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Abstract

A new class of refined curved beam elements is proposed for the accurate stress analysis of

composite structures. The element possess three-dimensional capabilities and it is suited for

the study of curved laminates and fiber-reinforced composites at the microscopic scale. The

numerical issues associated with membrane and shear lockings are overcome by means of as-

sumed interpolations of the strain components based on the mixed interpolation of tensorial

components method (MITC). Higher-order expansions with only displacement unknowns are

employed for the cross-section assumptions at the component level, enabling the computation

of component-wise stress fields. For this purpose, a hierarchical set of Legendre functions is

implemented, which allows the user to tune the kinematics of the element through the polyno-

mial order input. The detrimental effects of locking in composite modelling are investigated

and the robustness and efficiency of the beam element is assessed through comparison against

solutions from the literature and refined solid models.

Keywords: MITC, Carrera Unified Formulation, Curved beams, Locking, Micro mod-

elling.
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1 Introduction

The confidence in composite structures is growing steadily in the recent years. Their use is

extended nowadays to many diverse structural applications and more complex geometries can

be produced due to the last advances in composite manufacturing. In order to fully exploit

the capabilities of these structures, the simulation community is investing high resources in

the development of robust models for the stress analysis of composites at different scales. In

this line, the aim of this work is to introduce a new family of curved beam elements with

3D stress capabilities that can reduce substantially the computational costs of composites

simulation.

The study of curved geometries increases the complexity of the structural analysis due to

the coupling between axial and bending deformations. The first discussions on curved elastic

formulations correspond to the early works of Love [? ] and Lamb [? ]. Since then, this

topic has been discussed vastly in the literature, see for instance Ericksen and Truesdell [? ],

Washizu [? ], Reissner [? ], Ashwell and Gallagher [? ], Banan [? ] and Tufekci and Arpaci [?

]. However, it is known that when applying any of these formulations to derive curved beam

or shell elements, some severe numerical issues arise that can lead the structural model to

fail. In particular, shear locking and membrane locking make the element too stiff when thin

structures and curved geometries, respectively, are analyzed. These numerical issues posed

one of the major challenges in the finite element method and huge efforts were invested by the

structural community to mitigate their detrimental effects. Some of the main contributions

are listed in the following. The use of reduced and selective intergration to evaluate the

integrals of the troublesome energy terms was done by Noor and Peters [? ] and Stolarski

and Belytschko [? ]. Dawe [? ] proposed sets of higher-order polynomials to generete

different classes of curved elements for arch problems, showing that a quintic model provides

the best results for both thin and thick geometries. A family of locking-free elements was

derived based on field-consistent membrane and shear strain interpolations in their constrained

physical limits by Babu and Prathap [? ] and Alturi et al. [? ]. A local penalty-relaxation

method was introduced by Tessler and Spiridigliozzi [? ] in anisoparametric beam elements.

Fried [? ] suggested the generation of the shape functions for curved elements via integrating

the assumed polynomial expressions for the strains to avoid the inconsistencies in the strain

interpolations. Also, a hybrid-mixed formulation was proposed by Kim and Kim [? ] in which

higher-order interpolation functions are employed to generate elements with nodeless degrees

of freedom to mitigate locking.

The present study is devoted to the use of a mixed interpolation of membrane and shear

strains to generate refined locking-free curved beam elements. This method, also known as

mixed interpolation of tensorial components (MITC), was first introduced by Dvorkin and

Bathe [? ] and MacNeal [? ] and has proven to be advantageous because it allows to employ

a full quadrature in the stiffness matrix components and eliminates the inconsistencies of the

interpolation functions for strains and displacements with no need of extra degrees of freedom.

For this reason, the MITC method has received much attention in the last decades mainly for
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the introduction of locking-free plate and shell elements, see Bucalem and Bathe [? ], Huang

and Hinton [? ], Park and Stanley [? ], Jang and Pinsky [? ] and Cinefra et al. [? ].

This paper presents an extension of MITC to 3D curved beams for composites applications.

The aim of this study is twofold: first, thin slender structures and curved geometries are very

common in composite applications and limit the use of 3D elements due to the aspect ratio

constraints; second, transverse shear and axial terms both play an important role in the

behavior of the structure, thus a better approximation of all the tensorial components is

required from the simulation. Indeed, the handling of transverse shear strains by means of

suitable functions to avoid shear locking was discussed in a previous work by Carrera et al.

[? ], who demonstrated the advantages of MITC for the development of robust elements with

higher-order models. When dealing with curved geometries, both axial (εss) and transverse

shear (εsξ and εsη) strains are now assumed by means of reduced-order functions, keeping the

element matrices formally the same as those of a standard element.

In order to devise a beam element suitable for composite simulation, some special features

must be incorporated in the formulation. Shear deformations and layer-wise mechanics must

be incorporated in the theory of structure. Given these difficulties, classical elasticity solutions

such as those of Lekhniskii [? ], Pagano [? ] or Varadan and Bhaskar [? ] are still very

popular in composite design. Nevertheless, these solutions are limited to simple problems and

boundary conditions, therefore there is a continuous need for the development of more accurate

models for composites. A comprehensive review of these theories for straigth and curved

formulations can be found in Kapania and Ratici [? ] and Hajianmaleki and Mohamad [? ].

