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An exact approach for the 0–1 Knapsack Problem with

Setups

Federico Della Crocea,∗, Fabio Salassaa, Rosario Scatamacchiaa

aDipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy

Abstract

We consider the 0–1 Knapsack Problem with Setups. We propose an exact
approach which handles the structure of the ILP formulation of the problem.
It relies on partitioning the variables set into two levels and exploiting this
partitioning. The proposed approach favorably compares to the algorithms
in literature and to solver CPLEX 12.5 applied to the ILP formulation. It
turns out to be very effective and capable of solving to optimality, within
limited CPU time, all instances with up to 100000 variables.

Keywords: Knapsack Problem with Setups, Exact approach, 0–1
Programming

1. Introduction

The 0–1 Knapsack Problem (KP) is one of the classical problems in com-
binatorial optimization where a set of items with given profits and weights
is available and the aim is to select a subset of the items in order to maxi-
mize the total profit without exceeding a known knapsack capacity. KP has
been strongly investigated both from a theoretical and a practical point of
view (we cite here, among others, two pioneering works [17]-[18], two books
[11]-[14] and a comprehensive survey [13]).

The 0–1 Knapsack Problem with Setups (KPS - originally introduced
in [6]) can be seen as a generalization of KP where items belong to disjoint
families (or classes) and can be selected only if the corresponding family is ac-
tivated. The selection of a family involves setup costs and resource consump-
tions thus affecting both the objective function and the capacity constraint.
KPS has many applications of interest such as make–to–order production
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contexts, cargo loading and product category management among others
and more generally for resource allocation problems involving classes of el-
ements (see, e.g., [7]). Another application of KPS is originated within the
smart-home paradigm where the goal of an efficient management of the build-
ings energy consumptions is a strong commitment (see Project FLEXME-
TER funded by the European Commission under H2020 [10]). Here energy
providers are requested to manage peak demands while satisfying an aggre-
gated demand curve in order to avoid blackouts due to high peak demands.
In this context, it may be required to shut down several home appliances
whenever a Demand Response event for overall exceeding energy consump-
tion is identified. This corresponds to select the best appliances to be shut
down, by taking into account their relevance and their energy consumption,
while the goal is also to minimize the houses involved in this shut down.
Here, the families of items are the houses that we do not want to shut down
and the items are their appliances. Thus, this is another practical application
of KPS.

Several variants of KP have been tackled in the literature. We refer to
the work in [12] for a survey on non-standard knapsack problems. In [6],
the authors consider the case with setup costs and profits of items being
either positive or negative. A pseudo-polynomial time dynamic program-
ming approach and a two-phase enumerative scheme are proposed. Given
the pseudo–polynomial time algorithm of [6], and since KPS contains KP
as a special case, i.e. when the number of families is equal to 1, KPS is
NP–hard in the ordinary sense. In [2], a variant of KPS with fractional items
is analyzed and the authors propose both heuristic methods and an exact
algorithm based on cross decomposition techniques. In [15], several dynamic
programming algorithms have been proposed for the bounded set-up knap-
sack problem. In [3], algorithms for tackling the so called Fixed Charge
Knapsack Problem (FCKP) are presented. FCKP is a special case of KPS
without setup capacity consumptions. In [16], a survey on the literature of
the KPS variants is provided and a branch and bound scheme is presented.

In [5], a metaheuristic–based algorithm (cross entropy) is introduced to
address KPS with more than one copy per item. In [19], a branch and
bound algorithm is devised for KPS. This algorithm is capable of tackling
instances with up to 10000 variables even though several large correlated
instances ran out of memory. The current state-of-the-art exact approach
for KPS is the one reported in [7] where an improved dynamic programming
procedure is proposed. The procedure favorably compares to the commercial
solver CPLEX 12.5 since it solves to optimality instances with up to 10000
items which turn out to be harder than the ones proposed in [19]. Further
references can be found in [7].
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In this paper we propose an exact approach for KPS relying on an effec-
tive exploration of the solution space which exploits the partitioning of the
variables set into two levels and requires the solution of several ILP models
that show up to be easy to solve in practice. While the idea of approaching
a combinatorial optimization problem by solving related simpler ILP formu-
lations was already done in heuristic procedures (see, for instance, [9] for
the closest string problem), here we do it within an exact approach. The
proposed approach is capable of solving to optimality, in limited time, all in-
stances with up to 100000 variables. The method strongly outperforms both
the state-of-the-art approach proposed in [7] and the solver CPLEX 12.5 ap-
plied to the standard ILP formulation of KPS. The paper is organized as
follows. In Section 2, the ILP formulation of the problem is described. We
present the exact approach in Section 3. In Section 4 computational results
are discussed. Section 5 concludes the paper with final remarks.

