4G 26.92 Mb/s 13.50 39.47 51.74 0

WiFi community "WoW-Fi" offered by Fastweb customers that share their ADSL
or FTTH home networks via the access gateway.3 We make the collected traces
available for researchers4.

Table 6.2 |T ht −T ht−1| statistics

interface mean standard deviation 80-th percentile max min
WiFi 0.30 Mb/s 0.89 0.24 9.45 0
3G 0.39 Mb/s 0.44 0.63 3.84 0
4G 2.02 Mb/s 2.98 2.93 47.14 0

3http://www.fastweb.it/adsl-fibra-ottica/dettagli/wow-fi/. Mobile phones automatically
authenticate using IEEE 802.1x with no action needed from the user.

4http://tstat.polito.it/traces-MBB-speedtest.shtml

http://www.fastweb.it/adsl-fibra-ottica/dettagli/wow-fi/
http://tstat.polito.it/traces-MBB-speedtest.shtml
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6.3.2 Trace Characterization

We now present evidences of unpredictability of throughput, which makes the
scheduling of content upload a challenging task. Fig. 6.1 shows a sample of the
temporal evolution (x-axis) of the upload rate (y-axis) for WiFi (red), 3G (blue),
and 4G (black) interfaces, collected when using UDP and TCP. For each trace, we
compute the upload throughput considering time intervals of 1 second. Starting times
of traces have been re-aligned for ease of visualization. Fig. 6.2 presents the ECDF
of the per second upload rate for multiple randomly selected traces. Figures 6.1
and 6.2 indicate that WiFi offers upload throughputs which are very variable in time,
with a behavior that is almost ON-OFF. Upload rates are limited to less than 10
Mb/s. This is due to the limited coverage of the WiFi network, and to the upload
bottleneck of ADSL or FTTH access technologies. The 3G technology provides
upload rate values which are invariably lower than 5 Mb/s, with significant short-term
variability, but, thanks to the extensive coverage, no long periods of close-to-zero
available bandwidth were observed. The behavior using the 4G interfaces exhibits
even higher variability, with rates one order of magnitude higher than 3G (up to 50
Mb/s). We do not observe any significant differences when using TCP or UDP, since
the unpredictable changes in the rate are mostly due to sudden changes in the access
link than to congestion along the path.

Table 6.1 shows, as a summary of the statistics for the three technologies, the
average, standard deviation, 80-th percentile, maximum, and minimum of the ob-
served per second upload rate. Table 6.2 reports the same statistics, but considering
the absolute difference of throughput in two consecutive time slots. In a nutshell,
measurements indicate that it is not realistic to assume the exact value of the future
available bandwidth, as also claimed by Nikravesh et al. [169].

6.4 Problem Formulations and Algorithms

Although we just claimed that assuming to know the future available bandwidth
is not realistic, we start by considering this case, since it provides a baseline for
performance evaluation. As a second step, we present a stochastic formulation of the
problem, that assume only the probability distribution of the available bandwidth is
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known. Finally, we propose dynamic schedulers that adapt their choices based only
on the past values of available bandwidth.

6.4.1 Optimal Solution with Perfect Bandwidth Knowledge

We assume an oracle has perfect knowledge about the bandwidth of all interfaces at
all times. We consider time slots, with slots of duration ∆T . The time slot duration
is such that the available bandwidth over all interfaces can be assumed constant for
one time slot.

slot1

slot2

slot3

slot4

slot5

slot1

slot3

slot2

slot5

slot4

SOURCE SINK
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Fig. 6.3 An example to represent the MCFP model with 2 videos, deadline equal to 5 time
slots, and 2 interfaces
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We model the scheduling problem using a directed graph G1 = (N,E), where N
is the set of nodes and E = {(i, j) | i, j ∈ N} is the set of edges. Referring to Fig. 6.3,
the leftmost node in G1 represents the video source, i.e., the vehicle. The second
group of nodes represents the video files to be uploaded. Each video k = 1, . . . ,K
(2 videos in the example) is of volume Vk, and can be uploaded through different
interfaces. The system has T time slots to complete the upload, represented by the
third group of nodes. Each node in this group represents a given interface and time
slot. For ease of visualization, nodes referring to the same interface (2 interfaces
in the example) are grouped in a box. The number of available time slots (5 in the
example) represents the deadline to be met. The rightmost node represents the sink,
i.e., the server receiving the videos.

Edges in E are labeled by a cost ci, j and a bandwidth ri, j. The label of edge (i, j)
is denoted (ci, j,ri, j). The source node is connected to each video node. Edges exiting
from the source node have zero cost, and bandwidth equal to the video file size in
bits. Edges from video nodes to time slot and interface nodes are characterized by
the cost per bit of using such time slot and interface (ci, j), and the maximum flow
that can be supported by such time slot and interface (ri, j) in bits/s. This model
allows videos to have different deadlines. Indeed, each video is connected only to
the slots it can use. nodes representing time slots and interfaces are connected to the
sink with an edge with zero cost, and bandwidth equal to the time slot bandwidth.

We assume that there is enough bandwidth to successfully upload all videos,
and that any interface can be shared between any video at any time slot, i.e., video
content is fluid, and can be split arbitrarily.

Minimum Cost Flow Problem Model

We model this problem as a Minimum Cost Flow Problem (MCFP) [170], in which
we look for the maximum flow that the network can carry, with the minimum total
cost. The objective function in (6.1) presents the total upload cost, which must be
minimized. Expression (6.2) forces flow conservation constraints. It states that the
sum of incoming flows at all nodes (except source and sink) is equal to the sum
of outgoing flows, i.e., flow cannot be created or disappear at intermediate nodes.
The flow on every edge is non-negative, and it cannot exceed the rate ri, j, see (6.3).
Expression (6.4) forces the total flow exiting from the source node to be greater or
equal to the sum of all requested videos, i.e., all videos must leave the source.
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Table 6.3 Variables definition for MCFP

variable definition
t Time slot index ∈ [0 . . .T ]

∆T Duration of time slot
T Number of time slots before the deadline
K Number of videos
I Number of interfaces
N Total number of nodes in the graph
ri, j Available bandwidth on edge from node i to node j
fi, j Amount of data scheduled from node i to node j
ci, j Cost associated to edge from node i to node j

min ∑
(i, j)∈E

ci, j fi, j∆T (6.1)

∑
(i, j)∈E

fi, j = ∑
(l,i)∈E

fl,i ∀i ∈ Nandi, j, l ̸= Source,Sink (6.2)

0≤ fi, j ≤ ri, j ∀(i, j) ∈ E (6.3)

∑
(Source, j)∈E

fSource, j ≥∑
i

Vi (6.4)

The MCFP problem can be solved using well known and efficient approaches,
like the one in [171], with complexity of O(m logn(m+n logn)) on networks with n
nodes and m arcs. As depicted from graph G1 n and m are equal to n=K+(I∗T )+2
and m = (K +1)(I ∗T )+K. In this work, we use the CPLEX [172] solver.

6.4.2 Heuristic Approaches with Full Knowledge

In order to have simpler alternatives for the computation of the (quasi) optimal
solution in the case of perfect bandwidth knowledge, we consider three simple and
intuitive greedy heuristics:

i) Greedy-in-time (GT) - This algorithm uploads all videos through all interfaces
as soon as possible. It minimizes the upload time, greedily uploading as
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much data as possible through all available interfaces. The video with closest
deadline is transmitted first, as soon as any interface has an available slot to
upload (part of) the video.

ii) Greedy-in-rate (GR) - This algorithm sorts time slots according to decreasing
transmission rate, and schedules transmission through the highest-rate time
slots. If rates are equal, earlier time slots are preferred.

iii) Greedy-in-cost (GC) - This algorithm sorts time slots according to increasing
cost, and schedules transmission through the cheapest time slots. If costs are
equal, earlier time slots are preferred.

All heuristics stop when expression (6.4) is met, i.e., all videos are uploaded. The
first greedy algorithm guarantees that the transfer is completed as soon as possible
(this makes it similar to MPTCP solutions), while the second one minimizes the
number of time slots to use. Both approaches disregard the upload cost. Only the
third algorithm explicitly considers the cost of using different interfaces at different
times.

