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Abstract  Here  we  will  show  that  the  symmetric  q-integers  of  the  q-calculus  have  a
generalized sum which is also the generalized sum that we can find in the k-calculus proposed
by G.  Kaniadakis.  
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Introduction  In a previous work [1], we have discussed the group of the q-integers as defined

by q-calculus. In the notation given in the book by Kac and Cheung [2],  the q-integers are: 

(1) [n]= q
n−1
q−1

=1+ q+ q2+ . . .+ qn−1 .

In [1],  we defined the generalized sum of the group as: 

(2) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]

As a consequence,  we have that the q-integers (1) with operation (2) form a multiplicative

group. The generalized sum (2) is similar to the generalized sum that we find for the Tsallis

entropies of independent systems [3].

In the q-calculus [2], it is also defined the symmetric q-integer in the following form (here we

use a notation different from that given in the Ref.2):

(3) [n]s=
qn−q−n

q−q−1

Repeating the approach used in [1], we can determine the group of the symmetric q-integers. 

Let us start from the q-integer [m+ n ]s , which is according to (3):                                            

[m+ n ]s=
qm+ n−q−(m+ n)

q−q−1



and try to find it as  a generalized sum  of  the q-integers [m]s and [n]s .

By writing q=exp( log q) ,  the q-integer turns out into a hyperbolic sine: 

(4) [n]s=
qn−q−n

q−q−1 = e
n logq−e−nlog q

q−q−1 =2
sinh (n log q)

(q−q−1)

Apart from a numerical factor, this is the form of the generalized numbers proposed by G.

Kaniadakis in his k-calculus [4-8]. 

From (4), we can write also:

1
2
(q−q−1) [n ]s=sinh (n log q)

Therefore:

 [m+n ]s=
qm+n−q−(m+n)

q−q−1 =2
sinh((m+n) logq)

(q−q−1)

Using the properties: 

sinh(x+ y )=sinh xcosh y+cosh x sinh x  ; cosh x=√1+sinh 2 x

we obtain:

[m+n ]s=
2

(q−q−1)
[sinh(m log q)cosh (n log q)+sinh(n log q)cosh (m log q)]

[m+n ]s=[m]s cosh(n log q)+[n]scosh (m log q)

[m+n ]s=[m]s√1+sinh2(n log q)+[n]s√1+sinh2(m log q)

Let us define: k=(q−q−1)/2  and then: k [n]s=sinh (n log q) .

As a consequence we have the generalized sum of the symmetric q-integers as:

(5) [m]s⊕[n ]s=[m]s√1+k 2[n]s2+[n]s√1+k2[m ]s
2



Let us conclude stressing that (5) is also the generalized sum proposed by G. Kaniadakis in

the framework of a calculus [5-8], the details of which are given in [8]. By means of  (5), we can

repeat the approach given in Ref.1 and study of the group of the symmetric q-integers. 
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