2. Notation and problem formulation

KPS can be described as follows. A set of N families of items is given to-
gether with a knapsack with capacity b. Each family i ∈ {1...N} is composed
of ni items and characterized by a non-negative integer fi that represents the
family setup cost and a non-negative integer di that represents the family
setup capacity consumption, respectively. Each item j ∈ {1..ni} of a family i
has a non-negative integer profit pij and a non-negative integer capacity con-
sumption wij. The goal is to maximize the total profit of the selected items
minus the fixed costs incurred for setting-up the selected families without
exceeding the knapsack capacity b.

Let us associate with each item j of family i a binary variable xij such
that xij = 1 if item j of family i is placed in the knapsack, else xij = 0. Also,
let us associate with each family i a binary variable yi such that yi = 1 if
the knapsack is setup to accept items belonging to family i, else yi = 0. The
following ILP formulation of KPS (denoted KPS1) holds.

KPS1:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (1)

subject to
N∑
i=1

ni∑
j=1

wijxij +
N∑
i=1

diyi ≤ b (2)

xij ≤ yi ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (3)

xij ∈ {0, 1} ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (4)

yi ∈ {0, 1} ∀ i = 1, . . . , N (5)
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Here, the objective function (1) maximizes the sum of the profits of the
selected items minus the costs induced by the selected families; the capacity
constraint (2) guarantees that the sum of weights for the selected items and
families does not exceed the capacity value b; constraints (3) ensure that an
item can be chosen if and only if the corresponding family is activated; finally
constraints (4,5) indicate that all variables are binary.

3. An exact solution approach

3.1. Rationale and preliminaries

Let denote by KPSLP the continuous relaxation of KPS1. It is known
[19] that there exists at least one optimal solution of KPSLP where there is
at most one fractional variable yi while there are typically many fractional
variables xij. As an example, we tested an instance from [7] with 10000
variables and 30 families: the optimal continuous solution has one fractional
variable yi and 330 fractional variables xij. Then, a branch on any fractional
xij always induced continuous solutions with more than 300 fractional xj and
1 fractional yi (often different from the one related to the original problem).
Besides, branching on the fractional yi, induced again fractional continuous
solutions (always more than 300 fractional xij and another fractional yi).
This, presumably, is the main reason for which a standard ILP solver runs
already into difficulties on several instances of KPS1 with 1000 jobs (see
Section 4). Our approach instead aims to exploit the structure of KPS,
where the set of variables is partitioned into two levels, variables yi (first level
variables) and variables xij (second level variables). The practical hardness
of the problem comes from these two sets of variables that must be properly
combined to reach an optimal solution. At the same time, once the families
are chosen, KPS boils down to a standard KP. Even if KP is known to be
weakly NP–Hard, in practice it is well handled by nowadays ILP solvers (for
a comprehensive survey, see [11],[13], and [14]). Notice that, the idea of using
approaches based on the repeated solution of NP–hard subproblems is not
new. For instance, in [1], the famous shifting bottleneck procedure for the
job shop problem was based on the repeated solution of a single machine
problem with release times and tails that, although being NP–hard in the
strong sense, is well solved in practice by the exact algorithm in [4]. Here, as
the selection of the families induces problems that are tractable in practice,
we focus on an efficient exploration of the solution space defined by the first
level variables.

In particular, we propose an exact approach based on the idea of limiting
the range on the number of families that may lead to an optimal solution and
seek for solutions within this range. Three main steps are involved. In the

4



first step an initial feasible solution is computed and a standard variable fixing
procedure is applied through the reduced costs of the non–basic variables
in the optimal solution of the continuous relaxation of the problem. The
second step concerns the detection of the range of possible optimal number of
families. This leads to the identification of sub–problems that are tackled in
the third phase. We use the ILP solver (CPLEX 12.5) whenever the solution
of an ILP model is required by our approach. In the following subsections
we describe the three steps of the approach whose pseudo code is presented
in Algorithm 1.