Assume T is the number of time slots, I is the number of interfaces, and K is
the number of videos. The GT algorithm only needs the temporal ordering of slots,
which is given, so that complexity is O(1). The GC algorithm needs the ordering of
time slots according to cost, so that complexity is O(T ∗ I ∗K) (which depends on
the video and the interface), and then according to time. The GR algorithm needs
the ordering according to slot bandwidth, and time, so that complexity is O(T ∗ I).
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Fig. 6.4 Example to show how greedy approaches can perform worse than the optimal
solution

To show that greedy approaches can produce a solution which has suboptimal
cost, we use a very simple example with only 1 available interface, and 2 videos to
be uploaded, of sizes V1 =V2 = R∆T . The slot costs are presented in Fig. 6.4, with
blue dotted and red solid lines for V1 and V2, respectively. The costs of V1 and V2 are
different (e.g., to represent priorities), and change over time (e.g., due to different
tariffs at different time of day). This can describe a scenario with congestion-based
pricing. Available bandwidth varies according to the green dashed line. The two
videos have the same deadline equal to 6∆T . Each video can be uploaded in one
time slot with rate equal to R bits/s, or 2 time slots with rate R/2. We can easily
compute the total cost, considering the greedy heuristics and the optimal solution.
By assuming that A < B and C > 2, we have:

1. GT - The two videos are uploaded in the first two time slots (either one slot
per video, or sharing the slot bandwidth), without considering the cost of slots.
The total cost is 2CXR∆T .

2. GR - The two videos are uploaded in the first two time slots, which have
highest rate, without considering the cost of slots. The total cost is 2CXR∆T .
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3. GC - Since the upload of V2 has the lowest cost in the third and fourth time
slots, which have rate R/2, the upload of V2 is scheduled in those slots. The
cost for the upload of V1 is equal to CX in all slots except the ones that are
allocated to the upload of V2. The first slot is chosen because of the high rate.
The total cost is CXR∆T +2XR∆T/2 = (C+1)XR∆T .

4. Optimal solution - The solution based on MCFP schedules the upload of V1 in
the third and fourth time slots, and the upload of V2 in the fifth and sixth time
slots. The total cost is (X +A)R∆T +(X +B)R∆T = (2X +A+B)R∆T .

We conclude that the total cost for GT and GR is C times higher with respect to the
optimal solution. Instead, the cost for GC is (C+1)/2 times higher with respect to
the optimal solution where (A+B)→ 0. By means of this example we have shown
that greedy algorithms can generate solutions with possibly much higher cost than
the optimal solution, even in very simple cases.

6.4.3 Multistage Stochastic Model

Since assuming the perfect knowledge of the available bandwidth on all interfaces in
all time slots is not realistic, we next look at a case with reduced information. We
consider the available bandwidth of interface i in slot t, Ri,t as a random variable,
denoting the realization of Ri,t with ri,t . From frequent large-scale measurements, it
can be possible to estimate the probability distribution of Ri,t , although this requires
great effort. Naturally, the values ri,t are known for past slots, as data are transmitted
over the interfaces. Uncertainty in data can be modeled through multistage stochastic
models, as follows:

Given the distribution of Ri,t , we model the scheduling problem using a series of
directed graphs G2(t) = (N,E), where N is the set of nodes and E = {(i, j) | i, j ∈
N} is the set of edges. As before, we assume time is slotted, with slot duration ∆T .
K videos, each of volume Vk, k = 1, · · · ,K, have to be uploaded through I interfaces.
The number T of available slots represents the deadline. Edge (i, j) in E is labeled
by two values: a cost, and a bandwidth, denoted ci j,t and ri j,t at time t, respectively.
Fig. 6.5 illustrates the graph G2(t) at time t = 0.
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Fig. 6.5 Stochastic model representation at time t = 0

A source node is connected to the K nodes representing videos. Edges exiting
from the source node have zero cost, and bandwidth equal to the video file size in bits.
Each video node is then connected by a directed edge to I nodes, each representing
an interface. These edges are labeled by the cost per bit of using an interface (ci j,t)
at time t, and the maximum bandwidth that can be supported at time slot t (ri j,t) in
bit/s.

Last, interface nodes are connected to a sink node, with an edge with zero cost,
and bandwidth equal to infinity. Only after making a decision for the data to send
over an interface at time t, the actual bandwidth ri j,t is known. The quantity bi,t

represents the amount data in buffer at node i because the bandwidth was lower than
expected at previous time slots. Therefore, the buffer occupancy evolves over time
based on decisions made in previous time slots.

The quantity xi j,t represents the amount of successfully transmitted data at time
slot t on edge i j. Table 6.4 summarizes the variables used to formulate the problem.
Using the graph G2(t), the problem of minimizing the total cost C to deliver all
videos can be solved as a Multistage Minimum Cost Flow Problem (MSMCFP), in
which we look for the maximum flow that the network can carry, with the minimum
total cost.

The objective function in (6.5) presents the expected value of the total cost over
the deadline, which must be minimized, while (6.6) forces the real flow passing from
node i to node j to be the minimum between what is scheduled fi j,t and the actual
bandwidth of the interface ri j,t at time t. Expression (6.7) states that flow cannot



6.4 Problem Formulations and Algorithms 107

Table 6.4 Variables definition for MSMCFP model

variable definition
t Time slot index ∈ [0 . . .T ]
T Number of time slots
K Number of videos
I Number of interfaces

bi,t Amount of data in buffer at node i at time t
ri j,t Available rate from node i to node j at time t
fi j,t Scheduled data from node i to node j at time t
xi j,t Transmitted data from node i to node j at time t

appear/disappear at intermediate nodes at any time, the data being either transmitted
or stored in buffers. The flow on every edge must be non-negative, and it cannot
exceed rate ri j,t , as dictated by (6.8). Expressions (6.9) and (6.10) force the total
flow exiting from the source node and entering in the sink node to be equal to the
sum of all video sizes. Expressions (6.11), (6.12), and (6.13) indicate the state of
buffers at any time t.

minC =
T

∑
t=0

E
{

∑
(i j)∈E

xi j,tci j,t∆T
}

(6.5)

xi j,t = min( fi j,t ,ri j,t) ∀i j, t (6.6)

bi,t+1 = max

(
bi,t + ∑

j:( j,i)∈E
x ji,t− ∑

j:(i, j)∈E
xi j,t ,0

)
∀i j, t (6.7)

0≤ fi j,t ≤ ri j,t ∀(i j) ∈ E, t ∈ {0 . . .T} (6.8)

T

∑
t=0

∑
j:(Source, j)∈E

xSource, j,t =
K

∑
i=1

Vi (6.9)

T

∑
t=0

∑
i:(i,Sink)∈E

xi,Sink,t =
K

∑
i=1

Vi (6.10)

bi,T = 0 ∀i, i ̸= Sink and bSink,T =
K

∑
i=1

Vi (6.11)
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bi,0 = 0 ∀i, i ̸= Source and bSource,T =
K

∑
i=1

Vi (6.12)

bi,t ≥ 0 ∀i, t (6.13)

To solve the MSMCFP problem, we need to obtain accurate estimates of the
probability distribution for the bandwidth of each interface. This requires, as we
already noted in Section 6.3, large-scale measurements at different times in all
possible places, which is unrealistic. In addition, no off-the-shelf solver is available
to solve multistage stochastic problems; the problem can be solved only by searching
through all possible scenarios, which requires the exhaustive exploration of a tree of
realizations of depth T , with nodes of degree I, i.e., a complexity O(IT ). This means
that this more realistic option, which only assumes the availability of probabilistic
information about the bandwidth available on interfaces, is not viable because of
the solution complexity. This means that the only feasible option to solve the video
upload problem is to design adaptive heuristics.

6.4.4 Dynamic Heuristic

Given the complexity of solving the MSMCFP problem, we designed an adaptive al-
gorithm that is inspired by schedulers for P2P video streaming proposed by Magharei
et al. [173]. The dynamic of variations for individual connection as well as the design
goals in our problem are however different from those in [173]. We only assume the
knowledge of the long-term average throughput of each interface. This information
serves as a reference to assess the feasibility and the pace of progress for meeting
the specified deadline.