For laminates, layer-wise models are chosen here to provide highly accurate approximations

of strains and stresses over the cross-section. This approach, proposed by Reddy [? ] and

extended in the works of Shimpi and Ghugal [? ], Tahani [? ], Ferreira [? ] and Carrera et

al. [? ], among others, is based on the use of independent assumptions of the displacements

at each layer. The unified formulation of Carrera [? ] and a set of Legendre expansions,

recently developed by Pagani et al. [? ], are employed to define the kinematics of the beam

element in a compact and systematic manner, leaving the order of the theory as a user-defined

parameter. For analyses at the microscopic, the component-wise approach is adopted. This

theory, proposed by Carrera et al. [? ], is an extension of the layer-wise concept to any

component of the composite (e.g. fibres and matrix) over the cross-section of the beam.

The paper is organized as follows. First, the Frenet-Serret framework for curved beams

is presented in Section ??. Section ?? includes the geometrical relations and the constitutive

equations of the formulation. The kinematics of the beam element for composite structures is

explained in Section ??, where insights about the layer-wise and component-wise models are

provided. The derivation of locking-free curved beam elements based on MITC is presented in

Section ??, and the element arrays and governing equations can be found in Section ??. The

numerical assessment, which includes laminated structures as well as the application to 3D

micro models, is shown in Section ??. Finally, the concluding remarks are drawn in Section

??.
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2 Curved beams: the general framework
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Figure 1: Frenet-Serret coordinate system of a reference beam.

Let us consider a general regular curve represented explicitly by the vector r(s), being s

curvilinear abscissa defined along the beam axis. The beam is defined in such a way that the

components of r(s) are the Cartesian coordinates of the line of the centers of the cross-sections

along the length of the curve, as shown in Figure ??. The Frenet-Serret reference frame is

defined by a orthonormal vector basis {t,b,n}, with:

t(s) =
dr(s)
ds∥∥∥dr(s)
ds

∥∥∥ , n(s) =
d2r(s)
ds2∥∥∥d2r(s)
ds2

∥∥∥ , b(s) = t× n. (1)

t is the tangent vector to the curve at abscissa s, n is the normal vector oriented to the inner

part of the curve, and b is the binormal vector completing the orthonormal basis. For the

sake of convenience, all the problem functions and variables will be expressed in this local

frame. The three-dimensional curve can be characterised by two parameters, i.e. curvature κ

and torsion τ , respectively:

κ(s) =

∥∥∥∥d2r(s)

ds2

∥∥∥∥ , τ(s) =
dn(s)

ds
· b. (2)

Making use of the Ferret-Serret expressions, the derivatives of the {t,n,b} become:

d

ds


t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0




t

n

b

 . (3)

In the present formulation, the torsion will not be considered, i.e. τ = 0, that is the beam

reference line lies on a plane before deformation.

Let {s, ξ, η} be the curvilinear coordinates associated to the Frenet-Serret basis. The

position of a point P of the beam before deformation can be defined as:

rrrP = rrr(s) + ξ nnn+ η bbb. (4)
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Subsequently, the determinant of the metric tensor in the aforementioned curvilinear coordi-

nate system writes [? ]:

g = (1− κ ξ)2, (5)

and the volume of an infinitesimal parallelepiped within the curved body can be written as

dV =
√
g ds dξ dη. (6)

3 Geometrical and constitutive relations

In the proposed framework, the displacement vector of the curved beam can be defined as

u = ust + uξn + uηb, (7)

or u = {us uξ uη}T in the Frenet-Serret frame. Then, making use of the linear part of the 3D

Green-Lagrange equations [? ], the geometrical relations can be written as:

εss =
1

H

(
∂us
∂s
− κuξ

)
,

εξξ =
∂uξ
∂ξ

,

εηη =
∂uη
∂η

,

εξη =
∂uξ
∂η

+
∂uη
∂ξ

,

εsη =
1

H

(
∂uη
∂s

)
+
∂us
∂η

,

εsξ =
1

H

(
∂uξ
∂s

+ κus

)
+
∂us
∂ξ

,

(8)

with H =
√
g. At this point, for the purposes of the formulation, it is convenient to write

separately the components related to the locking, i.e. axial and shear (εss, εsξ and εsη), from

those lying on the cross-section, (εξξ, εηη and εξη), as follows:

εεεC = {εss εsη εsξ}T ,
εεεΩ = {εξξ εηη εξη}T .

(9)

It is noteworthy that the deformations of the cross-section in its own plane must be considered,

as higher-order theories of structure will be implemented in the kinematics model to account

for the transverse deformations. In matrix form, the geometrical relations read:

εεεC = (DDDM +DDDS) u, (10)

εεεΩ = DDDΩ u, (11)
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where DDDM is the differential operator accounting for the axial terms, DDDS is that of the shear

terms and DDDΩ is the one for the cross-sectional deformations:

DDDM =

 1
H

∂
∂s − 1

Hκ 0

0 0 0
1
Hκ 0 0

 , DDDS =

 0 0 0
∂
∂η 0 1

H
∂
∂s

∂
∂ξ

1
H

∂
∂s 0

 ,
DDDΩ =

 0 ∂
∂ξ 0

0 0 ∂
∂η

0 ∂
∂η

∂
∂ξ

 .
(12)

Furthermore, it is also convenient to take into account whether these operators act on the

longitudinal component of the displacements, or on those lying on the cross-section of the

beam. Accordingly, the shear operator becomes:

DDDS = DDDS‖ +DDDS⊥ , (13)

where

DDDS‖ =

 0 0 0

0 0 1
H

∂
∂s

0 1
H

∂
∂s 0

 , DDDS⊥ =

 0 0 0
∂
∂η 0 0
∂
∂ξ 0 0

 . (14)