3.2. Initial feasible solution computation and variables fixing

We start by considering KPSLP where, in addition, we require the sum of
the selected families to be integer. Thus, we get the following model (denoted
by KPS2).

KPS2:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (6)

subject to (2), (3)

N∑
i=1

yi = k (7)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (8)

0 ≤ yi ≤ 1 ∀ i = 1, . . . , N (9)

k ∈ N (10)

Here, the integrality constraints on variables xij and yi of KPS1 are re-
placed by the inclusion in [0,1] while constraint (7) forces the sum of the
families to take an integer value through the integer variable k. The optimal
solution of this problem gives an upper bound on the KPS optimum. More-
over, the optimal value of k, denoted by k∗, provides a first guess on the total
number of families to include in a solution. Then, we consider again model
KPS1 with the additional constraint that the number of families to activate
is fixed to a value S and we remove the integrality constraints on variables
xij only. Correspondingly, we get hereafter the following model (denoted by
KPS3).
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KPS3:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (11)

subject to (2), (3)

N∑
i=1

yi = S (12)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni ∀ i = 1, . . . , N (13)

yi ∈ {0, 1} ∀ i = 1, . . . , N (14)

We may expect that problem KPS3 is easy to solve as only the yi variables are
binary and the number of families is relatively limited. Further, the solution
space is restricted to the hyperplane representing the sum S in constraint
(12). This argument shows up to hold in practice. We first solve KPS3 by
setting S = k∗. The optimal solution provides a feasible combination of yi,
denoted by the 0–1 vector y′.
If we consider the combination y′ in KPS1, we induce a KP with the capacity
constraint and objective function modified according to the setups of the
families. For the sake of simplicity, hereafter we refer to

KPS1(y
′) = KPS1 ∩ (yi = y′i) ∀ i = 1, . . . , N (15)

as the standard knapsack problem related to any specific combination of fam-
ilies encoded by vector y′.
Solving KPS1(y

′) provides a first feasible solution for KPS. Let us denote
this solution by LB′ = zopt(KPS1(y

′)). This is sketched in lines 2-6 of Algo-
rithm 1.
Then, we solve KPSLP . We denote the optimal value of KPSLP by zopt(KPSLP )
and the optimal values of variables xij and yi by xLP

ij and yLPi respectively.
Let rxij

and ryi be the reduced costs of non basic variables in the optimal
solution of KPSLP . We then apply standard variable-fixing techniques from
Integer Linear Programming. It is well known (see, for instance, [8]) that, if
the gap between the best feasible solution available and the optimal solution
value of the continuous relaxation solution is not greater than the absolute
value of a non basic variable reduced cost, then the related variable can be
fixed to its value in the continuous relaxation solution. Correspondingly, we
evaluate the reduced costs of all non basic variables in the optimal solution
of KPSLP . Then, the following constraints are added to the models (lines
7–8 of Algorithm 1):
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∀ i, j : |rxij
| ≥ zopt(KPSLP )− LB′, xij = xLP

ij (16)

∀ i : |ryi | ≥ zopt(KPSLP )− LB′, yi = yLPi (17)

3.3. Identifying the relevant sums of the families

Given the first solution LB′, the number of families in an optimal solution
can be bounded straightforwardly by solving two continuous problems. More
precisely, we minimize and maximize

∑
yi subject to constraints (2), (3) and

to an additional constraint ensuring that the total profit must be strictly
greater than the current solution value. The corresponding ILP formulations
(denoted by KPSmin and KPSmax respectively) are as follows.

KPSmin (KPSmax):

min (max)
N∑
i=1

yi (18)

subject to (2), (3)

N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi ≥ LB′ + 1 (19)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (20)

0 ≤ yi ≤ 1 ∀ i = 1, . . . , N (21)

Ceiling and flooring the optimal solution values of the above problems
yield Smin = dzopt(KPSmin)e and Smax = bzopt(KPSmax)c, namely the lower
and upper bound on the number of families possibly leading to an optimal
solution of KPS. The second step of our approach is summarized in lines
9–12 of Algorithm 1.

3.4. Solving sub–problems

The third step consists in exploring sub–problems for the possible values
of S in the range [Smin, Smax] (for–loop in lines 13–24 of Algorithm 1).