We consider slotted time, where ∆T denotes the duration of a single slot. At
the beginning of each slot, the scheduler computes the amount of data to transmit
on each interface using the observed throughput in recent past slots. It updates
the expected rate on each interface based on the overall pace of upload progress
during the recent slots, and schedules the transmission of a portion of the data, giving
preference to cheaper interfaces. During the slot, data is transmitted according to the
actual network state. At the end of the slot, the scheduler checks whether the amount
of transmitted data is smaller than expected. If this happens, the unsent data, denoted
by Le f tB, is greater than zero. Le f tB is the sum of the amounts of data remains in
all the interfaces’ buffers at the end of the time slot. When Le f tB < 0, the system is
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behind the expected schedule, and the scheduler needs to recover in the future. We
consider two policies for recovery: i) aggressively recovering during the next slot, ii)
conservatively (i.e., optimistically) recovering across all the remaining slots before
the deadline. Let t be the current time slot. Bt represents the expected data rate at
which the system should transmit during slot t. At the upload start, we estimate
B0 =V/T , being V = ∑

K
k=1 vk the total data volume size, and T the deadline. At the

end of each time slot, the system computes Le f tB, the total amount of scheduled
data that was not possible to transmit due to a lack of bandwidth in that slot.

To help the scheduler, each interface i maintains the expected rate r̂ti based on
the actual transmission bandwidth rti. If the interface i was active in period t (rti > 0)
and congested (Le f tBi > 0), r̂ti is updated using an Exponentially Weighted Moving
Average (EWMA) algorithm with α coefficient:

r̂t+1i =


α r̂ti +(1−α)rti if rti > 0 and Le f tBi > 0
Max(r̂ti,rti) if rti > 0 and Le f tBi = 0
r̂ti otherwise

(6.14)

The rationale of expression ( 6.14) is to avoid the estimated bandwidth to converge
to small values when an interface is not being used, or used at a rate lower than
the maximum available bandwidth, i.e., when the interface bandwidth is not fully
utilized. Indeed, data is transmitted at the expected rate and the actual available
bandwidth of the interface is unknown. Thus, we avoid decreasing the estimated rate
of those interfaces that are not fully utilized. This happens because the algorithm is
not greedy, and interfaces are partially used in a demand-driven fashion.



110 Deadline-Constrained Content Upload from Multihomed Devices

Algorithm 1 Adaptive Scheduler

1: procedure ADAPTIVESCHEDULER(α,β , policy)
2: r̂0i← Interface average rates
3: B0←V/T # minimum rate to meet the deadline at time t=0
4: for (t = 0; t < T && V > 0; t ++) do
5: SortInterfaceByCost()
6: procedure PUSH DATA TO BUFFERS

7: for (i = 1; i≤ I && Vt > 0; i++) do
8: if cost(i)< maxcost then
9: Vt = (β +1)Bt∆T

10: else
11: Vt = Bt∆T

12: Vti = min(Vt , r̂ti∆T )
13: Vt = max(Vt−Vti,0)

14: UploadAndWaitForSlotEnd()
15: procedure CHECK DATA IN BUFFERS

16: V =V −∑
I
i rti∆T

17: for (i = 1; i≤ I; i++) do
18: Le f tBi =Vti− rti∆T
19: if rti > 0 && Le f tBi > 0 then
20: r̂t+1i← α r̂ti +(1−α)rti

21: else if rti > 0 && Le f tBi = 0 then
22: r̂t+1i←Max(r̂ti,rti)

23: else
24: r̂t+1i← r̂ti

25: Le f tB = ∑
I
i Le f tBi

26: if Le f tB > 0 then
27: if policy == Aggressive then
28: # update minimum rate to meet the deadline at time t=t+1
29: Bt+1 = B0 +Le f tB
30: else
31: Bt+1 = Bt +Le f tB/(T − t)

Algorithm 1 presents the pseudo code for adaptive scheduling. After initialization,
the algorithm loops over time slots until the deadline is reached, or all the data
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have been uploaded (line 4). To minimize cost, interfaces are prioritized for data
transmission from the least to the most expensive (line 5). At the beginning of each
time slot t, the system has to schedule data for transmission (line 6). Vt represents
the amount of video data to transmit at time t. Vt = Bt∆T when considering the
most expensive interface, otherwise, Vt = (β +1)Bt∆T . β ∈ R+ is a parameter that
controls the optimism of the scheduler. When β = 0, the scheduler tries to upload
the content at the minimum rate which guarantees to complete the upload within
the deadline. When β > 0, the system is more optimistic, and the scheduler tries to
utilize any excess bandwidth, so as to deliver more data, and stay ahead of schedule.
This increases the chance of completing the upload before the deadline, even if the
available bandwidth drops below the expected value in the future. In other words,
the parameter β allows pushing extra data into the interface buffer to efficiently use
the excess bandwidth of cheap interfaces. By forcing β = 0 for the most expensive
interface5, we avoid any extra load on that interface, in order to minimize its use and
the overall cost of upload (line 8). The amount of data scheduled on interface i at
time t is the minimum between Vt and the estimated expected rate r̂ti∆T (line 12).
line 13 computes any leftover of video still to schedule on more expensive interfaces.

Fig. 6.6 Scheduling process over time and recovery strategies

The data in the buffer is transmitted over all interfaces (line 14). At the end
of each slot, the algorithm updates the amount of remaining data that must still be
transmitted (line 16), and updates the transmission rate (line 18), and the expected
rate (line 19-24).

5When costs change over time, the algorithm adapts β consequently.
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If the aggregate transmission rate is smaller than expected, data is accumulated
in Le f tB. When this happens, the system has to recover by increasing the amount of
data to schedule for transmission Bt+1. If the aggressive recovery policy is selected,
the scheduler tries to recover in the immediately following slot (line 29). If instead
the conservative recovery policy is selected, the scheduler spreads the left-over
data over all the remaining slots until the deadline, which leads to a higher average
transmission rate in remaining slots (line 31).

Fig. 6.6 illustrates the evolution of the upload process over time. At each ∆T , the
algorithm schedules the amount of data to be uploaded Bt . At the end of the third
time slot, the actual amount of transmitted data is lower than expected, due to a drop
in bandwidth. The system reacts by updating the expected rate for future slots, and
trying to either recover in the immediately upcoming slot (aggressive policy, red
line), or in the remaining slots before the deadline (conservative policy, blue line).

6.5 Trace-driven Simulation

6.5.1 Simulation Setup

We first describe the simulation setup that we used to run experiments, aiming at
the performance evaluation of different schedulers, at the identification of suitable
parameter values, and at the exploration of trade-offs between performance and
complexity. We consider a scenario where 2 videos must be uploaded from a vehicle
equipped with one node with 3 different network interfaces, each one using a different
technology: 3G, 4G, and WiFi. As we already mentioned, we base our experiments
on the traces presented in Section 6.3. Since public transport vehicles repeatedly
follow a fixed path, we loop the traces as many times as necessary to reach the
deadline. To allow for some randomness (inherent in wireless bandwidth availability,
due to varying network conditions), we select a random combination of traces for
each simulation run, and we choose a random starting point for each trace.

The video upload deadline T is chosen in the order of a few minutes. The
time slot duration is the only parameter for which domain knowledge can offer a
compelling choice: ∆T must be coherent with the time scale of changes in bandwidth
at the different interfaces. Using large values for ∆T decreases the ability of the
scheduler to adapt to bandwidth changes in a timely manner, whereas having very
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small values results in unnecessary oscillations and lower bandwidth utilization. The
traces collected for WiFi, 3G, and 4G show bandwidth changes on a scale of seconds.
For this reason, we choose for ∆T a value equal to 1 second. 6

The cost associated with each interface is an input to the scheduler, and can
be chosen according to the end user constraints and the specific context of the
application; it can be derived from either tariffs, or energy consumption, or data
quota, or system load, or a combination of those. In our context, the node is onboard a
bus, and always plugged; therefore, we assume that energy consumption is not crucial.
Considering that the proposed adaptive scheduler is a lightweight application, we do
not consider system load to define the cost. We thus use the monetary cost associated
to the cost per bit on each interface (hence with each technology). Considering the
end user fees for data transmission over different technologies (and including flat as
well as variable fees). Arbitrarily, we assume the cost assigned with each interface
to be 2, 4, and 8 (Mb)−1, respectively, for WiFi, 3G, and 4G. Note that we assume
that costs are the same for all videos, but the scheduler can cope with costs that are
different for each video. This feature can be exploited, together with the selection of
different deadlines, when videos have different urgency. In our previous work [139]
we also considered a larger scenario with 10 interfaces and 5 videos, but we omit it
here for the sake of brevity.