The constitutive laws can be written as:{
σσσC

σσσΩ

}
=

[
CCC CCΩ

CΩC CΩΩ

]{
εεεC

εεεΩ

}
, (15)

where σσσC = {σss σsξ σsη}T includes the axial and shear stresses, and σσσΩ = {σξξ σηη σξη}T

includes the transverse and in-plane shear stresses over the cross-section. In the case of an

orthotropic material the stiffness matrices, CCC , CCΩ, CΩC and CΩΩ, write:

CCC =

 C11 0 0

0 C55 0

0 0 C66

 , CΩΩ =

 C22 C23 0

C23 C33 0

0 0 C44

 ,
CCΩ = CT

ΩC =

 C12 C13 0

0 0 0

0 0 0

 .
(16)

The expression of the stiffness components Cij in terms of the engineering elastic constants

can be found in the books of Reddy [? ] or Jones [? ], among others. Moreover, the extension

of this formulation to generic anisotropic materials can be done straightforwardly by including

the additional terms on these matrices.
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4 Unified formulation of composite beams

Towards the enhanced study of composite materials, the kinematics of the MITC beam el-

ement is enriched by means of higher-order expansions of the cross-sectional coordinates (ξ,

η). Making use of the Carrera’s unified formulation of theories of structure (CUF), arbitrary

assumptions can be made to capture the deformation of the cross-section of the beam. In this

manner, the displacement field can be expressed as:

u(s, ξ, η) = Fτ (ξ, η)uτ (s), τ = 1, ...,M, (17)

where uτ = {usτ uξτ uητ}T is the generalized displacement vector containing the beam

unkwons, Fτ are the assumed functions of the cross-sectional coordinates, and M stands for

the total number of assumed functions. The idea is that any complex deformation of the cross-

section, and consequently strain and stress fields, can be captured with the use of a proper

set of expansion functions, Fτ . For this scope, a hierarchical set of Legendre polynomials is

employed in the present study. The proposed theory of structure, denoted to as Hierarchical

Legendre Expansions (HLE), was first developed for straight beams by Carrera et al. [? ]

using a non-local description of the cross-section surface based on quadrilateral domains. The

set of these expansion domains is filled with vertex, side and internal modes, inspired on those

developed by Szabó and Babuška [? ] for the p-version of the FEM. Their expressions are:

• Vertex: included for all polynomial orders, p,

Fτ (χ, ζ) =
1

4
(1− χτχ)(1− ζτζ), τ = 1, 2, 3, 4, (18)

• Side: defined for p ≥ 2,

Fτ (χ, ζ) =
1

2
(1− ζ)φp(χ), τ = 5, 9, 13, 18, ... (19)

Fτ (χ, ζ) =
1

2
(1 + χ)φp(ζ), τ = 6, 10, 14, 19, ... (20)

Fτ (χ, ζ) =
1

2
(1 + ζ)φp(χ), τ = 7, 11, 15, 20, ... (21)

Fτ (χ, ζ) =
1

2
(1− χ)φp(ζ), τ = 8, 14, 16, 21, ..., (22)

• Internal: introduced for p ≥ 4,

Fτ (χ, ζ) = φp1(χ)φp2(ζ), p = p1 + p2, (23)

where χ and ζ vary over the natural domain between −1 and +1, and φp are the 1D Legendre-

type internal polynomials defined in [? ] or [? ].

The main advantages of HLE theories is that once the cross-section domain is defined,

the accuracy of the model is tuned through the order of the polynomial expansions Fτ , which
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remains as an input of the analysis. Another interesting feature is the possibility of mapping

different geometries into the quadrilateral domains in a non-isoparametric sense, which allows

the user to represent the exact shape of all the components of the composite structure. More

details about this technique are provided the work of Carrera et al. [? ]. In this work,

layer-wise and component-wise models are generated on the basis of HLE.

4.1 Layer-wise and component-wise models

In layer-wise models, each layer of the composite is allowed to deform independently and the

compatibility conditions are imposed at the interfaces between two successive plies. In the

unified framework, the kinematics of the beam element, Eq. (??), becomes:

u(s, ξ, η) = F k
τ (ξ, η)ukτ (s), τ = 1, ...,M, (24)

where the index k accounts for the layer numbering. In this manner, a set of F k
τ expansion

functions is generated for layer k-th and the compatibility is assured in the assembly of the

stiffness matrix,

uktop = uk+1
bottom, (25)

as shown on the left-hand side of Fig. ??. This model was originally introduced using HLE

theories by Pagani et al. [? ] for the analysis of classical laminates and thin-walled composite

structures.

τ

s

τ

s

τ

s τ

s

τ

s

τ

s

τ

s

Layer 1 Layer 2 Layer 3 Fiber Matrix Lamina

Layer-wise Component-wise

Assembled matrix

Figure 2: Comparison of the layer-wise and component-wise formal approaches in composite
analysis.

Based on this approach and exploiting the capabilities of the unified formulation, a gener-

alization of the layer-wise approach to any component over the cross-section can be straight-

forwardly devised. In fact, by only extending the meaning of the index k from the layer

to generic constituents, one can generate independent kinematics for the fibers, matrix or

any other component, and impose the compatibility of the displacements at their interfaces

in the cross-section domain. Subsequently, the assembly procedure of the kinematics of each
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component into the stiffness matrix of the element remains formally the same as that of layer-

wise approaches, as illustrated on the right-hand side of Fig. ??. The use of HLE theories

of structure in a component-wise sense was introduced by Carrera et al. [? ] for the anal-

ysis of 3D microscopic models. The enrichment of the element kinematics using layer-wise

or component-wise models is crucial for the accurate stress analysis of composite structures,

where classical theories fail. For the sake of clarity, the use of the index k will be avoided in

the following, with no generality lost in the formulation.