For each sub–problem we first solve KPS3 and find a combination of
families ȳ as in subsection 3.2 (lines 14–15 of Algorithm 1). Then we solve
KPS1(ȳ) and if its optimal value is greater than the current best feasible
solution value, we update the latter one (lines 17–20 of Algorithm 1). We
solve to optimality a KP, but indeed ȳ is not guaranteed to be optimal for
KPS1. So we search for another possible combination of yi within the sub–
problem by adding to KPS3 the constraint
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N∑
i=1

ȳiyi ≤ S − 1 (22)

This is a cut in the solution space imposing that at least one of the
families of the previous combination must be discarded. We solve KPS3 with
one more constraint and apply the same procedure until the upper bound
provided by solving KPS3 is not better than the current best solution value
or the problem becomes infeasible (while–loop in lines 16–23 of Algorithm
1). We note that KPS3 can turn out to be difficult to solve when further
constraints on variables yi are added. Nevertheless, additional cuts showed
up to be reasonably limited. Once all sub–problems have been investigated,
an optimal solution of KPS is obtained.

Algorithm 1 Exact solution approach
1: Input: KPS instance.

. Find first solution and fix variables
2: k∗ ← solve KPS2;
3: S ← k∗;
4: (UB′, y′)← solve KPS3;
5: LB′ ← solve KPS1(y′);
6: Best = LB′;
7: Solve KPSLP ;
8: Apply (16, 17) and fix variables;
9: zmin ← solve KPSmin; . Identify the range of families

10: zmax ← solve KPSmax;
11: Smin = dzmine;
12: Smax = bzmaxc;
13: for all s in [Smin, Smax] do . Solve sub–problems
14: S = s;
15: (UB, ȳ)← solve KPS3;
16: while UB ≥ Best + 1 do
17: LB ← solve KPS1(ȳ);
18: if LB > Best then
19: Best = LB;
20: end if

21: add (
N∑
i=1

ȳiyi ≤ S − 1) to KPS3;

22: (UB, ȳ)← solve KPS3;
23: end while
24: end for
25: return Best;

We note that steps 1–12 in Algorithm 1 are executed only once, requiring
the solution of problems KPS2, KPS3, KPS1(y

′), KPSLP , KPSmin and
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KPSmax and the variable fixing (running in O(
∑N

i=1 ni) time) induced by
constraints (16, 17). Also, the for–loop in lines 13–24 is repeated [Smax −
Smin + 1] = O(N) times where at each iteration: (1) KPS3 is solved once
and (2) the while-loop in lines 16–23 requiring first the solution of KPS1(ȳ)
and then the solution of KPS3 until UB ≤ Best. Thus the bottleneck of
the algorithm is indeed the total number of times the while–loop is executed
which could be potentially large but computational testing indicates that
this number is very small in practice (never superior to 33 for instances with
up to 100000 items).

4. Computational Results

All tests were conducted on an Intel i5 CPU @ 3.3 GHz with 4 GB of
RAM. We used the ILP solver CPLEX 12.5 and the code was implemented
in the C++ programming language. We generated the instances according
to the scheme provided in [19]. In addition, we also considered the instances
available in [7].

In the scheme provided in [19], the number of families N is 50 and 100.
The cardinalities ni of the families are integers uniformly distributed in the
ranges [40, 60] and [90, 110]. Setup costs and weights are given by

fi = e1

(
ni∑
j=1

pij

)
(23)

di = e2

(
ni∑
j=1

wij

)
(24)

where e1 and e2 are uniformly distributed in the intervals [0.05, 0.15], [0.15,
0.25], [0.25, 0.35] and [0.35, 0.45]. In the uncorrelated instances, both the
items weights wij and profits pij are integer randomly distributed in the
range [10, 10000]. In the correlated instances the profits are integer randomly
distributed in the range[wij-1000, wij+1000], but if the profits are less than
10, then they range in the interval [10, 100]. The capacity b is an integer

randomly distributed in the range

[
0.4

(
N∑
i=1

ni∑
j=1

wij

)
, 0.6

(
N∑
i=1

ni∑
j=1

wij

)]
.
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CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 0.31 0.38 10 0.50 0.64 1 10

[0.15-0.25] 0.34 0.42 10 0.53 0.62 1 10
[0.25-0.35] 0.45 0.59 10 0.57 0.62 1 10
[0.35-0.45] 0.35 0.56 10 0.45 0.57 1 10