Videos have size equal to 62.5 MB (V = 125 MB in total), corresponding to about
5 minutes of 1080p video. The simulation time (which corresponds to the deadline
T ) varies in the range of [100,1000] seconds. We repeat each experiment 100 times
with a random combination of traces as input, and we measure the average and the
confidence interval for the following two metrics: i) time to complete the upload;
and ii) cost of the upload.

6.5.2 Perfect Knowledge Centralized Scheduler Results

We start by considering the case of perfect knowledge of available bandwidth in
future slots, and by comparing the performance of the MCFP to the one of the
greedy heuristics. We use the IBM ILOG CPLEX Optimization Studio 12.6.0.0 [172]
Solver Engine to find the optimal solution of the MCFP formulation, while the greedy
heuristics are implemented in Python. Experiments were run on the high performance

6We explored ∆T values in {1,2,5,10} s. Results are omitted for the sake of brevity.
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Fig. 6.7 Cost for perfect knowledge centralized results

computing cluster hpc@polito.7 Intuition suggests that, for growing values of the
deadline, performance should improve, since schedulers have more opportunities
to trade cost against delay. In addition, we can expect that schedulers force the
upload completion times to be close to the deadline, waiting for any cheap slot
appearing toward the end of the available time interval (given the perfect knowledge
of available bandwidth in future slots).

Fig. 6.7 reports results for the average upload cost (together with confidence
intervals) versus the upload deadline (expressed in number of time slots) for the
greedy heuristics and the optimal solution. As expected, the GR algorithm incurs the
highest upload cost, followed by GT. Both algorithms are insensitive to the deadline
value, since they do not consider cost. On the contrary, the GC algorithm and the
optimal solution provide cost values which decrease for growing deadline, thus
meeting our expectation. Quite interesting is the fact that the GC algorithm provides
results that are marginally higher than those of the optimal solution.

Fig. 6.8 shows the average total upload time (and its confidence interval) as a
function of duration of upload (in terms of the number of time slots) for different
heuristics and optimal solution. As previously anticipated the optimal solution

7http://www.hpc.polito.it
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Fig. 6.8 Upload time for perfect knowledge centralized results

produces upload times very close to the deadline. The GC and GR also leverage the
freedom to choose on multiple slots when the deadline is large. On the contrary, the
GT algorithm yields very short upload completion times, as expected.

The two main conclusions that we can draw from this first set of results are:
i) it is possible to reduce cost by effectively utilizing available bandwidth, despite
substantial variations in available wireless bandwidth over time; ii) GR performs
worse than GT, since the latter provides lower cost and lower completion times; iii)
GC achieves practically the same cost and completion times as the optimal solution.

6.5.3 Dynamic Heuristic Scheduler Results

We now consider the realistic case where no a priori knowledge of available band-
width is available. For the scheduler performance analysis, we implemented a custom
simulator using Python. The simulator models the upload of K (K = 2 in our results)
videos from a mobile vehicle equipped with WiFi, 3G, and 4G interfaces (one each
in our results). Traces are used to emulate the actual available bandwidth at any time
slot.
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Dynamic Heuristic Scheduler Parameters

For starters, we investigate the scheduler parameter setting, to better understand the
effect of parameter values on performance. The two scheduler parameters are α

and β . The parameter α gets values in [0,1] and drives the EWMA estimation of
available bandwidth in future slots. The parameter β controls the amount of extra
data (in addition to the estimated available bandwidth) pushed in all interface buffers,
except the most expensive one, as described in Section 6.4.4. β takes values in
[0,30].

For some combinations of parameters, the upload of the video may not terminate
within the specified deadline due to the improper scheduling strategy. We thus use
these metrics to evaluate the performance of the scheduler: i) the total cost of the
upload, ii) the probability of completing the video upload within the deadline, and
iii) the amount of time after the deadline to complete the upload. Our objective is to
achieve a very high completion probability with a very low cost.

Fig. 6.9 Percentage of completed uploads and cost versus α with T = 300 s and β = 1
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Parameter Setting

We first investigate the impact of α , which determines the timescale of the rate
estimation for each interface. Fig. 6.9 presents the percentage of completed uploads
(dotted lines - left y-axis) and their total cost (solid lines - right y-axis) as a function
of α for different recovery approaches. Notice how performance is rather insensitive
to the value of α . Recalling that α drives the EWMA estimation of the r̂ti, we
can conclude that it does not have considerable impact on the proposed adaptive
scheduler. This holds true also for all considered β not reported here for the sake
of brevity. That is, even a very coarse estimation of the link available bandwidth is
sufficient to achieve our goals. In the following, we fix α = 0.1.

Fig. 6.10 Percentage of completed uploads and cost versus β with T = 300 s and α = 0.1.
Trying to push more data than expected has positive benefits on the aggressive algorithm, but
dramatic effects on the conservative algorithm

The choice of β is less intuitive. To illustrate this, Fig. 6.10 shows the percentage
of completed uploads (dotted lines - left y-axis) and their total cost (solid lines -
right y-axis) as a function of β . We clearly see that β has a significant impact on
performance. Fig. 6.10 indicates that the aggressive recovery algorithm (red curves)
is less sensitive to β (lines are almost flat), which means that aggressively recovering
is more important than optimistically spreading extra data across remaining time
slots. The blue curves show that the conservative approach does not work properly
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with large values of β . The rate of delivery required to catch up may never become
available, thus missing the deadline. Indeed, increasing β makes the system try to
optimistically send more data through cheaper interfaces with the aim to reduce the
overall upload cost. However, due to insufficient bandwidth across the remaining
slots, the gap between the expected and the actual pace of progress of the upload
(Le f tB) keeps increasing. Therefore, the conservative recovery strategy is unable to
catch up and meet the deadline. Notice how the chance to meet the deadline suddenly
decreases for increasing β , with most uploads failing for β > 5. In the following,
we fix β = 1.

To further illustrate the effect of β on the performance of the scheduling algo-
rithm, Fig. 6.11 shows the evolution of the upload rate over the 3G interface versus
time during an experiment, with β = 0 and β = 5, respectively. The green (dashed
line) is the available bandwidth, the red (dashed line) is the EWMA of available
rate, and the blue (solid line) is the experienced rate. The closer the blue curve is
to the green curve, the more the system is able to exploit the available bandwidth.
Fig. 6.11 clearly proves that the choice β = 0 lets a large fractions of the actual
available bandwidth on 3G go unused. This forces the scheduler to use the expensive
4G interface. Setting β > 0 makes the system more optimistic, and prone to send
more data than the current bandwidth estimation would allow. This increases the
utilization of the 3G interface and hence reduces the load on the (expensive) 4G
interface.
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(b) 3G with β = 5

Fig. 6.11 The aggressive scheduler operation with β = 0 (upper), β = 5 (lower), and α = 0.1
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Fig. 6.12 Percentage of completed uploads (top) and cost (bottom) versus deadline T , with
β = 1 and α = 0.1

Impact of the Deadline

We now look at the influence of the deadline on performance. Fig. 6.12 shows the
percentage of completed uploads (top plot) and their total cost (bottom plot), for
values of T ∈ [100,1000]s, with β = 1, and α = 0.1. As we can expect, longer
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deadlines imply higher percentages of completed uploads, and lower costs. Looking
in more detail at the percentage of completed uploads, we see that the aggressive
version of the algorithm (red curve) consistently outperforms the conservative version
(blue curve). As previously observed, the latter suffers in scenarios where bandwidth
becomes scarce when approaching the deadline.