5 Curved beam elements based on MITC

When formulating standard displacement-based beam elements, the nodal unknowns are in-

terpolated over the beam axis using a certain polynomial base, Ni. In the CUF framework

for beams, the generalised displacements over the finite element space can be written as:

uτ (s) = Ni(s)uτi i = 1, ..., Nnode, (26)

where uuuτi = {usτi uξτi uητi}T are the nodal unknowns and Nnode stands for the total number

of nodes in the element. In the present work, a Lagrange-based polynomial set is employed to

generate equispaced 2-node linear (B2), 3-node quadratic (B3) and 4-node cubic (B4) beam

elements. The explicit expressions of these interpolating functions can be found in the book

of Bathe [? ].

Using Eqs. (??) and (??), the strains of the standard element can be written in the form

of Eq. (??) as

εεεC = Fτ (DDDMNiI)uτi + Fτ (DDDS‖NiI)uτi + (DDDS⊥FτI)Niuτi, (27)

εεεΩ = (DDDΩFτI)Niuτi , (28)

where I is the 3× 3 identity matrix.

The effects of shear locking in thin finite elements have received wide attention since the

introduction of FEM and were already addressed in [? ]. However, when curved geometries

are considered, the axial strains associated to the curvature terms can lead also to an increase

of the bending stiffness [? ]. This numerical issue, commonly known as membrane locking, is

caused by inconsistencies in the interpolations of the strains due to the curvature terms and

can have detrimental effects in the performance of the finite element. In order to solve this

issue and to overcome all kinds of locking, the axial and shear strains can be reformulated as

follows:

ε̄εεC = N̄m εεεCm m = 1, ..., nnode − 1, (29)

where ε̄εεC are the assumed axial and shear strains. In this manner, these components are

approximated using a lower-order set of functions, N̄m, that interpolate the strains obtained

from the displacements, εCm , at certain points along the length of the element, which are called
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Figure 3: Assumed strains in MITC beam elements and tying points.

tying points. The tying points, hereinafter Tm, are shown in Fig. ?? and their locations for

linear, quadratic and cubic beam elements are:

B2 : rT1 = 0,

B3 : rT1 = − 1√
3
, rT2 = 1√

3
,

B4 : rT1 = −
√

3
5
, rT2 = 0, rT3 =

√
3
5
,

(30)

where r is the coordinate in the natural frame of the beam element. These points, also

known as Barlow points, provide the best strain values within the element and, in most cases,

coincide with the Gauss points [? ]. For the sake of completeness, the set of assumed functions

employed in the present formulation is provided in Appendix ??.

Evaluating the strains of Eq. (??) by means of Eq. (??), the vector containing the axial

and shear terms becomes:

ε̄εεC = N̄mFτ (DDDMNiI)muτi + N̄mFτ (DDDS‖NiI)muτi + N̄m(DDDS⊥FτI)Nimuτi , (31)

where the subscript m denotes evaluation of the standard shape functions and their derivatives

at the tying points, except for N̄m.

Finally, according to the constitutive relations of Eq. (??), the stresses can be written as:

σ̄σσC = CCC

[
N̄mFτ (DDDMNiI)muτi + N̄mFτ (DDDS‖NiI)muτi

+ N̄m(DDDS⊥FτI)Nimuτi
]

+ CCΩ

[
(DDDΩFτI)Niuτi

]
,

σ̄σσΩ = CΩC

[
N̄mFτ (DDDMNiI)muτi + N̄mFτ (DDDS‖NiI)muτi

+ N̄m(DDDS⊥FτI)Nimuτi
]

+ CΩΩ

[
(DDDΩFτI)Niuτi

]
.

(32)

6 Governing equations

The governing equations are obtained through the principle of virtual displacements (PVD).

The variation of the virtual internal work, δLint, includes the contribution of the membrane

and shear strains, δLintC , and the sectional strains, δLintΩ . Making use of Eq. (??), these
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terms are:

δLintC =

∫
l

∫
Sect

δε̄εεTC σ̄σσC HdΩ ds =

∫
l

∫
Sect

(δε̄εεTC C̄CCCC ε̄εεC + δε̄εεTC C̄CCCΩ εεεΩ)HdΩ ds, (33)

δLintΩ =

∫
l

∫
Sect

δεεεTΩ σ̄σσΩ HdΩ ds =

∫
l

∫
Sect

(δεεεTΩ C̄CCΩC ε̄εεC + δεεεTΩ C̄CCΩΩ εεεΩ)H dΩ ds, (34)

where l is the length of the beam and Sect is the total surface of the cross-section. Considering

Eq. (??) and (??), the internal work can be written in a compact manner as:

δLint = δLintC + δLintΩ = δuTτi( Kτςij
CC + Kτςij

CΩ + Kτςij
ΩC + Kτςij

ΩΩ )uςj , (35)

where the Kτςij matrices are the fundamental nuclei of the stiffness matrix. They contain

the integrals of the expansion functions, indicated by the indexes τ and ς, and those of the

1D interpolating functions, indicated by i and j. The explicit form of the components of the

fundamental nuclei is provided in Appendix ??. One can notice that, in the unified framework,

any theory of structure, e.g. layer-wise or component-wise, can be formulated into the element

in terms of these fundamental nuclei with an appropriate number of expansion terms, which

is selected by the user as an input.

Using the same notation, the virtual external work for a generic point loadPPP τi = (Psτi Pξτi Pητi)

reads:

δLext = δuuuTτi PPP τi . (36)

The formulation of generic pressure loads is shown in [? ].