50 [90-110] [0.05-0.15] 0.49 0.66 10 0.71 0.91 1 10
[0.15-0.25] 0.73 0.97 10 0.90 1.03 1 10
[0.25-0.35] 2.15 10.41 10 0.96 1.15 1 10
[0.35-0.45] 1.12 2.68 10 0.86 1.26 1 10

100 [40-60] [0.05-0.15] 0.45 0.66 10 0.67 0.88 1 10
[0.15-0.25] 0.69 0.91 10 0.82 1.00 1 10
[0.25-0.35] 0.65 1.03 10 0.80 1.17 1 10
[0.35-0.45] 0.65 0.89 10 0.76 0.97 1 10

100 [90-110] [0.05-0.15] 0.98 1.33 10 1.16 1.58 1 10
[0.15-0.25] 1.86 3.25 10 1.73 2.22 1 10
[0.25-0.35] 1.35 2.15 10 1.49 1.75 1 10
[0.35-0.45] 1.33 2.08 10 1.52 2.41 1 10

Table 1: KPS uncorrelated instances with wij and pij in [10, 10000]: time (s) and number
of optima.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 1.02 2.53 10 0.72 1.14 2 10

[0.15-0.25] 0.67 0.97 10 0.59 0.89 2 10
[0.25-0.35] 0.63 1.45 10 0.61 0.78 1 10
[0.35-0.45] 0.96 2.62 10 0.65 0.81 2 10

50 [90-110] [0.05-0.15] 3.53 13.14 10 0.99 1.31 1 10
[0.15-0.25] 7.65 22.17 10 1.18 1.47 1 10
[0.25-0.35] 3.41 10.87 10 1.15 1.42 1 10
[0.35-0.45] 9.46 39.08 10 1.27 1.81 1 10

100 [40-60] [0.05-0.15] 1.51 5.40 10 0.81 1.08 1 10
[0.15-0.25] 1.95 7.13 10 0.98 1.31 1 10
[0.25-0.35] 1.01 2.48 10 1.04 1.37 2 10
[0.35-0.45] 1.37 2.50 10 1.17 1.76 2 10

100 [90-110] [0.05-0.15] 11.15 71.98 10 1.93 2.59 1 10
[0.15-0.25] 31.14 173.21 10 2.00 2.50 1 10
[0.25-0.35] 71.22 652.02 10 2.30 4.57 2 10
[0.35-0.45] 15.32 42.56 10 2.18 3.40 2 10

Table 2: KPS correlated instances with wij in [10, 10000] and pij in [wij−1000, wij+1000]:
time (s) and number of optima.

We compared the solutions reached by CPLEX 12.5 running on KPS1

to the solutions obtained with our approach over 10 instances within each
category. The results are reported in Tables 1 and 2 in terms of average and
maximum CPU time and number of optima reached within a time limit of
1200 seconds. We also report the maximum number of the relevant sub–
problems, that is Smax − Smin + 1, identified by our approach.

Uncorrelated instances show up to be very easy to solve for both our
approach and CPLEX 12.5. We remark that the same conclusion applies to
the instances in [6], which are uncorrelated with positive or negative profits
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for the items and setup costs. As mentioned in [19], these instances are not
difficult, since a preprocessing step reduces the problems size considerably.

For the correlated instances, CPLEX 12.5 solves to optimality all the
instances but performs slightly worse. Our exact approach reaches the opti-
mum over all instances in no more than 5 seconds. We note that the method
proposed in [19] requires significantly higher computational time and runs
out-of-memory in several cases for similar correlated instances. So, even if
we were not able to obtain from the authors the instances reported in [19],
we can reasonably expect our method to outperform their approach.

We further tested a stronger correlation between the profits of the items
and their weights. More precisely, we generated instances where wij is an
integer uniformly distributed in the range [10, 100], while the profits of items
are pij = wij + 10. The results are provided in Table 3.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 126.17 1200.00 9 1.80 4.91 2 10

[0.15-0.25] 6.76 34.10 10 1.41 3.46 2 10
[0.25-0.35] 4.25 10.06 10 1.20 2.43 3 10
[0.35-0.45] 2.47 6.91 10 0.83 1.68 2 10

50 [90-110] [0.05-0.15] 701.84 1200.00 5 2.13 4.52 2 10
[0.15-0.25] 241.20 1200.00 9 2.70 9.86 2 10
[0.25-0.35] 307.96 1200.00 9 2.10 4.84 2 10
[0.35-0.45] 28.75 214.94 10 1.49 2.14 1 10