To appreciate the performance of the adaptive scheduler with respect to the total
upload cost, we compare it against the straightforward GT heuristic, that uploads all
data as fast as possible, and (as we already saw) provides overall costs very close
to the optimal solution. On average, the GT scheduler completes the upload in 33 s,
with a cost of 7.5 k units. Adaptive schedulers reduce the cost to about 4 k units with
conservative recovery and to about 5 k units with aggressive recovery, with savings
of about 46%, and 33%, respectively. In general, the distance of the cost curves from
the curve of the perfect knowledge case is quite small for very short deadlines, and
remains within about 20-25% for longer deadlines. The former effect is due to the
limited choice that short deadlines leave to the scheduler. The latter effect is a clear
indicator of the good performance of our adaptive scheduling algorithm.

Fig. 6.13 Distribution of final upload time over deadline versus deadline, with β = 1 and
α = 0.1

Fig. 6.12 shows that the conservative recovery algorithm yields lower costs,
but higher percentage of missed deadlines, with respect to the aggressive recovery
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algorithm. It is interesting to see by how much the deadline is missed by the
conservative recovery algorithm, i.e., how many more time slots the scheduler needs,
to complete the video upload. Fig. 6.13 reports percentiles of the upload completion
time, normalized to the deadline. Box-and-whiskers plots show the 90th, 80th, 20th
and 10th percentiles of the upload time, for conservative (blue) and aggressive (red)
recovery policies, respectively. Average values are represented by dots. Values larger
than 1 show the fraction of extra time slots needed to complete the video upload. We
can observe that about 10% more time slots in the case of the conservative recovery
policy would allow almost 90% of successful schedulings, even in the case of tight
deadlines.

While Fig. 6.13 considers all simulated schedulings, Fig. 6.14 consider only
those that fail to meet the deadline, and reports the number of time slots needed
to complete the upload, again with box-and-whiskers plots. Results show that for
deadlines longer than 5 minutes (300 time slots), about 90% of the schedulings
complete within a delay of half a minute (30 slots).

Fig. 6.14 Distribution of final upload time over deadline versus deadline, with β = 1 and
α = 0.1 for schedulings that do not meet the deadline
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Hybrid Algorithm

The fact that i) the conservative recovery algorithm achieves lower costs, and ii)
the aggressive algorithm guarantees higher chances to meet the deadline, motivates
a hybrid approach that tries to combine the strengths of the two approaches. In
particular, we suggest to use the conservative approach in the initial part of the
scheduling, while switching to the aggressive approach when getting closer to the
deadline. Intuitively, at the beginning of the scheduling, the hybrid algorithm tries to
decrease the cost by using a conservative recovery. The choice of β = 1 allows to
push extra data into cheaper interfaces, avoiding the most expensive one. To prevent
accumulating too much unsent data, and taking the risk of missing the deadline, the
hybrid algorithm switches to the aggressive recovery policy when approaching the
deadline.

We evaluate the performance of this hybrid approach, by using the conservative
recovery for the first 90% of slots, and then switching to the aggressive recovery
algorithm in the remaining 10% of slots. The green line in Fig. 6.12 shows that this
hybrid algorithm achieves very high completion probability with very competitive
cost (only about 15% higher than the oracle). This shows that the hybrid approach
can properly leverage the tradeoff between cost minimization and and upload time,
even under unpredictable variations in available bandwidth.

Impact of Available Bandwidth Variability

The proposed adaptive scheduler exploits the long-term average of the available
bandwidth, together with an EWMA, to predict the available bandwidth in future slots.
The effectiveness of this strategy clearly depends on the variability of the available
bandwidth. It is thus important to investigate what is the acceptable variance range
for performance to be good. To this end, we add variance to the available bandwidth
measured in our traces, by letting each sampled available bandwidth value rt,i become
a random variable with uniform distribution in the range [rt,i(1−X),rt,i(1+X)],
with parameter X in [0,1]. The resulting variance added to the sampled available
bandwidth value rt,i is:

σ
2
rt,i

=
X2r2

t,i

3
(6.15)
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Fig. 6.15 Effect of variation on interface available bandwidth, with deadline = 300, β = 1,
and α = 0.1

Fig. 6.15 shows the percentage of completed uploads (dashed line - left y-axis)
and their upload time (solid line - right y-axis) for the hybrid algorithm, versus X ,
with deadline 300 s, β = 1, and α = 0.1. The reported values are the averages of
100 repetitions including the ones that failed to meet the deadline. Results indicate
that the scheduler behaves well up to X = 0.5. A variance increases, the percentage
of completed upload within the deadline can drop by 30%. Interestingly, moderate
variance helps the algorithm to both reduce the cost and meet the deadline. Because,
β > 0 lets the algorithm to exploit extra bandwidth on cheap interfaces. Conversely,
when the randomness increase over 50%, the unpredictability of the system reduce
the performance. Notice that the average completion time remains close to the
deadline.

6.6 Experimental Evaluation

In this section we describe the design, implementation, and test of our adaptive sched-
uler in multihomed nodes deployed on vehicles in the framework of the MONROE
project.
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Fig. 6.16 Internal architecture of the adaptive scheduler implementation

6.6.1 Experimental Setup

We first discuss the experimental setup and the engineering choices adopted in the
implementation of the adaptive scheduler.

Protocol Issues

At the experiment start, the mobile node (the video sender) registers into the central
office node (the video receiver). For this, the sender initiates a TCP connection that
is used for signaling, and waits for a request from the central office node. In case of
disconnection, the sender re-registers itself. This choice simplifies the connection
handling, e.g., avoiding NAT traversal issues, commonly encountered in today’s
MBB networks [133, 174]. For the video upload, the choice of the transport protocol
can affect both the performance of the scheduler, and the actual implementation
complexity.

In the experiment scenario, TCP would need some application mechanisms to
manage connections (one for each interface), which may be complex in our mobile
scenario, especially for the WiFi interface, which has to reopen a connection each
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Fig. 6.17 Experiment design

time it joins a new hotspot. TCP also complicates the sender buffer management,
since data can be stored in the sender TCP buffer with no knowledge of how much has
been actually delivered to the receiver side. This is an issue during transition phases,
e.g., when switching the assigned packet from one interface to another one, since an
assigned packet to an interface is pushed into its buffer and is not accessible. UDP
on the contrary offers a datagram and unreliable service, with accurate delimitation
of messages. This gives us the freedom to push data into the interfaces with tighter
control, letting the scheduling algorithm decide the sending rate for each interface.
However, UDP offers no guarantee on the delivery of messages. For this, we need to
add an Automatic Repeat reQuest (ARQ) protocol [175].

In our prototype, we opt for UDP as transport protocol, and we implement a
selective repeat ARQ protocol, with acknowledgements that report information on
the received messages using a bitmap of 10,000 elements. Acknowledgements are
generated every second, and sent on the TCP signaling channel. Acknowledgements
also carry information to accurately compute the actual rate at the receiver side
for each interface. The receiver calculated the data rate for each interface every
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(a) WiFi (b) op1 (c) op0

Fig. 6.18 Adaptive scheduler experiment on a stationary MONROE node

second by using the information obtained from packet header. The header contains
information about the node, video, interfaces, and data offset.

Experiment Architecture

Fig. 6.16 illustrates the internal architecture of the adaptive video upload scheduler
implemented in the MONROE platform. The left side represents the sender (the
public transport vehicle which uploads the video). The sender is equipped with
multiple MBB interfaces. The right side represents the receiver (the security center)
that requests the specific content with a given deadline. A TCP connection is used
as a control channel to register the node, request the content, and send update
and control messages. Update messages contain the upload rate computed at the
receiver, as well as acknowledgements carrying the bitmap of the received segments
to implement the ARQ protocol. The control connections consume about 1% of the
video upload bandwidth.

Fig. 6.16 illustrates the control flow (TCP) and data flow (UDP) using blue and
black arrows, respectively. The adaptive scheduler module runs the video upload
scheduling algorithm and pushes data into interface buffers. The MUX module stores
packets for each video on disk, while the sliding window module keeps track of all
the packets that were already received. Since the adaptive scheduler module at the
sender side needs the information about the experienced interface rate, every ∆T
the controller module sends update messages and a bitmap of the missing packets
(implementing a selective repeat ARQ protocol).