Considering the equivalence of virtual works,

δLint = δLext, (37)

the governing equations read:

δuuuτi : KKKτςij uuuςj = PPP τi , (38)

where Kτςij is the total sum of the fundamental nuclei of Eq. (??).

The element here proposed includes some interesting features for the analysis of com-

posite structures. First, it does not lock and provides a better approximation of the axial

and shear stresses along the beam axis without adding extra degrees of freedom. It also

avoids the appearance of unexpected spurious modes, which occur when other well-known

numerical artefacts are employed [? ], such as the reduced integration. In addition, the

use of layer-wise/component-wise kinematics for the cross-sectional assumptions enables the

representation of the different constituents for laminated structures and multi-component

composites, while keeping the computational advantages of beam formulations.
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7 Numerical examples

Several numerical analyses are proposed in this section to show the advantages of refined

curved beam elements based on MITC. First, a locking assessment is performed accounting

for different meshes and slenderness ratios. In a second case, the capabilities of refined layer-

wise elements for the accurate stress analysis is proven through a benchmark case of a circular

laminated disk. Finally, a 3D microstructure is analyzed using the component-wise approach

and the efficiency of the model is demonstrated against solid models.

7.1 Locking analysis

The performance of MITC beam elements to mitigate shear and membrane locking in curved

geometries is demonstrated as a first assessment. A simply-supported laminated beam is

considered and the focus is on the effect of the slenderness ratio and the polynomial order of

the shape functions of the element. The geometry of the problem is shown in Figure ??. The

section is rectangular, being the total height, h, equal to 0.6 m, and the total width, b, equal

to 0.4 m. The opening angle is Φ = 2/3π and two different slenderness ratios are studied,

namely L/h = 5 and L/h = 500, accounting for a thick and a very slender beam. Two

layers of equal thickness are considered in the radial direction and modelled as a layer-wise

expansion over (ξ, η) using first-order Legendre polynomials, hereinafter referred to as 2HL1.

The material properties of each layer are listed in Table ??.

E1 (GPa) E2, E3 (GPa) G12, G13, G23 (GPa) ν12, ν13, ν23

material 1 30 1 0.5 0.25
material 2 5 1 0.5 0.25

Table 1: Material properties of the two-layer arc. The index 1 refers to the axial direction,
whereas 2 and 3 correspond to the normal and bi-normal directions, respectively.

R

ξ

ξ

η

b

material 1

material 2

Figure 4: Geometry and section of the arc used for the locking assessment.

Navier-type exact solutions are used as references in all cases. The derivation of strong

form solutions for refined beam models is presented in the companion paper [? ]. A point
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force of magnitude P = 1000 N is applied at midspan in ξ = 0.0 and η = 0.0. The analytical

solutions for the radial displacement at the center of the beam are uNavξ = 4.735× 10−5 m for

L/h = 5 and uNavξ = 23.169 m for L/h = 500. Figures ??, ?? and ?? show the normalized

radial displacements ūξ = uξ/u
Nav
ξ for an increasing number of beam elements, N , featuring

two, three and four nodes, respectively. The graphs include the solutions of elements using

full integration schemes (B*) against those obtained from MITC beam elements (MITC*).

From these results, it is possible to conclude that:

• Analytical Navier-type solutions represent an exact solution in the framework of the pro-

posed formulation and, therefore, represent the best assessment to evaluate the locking

correction method. Reference results are herein obtained using 200 half waves.

• Locking is more evident for lower order elements and have disastrous effects on slender

structures. The use of higher-order shape functions alleviates to some extent the prob-

lem, although the computational size of the model increases. In view of this results,

third-order elements are employed hereinafter.

• The MITC element avoids locking independently of the slenderness ratio, see Fig. ??.

The convergence rates shown by the element are also superior to those of standard beam

elements, which leads to a more efficient analysis.

1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

 

 

u

N

 MITC2 L/h=5
 B2 L/h=5
 MITC2 L/h=500
 B2 L/h=500

Figure 5: Radial displacement, ūξ, at midspan for an increasing number of 2-node curved
elements. Slenderness ratios L/h = 5 and L/h = 500.

7.2 Laminated circular disk

A circular laminate is considered as a second numerical example to assess the stress accuracy

of the element. It consists in a benchmark hollow cylindrical disk with internal pressure, see

Fig. ?? (a). This problem was studied by Surana and Nguyen [? ] and analytical solutions
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Figure 6: Radial displacement, ūξ, at midspan for an increasing number of 3-node curved
elements. Slenderness ratios L/h = 5 and L/h = 500.
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Figure 7: Radial displacement, ūξ, at midspan for an increasing number of 4-node curved
elements. Slenderness ratios L/h = 5 and L/h = 500.
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from Lekhnitskii [? ] are available. In order to be consistent with the references, plane stress

assumptions are applied and no units are provided, therefore no conversion is performed in

the computations. The laminate is made of a stack of eight layers of two different materials

with the following elastic properties:

material 1 : E1/E2 = 30, G12/E2 = 0.5, ν12 = 0.25

material 2 : E1/E2 = 5, G12/E2 = 0.5, ν12 = 0.25
(39)

for E2 = 1 × 106. The radius of the center line of the structure, R, is equal to 10, and the

total thickness, h, is equal to 8. The value of the pressure, P , applied at the inner wall is

1000. Given the double symmetry of the problem, only a quarter of the structure is modelled.

The beam model proposed is presented in Fig. ?? (b). It accounts for 4 curved MITC beam

elements and a layer-wise distribution of the unknowns based on HLE.

R

h

P

material 1

material 2

F

F

(a) Case

4 cubic MITC beam elements 

8 HLE 

expansions

(b) Refined beam model

Figure 8: Features of the hollow laminated ring case and proposed refined beam model.