100 [40-60] [0.05-0.15] 30.66 157.59 10 9.48 65.13 2 10
[0.15-0.25] 18.85 100.34 10 3.83 13.62 2 10
[0.25-0.35] 5.55 14.49 10 2.29 5.29 2 10
[0.35-0.45] 9.65 24.24 10 2.69 7.00 3 10

100 [90-110] [0.05-0.15] 498.44 1200.00 7 5.56 11.92 2 10
[0.15-0.25] 197.00 1200.00 9 5.35 10.66 2 10
[0.25-0.35] 267.26 1200.00 9 6.40 22.07 2 10
[0.35-0.45] 188.75 1200.00 9 5.37 9.95 2 10

Table 3: KPS correlated instances with wij in [10, 100] and pij = wij + 10: time (s) and
number of optima.

These instances turned out to be harder to solve than the correlated
instances in Table 2. A reasonable interpretation is that in [19] a weaker cor-
relation is considered and weights vary in a much wider range ([10, 10000]),
increasing the probability of having items much more profitable than others.
Nevertheless our approach still manages to handle all instances in very rea-
sonable computational time, while CPLEX 12.5 is not capable of reaching
all the optima. It is quite evident from our testing that one of the strengths
of our approach is the capacity of drastically limiting the number of sub-
problems to be explored in the last step of the algorithm. A natural question
that may arise is whether this last task can be accomplished just by letting
an ILP solver tackle the sub-problems. It would indicate to what extent the
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procedure devised in the third step of our method provides an effective con-
tribution in solving the problem. We investigated this aspect by exploring
the behaviour of the approach if CPLEX 12.5 is launched (with a time limit
of 1200 seconds) on each of the subproblems in the third step of the method,
that is the subroblems of subsection 3.4. We denote as Exact approach (II)
this last version of the proposed approach.

We then compared the two versions of the proposed approach to the
dynamic programming algorithm in [7] and to CPLEX 12.5 over a set of
instances proposed in [7]. These instances involve a high level of correlation
between profits and weights where wij is an integer uniformly distributed in
the range [10,100] and pij = wij +10. In Table 4, we report the performances
of CPLEX 12.5, the two versions of our approach and the dynamic program-
ming algorithm proposed in [7]. The number of families varies from 5 to 30
and the total number of items n from 500 to 10000. Within each category,
10 instances were tested.

Exact approach (II)
CPLEX 12.5 Exact approach Dynamic Progr. from [7] using CPLEX 12.5

for solving subproblems
Average Max Average Max Max Average Max Average Max

N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt time (s)∗ time (s)∗ #Opt time (s) time (s) #Opt
5 500 44.17 218.18 10 0.43 0.72 2 10 0.31 0.49 10 4.11 34.45 10

1000 568.37 1200.00 7 0.51 0.66 1 10 0.92 1.06 10 192.25 1200.00 9
2500 1106.42 1200.00 1 0.98 1.28 1 10 5.34 5.71 10 3.25 11.40 10
5000 929.04 1200.00 3 1.57 1.84 1 10 20.81 21.52 10 126.53 1200.00 9

10000 987.01 1200.00 2 3.03 3.67 1 10 83.93 85.19 10 17.98 58.52 10
10 500 71.73 423.98 10 0.46 0.64 2 10 1.50 11.32 10 1.11 5.83 10

1000 1200.00 1200.00 0 0.47 0.67 2 10 1.27 1.38 10 0.61 0.91 10
2500 1200.00 1200.00 0 0.84 1.01 1 10 7.33 7.72 10 121.28 1200.00 9
5000 825.85 1200.00 4 1.47 1.62 1 10 29.18 30.52 10 633.70 1200.00 5

10000 1200.00 1200.00 0 3.10 3.48 1 10 149.73 154.61 10 966.57 1200.00 2
20 500 382.23 1200.00 7 0.61 1.14 2 10 0.56 0.78 10 6.04 55.21 10

1000 50.76 229.96 10 0.51 0.87 1 10 2.15 2.63 10 1.60 9.33 10
2500 1200.00 1200.00 0 0.88 1.40 2 10 13.01 13.68 10 1.18 1.69 10
5000 1054.83 1200.00 2 1.58 1.95 1 10 53.45 54.99 10 19.53 173.16 10