Fig. 6.17 shows the communication workflow in our experiment. All the con-
nections are initiated from the sender. At the beginning, the sender starts a TCP
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connection (on a reliable interface - MPTCP could be used here) as control channel.
After the TCP three-way handshake, the sender registers itself with an HELLO
message. The HELLO message contains information about the available interfaces
and videos. If the server recognizes the client, it replies with an OK message. If the
TCP connection fails at any time, the client starts a new TCP connection.

The server can request a specific video portion by issuing a GET message with
a specific chunk ID. Then, the sender starts sending UDP messages on selected
interfaces to upload data according to the hybrid adaptive video upload scheduler.
The receiver replies with UPDATE messages to report the last time slot data rate,
and the bitmap of received messages. If for any reason the UPDATE message does
not arrive at the end of each time slot, the sender assumes all packets of the previous
slot are delivered successfully and keeps sending messages. With the next UPDATE
message, the bitmap will arrive, possibly missing messages will be retransmitted,
and rate adjusted. Messages are 1,000 Byte long. With selective acknowledgements
carrying the status of the last 10,000 messages, we have an equivalent window of
10 MB. Since ACKs are sent every second, this lets us reach a data rate equal to 80
Mb/s. 8

6.6.2 Experimental Results

We started our experimental analysis by using stationary nodes with three interfaces:
2 MBB interfaces, named op0 and op1, and 1 Ethernet wired connection, which was
used to emulate a WiFi connection 9 by using the Linux traffic control tool10 to limit
the bandwidth and impose random (1%) packet loss. We assumed that the interface
costs change over time, to be able to illustrate and evaluate the behavior of the video
upload scheduling algorithm.

Fig. 6.18 shows all interface upload rates (solid lines, left y-axis) and costs
(dashed lines, right y-axis) versus time in seconds. The dotted line in Fig. 6.18a
shows the available bandwidth of the WiFi interface (emulated on the Ethernet
connection). In the interval [35,65] seconds we simulate a period of lack of coverage
to see if the scheduler is going to use more expensive interfaces. Fig. 6.18b shows

88*1000*10000=80Mb/s
9At the time of the experiment campaign, the MONROE nodes were not yet incorporating a WiFi

interface
10http://lartc.org/manpages/tc.txt
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Fig. 6.19 Cost comparison of GT-100 (GT), AS-100 (AS), and AS-200 (AS2) in MONROE
node traveling on public transport vehicle in 6 iterations

that op1 is selected to support the transmission of data that cannot make it through
the WiFi interface. The cost of the interfaces op0 and op1 changes after 50 seconds,
and the adaptive scheduler switches to the now cheaper interface to upload data. This
proves that the video upload scheduler operates as expected.

We next present results obtained by running experiments on mobile MONROE
nodes equipped with two 4G MBB interfaces and one WiFi interface. We compare
the results obtained with the hybrid video upload scheduler against those obtained
with the GT heuristic, which is the only heuristic that can schedule the video content
with no a priori knowledge of the interface available bandwidth.

We compare the total cost of the GT (GT-100) algorithm, and of the adaptive
scheduler (AS-100) with deadline of 100 s, and of the adaptive scheduler (AS-200)
with deadline of 200 s. In order to allow the reader to get a quantitative view
of the scenarios experienced by the tests, consider that RTT, available bandwidth,
and RSSI were measured in the ranges [40,120] ms, [0,80] Mb/s, and [−30,−100]
dBm, respectively. The tests for GT-100, AS-100, and AS-200 were run back to
back with 20 seconds idle time (batch of experiment), repeating each experiment
6 times. Fig. 6.19 shows the total costs (y-axis) for the three schedulers in 6 batch
of experiments (x-axis). We can see that AS-100 (AS) obtains solutions about 30%



6.7 Conclusions and Outlook 129

cheaper than GT-100 (GT), while completing the upload within the deadline. As
expected, AS-200 (AS2) uploads the video with 40% lower cost with respect to
AS-100 (AS).

6.7 Conclusions and Outlook

In this chapter, we considered the practical problem of video surveillance in con-
nected public transport vehicles, where security videos are stored onboard, and
a central operator sometimes requests to watch portions of the videos. At these
requests, the selected video must be uploaded within a given deadline, by using
the wireless network interfaces available on the vehicle, considering interfaces have
different associated costs. The video upload goal is to minimize the total cost of the
upload while meeting the deadline.

To identify an effective solution to our problem, we explored several aspects.
In order to obtain a benchmark, we first considered the case where an oracle has
perfect knowledge about available bandwidth of wireless links; we formalized the
corresponding optimization problem and proposed greedy heuristics. Second, we
looked at the case where the distribution of the available bandwidth on wireless
interfaces is known; we defined the corresponding stochastic optimization problem,
then we found that its solution is computationally extremely costly. We thus explored
a family of adaptive scheduling algorithms that require only a coarse knowledge
of the available bandwidth on wireless interfaces. Results show that our adaptive
scheduling approach can effectively leverage the fundamental tradeoff between the
total video upload cost and the video delivery time, despite unknown short-term
variations in throughput on wireless links. Finally, we implemented and tested our
adaptive algorithm in the platform for wireless network experiments provided by the
MONROE project.

We believe, there are particular aspects of the algorithm can be evaluate more
deeply. As the first step, we plan to compare the performance of the proposed
adaptive scheduler with MP-DASH and other open source video adaptive scheduler.
Secondly, the parameters can be define by dynamic approach instead of in advance
tuning. The cost also can be modeled for the general multihomed MBB devices.



Chapter 7

Conclusions

Mobile network becomes one of the main tools to access the Internet meanwhile the
Internet architecture becomes more complex and hard to study. Traffic measurement
plays a crucial role in analyzing and understanding the behavior of different players
in such a sophisticated environment. Moreover, MBB networks bring some other
difficulties by adding mobility, technology diversity, and etc., into an already dynamic
system. There is a grave need for an open measurement platform, geographically
distributed to collect large-scale measurements along with analyzing tools to shed
light on the performance, users’ QoE of the MBB networks, and evaluation of
innovative applications.

In the following, we shortly summarize the most relevant findings and contribu-
tions for the subjects tackled.

First, we reported on our experience designing an open large-scale measurement
platform for experimentation with commercial MBB networks (Chapter 2). MON-
ROE is a completely open system, allowing authenticated users to deploy their own
custom experiments and conduct their research in the wild. The platform is a crucial
means to understand, validate, and ultimately improve how current operational MBB
networks perform towards providing guidelines to the design of future 5G architec-
tures. We described our experiences with the MONROE system implementation and
detailed the hardware selection for the MONROE measurement node, its software
ecosystem and the user access and scheduling solution. We emphasized the versatility
of our proposed design, both for the overall platform and, more specifically, for the
measurement nodes. In fact, the node software design is compatible with a number



131

of different hardware implementations, given that it can run on any Linux-compatible
multihomed system. Our current hardware solution is the most fitting for the set of
requirements and the predicted usage of MONROE, which we evaluated based on
our discussions and interaction with the platform’s users.

In context of the performance measurement, we focus on network layer perfor-
mance, users’ QoE on web, and understanding of roaming in Europe. Specifically in
Chapter 3, we discussed our experience in running "speedtest-like" measurements to
evaluate the download speed offered by actual 3G/4G networks. Our experiments
were permitted by the availability of the MONROE platform. Despite our test sim-
plicity, download speed measurements in MBB networks are much more complex
than in wired networks, because of many factors which clutter the picture. The
analysis of the results indicated how complex it is to draw conclusions, even from an
extended and sophisticated measurement campaign. As a result, the key conclusion
of our work is that benchmarks for the performance assessment of MBB networks
are badly needed, in order to avoid simplistic, superficial, wrong, or even biased
studies, which are difficult to prove false. Defining benchmarks that can provide
reliable results is not easy, and requires preliminary investigation and experience.