Figures ??, ?? and ?? show the distributions of radial displacements, radial stresses and

circumferential stresses, respectively, versus the thickness coordinate in radial direction. Ex-

ploiting the capabilities of HLE theories of structure, several polynomial degrees are eval-

uated at the layer-level and compared with the solutions from [? ]. In the latter work,

a two-dimensional formulation of curved beams is developed using higher-order Lagrangian

polynomials for the displacements over the whole thickness in an equivalent single layer (ESL)

approach. Subsequently, the authors discretize the center line with a total of 45 quadratic

beam elements and convergence to the analytical solutions is achieved by increasing the poly-

nomial degree of the assumed functions, p. In the graphs, the LW solutions obtained with

MITC elements are labeled as HL1 to HL8, standing for first to eight polynomial degree; and

the results from [? ] are referred to as p = 1 to p = 4. The analytical solutions based on [?

] are also included as references. Finally, Fig. ?? shows the plot of the stress solutions over

the disk for the HL3 model.
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Although, in general, ESL models are computationally less expensive in comparison to

LW models, their convergence is much slower and very high polynomial orders are required to

obtain accurate solutions in laminated structures, as shown in Fig. ??. It is possible to observe

that the HL2 model is already in good agreement with the analytical solution, whereas the

forth order, p = 4, still oscillates around it. Regarding the radial stresses, displacement-based

LW solutions do not necessary satisfy the equilibrium conditions at the interfaces, although

a third-order expansion (HL3) provides almost continuous solutions.

6 8 10 12 14
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0.4

0.6

0.8
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1.2

1.4
 

 -u
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 HL2
 HL3
 HL8
 p=1
 p=4
 Analytical

Figure 9: Radial displacement, uξ, through the thickness of the laminated disk.

To complete the analysis of the laminated disk, a second load case is herein considered.

The structure is now pinched with two opposite and equal loads, F , acting on the top and

bottom points, as shown in Fig. ?? (a). The magnitude of these forces is F = 5. Table

?? includes a comparison between the solutions of radial displacements and stress solutions

obtained from standard full integrated elements and MITC elements. In order to show the

influence of the slenderness ratio and the locking effects in all the solutions, two radius are

proposed, which are R = 10 and R = 500. One can notice that for the thick disk, the local

effects around the loaded region play a major role and no convergence is observed for uξ and

σss. Also, both integration schemes behave similarly. On the other hand, for high slenderness

ratios, the membrane effects become more important and MITC beam elements show their

superiority, both in terms of displacements and stresses.
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Figure 10: Radial stress, σξξ, through the thickness of the laminated disk.
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Figure 11: Circumferential stress, σss, through the thickness of the laminated disk.

18



−9.906e+04

−9.081e+04

−8.255e+04

−7.430e+04

−6.604e+04

−5.779e+04

−4.953e+04

−4.128e+04

−3.302e+04

−2.477e+04

−1.651e+04

−8.258e+03

−2.772e+00

(a) Radial stress

+2.965e+03

+5.198e+04

+1.010e+05

+1.500e+05

+1.990e+05

+2.480e+05

+2.971e+05

+3.461e+05

+3.951e+05

+4.441e+05

+4.931e+05

+5.421e+05

+5.912e+05

(b) Circumferential stress

Figure 12: Stress fields over the eight-layer curved beam for the third order HL3 model.

7.3 3D microstructure

The last numerical case deals with a 3D micro model of a fiber-matrix arrangement. The

study focuses on the use of the proposed locking-free beam elements as a high-fidelity low-

cost tool for the stress analysis of complex composite problems. The geometrical features of

the model are shown in Fig. ??. The configuration recalls a typical case of curved fibers

that are prone to fail due to kinking. The mechanical properties of the materials are those

of a IM7/8551-7 carbon/epoxy composite, see Table ??. A fiber volume fraction of 0.5027 is

considered. The opening angle of the structure is equal to a quarter of a circle and two fibers

are included in the model. Simply supported conditions are applied at both the edges, i.e.

uξ = uη = 0 for s = (0, L), and the symmetry is imposed at the center of the microstructure,

i.e. us = 0 at s = L/2. The loading configuration proposed is a pull-out of the fibers of a

magnitude of 1 N at each edge, modelled as a distributed pressure over the section of the

fibers.

R

s

-

d

h

A B

R=0.95, h=0.2, d=0.04, b=0.05

A=-0.05, B =-0.15

1

1

1 1

L

Figure 13: Geometry and section of the fiber-matrix microstructure. Distances in mm and
forces in N.

A convergence analysis is performed for both the mesh of MITC curved elements and
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R=10 uξ × 103 σss × 10−3 σξξ × 10−1 σsξ × 10−1 DOFs
[L,-h/2,0] [L,-h/2,0] [0,0,0] [L/2,0,0]

No. B4 MITC Full MITC Full MITC Full MITC Full
1 3.535 3.370 -2.645 -3.169 -2.280 -4.477 11.917 11.490 816
2 4.184 4.122 -5.019 -5.497 -2.187 -2.271 7.182 7.832 1428
3 4.553 4.516 -6.936 -7.417 2.262 -2.271 10.713 10.682 2040
4 4.811 4.786 -8.553 -9.087 -2.265 -2.268 9.813 9.832 2652
10 5.615 5.610 -14.337 -15.253 -2.266 -2.266 9.845 9.845 6324
R=500 uξ × 10−1 σss × 10−4 σξξ × 10−1 σsξ × 10−2 DOFs

[L,-h/2,0] [L,-h/2,0] [0,0,0] [L/2,0,0]
No. B4 MITC Full MITC Full MITC Full MITC Full
1 1.962 0.072 -4.151 0.294 -6.449 0.053 1.518 -0.714 816
2 1.970 1.520 -4.047 -1.212 -6.404 -8.196 1.104 6.431 1428
3 1.970 1.882 -4.037 -2.845 -6.327 -7.419 1.328 4.436 2040
4 1.969 1.950 -4.038 -3.528 -6.326 -6.872 1.286 1.957 2652
10 1.970 1.970 -4.068 -4.025 -6.329 -6.352 1.230 1.233 6324

Table 2: Displacements and stress solutions of the pinched laminated disk for two different
radius. The number of degrees of freedom (DOFs) corresponds to the maximum number of
unknowns of the linear problem.