10000 1200.00 1200.00 0 2.96 3.74 1 10 346.58 353.68 10 143.82 1200.00 9
30 500 237.75 1200.00 9 1.62 4.73 5 10 0.76 0.89 10 5.51 37.41 10

1000 499.63 1200.00 8 0.87 1.95 2 10 3.32 3.63 10 2.44 17.33 10
2500 1175.79 1200.00 1 0.99 1.25 2 10 19.58 20.20 10 3.39 13.21 10
5000 380.40 1200.00 8 1.62 2.59 1 10 79.76 83.42 10 4.73 23.68 10

10000 907.74 1200.00 5 4.82 8.07 2 10 526.61 549.03 10 37.36 249.21 10

Table 4: KPS benchmark instances (from [7]): time (s) and number of optima.

These instances involve a lower number of families and show up to be
harder for CPLEX 12.5 than the previous ones. Nevertheless, even though
CPLEX 12.5 runs out of time for most of the large instances, our method
is able to find all optima with limited computational effort. The dynamic
programming algorithm is capable of reaching all the optima as well. However
the computational times are much larger and increase with the size of the
instances. We remark that the tests in [7] were carried out on a slightly
less performing machine (an asterisk is introduced in the table to point out
that times refer to another machine, namely an Intel core TMi3 CPU @ 2.1
GHZ with 2GB of RAM). Anyhow given these results, it is very reasonable
to assume that the differences in the performances would remain significant
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even if the algorithms were launched on the same machine.
Finally, we tested the scalability of our approach on larger instances with

e1 = e2 uniformly ranging in the interval [0.15, 0.25], wij integer uniformly

distributed in the range [10,100] and pij = wij + 10, b = 0.5

(
N∑
i=1

ni∑
j=1

wij

)
with the number of families and items up to 200 and 100000 respectively.
The results are reported in Table 5.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
5 20000 380.64 1200.00 7 6.93 12.20 1 10

50000 630.15 1200.00 5 55.49 97.38 1 10
100000 752.66 1200.00 6 285.74 542.94 1 10

10 20000 374.49 1200.00 7 4.38 8.21 1 10
50000 427.40 1200.00 7 27.14 52.92 1 10

100000 731.80 1200.00 5 135.99 390.62 1 10
20 20000 1031.29 1200.00 2 6.35 9.16 1 10

50000 1190.44 1200.00 1 26.98 43.01 1 10
100000 1095.40 1200.00 1 102.92 231.63 1 10

30 20000 736.75 1200.00 4 9.40 14.49 1 10
50000 749.91 1200.00 4 31.84 39.87 1 10

100000 1092.11 1200.00 2 127.39 179.67 1 10
50 20000 685.84 1200.00 5 8.27 14.81 2 10

50000 1196.78 1200.00 1 51.06 87.31 2 10
100000 1139.12 1200.00 1 147.89 218.74 2 10

100 20000 750.62 1200.00 5 18.34 59.61 2 10
50000 1116.64 1200.00 1 89.39 497.89 1 10

100000 1090.48 1200.00 1 128.84 272.81 2 10
200 20000 367.69 1200.00 8 19.94 43.13 2 10

50000 966.37 1200.00 3 105.39 284.50 1 10
100000 1113.78 1200.00 1 163.02 359.18 2 10

Table 5: KPS larger instances: time (s) and number of optima.

We notice that our approach effectively applies also to these larger in-
stances, requiring approximately 540 seconds for the worst-case instance with
100000 items. CPLEX 12.5 fails to reach the optimum within the time limit
of 1200 seconds in more than 60% of the instances of Table 5.

These extensive computational experiments confirm the the effectiveness
of our exact approach, which strongly outperforms CPLEX 12.5 and the
algorithms reported in the literature. This approach is capable of solving to
optimality all instances within the time limit.

5. Conclusions

In this paper we propose an exact approach for KPS based on an ef-
fective exploration of a specific set of variables that leads to solving stan-
dard knapsack problems. The presented approach proves to be very effective
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and capable of handling instances with up to 100000 items and 200 families
with little computational effort while previous approaches were limited to
instances with up to 10000 items. The approach outperforms CPLEX 12.5
and favorably compares to the algorithms available in literature.

In future work we will investigate to what extent the proposed approach
could be applied to other variants of KPS and to other combinatorial opti-
mization problems involving two sets of variables.
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