Chapter 4 presented a cross-European study of web performance on commercial
mobile carriers using the MONROE system. The novelty of the study stands in the
sheer volume of data we were able to collect from MONROE nodes operating under
similar conditions in 11 different MBB networks. Our results and further analysis
brought to light the complexity of the cellular networks, where the randomness of
the wireless access channel coupled with the often unknown operator configurations
makes monitoring performance very challenging. We found that the overall web
performance is similar across different countries and operators, with only slight
variations. In aggregate per target websites, our measurements showed that the
performance improvements H2 promised still remain to be experienced. Furthermore,
we found that web performance is mainly dependent on the characteristics and
performance of the target web page. Thus, for websites where we conjecture that the
server-side implementation of H2 is more mature (Youtube) we observed superior
performance from the end-user perspective.

Chapter 5 illustrated our observation of roaming in Europe. Different network
configuration options can affect performance of various applications for the end
user in roaming. In practice, there are three possible solutions (i.e., HR, LBO, and
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IHBO), we find that HR is exploited by the 16 operators in our experiments. This
comes with performance penalties on the roaming user, who experiences increased
delay and appears to the public Internet as being connected in the home country.
This has further implications in the selection of CDN server when roaming abroad,
because the mobile user will access a server in the home network rather than one
close to their location. However, in the same time, the roaming user is still able to
access (in majority of cases) the geo-restricted services from the home country in its
native language. We put these results in perspective while also trying to speculate on
the commercial implications of the "Roam like Home" initiative.

In chapter 6, we opted for the practical problem of video surveillance in con-
nected public transport vehicles, where security videos are stored onboard, and
a central operator sometimes requests to watch portions of the videos. At these
requests, the selected video must be uploaded within a given deadline, by using
the wireless network interfaces available on the vehicle, considering interfaces have
different associated costs. The video upload goal is to minimize the total cost of the
upload while meeting the deadline. To identify an effective solution to our problem,
we explored several aspects. In order to obtain a benchmark, we first considered the
case where an oracle has perfect knowledge about available bandwidth of wireless
links; we formalized the corresponding optimization problem and proposed greedy
heuristics. Second, we looked at the case where the distribution of the available
bandwidth on wireless interfaces is known; we defined the corresponding stochastic
optimization problem, then we found that its solution is extremely costly computa-
tion wise. We thus explored a family of adaptive scheduling algorithms that require
only a coarse knowledge of the available bandwidth on wireless interfaces. Results
showed that our adaptive scheduling approach can effectively leverage the funda-
mental tradeoff between the total video upload cost and the video delivery time,
despite unknown short-term variations in throughput on wireless links. Finally, we
implemented and tested our adaptive algorithm in the platform for wireless network
experiments provided by the MONROE project. We believe, there are particular
aspects of the algorithm that can be evaluated in more detail. Firstly, parameters can
be defined by a dynamic approach instead of in advance tuning. Secondly, the cost
can be modeled for the general multihomed MBB scenario.



Appendix A

Statistical Distance Measures

In this thesis we selected a specific Statistical Distance Measure (SDM) that we
used as F(p,q), namely the Jensen-Shannon divergence (JSdiv). The purpose of this
section is thus to (i) contrast the broad set of SDMs from both a theoretic viewpoint,
as well as making punctual examples to narrow down SDMs selection; (ii) show that,
due to functional relationships between SDMs, it is possible to express the same
methodology with multiple equivalent metrics, among which the Jensen-Shannon
divergence (JSdiv); and (iii) assess robustness of the F(p,q) estimation as function
of the p,q population size and binning strategy employed.

A.1 SDM Comparison

In this thesis, we do not aim at proposing a novel SDM. We instead prefer to collect a
set of well-known and established SDM available in literature, analyze their features
and choose the most suitable one for our use-case. Gibbs et al. [176] compare a
variety of SDMs, shedding light on their properties and on the relationships among
them. Without aiming at completeness, we report in Tab. A.1 a list of 9 representative
SDMs considered in [176], plus the SDM proposed in [177]. Specifically, for each
SDM the table reports its name, abbreviated notation, definition, co-domain and
three relevant properties: (i) Metric, the SDM is a function defining a metric distance
between each pair of elements in a set; (ii) Bounded, the SDM co-domain is finite; and
(iii) Symmetric, the SDM is invariant to which of the two distributions is considered
the reference, i.e., F(p,q) = F(q, p).
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Properties
Name Abbrv Formula Image Metric Bounded Symmetric

Jensen-Shannon JS JSdiv(p,q) = ∑i

{
1
2 pi ln

(
pi

1
2 pi+

1
2 qi

)
+ 1

2qi ln
(

qi
1
2 qi+

1
2 pi

)}
[0, ln(2)] ✓ ✓

Kullback-Leibler KL KLdiv(p,q) = ∑i pilog( pi
qi
) [0,∞)

Chi Square χ2 χ2
dis(p,q) = ∑i

(pi−qi)
2

qi
[0,∞)

Separation S Sdis(p,q) = maxi

(
1− pi

qi

)
[0,1] ✓

Total variation TV TVdis(p,q) = 1
2 ∑i |pi−qi| [0,1] ✓ ✓

Hellinger H Hdis(p,q) =
[
∑i (
√

pi−
√

qi)
2
] 1

2
[0,
√

2] ✓ ✓

Kolmogorov K Kmet(P,Q) = supx |P(x)−Q(x)| [0,1] ✓ ✓

Wasserstein W Wmet(P,Q) =
∫

∞

−∞
|P(x)−Q(x)|dx [0,1] ✓ ✓

Discrepancy D Dmet(P,Q) = sup
all closed balls B

|p(B)−q(B)| [0,diamΩ] ✓ ✓

DCF09 [177] L Ldiv(p,q) = 1
2

(
KLdiv(p,q)

Ep
+ KLdiv(q,p)

Eq

)
[0,∞) ✓

Table A.1 Statistical Distance Measures. In the above formulas, p and q denote two empirical
distributions on the measurable space Ω, with pi and qi being their samples, and P and
Q their cumulative distribution functions. Note that in L, Ex is the entropy of empirical
distribution x (we preferred to use E instead of the common H notation to avoid conflicts
with H – Hellinger).

From Tab. A.1 it is easy to see a rather heterogeneous picture. Most SDMs
are divergence measures, with the exclusion of Kolmogorov (K), Wasserstein (W)
and Discrepancy (D), which are metrics. With the exception of Kullback-Leibler
(KL) and Chi-Square (χ2), all other SDMs have a bounded co-domain. Finally, only
Jensen-Shannon (JS), Total Variation (TV) and Hellinger (H) are symmetric. At
last, we explicitly consider the metric proposed in [177] which is symmetric, but not
bounded and not a metric. None of the SDMs exhibits all three properties. As we
shall see later, these properties play an important role in the SDM selection.

In terms of provenance and use, JS and KL are information theoretic measures.
Loosely speaking, KL expresses the amount of information that is required to encode
q knowing p, while JS expresses the average amount of information carried by q
which is not in p. χ2, H and K are often used for statistical tests. [177] has been
proposed to specifically tackle anomaly detection in network measurements context.

We finally broaden the investigation by considering the SDMs introduced earlier
in Tab. A.1, with the aim for both highlighting the relationships among them, as
well as illustrating the behavior of each SDM in simple scenarios early considered
for the JSdiv. In principle, any of the SDMs in Tab. A.1 can fit the purpose of our
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Fig. A.1 (a) Overview of distance measures: a directed arrow from A to B annotated by a
function h(x) means that A≤ h(B). The symbol diamΩ denotes instead the diameter of the
probability space Ω, and for Ω finite, dmin = inf

x,y∈Ω
d(x,y). (b) reports the values assumed by

the considered metrics when we match a negative exponential distribution with λ0=1 against
a second one with λ1=2. Similarly, (c) reports the values when λ1=8.

framework, so we illustrate here some relevant criteria to narrow down the SDM
selection to a small set of equivalent functions.

Following the same approach presented in Fig. 1 of [176], we arrange SDMs as
a matrix of blocks in Fig. A.1a. To show the relationship among them, Fig. A.1a
provides bounds between metrics. Given any two distance metrics A and B, a
directed arrow from A to B annotated by a function h(x) means that A≤ h(B). For
instance, take the Discrepancy (D) and Kolmogorov (K) metrics: the x and 2x arrows
simply encode the Kdis ≤ Ddis ≤ 2Kdis inequality.