E1 (GPa) E2, E3 (GPa) G12, G13 (GPa) G23 (GPa) ν12, ν13 ν23

IM7 fiber 276 19 27 7 0.2 0.2
8551-7 matrix 4.08 4.08 1.478 1.478 0.38 0.38

Table 3: Material properties of the carbon fiber and epoxy matrix used for 3D microstructure,
obtained from Kaddour and Hinton [? ].

a solid model generated in the commercial software ABAQUS using linear C3D8 elements.

The curved MITC elements here proposed are generated using a distribution of HLE ex-

pansions of fourth order (HL4) over the cross-section, which are capable of representing the

exact geometry of the constituents in a component-wise sense. More details of the modeling

procedure are provided in Carrera et al. [? ]. Table ?? shows the maximum deflection of

the structure for all the models generated. Three different solid models were generated with

increasing mesh refinements. One can notice that in solid modeling, in order to capture the

actual deformation of the structure, a very refined mesh is needed to represent accurately the

total volume and the correct ratio between the constituents. On the other hand, the curved

beam elements keep always the actual geometry of the cross-section, therefore convergence

is reached faster. Figure ?? shows a comparison of the displacement results and the model’s

geometrical features.

Finally, Fig. ??, ?? and ?? show the longitudinal, radial and transverse shear stress fields

over the fibers for the two approaches. It is clear that both approaches are in high agreement

both in terms of magnitude and distribution of the solutions. These results illustrate the actual
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MITC beam - HL4
mesh 2 B2 (1,413) 2 B3 (2,355) 2 B4 (3,297) 4 B4 (6,123) 14 B4 (20,253)
umax × 105 2.775 4.918 4.940 4.942 4.942

ABAQUS - C3D8
mesh (54,417) (245,979) (575,667)
umax × 105 5.150 5.115 4.965

Table 4: Maximum deflection in magnitude, umax, of the fiber-matrix micro model. Number
of degrees of freedom between parentheses.
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Figure 14: Comparison of displacement resultant (m) and modeling procedure.

potential of MITC beam models for the study of composite materials. The computational

costs of problems such this one usually remains as a limiting factor in composite analysis and

compromises the accuracy of the stress solutions. In this regard, the use of a proper beam

element with enhanced kinematics over the cross-section can be used to reduce the size of

the computational problem by orders of magnitude with no loss of accuracy. The low levels

of bandwidth in the stiffness matrix of CUF beam models also promotes less computational

costs when compared with 3D FEM models.
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Figure 15: Longitudinal stresses (Pa) over the fibers of the micro model.

21



−3.081e+06

+5.556e+06

+1.419e+07

+2.283e+07

+3.147e+07

+4.010e+07

+4.874e+07

+5.738e+07

+6.601e+07

+7.465e+07

+8.329e+07

+9.192e+07

+1.006e+08

(a) MITC4-HL4

−8.625e+06

+6.697e+05

+9.964e+06

+1.926e+07

+2.855e+07

+3.785e+07

+4.714e+07

+5.644e+07

+6.573e+07

+7.502e+07

+8.432e+07

+9.361e+07

+1.029e+08

(b) ABAQUS

Figure 16: Radial stresses (Pa) over the fibers of the micro model.
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Figure 17: Shear stresses, σsξ, (Pa) over the fibers of the micro model.

8 Conclusions

This paper introduces a novel family of locking-free beam elements with component-wise

capabilities that possesses great advantages for the analysis of composite structures. The use

of the MITC method is twofold: first, the membrane and shear locking is eliminated in a

natural manner, and also, it allows a better representation of the strain and stress solutions

in comparison to standard integration schemes. From the results of this study, the authors

conclude that:

• Membrane and shear locking are completely mitigated and convergence rates of the

beam model are clearly improved, especially for thin structures, which are typical in

composite applications.

• The fidelity of the stress solutions is proven through comparison against analytical

solutions of benchmark problems and highly refined 3D models.

• The element is proposed for the accurate analysis of composite materials at different

scales, from the structural modeling to the micromechanics, due to its robustness, effi-

ciency and straightforward implementation in a FEM framework.

The potential of the CW formulation extends to the damage and failure study of composite

structures, in which the computation of accurate 3D stress fields is of paramount importance
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and the computational costs remains as a limiting factor of the analysis. Future investigations

will be dedicated to more realistic applications of aerospace thin-walled structures and local

effects at the micro-scale, such as fiber kinking.
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A Assumed functions for axial and shear strains

The interpolating functions of the assumed strains, N̄m, for linear, quadratic and cubic beam

elements are:

B2 : N̄1 = 1,

B3 : N̄1 = −1
2

√
3(ξ − 1√

3
), N̄2 = 1

2

√
3(ξ + 1√

3
),

B4 : N̄1 = 5
6
ξ(ξ −

√
3
5
), N̄2 = −5

3
(ξ −

√
3
5
)(ξ +

√
3
5
), N̄3 = 5

6
ξ(ξ +

√
3
5
).