With the exception of L, it can be seen that, since each considered SDM is
directly related to at least another one, their dependency graph consists of a single
connected component, i.e., it is possible to find bounds among different SDMs in
practice.

Fig. A.1b and Fig. A.1c show illustrative examples of these SDMs by comparing
synthetic probability distributions. The aim is to visualize how the earlier illustrated
SDM properties decline from practical viewpoint, and how these properties can be
leveraged to narrow down SDM selection. For the sake of space, we focus here on
the case of negative exponential distributions.

Several considerations hold contrasting Fig. A.1b and Fig. A.1c. First, Separation
(S) and Wasserstein (W) saturate to the upper bound already with λ1=2, so that their
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Fig. A.2 Values specific SDMs assume when matching a negative exponential distribution
with λ0=1 against a second one with parameter λ1 varying in [1,8].

fast varying dynamic is not able to express the greater difference among λ0=1 and
λ1=8.

Second, Kolmogorov (K) and Discrepancy (D) report a very low value both in
case of λ1=2 and λ1=8, with a slow dynamic that is opposite to the previous case.
For all S, W, K and D, it is clear that the impact of Q− and Q+ threshold selection in
Q(F(p,q)) becomes of paramount importance; additionally, no Q− and Q+ selection
would allow to express differences for SDMs such as S and W.

Third, L, KL and χ2 show a good sensitivity to the changes of the λ1 parameter.
However, they are all unbounded measures (which makes them not practical), and KL
and χ2 are not symmetric (which rules them out from our framework). Asymmetric
metrics can be used when one wants to test a (suspect) population against a reference
(well behaving). However the lack of symmetry makes it harder to use KL and χ2 in
the general case where one has no a priori expectation about a population.

Fourth, we observe that the remaining measures, namely Jensen-Shannon (JS),
Total Variation (TV) and Hellinger (H) are all good candidates. Not incidentally,
JS, TV and H are the sole SDMs in Fig. A.A.1a that are symmetric and bounded.
In addition, they show to be consistently sensitive to different values of the λ1

parameter, as better detailed in Fig. A.2. Any of JS, TV and H are equivalent to
our purpose. For the sake of completeness, we include DCF09 (L) since it has been
previously used in the field of network anomaly detection. The same consideration
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holds, despite this SDM being not bounded. For practical purposes, it is pointless
to perform exhaustive analytics with each of these metrics, which we show to be
equivalent for our purpose. To avoid bringing redundant information and cluttering
pictures and tables, we restrict our attention to JSdiv as reference F(p,q) measure.

A.2 JSdiv Sensitivity Analysis

We now assess the SDM robustness to factors that may affect the EPDF estimation,
as these may induce artificial errors leading to wrong conclusions. Indeed, the whole
framework rely on the ability to compute a statistically relevant distance measure
F(p,q) between two population samples (represented by their EPDFs p and q). This
distance measure F(p,q) is then compared to two empirical thresholds Q− and Q+

to discriminate between cases having a practically negligible, practically noticeable
or practically relevant significance. Of course, this practical significance holds
only provided that F(p,q) is also statistically significant, as otherwise differences
between the population samples that p and q may be actually artifacts tied to a
number of random fluctuations. Otherwise stated, the relevance of the framework is
conditioned to the statistical significance of the computed metrics, as otherwise it
would be possible to raise alarms that are however not statistically significant.

To avoid the above problem, we need not consider the potential source of errors
that can indeed affect SDMs, of which the most prominent are: (i) the binning
strategy used to compute the samples of p and q distributions; (ii) the imbalance in
the population size of p and q; and (iii) the finitude of p and q populations.

A.2.1 Binning Strategy

Let us first start from the impact of the binning strategy. Taking JSdiv as an example,
we assess the operating conditions of the framework that ensure proper evaluation
of the EPDFs. We expect the binning adopted in estimating the EPDF to play a
role for continuous metrics with domain in R: intuitively, coarse bins smooth down
differences (JSdiv decreases, approaching 0 in the limit case where all samples fall in
the same single bin). Fine grained bins, in contrary, exacerbate differences (JSdiv

increases and approaches ln(2) for rational bins of vanishing size, each of which
contains a single or few samples).
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It is thus important to assess the settings of the uniform binning strategy, i.e.,
the support and bin size (or equivalently, number of bins). As done previously, we
follow an engineering and experimental approach. We consider p and q as negative
exponential distributions, with λ0 = 1, λ1 ∈ {2,4}. Given the previous Q−,Q+

thresholds, we expect q = NegExp(x,2) to fall in the intermediate state, while
q = NegExp(x,4) to be significantly different from p. To avoid small population
noise, we use finite sequences of 106 samples for each distributions. We then extract
the empirical distributions from the two dataset by considering a number of bins
which varies from 2 to 106. We limit the support in the [0,100), thus ∆b∈ [0.001,50].
We then compute the JSdiv to compare p and q. For each value of the bin, we repeat
100 runs.

Fig. A.3a show results, where the x-axis reports the number of bins, and the y-axis
the corresponding JSdiv value. Note the logarithmic scales. When the number of bins
is smaller than 50, a underfitting phenomenon emerges, so that the JSdiv artificially
drops to small values. Similarly, when the number of bins grows larger than 5,000, an
overfitting phenomenon is visible, so that the JSdiv artificially increases. We see that
the JSdiv is consistent for number of bins in the 50-5,000 range, where the EPDFs
are correctly estimated. The inset details the relative error that occurs to JSdiv with
respect to the value obtained when using 50 bins, i.e., the reference. The relative
error is below 19%. It follows that quantization oddities are controllable, provided
a large number of samples is available, and that the support of the distribution is
limited.

In general, it is good practice to select a binning strategy that is tied to the physics
of the metric: for example, use an unitary bin size for measurements that takes integer
values (e.g., the Number of Hops, of SYN messages, etc.), or relate the bin size to
the unit of scale of interest (e.g., a 1 ms accuracy for RTT and time-related metrics,
or consider bins of 10 kbps when dealing with throughput). This calls for ingenuity
and suggest the involvement of domain expertise.

In presence of heavy-tailed distributions, the choice of logarithmic binning strate-
gies, or of mixed linear-logarithmic ones as suggested in [177], could be considered.
By using logarithmic binning one would alleviate the problem of vanishing bins with
few samples (which typically would occur in the tail of the distribution), and limit
the number of bins. However, this comes at a cost. Notice indeed that engineering
questions would arise: How many bins should be used, and how to properly set
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the switching threshold from linear to logarithmic binning? All these choices have,
in our opinion, to be driven by domain knowledge and should be tailored to the
application domain.

A.3 Population Size

Clearly, a specular question is in place: for a given bin size choice, which is the im-
pact of the number of samples on the estimation of the EPDF? Intuitively, while any
finite sequence deviates from quantiles of the theoretic distribution, small population
samples tend to exhibit larger deviations.

Taking two finite realizations of the same process, we estimate the empirical
EPDFs p and q and compute the JSdiv. To avoid binning errors, we consider real-
valued distributions (i.e., Gaussian, negative exponential) and an integer-valued
distribution (Geometric). We then estimate the two (nominally identical) EPDFs
using a number of samples that varies from 10 to 105 samples. We compute the JSdiv

(which we expect to be close to 0) considering 1,000 bins.

Fig. A.3b show results. Irrespectively of the distribution, JSdiv is strongly affected
by the population size (linear slope in log-log plot). As expected, an excessively
small population inflates the JSdiv value. Specifically, having less than 1,000 (100)
samples in the population causes the JSdiv to exceed the warning threshold for
noticeable (significant) differences for all the distributions. It is thus recommended
to employ the JSdiv on population larger than 1,000 samples, assumption verified in
our dataset.

However, it is important to mention that artifacts caused by a limited population
size may have an impact in case the methodology is used in real-time (e.g., on short
time window) scenarios, or to compare the same population over different temporal
samples. This possibly mandates a minimum duration of the observation period,
especially in off-peak times, so to reach a minimum level of observation samples.

Finally, population imbalance is worth discussing, as it may introduce yet another
bias. Yet, we experimentally observe that, as long as the smallest population is
statistically significant, then no noticeable bias appear – which is intuitive since
EPDFs renormalize the contribution of each population.
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