(40)

One can observe that these polynomials are of one order less than those used to interpolate

the displacement unknowns.

B Fundamental nuclei of the stiffness matrix for MITC

curved beam elements

The explicit expressions of the components of the 3×3 fundamental nuclei Kτςij
CC , Kτςij

CΩ , Kτςij
ΩC

and Kτςij
ΩΩ are provided in the following. According to the introduced notation, the component

1 corresponds to the stiffness terms in direction s, 2 in ξ and 3 in η.

Kτςij
CC (1, 1) = Ii,sj,sE

11
τς 1
H

+ Iij

(
E55
τ,ης,ηH

+ E66
τ,ξς,ξH

)
+ κIij

(
E66
τς,ξ

+ E66
τ,ξς

)
+ κ2IijE

66
τς 1
H

,

Kτςij
CC (1, 2) = Ii,sjE

66
τς,ξ

+ κ
(
Ii,sjE

66
τς 1
H

− Iij,sE
11
τς 1
H

)
Kτςij
CC (1, 3) = Ii,sjE

55
τς,η ,

Kτςij
CC (2, 1) = +Iij,sE

66
τ,ξς

+ κ
(
Iij,sE

66
τς 1
H

− Ii,sjE
11
τς 1
H

)
,

Kτςij
CC (2, 2) = Ii,sj,sE

66
τς 1
H

+ κ2IijE
11
τς 1
H

,

Kτςij
CC (2, 3) = 0,

Kτςij
CC (3, 1) = Iij,sE

55
τ,ης ,

Kτςij
CC (3, 2) = 0,

Kτςij
CC (3, 3) = Ii,sj,sE

55
τς 1
H

,

(41)

Kτςij
CΩ (1, 1) = 0,

Kτςij
CΩ (1, 2) = Iij,sE

12
τ,ξς
,

Kτςij
CΩ (1, 3) = Iij,sE

13
τ,ης ,

Kτςij
CΩ (2, 1) = 0,

Kτςij
CΩ (2, 2) = −κIijE12

τς,ξ
,

Kτςij
CΩ (2, 3) = −κIijE13

τ,ης ,

Kτςij
CΩ (3, 1) = 0, Kτςij

CΩ (3, 2) = 0, Kτςij
CΩ (3, 3) = 0

(42)
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Kτςij
ΩC (1, 1) = 0, Kτςij

ΩC (1, 2) = 0, Kτςij
ΩC (1, 3) = 0,

Kτςij
ΩC (2, 1) = Ii,sjE

12
τς,ξ
,

Kτςij
ΩC (2, 2) = −κIijE12

τ,ξς
,

Kτςij
ΩC (2, 3) = 0,

Kτςij
ΩC (3, 1) = Ii,sjE

13
τς,η ,

Kτςij
ΩC (3, 2) = −κIijE13

τς,η ,

Kτςij
ΩC (3, 3) = 0,

(43)

Kτςij
ΩΩ (1, 1) = 0, Kτςij

ΩΩ (1, 2) = 0, Kτςij
ΩΩ (1, 3) = 0, Kτςij

ΩΩ (2, 1) = 0,

Kτςij
ΩΩ (2, 2) = Iij

(
E22
τ,ξς,ξH

+ E44
τ,ης,ηH

)
,

Kτςij
ΩΩ (2, 3) = Iij

(
E23
τ,ης,ξH

+ E44
τ,ξς,ηH

)
,

Kτςij
ΩΩ (3, 1) = 0,

Kτςij
ΩΩ (3, 2) = Iij

(
E23
τ,ξς,ηH

+ E44
τ,ης,ξH

)
,

Kτςij
ΩΩ (3, 3) = Iij

(
E33
τ,ης,ηH

+ E44
τ,ξς,ξH

)
,

(44)

where the I terms correspond to the integrals of the shape functions along the beam axis,

written as follows:

Ii(,s)j(,s) =

∫
l

Ni(,s)Nj(,s) ds,

Ii(,s)j(,s) =

∫
l

NmNi(,s)mNj(,s) ds,

Ii(,s)j(,s) =

∫
l

Ni(,s)NnNj(,s)n ds,

Ii(,s)j(,s) =

∫
l

NmNi(,s)mNnNj(,s)n ds.

(45)

The subscripts i and j refer to the shape functions of the beam element, whereas m and n

refer to the assumed strains. Accordingly, Nm
i(,s)

is the i-th shape function (or its derivative)

evaluated at the m-th tying point Tm:

Ni(,s)m = Ni(,s) (Tm) . (46)

On the other hand, the E terms correspond to the integrals of the expansion functions
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over the cross-section. For instance:

E12
τ,ξς

=

∫
Ω

C12 Fτ,ξFς dξ dη,

E44
τ,ης,ηH =

∫
Ω

C44 Fτ,ηFς,η H dξ dη,

E11
τς 1
H

=

∫
Ω

C11 FτFς
1

H
dξ dη.

(47)

When considering different fibre orientation angles, the material coefficients involved in the

previous expression must be rotated according to the affine transformation of fourth order

elasticity-like tensors, as shown in [? ]. Full Gaussian quadrature is used for the numerical

integrals in all cases.

It is worthy noting that the metric tensor, H, can be evaluated in the cross-sectional

integrals only when the curvature, κ, along the length of the beam element is constant, see

Eq. (??). If the curvature varies along s, i.e. κ(s), 3D integrals must be computed over the

volume.
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